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Abstract: This paper proposes a novel finite volume element (FVE) scheme for linear parabolic
optimal control problems (OCPs) subject to integral control constraints. The state and co-state variables
were approximated using continuous piecewise linear finite elements, while the control variable was
discretized via piecewise constant functions. First, following the discretize-then-optimize approach,
the FVE approximation of the parabolic OCP was formulated. Second, the first-order optimality
conditions were derived, and corresponding error estimates in the L*(J; H'(Q))-norm for the state
and co-state variables, as well as in the L*(J; L*(Q))-norm for the control variable, were established.
These estimates quantify the deviation between the discrete solutions and the exact solutions over the
time interval J and spatial domain Q, providing rigorous bounds on the approximation errors. Third,
some superclose results between the projection of the exact solution and the discrete solution for all
variables were analyzed, leading to optimal-order error estimates in the L™(J; L*(Q))-norm for all
variables. Finally, a numerical example was presented to validate the theoretical results. We believe
that this is the first article to construct an FVE approximation based on the discretize-then-optimize
approach for the parabolic OCP.
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1. Introduction

Finite element approximation plays a crucial role in the numerical solution of OCPs. Extensive
theoretical and numerical investigations have been conducted on the finite element approximation of
various types of OCPs. Chen [1] employed the postprocessing projection operator, originally defined
by Meyer and Rosch (see [2]), to establish quadratic superconvergence of the control approximation
in mixed finite element methods. Chen and Dai [3] investigated superconvergence properties for
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semilinear elliptic OCPs discretized by the linear finite element method. Li et al. [4, 5] derived
both residual-based and recovery-type a posteriori error estimates for finite element approximations
of elliptic OCPs. Meyer and Rosch [6] analyzed L*-error estimates for elliptic OCPs discretized
using finite element methods. Meidner and Vexler [7, 8] studied a priori error estimates for space-time
finite element discretizations of parabolic OCPs, with and without control constraints, respectively.
Zhou and Tan [9] examined finite element approximations for OCPs governed by space-fractional
differential equations and discussed associated a priori error estimates. Liu et al. [10] developed a
posteriori error estimates for discontinuous Galerkin time-stepping schemes applied to parabolic OCPs.
Comprehensive introductions to finite element methods for partial differential equations and OCPs can
be found in [11,12].

For the discretization of the optimal control problems, there are two different approaches: optimize-
then-discretize and discretize-then-optimize. In the optimize-then-discretize approach, first the
necessary optimality conditions are established on the continuous level consisting of the state, co-state,
and optimality equations, and then these equations are discretized by different numerical methods. In
the discretize-then-optimize approach, the state equation is discretized and then the optimality system
for the finite dimensional optimization problem is derived. Treating the control and state as independent
of optimization variables, the discrete optimality conditions yield a system.

The FVE method is one of the most widely employed numerical techniques for solving partial
differential equations. A key advantage of this method lies in its ability to preserve local physical
conservation laws. Over the past decade, the FVE method has been increasingly applied to
the computation of various OCPs. For instance, Luo et al. [13] utilized this method to solve
distributed OCPs governed by hyperbolic equations and derived optimal a priori error estimates for
all involved variables. Ge and Sun [14] proposed a hybrid approximation scheme for an OCP governed
by an elliptic equation with random coefficients. The scheme approximates the optimality system by
employing the FVE method for spatial discretization and a sparse grid stochastic collocation method
based on Smolyak approximation for the probability space. Lin et al. [15] developed a Fourier FVE
method to address distributed control and Dirichlet boundary control problems. In their approach,
Fourier discretization was applied in the azimuthal direction using polar coordinates, while FVE
approximation was used in the radial direction. Kumar et al. [16] introduced a discontinuous FVE
method for distributed OCPs governed by the Brinkman equations, where the objective is to identify a
force field that generates a desired velocity profile. Furthermore, Kumar et al. [17] presented a family
of discretizations for OCPs governed by equations modeling immiscible displacement in porous media,
combining mixed and discontinuous FVE methods within an optimize-then-discretize framework. It is
noteworthy that all the aforementioned studies adopt the optimize-then-discretize approach to derive
their discretization schemes.

The primary objective of this paper is to construct an FVE approximation for a parabolic OCP using
the discretize-then-optimize approach. We consider the following OCP:

min % (I 1) = yae DI 2y + 100G DI 1200) - (1.1)
vi(x, 1) — div(A(x)Vy(x, 1)) + c(x)y(x, 1) = f(x, 1) + q(x, 1), x € Q, t € J, (1.2)
y(x,Dlga =0, 1 € J, (1.3)
y(x,0) = yo(x), x € Q. (1.4)
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Here Q C R? is a convex polygon, J = (0, T], and

T
0 = {q e L*(J;LX(Q)) : f f q dxdt > 0}.
0 Q

Assume that y; € L>(J; HX(Q)), yo € H*(Q), and 0 < c(x) € W'°(Q). The matrix function
A(x) = (a;;(x)) is symmetric. It satisfies a;;(x) € W (Q) and

2
cleP < Y ay(0Gg; < P V=, 0) R, x€Q,
ij=1
where |¢* = 7 + & and ¢* > ¢, > 0.

