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Abstract: Spectrum RCS(n)= cos(tjlnn), j1, ), based on imaginary values of non-trivial zeros of 

the zeta function (s)=(½itj)=0, Im(s)=tj, results in ‘‘high peaks’’ (i.e., resonant values of cosine 

amplitudes at the prime powers n=pk, kℕ in the negative part of the spectrum). The spectrum of the rth 

root RCS(n1/r)= cos(tjlnn1/r), rℕ exclusively reaches its resonance values in the values of the 

degree n=pr. Owing to that fact, prime numbers p1 can be separated from prime powers p1/r, r2. The 

spectrum of the dth degree RCS(nd)= cos(tjlnnd), dℕ exclusively reaches its resonant values 

exclusively in the values of the root p1/d , d2. The spectrum of the dth degree ‘‘compresses’’ the 

number axis. For an arbitrary real interval (a, b), all the resonances pd of all prime numbers from the 

interval (ad, bd) are contained in the interval (a, b). The imaginary sine spectrum-ISS and the 

composite spectrum of the RCS and ISS is developed.  
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1. Introduction 

According to historical data, Riemann calculated the first six non-trivial zeros 1. The 

importance of non-trivial zeros was highlighted in 1900 in Paris, at the promotion of Hilbert’s 24 

unsolved problems. In 1903, Gram calculated more than 10 non-trivial zeros (15 in total) 2. In 1925, the 

limit of 100 (exactly 138) calculated non-trivial zeros was exceeded by J. I. Hutchinson [3]. In 1935, the 

limit of 1000 was exceeded by Titchmarsh [4]. In 1956, the limit of 10,000 was exceeded by Lehmer [5]. 

In 1966, the limit of 100000 was reached by Lehman [6]. In 1968, the limit of millions was reached by 

Rosser, Yohe, and Schoenfeld [7]. In 1977, the limit of 10 million was crossed by Brent [8]. In 1982, the 

limit of 100 million was crossed by Brent, van de Lune, Riele, and Winter [9]. In 1986, the limit of billion 

crossed by van de Lune, Riele, and Winter [10]. In 2003, the limit of 100 billion was crossed by 

Wedeniwski [11]. In 2021, Platt and Trudgian [12] reach a maximum of 31012 calculated non-trivial 

zeros. These calculations were mainly performed for the purpose of expressing the Riemann 

hypothesis 13. The Riemann prime counting function indirectly respects non-trivial zeros. It is 

based on the Möbius function (i.e., by the logarithm of the zeta function). However, the Riemann 

prime counting function does not directly contain the concept of the distribution of prime numbers. 

Although the numerical relationship between prime numbers and non-trivial zeros was 

highlighted in [14], a graphical presentation of the distribution of pk numbers was presented through 

the basic spectrum in [15]. In general, the significant lack of the spectrum is the fact that it highlights 

the values in pk, k1 and that there is no concept that would differentiate the prime numbers p1 from 

the power of the prime powers pk, k2.  

The density of non-trivial zeros was explored in [16]. The degrees of prime numbers [17] and 

the number of primes between consecutive prime powers [18] will play an important role for our 

exploration. The importance of von Mangoldt [19] and the second Chebyshev function [20] will be 

increased after the presentation of the spectrum of roots and powers. The results related to square 

roots from [21] inspired the research of the existence of powers and/or roots in the spectra. 

Furthermore, it led us to the graphical presentation and the establishment of the prime number 

distribution function. 

From the results of [15,21], the possibility of developing a wider class of spectra is observed. 

The main novelty in this paper is the distribution and magnitudes of prime numbers based on the 

spectrum of roots and powers.  

2. The genesis of the real cosine spectrum-RCS  

The basic real cosine spectrum equation for the value of n and non-trivial zeros t1=14.134725..., 

t2=21.022039..., t3=25.010857..., etc. from [15] is given by (1): 

1

( ) cos( ln ).j

j

RCS n t n


=

=  (1) 

Equation (1) can be transformed in the following way (2):  



401 
 

AIMS Mathematics  Volume 11, Issue 1, 399–419. 

