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Abstract: This paper investigated novel predefined-time stability theorems for time-delayed fuzzy
Cohen-Grossberg neural networks. A novel predefined-time stability lemma was introduced via a
newly developed inequality-based analytical framework.The theoretical results demonstrated that,
compared to existing stability criteria in the literature, is provided more precise estimation of
settling time boundaries, but also effectively reduced conservatism. To validate the effectiveness
of the proposed lemma, the stability theorem was applied to the synchronization control problem
of fuzzy Cohen-Grossberg neural networks (FCGNNs).To address this, an adaptive control strategy
was proposed, employing a discontinuous state-feedback approach for the response neural network.
Rigorous algebraic criteria was established to ensure synchronization within the specified time frame,
in line with prior discussions. The effectiveness of the proposed synchronization method was
empirically verified through numerical case studies.
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1. Introduction

1.1. Literature review

Building upon conventional cellular neural networks, Yang and Yang [1] first proposed fuzzy
cellular neural networks in 1996 to address uncertainty in cognitive processes and improve practical
applications including pattern recognition. Later studies primarily focused on delayed fuzzy neural
netwaorks (FCNN) variants.
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An analysis of existing literature reveals that most studies concerning the stability and
synchronization of fuzzy neural networks have been predicated on the assumptions of continuous,
Lipschitz continuous, or smooth activation functions. In practical implementations, however,
neuronal activation functions frequently demonstrate jump discontinuities with respect to system
states. Inspired by the pioneering work of Forti and Nistri [2], researchers in recent years
have progressively redirected their attention to neural network systems incorporating discontinuous
activation functions. As a representative study, Abdujelil [3] conducted an in-depth investigation
into the synchronization of memristor-based Cohen-Grossberg neural networks incorporating mixed
time delays and discontinuous activation functions. Their methodology integrated multiple analytical
tools including Filippov solutions, differential inclusion theory, Lyapunov-Krasovskii functionals, and
diverse inequality techniques. Building upon this foundation, Duan and colleagues [4] made significant
advancements by examining finite-time synchronization in delayed fuzzy cellular neural networks with
discontinuous activation functions, employing a novel discontinuous state feedback control strategy.

The stability of Filippov discontinuous systems (FDSs) has emerged as a significant area of
research, owing not only to their increasing applications in fields such as neuroscience and engineering
involving discontinuous systems, but also due to the potential of discontinuities to compromise
system stability. Early studies in this domain highlighted the challenges in analyzing the stability
of FDSs, primarily due to the lack of suitable theoretical methods. Furthermore, traditional theories,
particularly those concerning the existence of solutions, are not applicable to FDSs. Given the presence
of discontinuities, instability is an inherent characteristic of these systems, and this issue becomes
even more complex when the traditional Lipschitz condition cannot be applied to stability analysis.
This challenge was addressed by Polyakov in 2012 [5], who employed differential inclusion theory,
developed by Filippov in [6], to handle discontinuities. Polyakov introduced an implicit Lyapunov
function to investigate fixed-time (FIXT) stability, making a pioneering contribution by establishing
the first FIXT stability lemmas and results for FDSs. This advancement has led to the Lyapunov
method becoming an essential tool for studying FIXT stability in FDSs. In recent years, several notable
studies, such as [7,8], have further explored the FIXT stability of FDSs. Despite the significant progress
made in FIXT stability analysis for discontinuous systems and neural networks, there remains room
for improvement in the existing stability lemmas. For instance, the conditions imposed on Lyapunov-
Krasovskii functionals (LKF) could be relaxed, and the precision of the stability criteria could be
enhanced.

Time delays are prevalent in natural processes and numerous industrial systems, including chemical,
biological, and networked control systems, often considered a primary cause of instability. Given the
critical role of stability in various systems, extensive research has been conducted in recent years to
analyze the stability of time-delay systems. Some models assume the delay appears in a singular
or simplified form, as discussed in [9, 10]. However, as noted in [11], multiple delays with distinct
characteristics may coexist in certain practical scenarios. Moreover, in networked control systems, the
lower bound of time delays is typically nonzero, and the delay may vary within a specific interval.
Consequently, stability analysis for systems with interval time-varying delays has attracted significant
attention [12, 13]. Nevertheless, limited research has addressed the stability problem for interval
time-delay systems involving two additive delay components. The current investigation focuses
on addressing robust finite-time and fixed-time synchronization control challenges in fuzzy Cohen-
Grossberg neural networks (FCGNNs) featuring time-varying delays and discontinuous activation
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functions. To methodically address these issues, the Filippov solution framework is adopted to handle
the dynamical behavior of discontinuous systems.

Significant progress has been made in recent years regarding finite-time/fixed-time synchronization
control for time-delay neural networks and multi-agent systems.For fuzzy neural networks,
Abdurahman et al.established a theoretical framework for finite-time synchronization in fuzzy cellular
neural networks with time-varying delays [14]. As control objectives have become more precise,
predefined-time synchronization has emerged as a new direction.Lv et al.proposed an output-feedback
predefined-time leader-following consensus protocol for pure-feedback multi-agent systems [15].
Meanwhile, Li et al. further investigated the adaptive consensus problem for uncertain multi-agent
systems with unified prescribed performance [16]. For nonlinear systems, Lv et al. addressed
the leader-following consensus of nonlinear multi-agent systems via a distributed output-feedback
approach [17]. In terms of methodological innovation, You et al.applied the maximum-valued
method of functions of five variables to achieve finite-time synchronization of fractional-order chaotic
systems [18]. For more challenging discontinuous systems, Zhang et al.realized fixed-time stabilization
and synchronization of delayed discontinuous inertial neural networks based on aperiodically semi-
intermittent control [19]. These achievements provide an important theoretical foundation for the
present study on prescribed finite-time and fixed-time synchronization control of fuzzy Cohen-
Grossberg neural networks with two additive time-varying delays.

1.2. Outline of this paper

This study focuses on examining synchronization control within predefined-time and fixed-time
horizons for FCGNNs featuring time-varying delays and discontinuous activation characteristics. To
methodically overcome these technical difficulties, the Filippov solution framework is initially adopted
to address the discontinuous righthand terms in the system equations. This paper develops an enhanced
predefined-time stability lemma applicable to discontinuous dynamical systems, which provides
improved accuracy in estimating the required convergence time. Building upon this novel stability
lemma, we further derive sufficient conditions for achieving predefined-time stability in FCGNNs
with discontinuous activation functions. The proposed approach integrates fuzzy logic operations,
time-delay compensation, and non-smooth analysis techniques to establish robust synchronization
criteria. Theoretical analyses verify that under the proposed control scheme, the synchronization error
converges to zero within a prespecified time interval, independent of initial states.