This paper is organized as follows. In Section 2, we formulate a new FVE scheme for the
OCP (1.1)—(1.4) and present its equivalent optimality conditions. In Section 3, we establish error
estimates in the L2(J; H'(Q))-norm for the state and co-state variables, and in the L*(J; L*(Q))-norm
for the control variable. Section 4 investigates superclose results between the projection of the exact
solution and the discrete solution for all variables, leading to optimal a priori error estimates in the
L*(J; L*(Q))-norm for all variables. Section 5 presents a numerical example. Finally, Section 6
provides a summary of the main results and discusses potential directions for future research.

Standard Sobolev space notation W™k(Q) is adopted throughout this paper, equipped with

the norm || - [« defined by IV, = Xpem ||D"v||’£k(Q) and the semi-norm | - |, given
by VL. = Diatem ||D“v||’zk(g). We define WS""‘(Q) = {v € W"(Q) : v|sgqo = 0}. For the case k = 2, we
denote H™(Q) = W™(Q), Hi(Q) = W(')"’Z(Q), and simplify the norms as |||, = ||-|ln2 and ||| = [|- ||o.2-

We denote by L*(J; W™*(Q)) the Banach space of functions that are L‘-integrable from J
1/s

into W™4(Q), with the norm defined as [Vlloswmica) = ( BV s dt) for s € [1,00), with the

standard modification for s = co. For brevity, we write |[v||L«yn#) to denote [[V||.s.wmiqy. Analogously,

spaces such as H'(W™*) and C*(W™*) are defined. Throughout the analysis, C represents a generic

positive constant independent of the mesh size /, where h denotes the spatial discretization parameter.

2. FVE approximation

This section constructs a new FVE scheme of the problem (1.1)-(1.4) and introduces some
necessary lemmas. Let (L?(Q))? := {v = (v;, w)|v; € L*(Q),i = 1,2}.
The weak form of (1.1)—(1.4) is to seek (v, g) € L*(H}) X Q* such that

: 1 2 2
gﬁiﬂw—mmm%+mmmg, 2.1)
Ve, v) + (AVy, Vv) + (cy,v) = (f + q,v), Vv € Hé(Q), (2.2)

where (-, -) denotes the inner product in L2(Q) or (L*(Q))>.
By [12], we know that the OCP (2.1) and (2.2) has a unique solution (y,q) € L*(Hy) X Q“/. At
the same time, for any v € H)(Q), x € Q, and g € Q“, there exists a co-state p € L*(H}) such

that (y, p, q) satisfy
(.Yt’ V) + (AV)’, VV) + (Cy’ V) = (f + (]’ V), (23)
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y(-x’ O) = }’O(X), (24)
— (P, v) + (AVp, V) + (cp,v) = (¥ = ya, V), (2.5)
p(x,T)=0, (2.6)
T
f (g+ p,g—q)dt > 0. 2.7)
0
By (2.7), we get
g = max{0, p} - p, 2.8)
where p = %.

For a polygonal domain €2, we consider a quasi-uniform and regular triangulation 7, composed of
closed triangular elements K such that Q = ker, K. Let N, denote the set of all nodes (vertices) of
the triangulation 7}, and let NV, ,? = N, N Q represent the set of interior nodes.

We then construct a dual mesh T, based on 7). There are several approaches to defining the
dual mesh, most of which can be described within the following general framework. For each
element K € T with vertices x;, x;, x;, select a point Q in the interior of K, and choose a point x;;
on each edge x;x; of K. Connect Q to each x;; via straight-line segments r;;. For a given vertex x;,
define V; as the polygon formed by the union of all segments r;; such that x; is a vertex of K. The
region V; is referred to as the control volume centered at x;. It follows that Q = Uxen, Vi, and the dual
mesh T, is defined as the collection of all such control volumes.

The control volume mesh 7 is said to be quasi-uniform and regular if there exists a positive
constant C > 0 such that

C™'h* < meas(V;) < Ch*, YV, € Tj,

where £ is the maximum diameter of all elements K € T},.

Various approaches can be employed to construct a regular dual mesh 7'/, depending on the selection
of a point Q within each element K € T, and points x;; on its edges. In this work, we adopt a widely
used configuration in which Q is chosen as the barycenter of each element K € T, and the points x;;
are selected as the midpoints of the edges of K. This construction of control volumes applies to any
triangulation 77, and facilitates relatively straightforward computations. Moreover, if T}, is locally
regular, then the associated dual mesh T is also locally regular. Let S, denote the standard piecewise
linear finite element space defined over the triangulation 77,

Sp={veCQ):v|gislinear, Y K € T);V|sq = 0},
and its dual volume element space S; on T,
S,=1{ve LX(Q): vly,is constant for all V; € T,;v|y, = 0, if x; € 0Q}.