0

0
1 1

0 0
1

2cos( ln ) (sin( ln ) sin( ln ))1 1
( ) 2cos( ln )

2 2

cos( ln ) sin( ln ) cos( ln ) sin( ln )1
                                            .

2

j j j

j

j j

j j j j

j

t n i t n t n
RCS n t n

n

t n i t n t n i t n

n n

=

 

= =



=

+ −
= =

+ − 
= + 

 

 





 (2) 

Furthermore,  

0 0
1 1 1

1

cos( ln ) sin( ln ) cos( ln ) sin( ln )1
( )

2

(0 ) (0 )
                   .

2

j j j j

n n j

j j

j

t n i t n t n i t n
RCS n

n n

it it 

  

= = =



=

+ − 
= + 

 

+ + −
=

 



 (3) 

The most important spectrum identities are provided in Table 1. 

Table 1. Basic identity of the RCS and the zeta function. 

 t1=14.13472... t2=21.02203... t3=25.01085... ...  

n=1 
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As Re(s)=0, there is the possibility of the existence of spectrums with arguments that are 

proportional to the non-trivial zeros (4). For the spectrum of root rℕ and the spectrum of degree 

dℕ (4), the following holds: 
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 (4) 

Key values for spectrum calculations are the imaginary parts of non-trivial zeros Im(s)=tj; 

however, for the values of the real part on Re(s)=0 that do not lie on the critical axis (i.e., (0itj)), 

values of the zeta function for Re(s)½ are also significant for the distribution of prime numbers. 

3. Resultant spectrum of prime numbers 

3.1. Basic spectrum r=d=1 

Based on the first 100000 non-trivial zeros from 2 (t1=14.134725, t2=21.022039, t3=25.010857,..., 

t100=236.524229,..., t1000=1419.422480,..., t10000=9877.782654,..., t50000=40,433.687385,..., 

t100000=74,920.827498) in form (5), the spectrum was formed in the interval [1, 256]. The calculation 

interval (increment) is =0.1. 

There are 54 prime numbers in the selected interval: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 

157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, and 251. 

In addition to the prime numbers, there are 16 composite numbers within this interval: 22=4, 

23=8, 24=16, 25=32, 26=64, 27=128, 28=256, 32=9, 33=24, 34=81, 35=243, 52=25, 53=125, 72=49, 

112=121, and 132=169. 

All 60 mentioned numbers have pronounced resonances in the negative part of the RCS. Figure 1 

shows a graphical representation of the RCS with enlarged details in the intervals [1, 30] and [120, 140]. 

It is well known that the absolute values of resonances of prime numbers p1 are greater than the 

absolute values of resonances of composite numbers pk, k2. All resonances are exclusively located 

over the integers that are in the form pk, k1 (5): 

510

1

( ) cos( ln ).j

j

RCS n t n
=

=  (5) 
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Figure 1. Basic RCS.  

3.2. RCS of roots and distribution of prime numbers 

The RCS of the square root of the argument n (6) is shown in Figure 2. The resonances for 

numbers 4, 9, 16, 25, 49, 64, 81, 121, 169, and 256 are established. 

 

Figure 2. RCS of the square root.  

5 510 10
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The RCS of the third root of the argument n (7) is shown in Figure 3. Resonances of the third degree 

of prime powers are established (i.e., 23, 33, 43 and 53): 
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Figure 3. RCS of the third root.  

The RCS of the fourth root of the argument n (8) is shown in Figure 4. Resonants of the fourth 

power of prime powers are established (i.e., 24, 34 and 44): 
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Figure 4. RCS of the fourth root.  

The RCS of the fifth root of the argument n (9) is shown in Figure 5. Enlarged intervals 30,40 

and 240,250 highlight resonances in 25 and 35 in that order: 

5 510 10
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1 1
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Figure 5. RCS of the fifth root.  

The RCS of the sixth root of the argument n (10) is shown in Figure 6. The enlarged interval 60,70 

highlights the resonance in 26: 
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Figure 6. RCS of the sixth root. 

The RCS of the seventh root of the argument of n (11) is shown in Figure 7. The enlarged 

interval 120,130 highlights the resonance in 27: 
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Figure 7. RCS of the seventh root.  