1.3. Key innovations

The principal contributions and novel aspects of this work are manifested through the following key
elements:

(1) An in-depth investigation is conducted on fuzzy Cohen-Grossberg neural networks incorporating
discontinuous activation functions and time-varying delays, thereby extending previous
continuous results reported in [3, 20–22] to the discontinuous scenario. It is particularly
noteworthy that various existing delayed Cohen-Grossberg drive-response systems and fuzzy
cellular drive-response models can be regarded as special cases of our proposed framework, as
demonstrated in [4].

(2) Given the superior practical applicability of predefined-time synchronization compared to
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asymptotic synchronization, the present research is dedicated to addressing the predefined-time
synchronization control challenge for the developed model by establishing novel predefined-
time stability theorems for discontinuous systems, which exhibit significant differences from and
improvements upon existing results, while also providing a refined estimation of the settling time
(ST) that demonstrates higher precision compared to previous estimates.

(3) This study develops an adaptive control scheme to solve the predefined-time synchronization issue
in fuzzy Cohen-Grossberg neural networks. A distinctive feature of the proposed controller lies in
its capability to directly adjust synchronization duration through predefined control parameters.

The organizational framework of this paper is presented below. Section 2 provides the system
formulation and fundamental preliminaries. Section 3 introduces two control design approaches aimed
at achieving predefined-time and fixed-time synchronization. Section 4 demonstrates the effectiveness
of the proposed methods through numerical examples. Lastly, Section 5 provides the conclusion of the
study.

2. System description and preliminaries

2.1. System description

This paper focuses on delayed FCGNNs that incorporate piecewise continuous activation functions,
described as follows:

Ẋi(c) =⌝di(Xi(c))
[
− τi(c,Xi(c)) +

n∧
j=1

αi j(c) ⊺ j
(
X j(c − ϱ j(c) − ϑ j(c))

)
+

n∑
j=1

ai j(c) ⊺ j (X j(c))

+

n∑
j=1

bi jν j +

n∨
j=1

gi j(c) ⊺ j
(
X j(c − ϱ j(c) − ϑ j(c))

)
+

n∧
j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c)
]

i = 1, 2, ..., n.

(2.1)

The system is initialized with: Xi0(θ) = ϕi(θ), θ ∈ [−d, 0] where: i, j = 1, 2, . . . , n with n ≥ 2
represents the number of neurons in the network. Xi(c) describes the dynamic state of the i -th neuron
at time t. ⌝di(Xi(c)) and τi(Xi(c)) correspond to the amplification and behavior functions, respectively.
ai j and bi j are elements of feedback and feed-forward templates. The parameters αi j and gi j correspond
to the fuzzy feedback MIN and MAX template components, respectively. The symbolic operators

∧
and

∨
represent the fuzzy logical AND and OR operations, while Ti j and S i j specify the fuzzy feed-

forward MIN and MAX template elements.The variables ν j and Ii denote the external input to the j-th
neuron and the bias term of the i-th neuron, respectively. ⊺ j is the neuronal activation function. ϑ j(c)
and ϱ j(c) are time-varying transmission and leakage delays satisfying: 0 ≤ ϑ j(c) ≤ ϑ, 0 ≤ ϱ j(c) ≤ ϱ
where ϑ = max1≤ j≤n supc∈R |ϑ j(c)| and ϱ = max1≤ j≤n supc∈R |ϱ j(c)| are finite bounds, with d = ϑ + ϱ.

Remark 2.1. In contrast to the referenced study [23], our model demonstrates enhanced generality as
it no longer imposes the restrictive assumptions of continuity and Lipschitz continuity on activation
functions.
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Considering the principle of drive-response synchronization, we designate system (2.1) as the
driving component and formulate the corresponding response system as follows:

Ẏi(c) =⌝di(Yi(c))
[
− τi(c,Yi(c)) +

n∧
j=1

αi j(c) ⊺ j
(
Y j(c − ϱ j(c) − ϑ j(c))

)
+

n∑
j=1

ai j(c) ⊺ j (Y j(c))

+

n∑
j=1

bi jν j +

n∨
j=1

gi j(c) ⊺ j
(
Y j(c − ϱ j(c) − ϑ j(c))

)
+

n∧
j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c)
]
+ ui(c), i = 1, 2, ..., n,

(2.2)

with initial conditions, Yi0(θ) = φi(θ), θ ∈ [−d, 0], and ui(c) is the control input that will be designed
later.

The present study requires the following fundamental assumptions:

A1) For every index i (where i = 1, 2, . . . , n), the function ⊺i : R → R exhibits piecewise continuity.
Specifically, ⊺i remains continuous across its domain except at a countable collection of points
{ρi

k}. At each such point ρi
k, the righthand limit ⊺+i (ρi

k) and the left-hand limit ⊺−i (ρi
k) both exist

and are finite. Furthermore, within any bounded subinterval of R, the number of discontinuities
of ⊺i is guaranteed to be finite.

A2) For each index i in the set 1, 2, ..., n, one can define nonnegative coefficientsAi and Bi such that

sup
γi∈co[⊺i(Xi)],ηi∈co[⊺i(Yi)]

|γi − ηi| ≤ Ai|Xi − Yi| + Bi,∀𭟋i ,Yi ∈ R,

where

co[⊺i(Xi)] =
[
min

{
⊺−i (Xi),⊺+i (Xi)

}
,max

{
⊺−i (Xi),⊺+i (Xi)

}]
,

co[⊺i(Yi)] =
[
min

{
⊺−i (Yi),⊺+i (Yi)

}
,max

{
⊺−i (Yi),⊺+i (Yi)

}]
.

Furthermore, assuming the continuity of ⊺i at the point Xi, the closed convex hull of ⊺i(Xi)
reduces to the singleton set {⊺i(Xi)}.

A3) The function⌝di(X) exhibits continuity and boundedness. Additionally, one can define two strictly
positive constants, di and d̆i, satisfying the inequality:

0 < di ≤⌝di(X) ≤ d̆i, f or i = 1, 2, ..., n,X ∈ R.