Consequently, we obtain S, = span{¢:(x) : x; € Ng} and §; = span{¢;(x) : x; € N/? 1,
where ¢;(x) represents the standard nodal basis function associated with node x;, and ¢?(x) denotes
the characteristic function of the control volume V;.

The space of piecewise constant functions is defined as follows:

W, := {wy, € L*(Q) : wy|k is constant, ¥ K € T},}.
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We recall the linear interpolation operator 7, : Hé QNHQ) — S,,Vve Hé (Q) N H*(Q), and
we have

Iy = Z v(x)i(x)

X,‘ENh

and

I — Iyl + hlly — Lplly < CRWl, Y v € H (). (2.9)

We recall the interpolation operator /;; : §, — §, which is defined by

L= )" vl (x).

xiGNh
For any € L*(Q), we recall the L*(Q)-projection [18] P, : L*(Q) — W,, which satisfies:

Py — v, wy) =0, ¥ w, €W, (2.10)
I — Pupllos < Chllgll s, 2 <1< 00, Vg € WHQ). (2.11)

For any ¢ € H(l)(Q), we define the elliptic volume projection (see [19]) R, : H(l)(Q) - S
which satisfies:

(AVY — AVRW, Vi) + (e, vi) — (ERw, Ivy) = 0, Y v, € S, (2.12)
I — Rpl| + Al — Rpwlly < CRA|Wllo, Y o € Hy(Q) N HA(Q), (2.13)
I = Ru) |l + Kl — Rl < CRAWlL, Y v, € Hy(Q) N HA(Q), (2.14)

where Zl]{ : Ak, E‘|K =cg,Ax = m j;(A(X)dX, and Cg = m ch(x)dx, YVKeT,.
Some discrete inner products and norms defined on S, and S} are as follows:

2 2
(Vi Pn)on = Z meas(V)vuipni = (v, L,pn)s Walo, = Ons Vidoas Ivallly = s Tva),

X;ENp,

alf = D > meas(V)(n = vi/di)s Ivall}, = Wl + vl
x;eNp, ijH(i)

Here dij = |xi - Xj|.

Let

an(yn, Iyvi) 1= — Z f (ZVyh) ‘nlvyds = — Z vy (x;) (ZVyh) -nds,
xiENh (9V; x,-eNh BV,'

where n is the outer-normal vector.

By defining a new approximation for the target functional, we propose the following FVE scheme:
Seek discrete solution (y;,, g,) € L*(S ) X Z", which satisfies

(1T
min {—f (|||}’h — Iyalll§ + ||Qh||2)dl‘}, (2.15)
qneQd 2o
e Tvi) + (AVyy, Vi) + @y Tivi) = (f + qu, [ivi), Y i € S, (2.16)
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where Q% = LX(W),) N Q“, y;,(x,0) = Ry,yo(x), and (AVyy, Vv3,) = a(p, I;vi).-

The solution (y;,, g,) € L*(S)) X Q;‘ld of the discretized problem (2.15) and (2.16) also is unique.
When (y;,, g5,) is a solution to (2.15) and (2.16), there exists a discrete co-state p, € L*(S;) which
makes (y;, pr, qn) satisfy the discrete optimality conditions:

(yht9 IZV},) + (ZV)’h, VVh) + (E')’h’ I;Vh) = (f + 4hs I;Vh), (217)
Yu(x,0) = Rpyo(x), (2.18)
— (Pu> Tivi) + AV i, Vo) + @pus Ivi) = On = Lnya, Tivi), (2.19)
pn(x,T) =0, (2.20)
T
f (gn + 1, pn> gn — qn)dt > 0, (2.21)
0

where v, € S, x € Q, and g, € Q.
From (2.21), g, can be solved as

qn = max{0, I p} — Pu(I;pp), (2.22)

T
I} ppdxdt
where I’ p, = M
I Jey 1dxd

For any § € L*(L?), we can define (y4(§), pr(4)) € L*(S ;) x L*(S},), which satisfies

Oul@), Tyvw) + AVyu(@), Yvi) + @u(@), Lv) = (f + G, Tva), Y v € S, (2.23)
yu(@)(x,0) = Rpyo(x), Vx € Q, (2.24)
— (Pw(@), Lyvw) + AV pu(§), Vvi) + @pu(@), Tyva) = Gu@) = Iyas Ivi), ¥ vi € S, (2.25)
(@6 T) = 0, Vx € Q. (2.26)

Thus, the exact solution (y, p) can be further expressed as (y(q), p(¢)). Similarly, the discrete
solution (y;, pi) can be further expressed as (y,(gx), pr(qn))-
From [19], we recall some useful results.

