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Abstract: Spectrum RCS(n)= X cos(tlnn), je[1, »), based on imaginary values of non-trivial zeros of
the zeta function ((s)=C(’2tit)=0, Im(s)=t#, results in “high peaks™ (i.e., resonant values of cosine
amplitudes at the prime powers n=p*, keN in the negative part of the spectrum). The spectrum of the
root RCS(n'")= Ycos(tlnn'"), reN exclusively reaches its resonance values in the values of the
degree n=p”. Owing to that fact, prime numbers p' can be separated from prime powers p'", ¥>2. The
spectrum of the d™ degree RCS(n)= Ycos(tlnn?), deN exclusively reaches its resonant values

exclusively in the values of the root p? , d>2. The spectrum of the d" degree “compresses” the
number axis. For an arbitrary real interval (a, b), all the resonances p“ of all prime numbers from the
interval (a?, b%) are contained in the interval (a, b). The imaginary sine spectrum-ISS and the
composite spectrum of the RCS and ISS is developed.
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1. Introduction

According to historical data, Riemann calculated the first six non-trivial zeros [1]. The
importance of non-trivial zeros was highlighted in 1900 in Paris, at the promotion of Hilbert’s 24
unsolved problems. In 1903, Gram calculated more than 10 non-trivial zeros (15 in total) [2]. In 1925, the
limit of 100 (exactly 138) calculated non-trivial zeros was exceeded by J. I. Hutchinson [3]. In 1935, the
limit of 1000 was exceeded by Titchmarsh [4]. In 1956, the limit of 10,000 was exceeded by Lehmer [5].
In 1966, the limit of 100000 was reached by Lehman [6]. In 1968, the limit of millions was reached by
Rosser, Yohe, and Schoenfeld [7]. In 1977, the limit of 10 million was crossed by Brent [8]. In 1982, the
limit of 100 million was crossed by Brent, van de Lune, Riele, and Winter [9]. In 1986, the limit of billion
crossed by van de Lune, Riele, and Winter [10]. In 2003, the limit of 100 billion was crossed by
Wedeniwski [11]. In 2021, Platt and Trudgian [12] reach a maximum of 3-10'? calculated non-trivial
zeros. These calculations were mainly performed for the purpose of expressing the Riemann
hypothesis [13]. The Riemann prime counting function indirectly respects non-trivial zeros. It is
based on the Mdbius function (i.e., by the logarithm of the zeta function). However, the Riemann
prime counting function does not directly contain the concept of the distribution of prime numbers.

Although the numerical relationship between prime numbers and non-trivial zeros was
highlighted in [14], a graphical presentation of the distribution of p* numbers was presented through
the basic spectrum in [15]. In general, the significant lack of the spectrum is the fact that it highlights
the values in p¥, k>1 and that there is no concept that would differentiate the prime numbers p' from
the power of the prime powers p*, k>2.

The density of non-trivial zeros was explored in [16]. The degrees of prime numbers [17] and
the number of primes between consecutive prime powers [18] will play an important role for our
exploration. The importance of von Mangoldt [19] and the second Chebyshev function [20] will be
increased after the presentation of the spectrum of roots and powers. The results related to square
roots from [21] inspired the research of the existence of powers and/or roots in the spectra.
Furthermore, it led us to the graphical presentation and the establishment of the prime number
distribution function.

From the results of [15,21], the possibility of developing a wider class of spectra is observed.
The main novelty in this paper is the distribution and magnitudes of prime numbers based on the
spectrum of roots and powers.

2. The genesis of the real cosine spectrum-RCS

The basic real cosine spectrum equation for the value of n and non-trivial zeros #1=14.134725...,
$©=21.022039..., =25.010857..., etc. from [15] is given by (1):

RCS(n) = icos(tj Inn). (1)

Equation (1) can be transformed in the following way (2):
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The most important spectrum identities are provided in Table 1.

Table 1. Basic identity of the RCS and the zeta function.