A4) Given any X ∈ R, the function τi(·,X) remains continuous.This function satisfies τi(c, 0) = 0 for
all c, and we can find a positive continuous function Λi(c) > 0 fulfilling the condition that

τi(c,X) − τi(c,Y)
X −Y

≥ Λi(c), X,Y ∈ R, X , Y.

As implied by assumption (A3), we have 1/⌝di(X) is positive and continuous for all X ∈ R. Consider
the transformation function 1/ℏi(X) defined to satisfy the differential equation:

d
dX
ℏi(X) =

1
⌝di(X)

, with initial condition ℏi(0) = 0.
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This construction ensures that 1/ℏi(X) is strictly monotone increasing in X. Furthermore, the
differentiability of the inverse function ℏ−1

i implies the relation: d
duℏ
−1
i (u) =⌝ di(u). We give the

definition

zi(c) = ℏi
(
Xi(c)

)
, wi(c) = ℏi

(
Yi(c)

)
,

and it can be directly obtained that

Xi(c) = ℏ−1
i

(
zi(c)

)
, Yi(c) = ℏ−1

i
(
wi(c)

)
,

and 
żi(c) = ċi

(
Xi(c)

)
Ẋi(c) =

Ẋi(c)
⌝di

(
Xi(c)

) ,
ẇi(c) = ℏ̇i

(
Yi(c)

)
Ẏi(c) =

Ẏi(c)
⌝di

(
Yi(c)

) .
By applying the aforementioned variable transformations to the original drive-response systems (2.1)
and (2.2), we obtain the following expressions respectively:

żi(c) =


−τi

(
τ, ℏ−1

i (zi(c))
)
+

∧n
j=1 αi j(c) ⊺ j

(
ℏ−1

j (z j(c − ϱ j(c) − ϑ j(c)))
)

+
∑n

j=1 ai j(c) ⊺ j (ℏ−1
j
(
z j(c)

)
) +

∑n
j=1 bi jv j +

∧n
j=1 Ti jν j

+
∨n

j=1 gi j(c) ⊺ j
(
ℏ−1

j (z j(c − ϱ j(c) − ϑ j(c)))
)
+

∨n
j=1 S i jν j + Ii(c),

zi0(θ) = ℏi(ϕi(θ)), θ ∈ [−d, 0], i = 1, 2, . . . , n,

(2.3)

ẇi(c) =



−τi(c, ℏ−1
i (wi(c))) +

∧n
j=1 αi j(c) ⊺ j

(
ℏ−1

j (w j(c − ϱ j(c) − ϑ j(c)))
)

+
∑n

j=1 ai j(c) ⊺ j (ℏ−1
j (w j(c))) +

∑n
j=1 bi jν j +

∧n
j=1 Ti jν j

+
∨n

j=1 gi j(c) ⊺ j
(
ℏ−1

j (w j(c − ϱ j(c) − ϑ j(c)))
)
+

∨n
j=1 S i jν j + Ii(c)

+
ui(c)

di(ℏ−1
i (Œi(c)))

,

Œi0(θ) = ℏi(φi(θ)), θ ∈ [−d, 0], i = 1, 2, . . . , n.

(2.4)

Consequently, the synchronization objective for systems (2.1) and (2.2) can be simplified to
achieving synchronization between the transformed systems (2.3) and (2.4).

2.2. Fundamental concepts

The solution concept for discontinuous systems (2.3) and (2.4) will be established through
Filippov’s solution theory.

z(c) = (z1(c), z2(c), ..., zn(c))⊤ and w(c) = (w1(c),w2(c), ...,wn(c))⊤ as the vector-valued functions are
considered, which represent solutions to the initial value problems (2.3) and (2.4) defined over the
interval [0,T ), with T ∈ (0,+∞], For these solutions to be valid, each component zi(c) and wi(c)
(where i = 1, 2, ..., n)must maintain absolute continuity on all compact subintervals within [0,T ) while
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simultaneously satisfying the subsequent inclusion condition:

żi(c) ∈ − τi(c, ℏ−1
i (zi(c))) +

n∧
j=1

αi j(c)co
[
⊺ j

(
ℏ−1

j (z j(c − ϱ j(c) − ϑ j(c)))
)]

+

n∑
j=1

ai j(c)co[⊺ j(ℏ−1
j (z j(c)))] +

n∨
j=1

gi j(c)co
[
⊺ j

(
ℏ−1

j (z j(c − ϱ j(c) − ϑ j(c)))
)]

+

n∑
j=1

bi jν j +

n∧
j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c), for a.e. c ∈ [0, d), i = 1, 2, ..., n,

and

ẇi(c) ∈ − τi
(
c, ℏ−1

i (wi(c))
)
+

n∧
j=1

αi j(c)co
[
⊺ j

(
ℏ−1

j (w j(c − ϱ j(c) − ϑ j(c)))
)]

+

n∑
j=1

ai j(c)co[⊺ j
(
ℏ−1

j (w j(c))
)
] +

n∑
j=1

bi jν j +

n∨
j=1

gi j(c)co
[
⊺ j

(
ℏ−1

j (w j(c − ϱ j(c) − ϑ j(c)))
)]

+

n∧
j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c) +
ui(c)

⌝di(ℏ−1
i (w j(c))

, for a.e. c ∈ [0, d), i = 1, 2, ..., n.

It follows directly that for i = 1, 2, ..., n, the corresponding set-valued mappings take the form:

żi(c) ↪→− τi
(
c, ℏ−1

i (zi(c))
)
+

n∧
j=1

αi j(c)co
[
⊺ j

(
ℏ−1

j (z j(c − ϱ j(c) − ϑ j(c)))
)]

+

n∑
j=1

ai j(c)co[⊺ j
(
ℏ−1

j (z j(c))
)
] +

n∑
j=1

bi jν j +

n∧
j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c)

+

n∨
j=1

gi j(c)co
[
⊺ j

(
ℏ−1

j (z j(c − ϱ j(c) − ϑ j(c)))
)]
,

and

ẇi(c) ↪→− τi
(
c, ℏ−1

i (wi(c))
)
+

n∧
j=1

αi j(c)co
[
⊺ j

(
ℏ−1

j (w j(c − ϱ j(c) − ϑ j(c)))
)]

+

n∑
j=1

ai j(c)co[⊺ j
(
ℏ−1

j (w j(c))
)
] +

n∑
j=1

bi jν j +

n∧
j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c)

+

n∨
j=1

gi j(c)co
[
⊺ j

(
ℏ−1

j (w j(c − ϱ j(c) − ϑ j(c)))
)]
+

ui(c)
⌝di

(
ℏ−1

i (wi(c))
) .