Lemma 1. There exists a positive constant C such that
Vi = Lvull < Chllvpllip Y v € S

Lemma 2. VY v, € S, we have

|Vh|0,h = ||IZVh|| < Cillvall, (2.27)
Collvall < lvalllo < Csllvall, (2.28)
Callvalli < vallin < Csllvalli, (2.29)

where C—Cs are five positive constants.

Lemma 3. We have
fvhdx = fIthdx, VYVKeT, Yv,€8,.
K K

Lemma 4. We have

Wn, Lyvi) = vn, Lwn), Y Wy, vy € S
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3. Error analysis

In this part, we establish a priori L*(H')-norm error estimates for the state and co-state variables,
along with L?(L?)-norm error estimates for the control variable.

Lemma 5. We choose § = q and § = q;, in (2.23)—(2.26), respectively. We can prove that

In(@) = Yull=2y + IVOR(@) = yllzaz) < Cllg = gnllz2z2), (3.1
lpn(q) — Ph||L°°(L2) +IV(pu(q) — Ph)||L2(L2) < Cllg - Qh||L2(L2)- (3.2)

Proof. By (2.23)—(2.26), we see that

One(@) = i ivi) + (AVO(Q) — yi)s Vi) + @On(q) = ya), ivi) = (g — g Tive), Y v € Sy (3.3)
— (Pu(@) = Pus Tvi) + (AV(Pi(@) = Pr), Vi) + (€(pi(q) = pi)s Tvi)
= (@) = yn Lvn), Y vy, € S5 (3.4)

We select v, = y,(q) — y, in (3.3) to get
1d —1 1 N
5 7@ = yallls + A7 V() — yll> + 1182 (va(q) — yII* = (g = qus I (@) — Y1) (3.5)

Integrating (3.5) and using y,(g)(x, 0) — y,(x, 0) = 0, we have

1 1 _% t 1
St = ol + f A V() - yllids + f 1 (@) - ylPds
0 0

!
- [(G-ato@-yas. GO
0
By the Cauchy-Schwarz inequality and (2.27), we have

(q = qn, L, yn(q@) — y)) < llg = qll - 1T, (yi(q) — yu)l
< Cllg = qull - llyn(q) = yall
< C(llg = qull* + lya(q) = yill®). (3.7)

Applying Gronwall’s lemma, (3.6), (3.7), (2.28), the assumption on A, and the assumption on ¢, we
easily get

! !
) =l + [ 190w = wlPds <€ [ g alPes (3.8)
0 0

Next, choosing v, = p;(gq) — p, in (3.4), we have

1d 1 | .
=5 7 Pr(@) - pallls + IAZV(pi(q) — pIP + 1182 (pi(@) — pI* = Gi(@) — yi L (pia(@) — pr))- (3.9)
Integrating (3.9) over ¢, and then using p,(¢)(x,T) = pu(x,T) = 0 and

On(@) =y, L(piu(q) — pr) < Mlyu(q) = yull - 11,(pi(q) — pll < llyn(q) = yall - l1Pr(q) — pall,
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we deduce that

1 T _1 L
Slpa(@) - pallls + f IA* V(pu(q) — pullPds + f €2 (pi(q) — pu)liPds
t t

T
< f lyn(@) = yall - Iipu(q) = palids.
t

Similar to (3.8), we arrive at

T T
Ipa(q) — pull® + f IV(pi(q) — pw)lPPds < C f Iyi(q) — yullPds.
t t

Therefore, Lemma 5 can be completed by (3.8) and (3.10).

(3.10)

O

Lemma 6. Let y and p satisfy (2.3)—(2.7), while (y,(q), pr(q)) is the discrete solution of (2.23)—(2.26)
by choosing § = q. Suppose y,p € L°(H?), y;, p, € L*(H?), and f,q € L*(H"). Then the following

results hold:

Iy = v @Dllz=2y + lp = pr(@ll=2) < Ch,
IV(Rry = yu(@)llr22y + IV(Rp — pr(@)ll22) < Ch*.

Proof. Let

Y=yu(@) =y —=Ryy + Ryy —yu(q) =: ry + &,
P—pu(@) =p—Rup+Ryp—pi(q) =1, +&,.

We get the two error equations by subtracting (2.23) and (2.25) from (2.3) and (2.5):

Eps Tivp) + (AVE, V) + (@€, Tvi) = (F + q = Yoo vi = Livw) = (s Tivn),
= Eps Lvn) + (AVE,, V) + @y, Tivi) = (v = Ya + P vi — I;vi)
+ (O =@ + Liya = ya- Lvi) + (T, Lvi),
where v, € 5.
Letting v;, = &, in (3.13), we have
1 d 2 _% 2 - 5 * %
Ed—tlllfylllo +|ATVEI™ + (C&y, 1Y) = (f + g =y, & — 1,E)) — (e, [Ey).