1=14.13472... $©»=21.02203... 13=25.01085... )3
=1 e
n cos(#Inl) cos(,nl) cos(31n1) RCS(1) =" cos(t;In1)
1
i=1
n=2 o
cos(t;In2) cos(;In2) cos(13in2) RCS(2)=> cos(t;n2)
1
i=1
n=3 <
cos(#In3) cos(tyn3) cos(3n3) RCS(3)=" cos(1;In3)
i=1
n=4 <
cos(t,In4) cos(t;In4) cos(3In4) RCS(4)= cos(t;In4)
i=l
3 ) . . . é/(il3)+é/(—l'l‘3) 0 ©
§(+lt1);'§(_lt1) é/("‘ltz);'é/(_ltz) > > D cos(t;lnn)
n=l1i=1

As Re(s)=0, there is the possibility of the existence of spectrums with arguments that are
proportional to the non-trivial zeros (4). For the spectrum of root €N and the spectrum of degree
deN (4), the following holds:
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icos( Llnn) = ZZCOS(Z In&/n),

Jj=1 n=1 n n Jj=1 n=l j=1 n=l j=1 (4)
0 & o C(+it,d)+(O0—it,d) & 0 &

122( jz.d "'%j Z 2 yreQEA ZZCOS("”; Inn) = chos(tj Inn®).

2 j=1 n=1 \ 1 / n’ i=1 2 n=1 j=1 n=1 j=1

Key values for spectrum calculations are the imaginary parts of non-trivial zeros Im(s)=%¢;
however, for the values of the real part on Re(s)=0 that do not lie on the critical axis (i.e., {(0tit)),
values of the zeta function for Re(s)=) are also significant for the distribution of prime numbers.

3. Resultant spectrum of prime numbers
3.1. Basic spectrum r=d=1

Based on the first 100000 non-trivial zeros from [2] (1=14.134725, ©,=21.022039, =25.010857....,
1100=236.524229,..., t1000=1419.422480,..., 110000=9877.782654,..., t50000=40,433.687385,...,
t100000=74,920.827498) in form (5), the spectrum was formed in the interval [1, 256]. The calculation
interval (increment) is A=0.1.

There are 54 prime numbers in the selected interval: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157,163, 167,173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, and 251.

In addition to the prime numbers, there are 16 composite numbers within this interval: 2>=4,
23=8, 2%=16, 2°=32, 26=64, 27=128, 28=256, 3°=9, 33=24, 3*=81, 3°=243, 52=25, 5°=125, 7°=49,
11°=121, and 13*=169.

All 60 mentioned numbers have pronounced resonances in the negative part of the RCS. Figure 1
shows a graphical representation of the RCS with enlarged details in the intervals [1, 30] and [120, 140].
It is well known that the absolute values of resonances of prime numbers p' are greater than the
absolute values of resonances of composite numbers p*, k>2. All resonances are exclusively located
over the integers that are in the form p*, &>1 (5):

10°

RCS(n)=> cos(t, Inn). (5)
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Figure 1. Basic RCS.

3.2. RCS of roots and distribution of prime numbers

The RCS of the square root of the argument n (6) is shown in Figure 2. The resonances for
numbers 4, 9, 16, 25, 49, 64, 81, 121, 169, and 256 are established.
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Figure 2. RCS of the square root.

tjlnn

: (©)

10° 10°
RCS(\/;) = Zcos(tjln\/;) = Zcos
j=1 j=1

The RCS of the third root of the argument # (7) is shown in Figure 3. Resonances of the third degree
of prime powers are established (i.e., 23, 33, 4° and 5°):
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Figure 3. RCS of the third root.

The RCS of the fourth root of the argument » (8) is shown in Figure 4. Resonants of the fourth
power of prime powers are established (i.e., 2%, 3* and 4%):

10° 10° t. Inn
RCS(#n) = Zcos(tjlni‘/;) = Zcos - I (®)
J-1 J=1
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Figure 4. RCS of the fourth root.

The RCS of the fifth root of the argument 7 (9) is shown in Figure 5. Enlarged intervals [30,40]
and [240,250] highlight resonances in 2° and 3° in that order:

tjlnn
s

RCS@/n) = i cos(t,In¥n) = i cos (9)
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Figure 5. RCS of the fifth root.