These set-valued mappings possess nonempty, compact, and convex values, ensuring their upper
semicontinuity and measurability properties. Applying the measurable selection theorem to the
solutions zi(c) and wi(c) of systems (2.3) and (2.4), we can establish the existence of measurable vector
functions γ = (γ1, γ2, ..., γn)⊤ : [−d,T ) → Rn and η = (η1, η2, ..., ηn)⊤ : [−d,T ) → Rn. These functions

AIMS Mathematics Volume 11, Issue 1, 366–398.



373

satisfy the inclusion relations γ j(c) ∈ co
[
⊺ j

(
ℏ−1

j (z j(c))
)]

and η j(c) ∈ co
[
⊺ j

(
ℏ−1

j (w j(c))
)]

for almost
every c ∈ [−d,T ).

żi(c) = − τi
(
c, ℏ−1

i (zi(c))
)
+

n∑
j=1

ai j(c)γ j(c) +
n∑

j=1

bi jν j +

n∧
j=1

Ti jν j

+

n∧
j=1

αi j(c)γ j
(
c − ϱ j(c) − ϑ j(c)

)
+

n∨
j=1

gi j(c)γ j
(
c − ϱ j(c) − ϑ j(c)

)
+

n∨
j=1

S i jν j + Ii(c), for a.e. c ≥ 0, i = 1, 2, ..., n,

(2.5)

and

ẇi(c = − τi
(
c, ℏ−1

i (wi(c))
)
+

n∑
j=1

ai j(c)η j(c) +
n∑

j=1

bi jν j +

n∧
j=1

Ti jν j

+

n∧
j=1

αi j(c)η j
(
c − ϱ j(c) − ϑ j(c)

)
+

n∨
j=1

gi j(c)η j
(
c − ϱ j(c) − ϑ j(c)

)
+

n∨
j=1

S i jν j + Ii(c) +
ui(c)

⌝di
(
ℏ−1

i (wi(c))
) , for a.e. c ≥ 0, i = 1, 2, ..., n.

(2.6)

Let the error variable be given by

ei(c) = wi(c) − zi(c).

Then, combining Eqs (2.5) and (2.6) yields the error dynamic system:

ėi(c) = − [τi
(
c, ℏ−1

i (wi(c))
)
− τi

(
c, ℏ−1

i (zi(c))
)
] +

n∑
j=1

ai j(c)[η j(c) − γ j(c)]

+

n∧
j=1

αi j(c)[η j
(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)
]

+

n∨
j=1

gi j(c)[η j
(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)
]

+
ui(c)

⌝di
(
ℏ−1

i (wi(c))
) ,

(2.7)

with initial conditions
ei0(θ) = ℏi

(
φi(θ)

)
− ℏi

(
ϕi(θ)

)
, θ ∈ [−d, 0].

For convenience, let e0(θ) =
(
e10(θ), e20(θ), ..., en0(θ)

)⊤
, θ ∈ [−d, 0].

Definition 2.1. (Predefined-time stability [24])
For vector ρ and a predefined-time constant Tc := Tc (ρ) > 0, the origin of system (2.1) is noted

as (i) Globally weakly predefined-time stable for system (2.1) if it is fixed-time stable and the settling-
time function T : Rn → R is such that T (𭟋0) ⩽ Tc,∀𭟋0 ∈ R

n. ii) Globally strongly predefined-time
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stable for system (2.1) if it is fixed-time stable and the settling-time function T : Rn → R is such that
supx0∈Rn T (𭟋0) = Tc.

Definition 2.2. If the error system (2.7) achieves predefined-time stability according to Definition 2.1,
then the drive system (2.5) and the response system (2.6) will realize predefined-time synchronization.

Lemma 2.1. (See [25, 26]) Suppose X and Y are two states of system (2.1). Then, the following
inequalities hold: ∣∣∣∣∣∣∣

n∧
j=1

αi j ⊺ j (X j) −
n∧

j=1

αi j ⊺ j (Y j)

∣∣∣∣∣∣∣ ≤
n∑

j=1

|αi j|
∣∣∣ ⊺ j (X j) − ⊺ j(Y j)

∣∣∣, (2.8)∣∣∣∣∣∣∣
n∨

j=1

gi j ⊺ j (X j) −
n∨

j=1

gi j ⊺ j (Y j)

∣∣∣∣∣∣∣ ≤
n∑

j=1

|gi j|
∣∣∣ ⊺ j (X j) − ⊺ j(Y j)

∣∣∣. (2.9)

Lemma 2.2. (See [27]) Let X1,X2, . . . ,Xn ≥ 0, 0 < p ≤ 1, q > 1. Then:

n∑
i=1

X
p
i ≥

 n∑
i=1

Xi

p

,

n∑
i=1

X
q
i ≥ n1−q

 n∑
i=1

Xi

q

.

Lemma 2.3. (see [28]) Consider the system 𭟋̇ = ⊺(𭟋). If there exists a continuous function V(𭟋),
scalars υ > 0, α > 0, 0 < ξ < 1, and m > 0 such that

V̇(𭟋) ≤ −υV(𭟋) − αVξ(𭟋) + m,

then the trajectory of system 𭟋̇ = ⊺(𭟋) is practical fixed-time stable. The residual set of the solution is
given by 𭟋 ∣∣∣∣ lim sup

c→∞

V(𭟋) ≤ min

 m
(1 − θ)υ

,

(
m

(1 − θ)α

) 1
ξ




for some 0 < θ < 1, where θ0 satisfies 0 < θ0 < 1. The setting time is bounded as

Tr ≤ max{c0 +
1

θ0υ(1 − ξ)
ln
θ0υV1−ξ(c0) + α

α
, c0 +

1
υ(1 − ξ)

ln
υV1−ξ(c0) + θ0α

θ0α
}. (2.10)

Lemma 2.4. (See [29]) Suppose V(·) : Rn → R+ ∪ {0} is a continuous, radially unbounded function
and satisfies:

(1) V(e(c)) = 0⇔ e(c) = 0.
(2) For any e(c) , 0, there exist constants α,G,m > 0, 0 < ξ < 1, and η > 1 such that

V̇(e(c)) ≤ −αVξ(e(c)) − gVη(e(c)) − m. (2.11)

(3) If e(c) = 0, then V̇(e(c)) ≤ 0.