Integrating (3.15) and using &,(0) = 0, we see that

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

1 t ) ! ! !
§|||§y|||(2)+f0 IIAszyllzdS+fo(i‘fy,l;’ify)ds=fo(f+q—yz,§y—1;§§y)ds—fo(ryz,Iny)dS- (3.16)

By (2.10) and (2.11), the Cauchy inequality, Lemma 1, (2.14), (2.27), (2.29), and Poincare’s

inequality, we conclude

(f+ q _ytafy - I;é:y) = (f+ q—y:t— Ph(f+ q _yt)»fy - I;:‘fy)
<Clf+q—y = Pu(f + g =yl - 11§ — LG
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< CRIf +q = ydhllé i
< CRIIf +q = ydhligl
< CRIf +q = ylhlIVE L, (3.17)

and
(o IE) < lryll - WEN < CRP Iyl . (3.18)

Using (2.28), the assumption on A, the assumption on ¢, (3.16)—(3.18), and the Schwarz inequality,
we derive

e+ [ 1vePds < i [ 1 +a - + s + [ 16 (3.19)
Applying Gronwall’s inequality to (3.19), it is easy to get
E + 1IVE 212y < Ch2(||f||L2(H1) + gl 2y + ylz2caz))- (3.20)
We see from (2.13) and (3.20) that
Iy = yu(@ll=@2y + (IVIRLY = ya(@)llr2@2y < Ch2(||f||L2(H1) + g2y + WWyill 2y + Iylle@ey).  (3.21)

Setting v;, = &, in (3.14), we have

1d 1 _ i} . .
_EE”'&[J”% +IAVE NP + @pa [1Ep) = (v = Ya + P &p = TiE)) + (rs T1Ey)
+ O =@ + Iya = Ya, [,Ep)- (3.22)
Similar to (3.17) and (3.18), we get

O =Ya+pé&p—1E) =0 =Ya+ pi— Py —ya+ p). & — 1Ep)

< CRA(IIlly + lyalli + IpAIDIVE,II, (3.23)
O = i@ + Liya = Ya» I;Ep) < CRE(IYIl2 + [yall)IEN + €N - 1l (3.24)

and
(o I€,) < CHIpALlIE . (3.25)

Integrating (3.22) from ¢ to T, and then using &,(T) = 0, (3.23)—(3.25), the assumption on A, the
assumption on ¢, Poincare’s inequality, and the Schwarz inequality, we conclude

T T
|I§p||2+f IIprIIZdS+f (C&p, 1&p)ds

T T T
< Ch* f (1 + lyallz + lpd)ds + € f I€,IPds + C f €1 ds. (3.26)
t t t
We apply Gronwall’s inequality to (3.26) to get
Il + IVENZ: 12, < CHAAVE gy + el oy + 1211y + ClENE (3.27)
Now, the proof can be completed by (2.13), (3.21), (3.27), and the triangle inequality. O
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Theorem 1. Let (q,y, p) satisfy (2.3)—(2.7) and (qn, yn, pr) satisfy (2.17)—(2.21). Suppose y,p €
L*(H?), y,, p; € L*(H?), and f,q € L*(H"). Now we prove that

llg — Qh”LZ(LZ) +IV(y - )’h)”L?(LZ) +|IV(p - Ph)||L2(L2) < Ch.

Proof. We choose ¢ = ¢, and ¢, = Pjq in the inequalities (2.7) and (2.21) to get

T
f (q+p.an—q) 20, (3.28)
0

and

T
f (qn + L,pn, Prg — qn) > 0. (3.29)
0

By (3.28), (3.29), and (2.10), we obtain
T
g = gll}a ) = f (q = qn-q = gu)dt
0T T
= f (g + p,q—qn)dt + f (L,pn — p>q — qu)dt
‘ T ‘ T
+ f (Iyph + Gns qn — Prg)dt + f Iy + qn, Prg — q)dt
TO , 0
< f (Lpr— p>q — qn)dt + f (I, pr + qn, Prg — q)dt
0T ° T
= f (Lypn = 1,pi(Q), q — qu)dt + f (L;pn(q) — pr(q), q — qn)dt
0 , TO
+ f (Pn(@) — P, q — qn)dt + f (L, Prs Prg — @)dt
TO ’ T
= f (Lypn = 1,pi(qQ), q — qu)dt + f (L;pn(q) — pr(q), q — qn)dt
0 , TO
+ fo (Pn(@) — P, q — qn)dt + fo (I, pn = Pi> Prg — @)dt

T
+ f (Pn = Pnpn, Prg — g)dt. (3.30)
0

Integrating the Eqs (3.3) and (3.4) over the interval [0, T'], and selecting v, = p,(g) — p;, in the first
equation and v, = y,(g) — y; in the second equation, gives