Tables 2 and 3 display the calculated values of the RCS for primes from 2,256, from the first up to 

the eighth root. Number 1 is excluded from Table 2 as the counter function. RCS(1) is equal to the number 

of applied non-trivial zeros because ln1=0costjln1=1. The columns of Table 2 contain the values of the 

root spectrum r for all prime numbers. Table 3 shows the values of the RCS for composite numbers.  

Table 2. RCS of prime numbers in the interval 2,251. 

)n(RCS k
 

n r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 

2 -5841.77 -1.75 1.73 7.92 1.03 -3.19 -16.71 11.51 

3 -7562.81 -0.37 -3.18 -0.53 -0.75 6.91 3.88 -0.45 

5 -8580.68 -0.42 0.66 -3.66 4.80 -0.39 -3.43 -5.38 

7 -8768.19 -0.90 3.70 -2.91 -2.81 4.63 -5.52 3.58 

11 -8619.67 1.42 0.22 3.12 -0.32 1.62 -3.82 2.72 

13 -8481.29 1.83 -0.09 3.03 -1.09 1.74 4.48 2.50 

17 -8191.98 -0.82 2.73 4.03 -2.37 -1.09 4.07 -1.64 

19 -8055.32 0.13 3.03 -0.34 -0.95 -1.79 -3.06 -3.94 

23 -7795.48 -0.67 -2.05 1.19 -0.33 3.54 2.87 0.67 

29 -7455.07 2.23 -0.04 1.02 6.05 -0.18 -0.02 -0.04 

31 -7351.99 0.62 -0.05 -1.01 13.46 0.42 -1.32 2.73 

37 -7075.54 1.16 1.38 2.74 -0.53 2.70 -0.11 2.57 

41 -6911.93 1.64 1.62 2.80 2.38 2.81 -2.33 2.65 

43 -6834.79 2.26 0.77 2.86 -0.65 -2.82 -0.19 2.46 

47 -6691.09 -0.50 1.26 1.98 0.41 -0.12 0.82 -2.70 

53 -6498.83 4.68 0.51 -0.07 0.84 4.89 2.92 -2.96 

59 -6325.45 -0.77 -1.10 3.46 2.59 5.70 -2.37 -1.56 

61 -6272.48 0.66 4.32 -1.35 -1.25 -6.83 -1.48 3.63 

67 -6120.73 -1.92 0.22 4.00 1.05 0.51 2.11 2.78 

71 -6031.82 2.40 0.51 4.81 -1.27 -2.85 3.57 -0.67 

73 -5984.87 2.74 2.49 0.59 0.74 -1.54 0.28 -0.31 

Continued to next page 
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r=3
 

r=4
 

r=5
 

r=6
 

r=7
 

r=8
 

79 -5857.61 0.39 2.69 4.41 2.11 -1.47 1.74 -2.55 

83 -5778.28 -1.17 0.19 15.73 2.43 -0.40 3.76 3.43 

89 -5672.73 0.14 0.79 3.74 -0.61 -0.41 2.25 3.15 

97 -5531.17 0.51 1.99 0.40 -0.62 -0.72 -3.12 -1.91 

101 -5468.05 -0.37 -0.99 1.16 2.80 -0.17 0.07 -1.89 

103 -5439.41 -0.75 -0.51 0.52 0.94 -0.52 -1.64 2.23 

107 -5381.24 -0.32 1.76 0.74 -0.73 -0.52 -3.98 -1.70 

109 -5349.80 4.71 -1.34 0.38 1.28 1.69 4.76 0.88 

113 -5292.99 5.51 -1.67 1.35 0.60 0.97 -5.49 3.53 

127 -5117.21 2.87 -9.57 0.85 0.29 2.12 -55.26 3.69 

131 -5072.15 1.28 -4.85 0.72 0.94 -1.25 -6.35 0.46 

137 -5003.31 1.83 -1.86 1.04 3.02 -1.25 7.28 3.82 