Then the zero solution of system (2.7) is fixed-time stable, and the settling time satisfies

Tmax1 =
(α

1
ξ + m

1
ξ )1−ξ − m

1−ξ
ξ

α
1
ξ (1 − ξ)

+
2η−1

(
g

1
η + m

1
η

)1−η

g
1
η (η − 1)

. (2.12)
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Theorem 2.1. Consider the dynamical system described by (2.7), Suppose there exists a radially
unbounded Lyapunov function candidate V(e(c)) : R → R, that is strictly positive definite, where
Tc denotes a tunable parameter. The system is guaranteed to exhibit the desired behavior, provided the
following criteria are satisfied:

(1) V(e(c)) = 0⇔ e(c) = 0.
(2) For any V(e(c)) > 0, there exist α, g, m, Gc, Tc > 0, 0 < ξ < 1, η > 1, where υ < min{α, g}

satisfying

D+V
(
𭟋(c)

)
≤

Gc

Tc

(
− αVξ(e(c)) − gVη(e(c)) + υV(e(c)) − m

)
. (2.13)

Then, within the predefined time Tc = Tmax2 , the origin of system (2.7) exhibits predefined - time
stability.

Tmax2 = Gc =

[
(α − υ)

1
ξ + m

1
ξ

]1−ξ
− m

1−ξ
ξ

(α − υ)
1
ξ (1 − ξ)

+
2η−1

[
(g − υ)

1
η + m

1
η

]1−η

(g − υ)
1
η (η − 1)

.

Proof. The function representing the settling time can be written as

T (e(0)) ≤
∫ 0

V(e(0))

Gc

Tc

1
−αuξ − guη + υu − m

du ≤
∫ V(e(0))

0

Tc

Gc

1
αuξ + guη − υu + m

du.

About υ < min{α, g}, two cases can be identified 0 < υ < min{α, g}, υ ≤ 0.
Case 1: where 0 < υ < min{α, g}.
Case 1.1: 0 < V(e(0)) ≤ 1, consequently, it follows that

T (e(0)) ≤
∫ V(e(0))

0

Tc

Gc

1
αuξ + guη − υu + m

du ≤
∫ 1

0

Tc

Gc

1
αuξ + guη − υu + m

du

≤

∫ 1

0

Tc

Gc

1
αuξ + guη − υuξ + m

du =
∫ 1

0

Tc

Gc

1
(α − υ)uξ + guη + m

du

≤

∫ 1

0

Tc

Gc

1
(α − υ)uξ + m

du =
Tc

Gc

∫ 1

0

1[
(α − υ)1/ξu + m1/ξ]ξ du

=
Tc

Gc

[
(α − υ)1/ξ + m1/ξ

]1−ξ
− m(1−ξ)/ξ

(α − υ)1/ξ(1 − ξ)
.

Case 1.2: V(e(0)) > 1,consequently, it follows that

T (e(0)) ≤
∫ V(e(0))

0

Tc

Gc

1
αuξ + gun − υu + m

du

≤

∫ 1

0

Tc

Gc

1
αuξ + guη − υu + m

du +
∫ V(e(0))

1

Tc

Gc

1
αuξ + guη − υu + m

du

≤

∫ 1

0

Tc

Gc

1
αuξ − υuξ + m

du +
∫ +∞

1

Tc

Gc

1
guη − υuη + m

du.

Similarity, we have
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T
(
e
(
0
))
≤

∫ 1

0

Tc

Gc

1
(α − υ)uξ + m

du +
∫ +∞

1

Tc

Gc

1
(g − υ)uη + m

du

=
Tc

Gc

[
(α − υ)

1
ξ + m

1
ξ

]1−ξ
− m

1−ξ
ξ

(α − υ)
1
ξ (1 − ξ)

+
Tc

Gc

2η−1
[
(g − υ)

1
η + m

1
η

]1−η

(g − υ)
1
η (η − 1)

=
Tc

Gc


[
(α − υ)

1
ξ + m

1
ξ

]1−ξ
− m

1−ξ
ξ

(α − υ)
1
ξ (1 − ξ)

+
2η−1

[
(g − υ)

1
η + m

1
η

]1−η

(g − υ)
1
η (η − 1)


≤ Tc.

Case 2: where υ ≤ 0.
Case 2.1: 0 < V (e(0)) ≤ 1, thus, we arrive at

T (e(0)) ≤
∫ V(e(0))

0

Tc

Gc

du
αuξ + guη − υu + m

≤

∫ V(e(0))

0

Tc

Gc

1
αuξ + guη + m

du

≤

∫ 1

0

Tc

Gc

1
αuξ + m

du.

When this is combined with Lemma 2.2, the result is

T (e(0)) ≤
∫ 1

0

1
αuξ + m

du ≤
∫ 1

0

Tc

Gc

1

(α
1
ξ u + m

1
ξ )ξ

du

=
Tc

Gc

(
α

1
ξ + m

1
ξ

)1−ξ
− m

1−ξ
ξ

α
1
ξ (1 − ξ)

.

Case 2.2: V(e(0)) > 1, accordingly, we attain

T (e(0)) ≤
∫ V(e(0))

0

Tc

Gc

du
αuξ + guη − υu + m

≤

∫ 1

0

Tc

Gc

du
αuξ + guη + m

+

∫ V(e(0))

1

Tc

Gc

du
αuξ + guη + m

≤

∫ 1

0

Tc

Gc

du
αuξ + m

+

∫ +∞

1

Tc

Gc

du
guη + m

.

By leveraging Lemma 2.2, we derive

T (e(0)) ≤
∫ 1

0

Tc

Gc

du
αuξ + m

+

∫ +∞

1

Tc

Gc

du
guη + m

≤
Tc

Gc

(
α

1
ξ + m

1
ξ

)1−ξ
− m

1−ξ
ξ

α
1
ξ (1 − ξ)

+

∫ +∞

1

Tc

Gc

du
guη + m

≤
Tc

Gc

(
α

1
ξ + m

1
ξ

)1−ξ
− m

1−ξ
ξ

α
1
ξ (1 − ξ)

+
Tc

Gc

2η−1
(
g

1
η + m

1
η

)1−η

g
1
η (η − 1)
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≤
Tc

Gc


(
α

1
ξ + m

1
ξ

)1−ξ
− m

1−ξ
ξ

α
1
ξ (1 − ξ)

+
2η−1

(
g

1
η + m

1
η

)1−η

g
1
η (η − 1)


≤ Tc.