T
fo rpn — Lpi(Q), q — qp)dt
T T
= fo On(@) = Yus (P — pr(g@)))dt + fo (AVO(q) = yi), V(pi — pu(@))dt
T
+ fo COn(q) = yn), 1,(pn — piu(g)))dt
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- | L )= i = v | 4@ — i o — pu@)
+ fo AV (@)~ 300, V(pn - pr(a)d + fo (Cua) ~ . s~ @t
= (@) = yir L;(pn = pr(@)§ — fo T(pm — Pu(@). I, v(q) — yn)dt
+ fo T(ZV(ph = (@), V(yn(q) — yn))dt + fo T(E(ph = pu(@), I, vin(q) — yn))dt
- O @) M) — 3ot + | AV~ i), VOu) — )
+ fo T(E(ph = pi(@), 1,n(q) — yn))dt
=- fo T(yh(q) = ¥ L,n(q) = yu))dt
- fo " yu() — yullsds

T

<- C4f lya(q) = yulldt
0

<0,

where we also used y,(¢)(0) — y,(0) = 0, p,(g)(T) = px(T) = 0, Lemma 4, and (2.28).
By Cauchy-Schwarz inequality, Lemma 1, (2.11), and (2.29), we respectively obtain

T T
fo (I pn(q) — pu(q), q — gp)dt = fo (I pn(q) — pu(q), ¢ — Prg)dt

T
1
ﬁ (Pi(@) = P,q = andt < Clip = Pu@lzaiz) + 3119 = @alliz2,

T
f (I;ph - ph’ Phq - Q)dt S Chz(”q”iQ(Hl) + ||ph||iZ(H1))’
0

and

T
fo\ (ph - Phph’ Phq - q)dt < Chz(”q”iZ(Hl) + ”phlliZ(Hl))
Applying the stability analysis as in Lemma 5, (2.9), and (2.13) gives

P D2ty < CAyn(@ll2wzy + Unyallizaz))
< Clyn( @O + 1 £ lr2z2y + g2y + Hpyallz2z))

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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< CUIRpyoll + N/ 22y + Nglli2cezy + 1ya = Lnyallizazy + yallrziz))

< C(lIRnyo = yoll + Iyoll + ez + Nlgllzzazy + W lyallzar + yallzaz)

< C(h2||J’0||2 + yoll + [1flz2z2) + llgllzzc2y + h2||yd||L2(H2) + lyallzzc2y)

< Clyolla + 1 flz2z2y + g2y + Nyallrzey) < C. (3.36)

Similarly, we obtain
||Ph||L2(H1) < C(||)’h||L2(L2) + ||Ih}’d||L2(L2))
< CUIRwyoll + N 22y + Ngnllzzcezy + Mnyallezz))
< Cyolla + 1 flz2z2y + Ngnllrzzy + lyall2azy)

< Clyoll + 1 flz2z2y + g = gnllizzy + N1gllr2i2y + yall2azy)
< C+Cllg = qullr2w2y- (3.37)

For a sufficiently small 4, it can be proved by combining (3.30)—(3.37) that

lg — qullz22y < Ch + Clip — (@22 (3.38)
Thus, the main results of the theorem can be easily derived by (2.13), (3.38), Lemmas 5 and 6, and
the triangle inequality. O

4. Superclose results

In this part, we first obtain some superclose results between the projection of the exact solution and
the discrete solution, and then obtain the L*(L?)-norm error of the optimal convergence order for the
all variables.

Lemma 7. Choose § = q and § = Pyq in (2.23)—(2.26), respectively. Then the following results hold
under the assumption q € L*>(H"):

1Y1(@) = Ya(Pagllz=ci2) + V(@) — Yi(Prg)lliz2) < CH?,
lpn(q) — Ph(PhCI)||L°°(L2) +IV(pu(q) — Ph(PhC]))”LZ(LZ) < Ch.

Proof. Choosing § = g and § = Pjq in (2.23)—(2.26), we obtain

On(qQ) = Y (Pwq), T;vi) + (AV(q) = yu(Puq)), Vvi) + (€n(q) — Yiu(Prq)) T;vi)

= (q - Phq, IZVh), \'4 vy € Sh’ (41)
— (Pu(@) = Pu(Puq), Tvi) + (AV(pi(u) = pu(Prq)), Vvi) + (€(pi(q) — pu(Prq)), T;vi)
= n(@) = yu(Prq), I,vi), Y vy € S 4.2)

It follows from (2.10) and (2.11), Lemma 1, (2.29), and the Cauchy inequality that

(q — Puq, I;vi) = (q = Pug, ;v — vi) + (g — Puq, vi, — Pyvy) < CRlgll|valls. (4.3)

Using (4.2), (4.3), and the stability estimate, we can conclude
1ya(@) = yu(Pr)ll + IV () = yu(Prg)llz2y < ChYllgll} (4.4)
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and

pn(q) — Pa(Pull + IV (Pi(q) — Pr(Prg)llr22) < Cllya(q) — Ya(Pa@ll12(12)-

Thus, the proof is complete with (4.4) and (4.5).