139 -4981.15 1.56 2.55 0.26 -1.11 -0.07 -3.22 -2.11 

149 -4881.91 1.89 1.01 0.13 0.31 -0.69 3.19 2.56 

151 -4861.62 1.54 1.09 0.79 2.96 2.04 -1.42 3.90 

157 -4805.68 -0.39 1.97 0.15 3.35 -0.03 2.91 3.38 

163 -4753.54 2.92 1.62 1.03 -1.73 1.77 1.62 4.07 

167 -4717.45 4.02 0.35 0.02 0.55 2.63 2.18 3.04 

173 -4663.86 0.36 1.34 0.74 -1.90 1.64 0.96 0.22 

179 -4615.21 5.78 1.05 0.37 0.83 2.47 0.19 -3.05 

181 -4602.57 1.69 0.62 -0.03 0.79 2.67 1.11 3.51 

191 -4533.44 3.20 1.49 1.04 -2.66 2.14 1.18 0.38 

193 -4515.99 3.44 0.71 1.37 -1.12 -1.03 -1.20 1.38 

197 -4480.22 1.40 1.63 2.04 0.50 -0.43 -1.23 -2.05 

199 -4471.95 0.70 1.32 2.00 -1.52 -1.05 -0.15 -3.11 

211 -4384.52 1.51 1.54 -0.16 5.73 1.17 -0.96 -1.82 

223 -4311.33 1.69 1.09 -0.67 6.92 0.25 -0.67 5.54 

227 -4285.30 1.85 1.00 -0.81 -2.38 2.67 2.23 -5.05 

229 -4266.49 1.98 1.36 -0.77 2.04 -1.28 1.76 -2.95 

233 -4256.51 1.76 1.65 1.78 -12.29 2.30 -0.42 -7.55 

239 -4225.14 2.49 1.66 4.06 16.95 -1.05 -0.43 -6.26 

241 -4205.19 1.98 1.50 2.14 61.28 2.76 1.74 2.74 

251 -4148.67 3.65 1.10 11.74 -13.45 1.07 2.20 -20.48 
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Table 3. RCS of prime powers in the interval 2, 251. 

)n(RCS k
 

n r=1 r=2 r=3 r=4 r=5 r=6 r=7 r=8 

4 -4130.47 -5841.77 2.26 -1.75 1.93 1.70 1.07 7.92 

8 -2922.61 -2.29 -5841.75 -2.25 2.21 -1.71 5.01 2.47 

9 -4363.91 -7562.81 1.18 -0.37 -0.29 -3.15 -4.07 -0.53 

16 -2064.11 -4130.46 2.79 -5841.77 2.36 2.23 -1.28 -1.75 

25 -3835.04 -8580.68 3.67 -0.42 3.06 0.62 3.33 -3.66 

27 -2519.94 3.49 -7562.74 0.82 -1.88 -0.43 3.88 0.90 

32 -1457.01 1.58 0.47 1.01 -5841.77 -1.34 -2.51 -3.28 

49 -3309.02 -8768.19 0.02 -0.90 2.14 3.73 1.10 -2.91 

64 -1029.77 -2922.61 -4130.39 -2.29 2.60 -5841.37 2.62 -2.25 

81 -1451.83 -4363.91 -0.28 -7562.81 0.67 1.21 -2.14 -0.37 

121 -2592.49 -8619.67 -10.02 1.42 2.21 0.18 11.72 3.12 

125 -1716.03 4.69 -8580.48 1.42 -1.23 -0.39 -15.39 -1.76 

128 -727.76 -0.82 -12.83 0.50 2.99 -1.23 -5841.77 -0.01 

169 -2345.46 -8481.29 1.50 1.83 -0.78 -0.12 -0.90 3.03 

243 -833.63 2.91 1.70 -2.80 -7562.82 -0.96 2.35 11.78 

256 -508.53 -2064.11 1.74 -4130.46 -7.23 2.78 0.02 -5841.77 

From Tables 2 and 3, it is obvious that the inequality of the absolute resonance values of the 

RCS is satisfied (12) for all 15 prime powers from 2,256. The calculations are given in Table 4. 