The RCS of the sixth root of the argument » (10) is shown in Figure 6. The enlarged interval [60,70]
highlights the resonance in 2°:
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Figure 6. RCS of the sixth root.
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The RCS of the seventh root of the argument of »n (11) is shown in Figure 7. The enlarged
interval [120,130] highlights the resonance in 2”:
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Tables 2 and 3 display the calculated values of the RCS for primes from [2,256], from the first up to
the eighth root. Number 1 is excluded from Table 2 as the counter function. RCS(1) is equal to the number

of applied non-trivial zeros because In1=0=>coszIn1=1. The columns of Table 2 contain the values of the
root spectrum 7 for all prime numbers. Table 3 shows the values of the RCS for composite numbers.

Table 2. RCS of prime numbers in the interval [2,251].

RCS(Xn)
n =1 =2 =3 =4 =5 =6 =7 =8
2 -5841.77 -1.75 1.73 7.92 1.03 -3.19 -16.71 11.51
3 -7562.81 -0.37 -3.18 -0.53 -0.75 6.91 3.88 -0.45
5 -8580.68 -0.42 0.66 -3.66 4.80 -0.39 -3.43 -5.38
7 -8768.19 -0.90 3.70 -291 -2.81 4.63 -5.52 3.58
11 -8619.67 1.42 0.22 3.12 -0.32 1.62 -3.82 2.72
13 -8481.29 1.83 -0.09 3.03 -1.09 1.74 4.48 2.50
17 -8191.98 -0.82 2.73 4.03 -2.37 -1.09 4.07 -1.64
19 -8055.32 0.13 3.03 -0.34 -0.95 -1.79 -3.06 -3.94
23 -7795.48 -0.67 -2.05 1.19 -0.33 3.54 2.87 0.67
29 -7455.07 2.23 -0.04 1.02 6.05 -0.18 -0.02 -0.04
31 -7351.99 0.62 -0.05 -1.01 13.46 0.42 -1.32 2.73
37 -7075.54 1.16 1.38 2.74 -0.53 2.70 -0.11 2.57
41 -6911.93 1.64 1.62 2.80 2.38 2.81 -2.33 2.65
43 -6834.79 2.26 0.77 2.86 -0.65 -2.82 -0.19 2.46
47 -6691.09 -0.50 1.26 1.98 0.41 -0.12 0.82 -2.70
53 -6498.83 4.68 0.51 -0.07 0.84 4.89 2.92 -2.96
59 -6325.45 -0.77 -1.10 3.46 2.59 5.70 -2.37 -1.56
61 -6272.48 0.66 4.32 -1.35 -1.25 -6.83 -1.48 3.63
67 -6120.73 -1.92 0.22 4.00 1.05 0.51 2.11 2.78
71 -6031.82 2.40 0.51 4.81 -1.27 -2.85 3.57 -0.67
73 -5984.87 2.74 2.49 0.59 0.74 -1.54 0.28 -0.31
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RCS(/n)
n r=1 r=2 r=3 r=4 =5 =6 =7 r=8
79 -5857.61 0.39 2.69 4.41 2.11 -1.47 1.74 -2.55
83 -5778.28 -1.17 0.19 15.73 2.43 -0.40 3.76 343
89 -5672.73 0.14 0.79 3.74 -0.61 -0.41 2.25 3.15
97 -5531.17 0.51 1.99 0.40 -0.62 -0.72 -3.12 -1.91
101 -5468.05 -0.37 -0.99 1.16 2.80 -0.17 0.07 -1.89
103 -5439.41 -0.75 -0.51 0.52 0.94 -0.52 -1.64 2.23
107 -5381.24 -0.32 1.76 0.74 -0.73 -0.52 -3.98 -1.70
109 -5349.80 4.71 -1.34 0.38 1.28 1.69 4.76 0.88
113 -5292.99 5.51 -1.67 1.35 0.60 0.97 -5.49 3.53
127 -5117.21 2.87 -9.57 0.85 0.29 2.12 -55.26 3.69
131 -5072.15 1.28 -4.85 0.72 0.94 -1.25 -6.35 0.46
137 -5003.31 1.83 -1.86 1.04 3.02 -1.25 7.28 3.82
139 -4981.15 1.56 2.55 0.26 -1.11 -0.07 -3.22 -2.11
149 -4881.91 1.89 1.01 0.13 0.31 -0.69 3.19 2.56
151 -4861.62 1.54 1.09 0.79 2.96 2.04 -1.42 3.90
157 -4805.68 -0.39 1.97 0.15 3.35 -0.03 291 3.38
163 -4753.54 2.92 1.62 1.03 -1.73 1.77 1.62 4.07
167 -4717.45 4.02 0.35 0.02 0.55 2.63 2.18 3.04
173 -4663.86 0.36 1.34 0.74 -1.90 1.64 0.96 0.22
179 -4615.21 5.78 1.05 0.37 0.83 2.47 0.19 -3.05
181 -4602.57 1.69 0.62 -0.03 0.79 2.67 1.11 3.51
191 -4533.44 3.20 1.49 1.04 -2.66 2.14 1.18 0.38
193 -4515.99 3.44 0.71 1.37 -1.12 -1.03 -1.20 1.38
197 -4480.22 1.40 1.63 2.04 0.50 -0.43 -1.23 -2.05
199 -4471.95 0.70 1.32 2.00 -1.52 -1.05 -0.15 -3.11
211 -4384.52 1.51 1.54 -0.16 5.73 1.17 -0.96 -1.82
223 -4311.33 1.69 1.09 -0.67 6.92 0.25 -0.67 5.54
227 -4285.30 1.85 1.00 -0.81 -2.38 2.67 2.23 -5.05
229 -4266.49 1.98 1.36 -0.77 2.04 -1.28 1.76 -2.95
233 -4256.51 1.76 1.65 1.78 -12.29 2.30 -0.42 -7.55
239 -4225.14 2.49 1.66 4.06 16.95 -1.05 -0.43 -6.26
241 -4205.19 1.98 1.50 2.14 61.28 2.76 1.74 2.74
251 -4148.67 3.65 1.10 11.74 -13.45 1.07 2.20 -20.48
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Table 3. RCS of prime powers in the interval [2, 251].