Lemma 8. For the discrete solutions (yy,, pr) and (y,(Prq), pr(Prq)), the following results hold:

lyn(Prgq) — yh||L°°(L2) + IV (Prg) — yh)||L2(L2) < Cl||Png - Qh||L2(L2),
lpr(Prg) — ph”L"O(U) + IV(pu(Prg) — Ph)||L2(L2) < C||Pyq - C]h”LZ(LZ)-

Proof. From (2.17), (2.19), (2.23), and (2.25), we have

Ou(Pq) = Yius Tvi) + (AVOR(Prg) = Y1), Vi) + (€0n(Prg) = ya)s ;i)
= (Phq — qh, I;Vh), A vy € Sh’

— (Pu(Prq) = Puss Tvi) + (AV(pr(Prg) — pi)s Vi) + @C(pu(Prq) — pi), T;vi)
= Vu(Prq) = yn, L,vn), Y vy, € Sh.

By Lemma 3, we easily get

(Png = qns L,vi) = (Prg = qn, vi), ¥ vy € S
Thus, the expected results can be obtained by the stability analysis.

Theorem 2. Suppose y, p € L°(H?), y,, p; € L>(H?), and f,q € L*(H"). Then we have

IPrg — qullizzy + IVRLY = yilllizzy + [IVIRLY — yillr2zy < Ch*.

Proof. Choose ¢ = g;, and ¢, = Pjq in the two inequalities (2.7) and (2.21) to get

T
f (qg+p.qn—q)dt >0
0

and

T
f (qn + 1, pn, Png — qi)dt > 0.
0

We see from (4.8), (4.9), and (2.10) that

T T
1Pug = qall72 2y < f (,pn = p> Prg — qu)dt + f (g + p, Prg — @)dt
0 0

T T
= f (ypn — L,pn(Prq), Prq — qn)dt + f (L, pr(Prg) — I, pu(q), Prg — qn)dt
0 0

T T
+ f (I, pn(q@) — p, Prq — qp)dt + f (q + p, Prg — q)dt.
0 0

4.5)

(4.6)

4.7)

4.8)

4.9)

(4.10)
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We set w, = pp(Prq) — pr in (4.6) and w;, = y,(Prq) — y, in (4.7), respectively. We use the proof
technique in (3.31) to obtain

T T
f (Lypn — L,pn(Prq), Prq — qp)dt = —f Ilyn(Prg) — yalllgdt < 0. (4.11)
0 0

By Lemma 3 and the Cauchy inequality, we have

T T
f L pi(Phg) = T;pi(@), Pag — q)dt = f (Pa(Phg) = Pi(q), Pug — qu)dt
0 0

T
< f 1Pa(@) = Pr(Pr@l| - [1Phg — gulldt (4.12)
0

and

T T T
f (L pn(q) — p, Prg — qp)dt = f (pu(q) = p, Prg — qu)dt < f lp = pu(@Il - [IPrg — gslldt. (4.13)
0 0 0

By (2.8) and (2.10), it is obvious that

T T
[ @+ pPig=aue= [ maxto. pi. g - gyt =0, (4.14)
0 0
Thus, we complete the proof by (4.10)—(4.14), (3.11) and (3.12), and Lemmas 7 and 8. O

Now, we can get the following optimal L*(L?)-norm error estimates.
Theorem 3. Suppose y, p € L°(H?), y,, p; € L>(H?), and f,q € L*(H"). Then we have
lg = gnllL=@2) < Ch, (4.15)
Iy = yullees 2y + 11 = pallis@zy < Ch?. (4.16)
Proof. By (2.8) and (2.22), we conclude that
lg — qnl = |max{0, p} — p — max{0, I; py} + Pu(I, pp)|
<|p = L;pul + |p — Pu(I;, )|
< Cllp = Lpullzwzy + |p = pal + |pn = Pupal + 1Pu(pi = I, pi)l-
Thus, we have
llg — gull < Cllp = I pallz2z2y + Cllp — pull + Clipy = Prpall + CllPi(pn = L pi)ll
< Cllp = pullzzaz) + Cllpn = L pilliza2y + Clip = pall
+ Cllpn = Pupall + Clipn = L, pall, (4.17)
where we used
1Pr(pr = L, pll < Clipn = L, pill.
According to (4.17), (2.11), Lemma 1, and (2.29), we find that
g = gilli~a2y < Cllp = pallizazy + Clipn = I pallizaz) + Cllp = pallisa2)
+ Cllpn = Pupall=@2) + Cllpn = I pall=2)

< Cllp = pallze@zy + Chllpallzsn)- (4.18)
Using (3.11), Lemmas 7 and 8, and Theorem 2, we derive the desired estimate (4.16). Then, (4.15)
can be obtained by (4.16) and (4.18). The proof is complete. O
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5. Numerical experiments

This section presents an example to illustrate the theoretical results. The discretization method,
previously detailed, involves discretizing the control function g via piecewise constant functions, while
the state variable y and co-state variable p are approximated using continuous piecewise linear finite
element functions.