It follows that when υ, the parameter Tc in Case 2 coincides with Tc in Case 1. Having satisfied all
necessary conditions, we may now formulate our central theorem. □

Remark 2.2. The present work makes three key advances. First, Theorems 2.1 formulate previously
undisclosed inequality conditions. Second, they develop genuinely novel fixed-time stability criteria
for discontinuous function dynamical systems (DFDS), complete with settling time bounds involving
our newly introduced parameters. Third, and most importantly, these results properly subsume those
in [29, 30] as special cases, establishing their broader theoretical scope.

Theorem 2.2. If m ≥ max
{
(g − υ)η/ξ,m0

}
, α > υ, g > ρ, ξ ∈ (0, 1), η > 1, θ0 ∈ (0, 1), α > υ, g > υ,

ξ ∈ (0, 1), η > 1, θ0 ∈ (0, 1), we have Tmax2 < Tr.

Proof. We aim to prove the following inequality under the given conditions:

L1 + L2 < max{T1,T2},

where:

L1 =

[
(α − υ)

1
ξ + m

1
ξ

]1−ξ
− m

1−ξ
ξ

(α − υ)
1
ξ (1 − ξ)

, L2 =
2η−1

[
(g − υ)

1
η + m

1
η

]1−η

(g − υ)
1
η (η − 1)

,

T1 = c0 +
1

θ0υ(1 − ξ)
ln

(
1 +
θ0υV1−ξ(c0)
α

)
, T2 = c0 +

1
υ(1 − ξ)

ln
(
1 +
υV1−ξ(c0)
θ0α

)
,

subject to the limit condition:

lim
c→∞

V(𭟋(c)) ≤ min

 m
(1 − θ)υ

,

(
m

(1 − θ)α

) 1
ξ

 .
Assumptions: α > υ, g > υ (to ensure positivity under roots), ξ ∈ (0, 1), η > 1 (to ensure exponents

are well-defined), m > 0, V(c0) > 0, θ0 ∈ (0, 1), υ > 0.
(1) Bounding the left-hand side (LHS)

Let L = L1 + L2, and x = (α − υ)
1
ξ , y = m

1
ξ , u = (g − υ)

1
η , v = m

1
η .

(a) Boundedness analysis of L1:

L1 =
(x + y)1−ξ − y1−ξ

x(1 − ξ)
.

By the integral inequality:

(x + y)1−ξ − y1−ξ = (1 − ξ)
∫ x+y

y
τ−ξdτ ≤ (1 − ξ)xy−ξ,

we obtain: L1 ≤ y−ξ = m−1.
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(b) Boundedness analysis of L2:

L2 =
2η−1(u + v)1−η

u(η − 1)
.

For η > 1 and v ≥ u (i.e., m ≥ (g − υ)η/ξ) :

(u + v)1−η ≤ v1−η,

thus:

L2 ≤
2η−1v1−η

u(η − 1)
=

2η−1m
1−η
η

(g − υ)
1
η (η − 1)

.

(c) Combined bound for L:

L ≤ m−1 +
2η−1m

1−η
η

(g − υ)
1
η (η − 1)

.

(2) Analysis of the right-hand side (RHS). The RHS is max{T1,T2}.We analyze both terms:
(a) Bound for V(c0): from the limit condition:

V(c0) ≤
(

m
(1 − θ)α

) 1
ξ

=⇒ V1−ξ(c0) ≤
(

m
(1 − θ)α

) 1−ξ
ξ

.

(b) Asymptotic expansion of T1 and T2: For T1:

T1 ≤ c0 +
1

θ0υ(1 − ξ)
ln

1 + θ0ρα
(

m
(1 − θ)α

) 1−ξ
ξ

 .
For T2:

T2 ≤ c0 +
1

ρ(1 − ξ)
ln

1 + υθ0α
(

m
(1 − θ)α

) 1−ξ
ξ

 .
(c) Dominant terms for m→ ∞:

T1 ∼ c0 +
ln m
θ0υξ
, T2 ∼ c0 +

ln m
υξ
.

Since θ0 ∈ (0, 1), T2 dominates:

max{T1,T2} = T2 ∼ c0 +
ln m
υξ
.

(3) Verification of the inequality. We require:

L ≤ m−1 +
2η−1m

1−η
η

(g − υ)
1
η (η−1)

< c0 +
ln m
υξ
.

(a) Decay of L: m−1 → 0 (exponential decay), m
1−η
η → 0 (since η > 1). (b) Growth of T2: ln m

υξ
→ +∞

(logarithmic growth). Thus, there exists m0 > 0 such that for all m ≥ m0, the inequality holds. Under
the stated conditions, for sufficiently large m,

L < T2 = max{T1,T2},

with the asymptotic behavior of T2 dominated by ln m
υξ

. This completes the proof. □
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Remark 2.3. From Lemma 2.3 and Theorem 2.2, we observe that both provide estimates for the
settling times STs. However, the theorem reveals that Tmax2 < Tr when m is sufficiently large. This
implies that: Theorem 2.1 imposes less restrictive conditions compared to Lemma 2.3. The control
strategy derived from Theorem 2.2 offers superior performance characteristics, as evidenced by: Faster
convergence (shorter settling times), broader applicability (valid for larger parameter ranges),and
improved robustness (better tolerance to system variations).