 
8

2

( ) ( ) .r

r

RCS n RCS n
=

   (12) 

Table 4. Resulting RCS from (12). 

n )n(RCS  8765432 nRCSnRCSnRCSnRCSnRCSnRCSnRCS ++++++  
=

8

2r

r )n(RCS  

4 4130.47 < 5841.77 + 2.26 + 1.75 + 1.93 + 1.70 + 1.07 + 7.92 =5858.40 

8 2922.61 < 2.29 + 5841.75 + 2.25 + 2.21 + 1.71 + 5.01 + 2.47 =5857.69 

9 4363.91 < 7562.81 + 1.18 + 0.37 + 0.29 + 3.15 + 4.07 + 0.53 =7572.40 

16 2064.11 < 4130.46 + 2.79 + 5841.77 + 2.36 + 2.23 + 1.28 + 1.75 =9982.64 

25 3835.04 < 8580.68 + 3.67 + 0.42 + 3.06 + 0.62 + 3.33 + 3.66 =8595.44 

27 2519.94 < 3.49 + 7562.74 + 0.82 + 1.88 + 0.43 + 3.88 + 0.90 =7574.14 

32 1457.01 < 1.58 + 0.47 + 1.01 + 5841.77 + 1.34 + 2.51 + 3.28 =5851.96 

49 3309.02 < 8768.19 + 0.02 + 0.90 + 2.14 + 3.73 + 1.10 + 2.91 =8778.99 

64 1029.77 < 2922.61 + 4130.39 + 2.29 + 2.60 + 5841.37 + 2.62 + 2.25 =12904.13 

81 1451.83 < 4363.91 + 0.28 + 7562.81 + 0.67 + 1.21 + 2.14 + 0.37 =11931.39 

121 2592.49 < 8619.67 + 10.02 + 1.42 + 2.21 + 0.18 + 11.72 + 3.12 =8648.34 

Continued to next page 
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n ( )RCS n   3 5 6 7 84RCS n RCS n RCS n RCS n RCS n RCS n+ + + + +  

8

2

( )r

r

RCS n
=

  

125 1716.03 < 4.69 + 8580.48 + 1.42 + 1.23 + 0.39 + 15.39 + 1.76 =8605.36 

128 727.76 < 0.82 + 12.83 + 0.50 + 2.99 + 1.23 + 5841.77+ 0.01 =5860.15 

169 2345.46 < 8481.29 + 1.50 + 1.83 + 0.78 + 0.12 + 0.90 + 3.03 =8489.45 

243 833.63 < 2.91 + 1.70 + 2.80 + 7562.82 + 0.96 + 2.35 + 11.78 =7585.32 

256 508.53 < 2064.11 + 1.74 + 4130.46 + 7.23 + 2.78 + 0.02 + 5841.77 =12048.11 

Based on the resonant values of the root RCS from Tables 2 and 3, and inequality (12), the 

resulting root RCS is formed (13). The graphic representation of the RCS results is given in Figure 8. 

Based on (13), the resonances of prime numbers p1 in the interval 2,256 are located in the positive 

part and the resonances of all prime powers pk, k2, 8 in the interval 2,256 are located in the 

negative part.  

5 510 8 10

1 2 1

( )  cos( ln ) cos( ln ).k k
j j

j k j

RCS n t n t n
= = =

= −    (13) 

 

Figure 8. The resulting root RCSR in the interval 2,256.  

A subset of 54 numbers can be chosen from a set of 255 numbers in 1,8405531058 ways. 

Therefore, the reliability of choosing all prime numbers in the interval 2,256 in a random way is equal 

to P=1−5.43314810−59. Based on this fact, we can claim that for all nℕ, the following stands (14): 

1 2 1

( )  cos( ln ) cos( ln ).   k
R j j

j k j

RCS n t n t n
  

= = =

= −    (14) 

Expression (14) can be transformed into the following (15): 

1 1 1

1
( ) cos( ln ) 2cos( ln ).R j j

j k j

RCS n t n t n
k

  

= = =

= −   (15) 

The positive part of RCSR(n) contains the distribution of prime numbers. 
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3.3. Power RCS and magnitude of primes 

The RCS of the second degree (16) is shown in Figure 9. 

5 510 10
2 2

1 1

( ) cos( ln ) cos(2 ln ).j j

j j

RCS n t n t n
= =

= =   (16) 

 

Figure 9. RCS of the second degree. 