RCS(4n )

n =1 =2 =3 =4 =5 =6 =7 =8
4 -4130.47 -5841.77 2.26 -1.75 1.93 1.70 1.07 7.92
8 -2922.61 -2.29 -5841.75 -2.25 2.21 -1.71 5.01 2.47
9 -4363.91 -7562.81 1.18 -0.37 -0.29 -3.15 -4.07 -0.53
16  -2064.11 -413046 2.79 -5841.77 2.36 2.23 -1.28 -1.75
25  -3835.04 -8580.68 3.67 -0.42 3.06 0.62 3.33 -3.66
27  -2519.94 3.49 -7562.74  0.82 -1.88 -0.43 3.88 0.90
32 -1457.01 1.58 0.47 1.01 -5841.77 -1.34 -2.51 -3.28
49 -3309.02 -8768.19 0.02 -0.90 2.14 3.73 1.10 -2.91
64 -1029.77 -2922.61 -4130.39 -2.29 2.60 -5841.37 2.62 -2.25
81 -1451.83 -4363.91 -0.28 -7562.81 0.67 1.21 -2.14 -0.37
121  -2592.49 -8619.67 -10.02 1.42 2.21 0.18 11.72 3.12
125 -1716.03 4.69 -8580.48 1.42 -1.23 -0.39 -15.39 -1.76
128 -727.76 -0.82 -12.83 0.50 2.99 -1.23 -5841.77 -0.01
169 -2345.46 -8481.29 1.50 1.83 -0.78 -0.12 -0.90 3.03
243 -833.63 291 1.70 -2.80 -7562.82 -0.96 2.35 11.78
256 -508.53 -2064.11 1.74 -4130.46  -7.23 2.78 0.02 -5841.77

From Tables 2 and 3, it is obvious that the inequality of the absolute resonance values of the
RCS is satisfied (12) for all 15 prime powers from [2,256]. The calculations are given in Table 4.