3. Main results of synchronization

3.1. Synchronization within predefined time intervals achieved by a discontinuous state - feedback
controller

Theorem 3.1. Based on A1-4 and controller (3.1), take into account a positive definite diagonal matrix
function Q(c) = diag

(
q1(c), q2(c), · · · qn(c)

)
∈ Rn×n that complies with the inequality Q(c) ≥ εIn, where

ε represents a positive constant. If

2

d̆i
λ1ki1 ≥

n∑
j=1

[2λ2ai j (c) B j + 2λ2

∣∣∣αi j (c)
∣∣∣B j + 2λ2

∣∣∣gi j (c)
∣∣∣B j],

2

d̆i
λ1ki2 ≥ q̇i(c) − 2λ1

n∑
i=1

Λi(c)d̆i + 2λ2diA jai j(c),

2

d̆i
ki3 ≥

∣∣∣αi j (c)
∣∣∣ + ∣∣∣gi j (c)

∣∣∣ ,
Gc =

(
α

1
ξ + m

1
ξ

)1−ξ
− m

1−ξ
ξ

α
1
ξ (1 − ξ)

+
2η−1

(
g

1
η + m

1
η

)1−η

g
1
ξ (η − 1)

,

under such circumstances, systems (2.5) and (2.6) accomplish the predefined-time synchronization.
This controller is:

ui(c) = − ki1sign(ei(c)) − ki2sign(ei(c))|ei(c)| − ki3sign(ei(c))|ei(c − d)|

+
Gc

Tc

(
− αsign(ei(c))|ei(c)|p − gsign(ei(c))|ei(c)|q + υei(c) − m

)
,

(3.1)

where ki1, ki2, ki3, Gc, Tc, α, g > 0, 0 < p < 1, q > 1, m > 0, and d̆i = max{d̆i}, λ1 = in fc≥0{λmin(Q(c))},
λ2 = supc≥0 {λmax (Q (c))}, d = max{ϱ + ϑ}.

Proof. The subsequent Lyapunov function is formulated as:

V(t) = eT (c)Q(c)e(c).

Upon computing the derivative of the function V(c), the following outcomes are obtained:

D+V(c) =
n∑

i=1

[
2qi(c)ei(c)ėi(c) + q̇i(c)e2

i (c)
]
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=

n∑
i=1

2qi(c)ei(c)
[
−

(
τi
(
c, h−1

i (wi(c))
)
− τi

(
c, h−1

i (zi(c))
))]

+

n∑
i=1

2qi(c)ei(c)
n∑

j=1

ai j(c)
[
η j(c) − γ j(c)

]
+

n∑
i=1

2qi(c)ei(c)
n∧

j=1

αi j(c)
[
η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)]
(3.2)

+

n∑
i=1

2qi(c)ei(c)
n∨

j=1

gi j(c)
[
η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)]
+

n∑
i=1

2qi(c)ei(c)
ui(c)

⌝di
(
ℏ−1

i (ui(c))
)

+

n∑
i=1

q̇i(c)e2
i (c).

The existence of µ1 ∈
[
ℏ−1

i
(
wi(c)

)
, ℏ−1

i
(
zi(c)

)]
, µ2 ∈ [wi(c), zi(c)] can be established through an

application of the mean value theorem under Assumptions 3 and 4.
n∑

i=1

2qi(c)ei(c)
[
−

(
τi
(
c, ℏ−1

i (wi(c))
)
− τi

(
c, ℏ−1

i (zi(c))
))]

= −

n∑
i=1

2qi(c)ei(c)τ′i(µ1)
(
ℏ−1

i
(
wi(c)

)
− ℏ−1

i
(
zi(c)

))
(3.3)

= −

n∑
i=1

2qi(c)ei(c)Λi(c)(ℏ−1
i )′µ2

(
wi(c) − zi(c)

)
≤ − 2λ1

n∑
i=1

diΛi(c)|ei(c)|2.

According to Lemma 2.1, it can be concluded that
n∑

i=1

2qi(c)ei(c)
n∑

j=1

ai j(c)
[
η j(c) − γ j(c)

]
≤

n∑
i=1

2qi(c)|ei(c)|
n∑

j=1

∣∣∣∣ai j(c)
[
A j

(
ℏ−1

j
(
w j(c))

)
− ℏ−1

j
(
z j(c)

)
+ B j

]∣∣∣∣
≤

n∑
i=1

2qi(c)|ei(c)|
n∑

j=1

∣∣∣∣ai j(c)
[
A j(ℏ−1

j )′µ2
(
w j(c) − z j(c

)
+ B j

]∣∣∣∣
≤

n∑
i=1

2qi(c)|ei(c)|
n∑

j=1

∣∣∣∣ai j(c)
[
A jd̆ie j(c) + B j

]∣∣∣∣
≤

n∑
i=1

n∑
j=1

2λ2d̆iA j|ai j(c)||ei(c)|2 +
n∑

i=1

n∑
j=1

2λ2B j|ai j(c)||ei(c)|.

(3.4)
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Utilizing Lemma 2.1 and Assumption 2, and applying the mean value theorem, we can demonstrate
the existence of µ3 ∈

[
ℏ−1

i (wi(c − ϱ j(c) − ϑ j(c))), ℏ−1
i (zi(c − ϱ j(c) − ϑ j(c)))

]
such that

n∑
i=1

2qi(c)ei(c)
n∧

j=1

αi j(c)
[
η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)]
≤

n∑
i=1

2qi(c)|ei(c)|

∣∣∣∣∣∣∣
n∧

j=1

αi j(c)η j
(
c − ϱ j(c) − ϑ j(c)

)
−

n∧
j=1

αi j(c)γ j
(
c − ϱ j(c) − ϑ j(c)

)∣∣∣∣∣∣∣
≤

n∑
i=1

2qi(c)|ei(c)|
n∑

j=1

|αi j(c)|
∣∣∣∣η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)∣∣∣∣
≤

n∑
i=1

n∑
j=1

2qi(c)|ei(c)||αi j(c)|
∣∣∣∣A j

(
ℏ−1

j
(
w j(c − ϱ j(c) − ϑ j(c)

)
− ℏ−1

j
(
z j(c − ϱ j(c) − ϑ j(c)

))
+ B j

∣∣∣∣ (3.5)

≤

n∑
i=1

n∑
j=1

2qi(c)|ei(c)||αi j(c)|
∣∣∣∣A j(ℏ−1

j )′µ3
(
w j(c − ϱ j(c) − ϑ j(c)) − z j(c − ϱ j(c) − ϑ j(c))

)
+ B j

∣∣∣∣
≤

n∑
i=1

n∑
j=1

2qi(c)|ei(c)||αi j(c)|
∣∣∣∣A jd̆ je j(c − ϱ j(c) − ϑ j(c)) + B j

∣∣∣∣
≤

n∑
i=1

n∑
j=1

2λ2|αi j(c)|A jd̆ j|ei(c)||e j(c − d)| +
n∑

i=1

n∑
j=1

2λ2|αi j(c)|B j|ei(c)|.