The apparent degradation of RCS resonances is a consequence of the small value of the 

increment =0.1. Let us consider 2,4, 2,4RCS. It is obvious that resonant values are reached for 2, 3, 

and 4. Since the spectra that correspond to the powers compress the graph, the chosen value of  

ought to be lowered. In that way, we obtain a more precise visualization of the segments of the 

concrete spectrum. On the other hand, changing values of  for the spectra that correspond to the 

roots is not needed. 

Choosing =0.00001 and enlarging the details, the observed resonance values correspond to the 

square roots of numbers 5, 7, 8, 11, and 13. Resonances in 2, 3, and 4 from RCS are the square roots 

of the composites 22=4, 32=9, and 42=16, respectively (Figure 10).  

 

Figure 10. RCS of the second degree in 2,4 with enlarged details. 
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For example, in interval 200,202RCS, there are square roots of prime numbers from the 

interval 2002,2022 (i.e., 40000,40804), with a total of 68 prime numbers: 40,009, 40,013, 40,031, 

40,037, 40,039, 40,063, 40,087, 40,093, 40,099, 40,111, 40,123, 40,127, 40,129, 40,151, 40,153, 

40,163, 40,169, 40,177, 40,189, 40,193, 40,213, 40,231, 40,237, 40,241, 40,253, 40,277, 40,283, 

40,289, 40,343, 40,351, 40,357, 40,361, 40,387, 40,423, 40,427, 40,429, 40,433, 40,459, 40,471, 

40,483, 40,487, 40,493, 40,499, 40,507, 40,519, 40,529, 40,531, 40,543, 40,559, 40,577, 40,583, 

40,591, 40,597, 40,609, 40,627, 40,637, 40,639, 40,693, 40,697, 40,699, 40,709, 40,739, 40,751, 

40,759, 40,763, 40,771, 40,787, and 40801. Figure 11 shows the interval 200,202 with an increment 

=0.01. The total number of resonances in Figure 11 is 61 (i.e., 7 resonances of prime numbers from 

the interval 200,202 were not indicated by RCS). 

 

Figure 11. RCS of the second degree in 200, 202 with an increment =0.01. 

The RCS of the second degree obviously leads to a compression of the RCS. In order to 

emphasize the dynamics of the RCS development, we switch to the increment =0.0001 and 

choose the interval 96,97RCS, which contains the square roots of prime numbers from the 

interval 962,972 (i.e., 9216,9409), with a total of 21 prime numbers: 9221, 9227, 9239, 9241, 

9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 

and 9403. The number 97 is a prime, so we expect its appearance in the RCS as the square root of the 

composite 9409. All 21+1=22 resonances are visible in Figure 12. 

 

Figure 12. RCS of the second degree in 96,97 with an increment =0.0001. 
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The enlarged details of the RCS are given in Figure 13. In the interval 96.60,96.70,  there are 

square roots of four prime numbers 9337, 9341, 9343 and 9349 with the same increment; with the 

increment =0.00001 in the interval 96.645,96.665, there are square roots of two prime numbers: 9341 

and 9343. 

 

Figure 13. Enlarged details of the spectrum from Figure 12. 

The RCS of the third degree (17) is shown in Figure 14. 

5 510 10
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1 1

( ) cos cos( ln ) cos(3 ln ).j j

j j
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= =   (17) 

The expected third degree compression is obtained. For the applied increment =0.1, two 

intervals were considered: 140,150 and 220,230 (Figure 14). 

In 140,150, the cube roots of the prime numbers 2,967,361 and 3,163,577 in the positive part 

of the RCS and 3,254,959 in the negative part of the RCS are estimated. In 220,230, the prime 

number 11,512,561 was singled out in the positive part of the RCS. 

 

Figure 14. RCS of the third degree with enlarged details. 
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Applying the increment =0.000005 on the left part of the Figure 15, parts of the RCS from 

143.697,143.707 are selected, while three extreme values of the RCS that correspond to the 

cube root of the prime number 2,967,361 (from Figure 14) and two more cube roots of the prime 

numbers 2,967,379 and 2,967,397 are indicated.  