2
LetQ=(0,1)%,T =1, ¢(x) = 0, and A(x) = (1 ta 0

0 e"Z)' The data are as follows:

y = €' sin(rx;) sin(mx,),
-1

p = — sin(2nxy) sin(2mx;,),
bis

q = max{0, p} — p,
f =y —div(AVy) — g,
Ya =y + p; +div(AVp),

fOT fQ pdxdt

I [, 1dxdr
We now goﬁsider the fully discrete scheme for the control problem. Let At > 0, N = 1/Ar € Z, and

t, = n/At, n € Z. Moreover, let

where p = =0and g = —p.

'7[’" _ l//n_l
W= = g, dy' =
At
For 1 < s < 0o and s = oo, we define the discrete norms
N-I s
sy = | D A T | Iy = max 1"l
et 1-I<n<N-I

where [ = 0 for the control variable g and the state variable y, and [ = 1 for the co-state variable p.
Moreover, we denote |||l s.wmiqyy and [[[W|llzowmiqy) BY Wl Lscwmey and ||l ||| o wmsy in this section.

We use the following fully discrete scheme: Find (yZ,pZ“,qZ) eSS, xS, xW,,n=1,2,---, N,
such that

(dyy, Lvi) + AVYL V) = (f* + g, L), Y vy €S,
yx) = Iy, ¥ x € Q,
—(d,ply, Lva) + AV, V) = (3 = Iyl v, ¥ v € Sy
th(x) =0,VxeQ,
qp =Py

Let Ar = »Zlm, and we display the errors of |[|g—gxlllz=2), 1y =Yalll2cany, lp = palllzzcanys 1y =yalllze@2),
and |||p — pulllz~(2) with different & in Tables 1 and 2. The convergence orders of errors are also given

in these tables. It can be seen that the numerical results are in agreement with the theoretical analysis.
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Table 1. Errors and convergence orders of |[|g — galll.=z2), Ily = Yaullli2ny, and |[|p = palll 2.

h lg — gnlllz=2y  Rate  |[lly — yullli2ry  Rate  [[[p — palllizgny  Rate
1/8 5.5976e-02 ~ 1.4311e-01 ~ 9.9985e-02 ~
1/16  2.8345¢-02 09817 7.3034e-02  0.9704 5.1076e-02  0.9690
1/32  1.4237¢-02 09934 3.6645¢-02 0.9949  2.5632e-02  0.9946
1/64  7.2521e-03 09731 1.8410e-02 0.9931  1.2936e-02  0.9865
1/128 3.6344e-03 0.9966  9.2564e-03  0.9919 6.5178e-03 0.9889

Table 2. Errors and convergence orders of ||ly — yulllz~2) and [l|[p — palllze2)-

h Wy = yalllz=z2y  Rate  |[[p — palllz~q2)  Rate
1/8 6.7556e-02 ~ 3.1753e-02 ~
1/16  1.7188e-02 1.9746  7.8645¢-03  2.0134
1/32  4.2554e-03 2.0140  1.9257e-03  2.0299
1/64  1.0743e-03  1.9858  4.8754e-04  1.9818
1/128  2.7141e-04  1.9848  1.2250e-04  1.9927

6. Conclusions

In this paper, we propose a novel FVE scheme for a linear parabolic OCP subject to integral
control constraints. The discrete optimality conditions are derived through the discretize-then-optimize
approach. A priori error estimates and superclose properties for all involved variables, including the
state variable (representing the physical quantity being controlled), co-state variable (adjoint variable
capturing sensitivity information), and control variable (the decision variable to be optimized), are
rigorously established. These theoretical results provide quantitative bounds on the approximation
errors, demonstrating that the proposed scheme achieves optimal convergence orders in appropriate
norms and exhibits enhanced convergence (superconvergence) at specific points or for certain variables,
thereby validating the robustness and efficiency of the method. To the best of our knowledge, these
theoretical results on FVE methods for OCPs with integral constraints are original and have not
been previously reported in the literature. In future work, we intend to investigate error estimates in
the L*(H")-norm for the state and co-state variables. Furthermore, we plan to explore a posteriori error
estimates for this class of FVE approximations applied to the problem (1.1)—(1.4), which will enable
adaptive mesh refinement strategies to dynamically adjust the computational grid based on local error
indicators, enhancing both accuracy and computational efficiency in practical applications.
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