8
|RCS(m)| <> RCS(&/n). (12)
r=2
Table 4. Resulting RCS from (12).
8
n  |RCS(n)  RCS¥n+RCSYn +RCSYn + RCSYn + RCSYn + RCSUn + RCSYn ZzRCS( W)
=
413047 < 5841.77+226+1.75+193+1.70+1.07+7.92 =5858.40
8 2922.61 < 229+ 5841.75+225+221+1.71 +5.01 +2.47 =5857.69
4363.91 < 7562.81 +1.18+0.37+0.29+3.15+4.07+0.53 =7572.40
16 2064.11 < 413046 +2.79+5841.77+236+2.23+1.28+1.75 =9982.64
25 3835.04 < 8580.68 +3.67 +0.42+3.06 +0.62 +3.33 +3.66 =8595.44
27 2519.94 < 3.49+7562.74 +0.82 +1.88 +0.43 +3.88 +0.90 =7574.14
32 145701 < 1.58 +0.47 + 1.01 + 5841.77 + 1.34 + 2.51 +3.28 =5851.96
49 3309.02 < 8768.19+0.02+090+2.14+3.73+1.10+2.91 =8778.99
64 1029.77 < 2922.61 +4130.39 +2.29+2.60 +5841.37 +2.62 +2.25 =12904.13
81 1451.83 < 4363.91 +0.28 +7562.81 +0.67 +1.21 +2.14 +0.37 =11931.39
121 259249 < 8619.67 + 10.02+ 1.42 +2.21 +0.18 + 11.72 + 3.12 =8648.34

Continued to next page
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n  |RCS(n)| RCS3n +RCSn + RCSYn + RCSYn + RCSUn + RCSYn

125 1716.03 < 4.69 + 858048 +1.42+1.23+0.39+15.39+1.76 =8605.36
128 727.76 < 0.82+12.83 +0.50 +2.99 +1.23 + 5841.77+ 0.01 =5860.15
169 234546 < 8481.29+1.50+1.83 +0.78 + 0.12+ 0.90 + 3.03 =8489.45
243 833.63 < 291+1.70+2.80+7562.82+0.96 +2.35+ 11.78 =7585.32
256 508.53 < 2064.11 +1.74 + 4130.46 + 7.23 + 2.78 + 0.02 + 5841.77 =12048.11

Based on the resonant values of the root RCS from Tables 2 and 3, and inequality (12), the
resulting root RCS is formed (13). The graphic representation of the RCS results is given in Figure 8.
Based on (13), the resonances of prime numbers p' in the interval [2,256] are located in the positive
part and the resonances of all prime powers p*, ke[2, 8] in the interval [2,256] are located in the
negative part.

RCS(4n) = z Zcos(t In4/n)— Zcos(t In n). (13)

j=1 k=2

10000

8000
7000
6000
5000
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2000
1000
0 U L. | - | LU .

1000 0 0 20 3( 70 89 90 100 110 1 30 140 150 160 10 180 190 200 210 220 230 24Q 250 j260

Figure 8. The resulting root RCSk in the interval [2,256].

A subset of 54 numbers can be chosen from a set of 255 numbers in 1,840553-10°% ways.
Therefore, the reliability of choosing all prime numbers in the interval [2,256] in a random way is equal
to P=1-5.433148-10~. Based on this fact, we can claim that for all 7N, the following stands (14):

RCS,(n)= Z Zcos(tjln%) - Zcos(tj In n). (14)
j=1 k=2 =1
Expression (14) can be transformed into the following (15):
RCS,(n) = ZZCOS( t,Inn)— ZZcos(t In n). (15)
j=1 k=1

The positive part of RCSr(n) contains the distribution of prime numbers.
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3.3. Power RCS and magnitude of primes

The RCS of the second degree (16) is shown in Figure 9.
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Figure 9. RCS of the second degree.
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The apparent degradation of RCS resonances is a consequence of the small value of the

increment A=0.1. Let us consider [2,4], [2,4]cRCS. It is obvious that resonant values are reached for 2, 3,
and 4. Since the spectra that correspond to the powers compress the graph, the chosen value of A
ought to be lowered. In that way, we obtain a more precise visualization of the segments of the
concrete spectrum. On the other hand, changing values of A for the spectra that correspond to the

roots is not needed.