However, in the interval 143.6973, 143.70773 (i.e., 2,967,174.609, 2,967,794.117), the cube 

roots of 48 prime numbers exist: 2,967,187, 2,967,199, 2,967,203, 2,967,221, 2,967,241, 2,967,247, 

2,967,259, 2,967,269, 2,967,271, 2,967,277, 2,967,317, 2,967,323, 2,967,329, 2,967,331, 2,967,337, 

2,967,343, 2,967,347, 2,967,353, 967,359, 2,967,361, 2,967,373, 2,967,379, 2,967,383, 2,967,389, 

2,967,397, 2,967,403, 2,967,407, 2,967,409, 2,967,421, 2,967,427, 2,967,443, 2,967,491, 2,967,509, 

2,967,551, 2,967,583, 2,967,607, 2,967,637, 2,967,647, 2,967,649, 2,967,689, 2,967,691, 2,967,697, 

2,967,709, 2,967,737, 2,967,749, 2,967,751, 2,967,779, and 2,967,787.  

Applying the increment =0.000005 on the right part of the Figure 15, parts of the RCS from 225.796, 

225.806 are selected, where only two resonant values that correspond to the cube root of the prime 

number 11,512,561 (selected from Figure 14) and only one more extreme value that may correspond 

to the cube roots of the prime numbers 11,513,263 or 11,513,269 are indicated. 

Out of the established 90 prime numbers, only 6 are indicated in Figure 15. We can conclude 

that the intensity of the RCS of the third degree compression is high. 

However, in the interval from 225.7963,225.8063 (i.e., 11511945.695,11513475.277) there 

are 90 prime numbers: 11,511,947, 11,511,953, 11,511,961, 11,511,977, 11,511,979, 11,511,989, 

11,512,013, 11,512,031, 11,512,037, 11,512,051, 11,512,073, 11,512,087, 11,512,093, 11,512,097, 

11,512,147, 11,512,177, 11,512,199, 11,512,211, 11,512,219, 11,512,223, 11,512,231, 11,512,243, 

11,512,301, 11,512,331, 11,512,337, 11,512,343, 11,512,363, 11,512,387, 11,512,399, 11,512,427, 

11,512,481, 11,512,531, 11,512,541, 11,512,547, 11,512,561, 11,512,573, 11,512,601, 11,512,609, 

11,512,649, 11,512,717, 11,512,733, 11,512,769, 11,512,789, 11,512,817, 11,512,843, 11,512,861, 

11,512,901, 11,512,933, 11,512,937, 11,512,973, 11,512,981, 11,512,987, 11,512,999, 11,513,003, 

11,513,009, 11,513,017, 11,513,039, 11,513,053, 11,513,057, 11,513,077, 11,513,141, 11,513,143, 

11,513,149, 11,513,171, 11,513,189, 11,513,191, 11,513,209, 11,513,219, 11,513,239, 11,513,263, 

11,513,269, 11,513,273, 11,513,279, 11,513,287, 11,513,291, 11,513,309, 11,513,311, 11,513,321, 

11,513,329, 11,513,339, 11,513,371, 11,513,387, 11,513,393, 11,513,417, 11,513,419, 11,513,423, 

11,513,429, 11,513,441, 11,513,461, and 11,513,473. 

 

Figure 15. Enlarged detail from Figure 14. 
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Let us choose the RCS interval of the third degree from 13=1 to 23=8 since the lowest intensity of 

RCS compression in the initial part is expected. This interval contains the cube roots of the prime 

numbers 2, 3, 5, and 7 and the cube root of the composite number 4. On the selected interval , the 

increment =0.1 is chosen, while the increment =0.0001 is employed on the enlarged details of 

the RCS, shown in Figure 16. 

 

Figure 16. RCS of the third power interval 1,2. 

Finally, we choose the RCS of the fourth degree (18) in the interval 14,24 (i.e., 1,16) since the 

lowest intensity of RCS compression in the initial part is expected. In this interval, there are the 

fourth roots of the prime numbers 2, 3, 5, 7, 11, and 13 and the fourth roots of the composite 

numbers 4, 8, and 9.  
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= =   (18) 

 

Figure 17. RCS of the fourth power interval 1,2. 
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Figure 18 shows the enlarged details of the RCS from Figure 17 with the increment =0.00001.  

 

Figure 18. Enlarged details of the RCS from Figure 17. 

It is obvious that the possibilities of further investigations are exhausted with the application of 105 

complex parts of non-trivial zeros of the zeta function tj. Higher power spectra are no longer 

available, regardless of the increment enhancement.  

The power spectra can be used to calculate the magnitude of the pd numbers from interval ad,bd. 

This magnitude is expressed in terms of the number of resonances on the interval a,b of the 

spectrum of the dth degree. 

4. Imaginary sine spectrum-ISS   

Let us consider the difference of the zeta functions from (3). We obtain the following (19):  
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 (19) 

In Figure 19, the graph of the spectrum in the interval 1,256 is shown. The resonances of this 

spectrum change signs, where the value of the power of prime numbers pk are most intense. Applying 

the increment =0.1, the intensities of the resonances in ISS are 10 to 15 times lower than the 

resonances in the RCS. Some prime numbers do not have the expected resonances (example 239 

from Figure 19). However, with a reduced increment to =0.01, resonances appear in the ISS that are 

proportional to the resonances in the RCS. In general, RCS is far more stable than ISS. In the initial 

part, the intensity intensities of the resonances of numbers 2, 3, and 22 are extremely low. 
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Figure 19. Imaginary sine spectrum with enlarged details. 

From the number 5 onwards, the resonances in pk are emphasized. The increment in Figure 20 

is =0.001. 

 

Figure 20. Low level resonances of numbers 2, 3 and 4 for the first 100000 non-trivial ISS zeros. 

Moreover, the ISS has root and power spectra. Analogously to (16), a new resulting spectrum (20) 

can be formed as follows: 
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= −   (20) 

In Figure 21, the interval 22,30 is shown. In the interval, there are two prime numbers, 

specifically 23 and 29, the second power of the prime number 25=52, and the third power of the 

prime number 27=33. Representations of the basic ISS and its second and third roots for the increment 

=0.005 are given. The resulting spectrum (24) contains orthogonal resonances. Figure 21 leads us to 

the conjecture that the values of the resultant ISS in the values of the root rN are asymptotes. 
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Figure 21. ISS of roots, interval 22,30. 

There is a clear distinction between prime numbers and composites pr (21). 
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5. Composite spectrum 

The sum of the resultant cosine (15) and sine (20) spectra superposes the resonances. In that 

manner, a composite spectrum of the distribution of all degrees of prime numbers is obtained as 

follows (22): 

1 1 1 1 1 1

( ) cos( ln ) sin( ln ) cos( ln ) sin( ln ) .k r r
j j j j

j j j r j r

p t n t n t n t n
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= = = = = =

= + − −     (22) 

In Figure 22, the composite spectrum for the first 100,000 non-trivial zeros (22) from the 

interval 120,140 is shown. That interval contains four prime numbers: 127, 131, 137, and 139, as 

well as three degrees of prime numbers: 121=112, 125=53, and 128=27. Figure 22 separates 

composite resonances for p1 and pr, r2 primarily by sign. Additionally, the shapes of the resonances 

for p1 and pr, k2 significantly. 

 

Figure 22. Composite spectrum on the interval 120,140 with enlarged details. 

6. Conclusions 

The previous considerations of the cosine spectrum based on the values of the complex part of 
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non-trivial zeros were significantly improved by the presented results. First, the genesis of the real 

cosine spectrum was established. 

Second, a simple relationship between non-trivial zeros and the distribution of prime numbers 

based on the root spectrum was established.  

Finally, a system to determine the magnitude of the pk based on the degree spectrum was established.  

The obtained spectra indicate that the values of the zeta function are also important outside the 

critical axis, specifically for =0½. The discussion of possible non-trivial zeros outside the critical 

axis =½ is irrelevant to the results in the paper. The obtained spectra are based on the values of 

non-trivial zeros from the Riemann hypothesis, and the established distribution of prime numbers 

based on the spectra supports the famous hypothesis. In addition to the distribution of prime numbers, 

the spectra highlight magnitudes of prime numbers. 

Further research should be directed towards increasing the numerical sharpness applying more 

non-trivial zeros and reducing the increment. Additionally, the spectra of the negative domain RCS(−n) 

and ISS(−n) should be investigated using hyperbolic sine and cosine functions. 
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