Choosing A=0.00001 and enlarging the details, the observed resonance values correspond to the
square roots of numbers 5, 7, 8, 11, and 13. Resonances in 2, 3, and 4 from RCS are the square roots
of the composites 2°=4, 32=9, and 4°=16, respectively (Figure 10).
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Figure 10. RCS of the second degree in [2,4] with enlarged details.
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For example, in interval [200,202]cRCS, there are square roots of prime numbers from the
interval [2002,202%] (i.e., [40000,40804]), with a total of 68 prime numbers: 40,009, 40,013, 40,031,
40,037, 40,039, 40,063, 40,087, 40,093, 40,099, 40,111, 40,123, 40,127, 40,129, 40,151, 40,153,
40,163, 40,169, 40,177, 40,189, 40,193, 40,213, 40,231, 40,237, 40,241, 40,253, 40,277, 40,283,
40,289, 40,343, 40,351, 40,357, 40,361, 40,387, 40,423, 40,427, 40,429, 40,433, 40,459, 40,471,
40,483, 40,487, 40,493, 40,499, 40,507, 40,519, 40,529, 40,531, 40,543, 40,559, 40,577, 40,583,
40,591, 40,597, 40,609, 40,627, 40,637, 40,639, 40,693, 40,697, 40,699, 40,709, 40,739, 40,751,
40,759, 40,763, 40,771, 40,787, and 40801. Figure 11 shows the interval [200,202] with an increment
A=0.01. The total number of resonances in Figure 11 is 61 (i.e., 7 resonances of prime numbers from
the interval [200,202] were not indicated by RCS).
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Figure 11. RCS of the second degree in [200, 202] with an increment A=0.01.

The RCS of the second degree obviously leads to a compression of the RCS. In order to
emphasize the dynamics of the RCS development, we switch to the increment A=0.0001 and
choose the interval [96,97]cRCS, which contains the square roots of prime numbers from the
interval [96%,97%] (i.e., [9216,9409]), with a total of 21 prime numbers: 9221, 9227, 9239, 9241,
9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397,
and 9403. The number 97 is a prime, so we expect its appearance in the RCS as the square root of the
composite 9409. All 21+1=22 resonances are visible in Figure 12.
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Figure 12. RCS of the second degree in [96,97] with an increment A=0.0001.
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The enlarged details of the RCS are given in Figure 13. In the interval [96.60,96.70], there are
square roots of four prime numbers 9337, 9341, 9343 and 9349 with the same increment; with the

increment A=0.00001 in the interval [96.645,96.665], there are square roots of two prime numbers: 9341
and 9343.

A=0.00001

-1000

\ i \ -1000 7
~ = [m =) - )
o S| & 3 &
-1500 ) o[l el 1500 o )
n II. n " I|‘ n
8 g 9 ] g g
-2000 2 g a =3 -2000 1 S A
© 3| | @ o ) o
o o |o © © ©
=) ol | =) o =)
2500 2500

Figure 13. Enlarged details of the spectrum from Figure 12.

The RCS of the third degree (17) is shown in Figure 14.

10° 10°
RCS(n*)=cos) cos(t, Inn*) = cos(3t, Inn). (17)
=l

=

The expected third degree compression is obtained. For the applied increment A=0.1, two
intervals were considered: [140,150] and [220,230] (Figure 14).

In [140,150], the cube roots of the prime numbers 2,967,361 and 3,163,577 in the positive part
of the RCS and 3,254,959 in the negative part of the RCS are estimated. In [220,230], the prime
number 11,512,561 was singled out in the positive part of the RCS.
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Figure 14. RCS of the third degree with enlarged details.
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Applying the increment A=0.000005 on the left part of the Figure 15, parts of the RCS from
[143.697,143.707] are selected, while three extreme values of the RCS that correspond to the
cube root of the prime number 2,967,361 (from Figure 14) and two more cube roots of the prime
numbers 2,967,379 and 2,967,397 are indicated.

However, in the interval [143.697°, 143.7077°] (i.e., [2,967,174.609, 2,967,794.117]), the cube
roots of 48 prime numbers exist: 2,967,187, 2,967,199, 2,967,203, 2,967,221, 2,967,241, 2,967,247,
2,967,259, 2,967,269, 2,967,271, 2,967,277, 2,967,317, 2,967,323, 2,967,329, 2,967,331, 2,967,337,
2,967,343, 2,967,347, 2,967,353, 967,359, 2,967,361, 2,967,373, 2,967,379, 2,967,383, 2,967,389,
2,967,397, 2,967,403, 2,967,407, 2,967,409, 2,967,421, 2,967,427, 2,967,443, 2,967,491, 2,967,509,
2,967,551, 2,967,583, 2,967,607, 2,967,637, 2,967,647, 2,967,649, 2,967,689, 2,967,691, 2,967,697,
2,967,709, 2,967,737, 2,967,749, 2,967,751, 2,967,779, and 2,967,787.

Applying the increment A=0.000005 on the right part of the Figure 15, parts of the RCS from [225.796,
225.806] are selected, where only two resonant values that correspond to the cube root of the prime
number 11,512,561 (selected from Figure 14) and only one more extreme value that may correspond
to the cube roots of the prime numbers 11,513,263 or 11,513,269 are indicated.

Out of the established 90 prime numbers, only 6 are indicated in Figure 15. We can conclude
that the intensity of the RCS of the third degree compression is high.

However, in the interval from [225.7963,225.806°] (i.e., [11511945.695,11513475.277]) there
are 90 prime numbers: 11,511,947, 11,511,953, 11,511,961, 11,511,977, 11,511,979, 11,511,989,
11,512,013, 11,512,031, 11,512,037, 11,512,051, 11,512,073, 11,512,087, 11,512,093, 11,512,097,
11,512,147, 11,512,177, 11,512,199, 11,512,211, 11,512,219, 11,512,223, 11,512,231, 11,512,243,
11,512,301, 11,512,331, 11,512,337, 11,512,343, 11,512,363, 11,512,387, 11,512,399, 11,512,427,
11,512,481, 11,512,531, 11,512,541, 11,512,547, 11,512,561, 11,512,573, 11,512,601, 11,512,609,
11,512,649, 11,512,717, 11,512,733, 11,512,769, 11,512,789, 11,512,817, 11,512,843, 11,512,861,
11,512,901, 11,512,933, 11,512,937, 11,512,973, 11,512,981, 11,512,987, 11,512,999, 11,513,003,
11,513,009, 11,513,017, 11,513,039, 11,513,053, 11,513,057, 11,513,077, 11,513,141, 11,513,143,
11,513,149, 11,513,171, 11,513,189, 11,513,191, 11,513,209, 11,513,219, 11,513,239, 11,513,263,
11,513,269, 11,513,273, 11,513,279, 11,513,287, 11,513,291, 11,513,309, 11,513,311, 11,513,321,
11,513,329, 11,513,339, 11,513,371, 11,513,387, 11,513,393, 11,513,417, 11,513,419, 11,513,423,
11,513,429, 11,513,441, 11,513,461, and 11,513,473.
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Figure 15. Enlarged detail from Figure 14.
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Let us choose the RCS interval of the third degree from 1°=1 to 2°=8 since the lowest intensity of
RCS compression in the initial part is expected. This interval contains the cube roots of the prime
numbers 2, 3, 5, and 7 and the cube root of the composite number 4. On the selected interval, the

increment A=0.1 is chosen, while the increment A=0.0001 is employed on the enlarged details of
the RCS, shown in Figure 16.
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Figure 16. RCS of the third power interval [1,2].

Finally, we choose the RCS of the fourth degree (18) in the interval [142%] (i.e., [1,16]) since the
lowest intensity of RCS compression in the initial part is expected. In this interval, there are the
fourth roots of the prime numbers 2, 3, 5, 7, 11, and 13 and the fourth roots of the composite
numbers 4, 8, and 9.
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Figure 17. RCS of the fourth power interval [1,2].
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Figure 18 shows the enlarged details of the RCS from Figure 17 with the increment A=0.00001.
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Figure 18. Enlarged details of the RCS from Figure 17.

It is obvious that the possibilities of further investigations are exhausted with the application of 10°
complex parts of non-trivial zeros of the zeta function #. Higher power spectra are no longer
available, regardless of the increment enhancement.

The power spectra can be used to calculate the magnitude of the p? numbers from interval [a,b7].
This magnitude is expressed in terms of the number of resonances on the interval [a,b] of the
spectrum of the d" degree.

4. Imaginary sine spectrum-/SS

Let us consider the difference of the zeta functions from (3). We obtain the following (19):

j n n
| (19)

zi ism(tj Inn).

j=1 n=1

2 G (0+it) - ((0—11) 1 & & cos(t; Inn)+isin(¢, Inn)  cos(?; Inn)—isin(z; Inn)
>4 )| — j

~ 0 0
=1 2 j=1 n=1

In Figure 19, the graph of the spectrum in the interval [1,256] is shown. The resonances of this
spectrum change signs, where the value of the power of prime numbers p* are most intense. Applying
the increment A=0.1, the intensities of the resonances in ISS are 10 to 15 times lower than the
resonances in the RCS. Some prime numbers do not have the expected resonances (example 239
from Figure 19). However, with a reduced increment to A=0.01, resonances appear in the /SS that are
proportional to the resonances in the RCS. In general, RCS is far more stable than ISS. In the initial
part, the intensity intensities of the resonances of numbers 2, 3, and 2° are extremely low.
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Figure 19. Imaginary sine spectrum with enlarged details.

From the number 5 onwards, the resonances in p* are emphasized. The increment in Figure 20
is A=0.001.

Figure 20. Low level resonances of numbers 2, 3 and 4 for the first 100000 non-trivial ISS zeros.

Moreover, the 1SS has root and power spectra. Analogously to (16), a new resulting spectrum (20)
can be formed as follows:

ISS,(n) = iZsm(t Inn)— iZsm( Ln n). (20)
=1 k=1

In Figure 21, the interval [22,30] is shown. In the interval, there are two prime numbers,
specifically 23 and 29, the second power of the prime number 25=52, and the third power of the
prime number 27=33. Representations of the basic ISS and its second and third roots for the increment
A=0.005 are given. The resulting spectrum (24) contains orthogonal resonances. Figure 21 leads us to
the conjecture that the values of the resultant /SS in the values of the root »eN are asymptotes.
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Figure 21. ISS of roots, interval [22,30].

There is a clear distinction between prime numbers and composites p" (21).

0 ©  © \/7 }":1 lir%ISSR(pr—TS):iOO,
ISS.(p") =) sin(¢, Inn)— sin(z Ini/n) = oo & 21
X (P) Z (t;Inm)=> > sin(t,In</n) r22 lmISS, (' Fe) =0 1)

j=1 r=1

5. Composite spectrum

The sum of the resultant cosine (15) and sine (20) spectra superposes the resonances. In that
manner, a composite spectrum of the distribution of all degrees of prime numbers is obtained as
follows (22):

o0

cos(? jln</; )
=1

3°S sin(t, In</n)

j=1 r=1

z(p")= + . (22)

Zcos(t Inn)
Jj=1

D sin(t; Inn)[—|>_
j=1 j=1

In Figure 22, the composite spectrum for the first 100,000 non-trivial zeros (22) from the
interval [120,140] is shown. That interval contains four prime numbers: 127, 131, 137, and 139, as
well as three degrees of prime numbers: 121=11% 125=5° and 128=2". Figure 22 separates
composite resonances for p' and p’, ¥>2 primarily by sign. Additionally, the shapes of the resonances
for p' and p’, k>2 significantly.
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Figure 22. Composite spectrum on the interval [120,140] with enlarged details.

6. Conclusions

The previous considerations of the cosine spectrum based on the values of the complex part of

AIMS Mathematics Volume 11, Issue 1, 399-419.



418

non-trivial zeros were significantly improved by the presented results. First, the genesis of the real
cosine spectrum was established.

Second, a simple relationship between non-trivial zeros and the distribution of prime numbers
based on the root spectrum was established.

Finally, a system to determine the magnitude of the p* based on the degree spectrum was established.

The obtained spectra indicate that the values of the zeta function are also important outside the
critical axis, specifically for 6=0+"2. The discussion of possible non-trivial zeros outside the critical
axis 6=% is irrelevant to the results in the paper. The obtained spectra are based on the values of
non-trivial zeros from the Riemann hypothesis, and the established distribution of prime numbers
based on the spectra supports the famous hypothesis. In addition to the distribution of prime numbers,
the spectra highlight magnitudes of prime numbers.

Further research should be directed towards increasing the numerical sharpness applying more
non-trivial zeros and reducing the increment. Additionally, the spectra of the negative domain RCS(—n)
and /SS(—n) should be investigated using hyperbolic sine and cosine functions.
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