Similarly, we have

n∑
i=1

2qi(c)ei(c)
n∨

j=1

gi j(c)
[
η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)]
≤

n∑
i=1

2qi(c) |ei(c)|

∣∣∣∣∣∣∣
n∨

j=1

gi j(c)η j

(
c − ϱ j(c) − ϑ j(c)

)
−

n∨
j=1

gi j(c)γ j

(
c − ϱ j(c) − ϑ j(c)

)∣∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

2qi(c) |ei(c)|
∣∣∣gi j(c)

∣∣∣ ∣∣∣∣η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)∣∣∣∣ (3.6)

≤

n∑
i=1

n∑
j=1

2qi(c)|ei(c)||gi j(c)|

∣∣∣∣∣∣A j

(
ℏ−1

j

(
w j

(
c − ϱ j(c) − ϑ j(c)

))
− ℏ−1

j

(
z j
(
c − ϱ j(c) − ϑ j(c)

)))
+ B j

∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

2qi(c)|ei(c)||gi j(c)|
∣∣∣∣A j(ℏ−1

j )′µ3
(
w j(c − ϱ j(c) − ϑ j(c)) − z j(c − ϱ j(c) − ϑ j(c))

)
+ B j

∣∣∣∣ (3.7)

≤

n∑
i=1

n∑
j=1

2qi(c)|ei(c)||gi j(c)|
∣∣∣A jd̆ jei

(
c − ϱ j(c) − ϑ j(c)

)
+ B j

∣∣∣
≤

n∑
i=1

n∑
j=1

2λ2

∣∣∣gi j(c)
∣∣∣A jd̆ j |ei(c)|

∣∣∣e j (c − d)
∣∣∣ + n∑

i=1

n∑
j=1

2λ2

∣∣∣gi j(c)
∣∣∣B j |ei(c)| .
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From Lemma 2.1, it follows that

n∑
i=1

2qi(c)ei(c)
1

⌝di(ℏ−1
i (wi(c)))

×
[
− ki1sign(ei(c)) − ki2sign(ei(c))|ei(c)| − ki3sign(ei(c))|ei(c − ϱ j(c) − ϑ j(c))|

+
Gc

Tc

(
− αsign(ei(c))|ei(c)|p − gsign(ei(c))|ei(c)|q + υei(c) − m

)]
≤ −

2

d̆i
λ1ki1|ei(c)| −

2

d̆i
λ1ki2|ei(c)|2 −

2

d̆i
λ1ki3|ei(c)||ei

(
c − ϱ j(c) − ϑ j(c)

)
|

+
Gc

Tc

(
− αsign(ei(c))|ei(c)|p − gsign(ei(c))|ei(c)|q + υei(c) − m

)]
≤ −

2

d̆i
λ1ki1|ei(c)| −

2

d̆i
λ1ki2 |ei(c)|2 −

2

d̆i
λ1ki3|ei(c)|

∣∣∣ei
(
c − ϱ j(c) − ϑ j(c)

)∣∣∣
−

2

d̆i
λ1α

Gc

Tc
ei(c) |ei(c)|p −

2

d̆i
λ1

Gc

Tc
gei(c) |ei(c)|q +

2
di

υλ2
Gc

Tc
e2

i (c) −
2

d̆i
λ1

Gc

Tc
mei(c)

≤ −
2

d̆i
λ1ki1|ei(c)| −

2

d̆i
λ1ki2|ei(c)|2 −

2

d̆i
λ1ki3|ei(c)| · |ei

(
c − ϱ j(c) − ϑ j(c)

)
| (3.8)

+
Gc

Tc

− 2

d̆i
αλ1

 n∑
i=1

e2
i (c)


p+1

2

−
2

d̆i
gλ1n−q

 n∑
i=1

e2
i (c)


q+1

2

+
2
di

υλ2e2
i (c) −

2

d̆i
λ1mei(c)


≤ −

2

d̆i
λ1ki1|ei(c)| −

2

d̆i
λ1ki2 |ei(c)|2 −

2

d̆i
λ1ki3|ei(c)| |ei(c − d)|

+
Gc

Tc

[
−

2

d̆i
αλ1λ

p+1
2

2 V
p+1

2 (c) −
2

d̆i
gλ1λ

−
p+1

2
2 n−qV

p+1
2 (c) +

2

d̆i
υV(c) − m

]
.

Combining formulas (3.2)–(3.8), hence, we conclude

D+V(c) ≤
n∑

i=1

n∑
j=1

2λ2d̆iA j|ai j(c)||ei(c)|2 +
n∑

i=1

n∑
j=1

2λ2B j|ai j(c)||ei(c)|

+

n∑
i=1

n∑
j=1

2λ2d̆iA j|ai j(c)||ei(c)|2 +
n∑

i=1

n∑
j=1

2λ2B j|ai j(c)||ei(c)|

+

n∑
i=1

n∑
j=1

2λ2|αi j(c)|A jd̆ j|ei(c)||e j(c − d)| +
n∑

i=1

n∑
j=1

2λ2|αi j(c)|B j|ei(c)|.

+

n∑
i=1

n∑
j=1

2λ2

∣∣∣gi j(c)
∣∣∣A jd̆ j |ei(c)|

∣∣∣e j (c − d)
∣∣∣ + n∑

i=1

n∑
j=1

2λ2

∣∣∣gi j(c)
∣∣∣B j |ei(c)| .

+
Gc

Tc

[
−

2

d̆i
αλ1λ

p+1
2

2 V
p+1

2 (c) −
2

d̆i
gλ1λ

−
p+1

2
2 n−qV

p+1
2 (c) +

2

d̆i
υV(c) − m

]
(3.9)

≤

n∑
i=1

|ei(c)|
[ n∑

j=1

(
2λ2ai j(c)B j + 2λ2|αi j(c)|B j + 2λ2|gi j(c)|B j

)
−

2

d̆i
λ2ki1

]
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+

n∑
i=1

|ei(c)|2
[
q̇i(c) − 2λ1

n∑
i=1

Λi(c)di +

n∑
j=1

2λ2d̆iA jai j(c) −
2

d̆i
λ1ki2

]

+

n∑
i=1

n∑
j=1

qi(c)d̆iA j|ei(c − d)||ei(c)|
[
|αi j(c)| + |gi j(c)| −

2

d̆i
ki3

]

+
Gc

Tc

[
−

2

d̆i
αλ1λ

p+1
2

2 V
p+1

2 (c) −
2

d̆i
gλ1n−qV

q+1
2 (c) +

2
di

υV(c) − m
]

≤
Gc

Tc

(
− αVξ(e(c)) − gVη(e(c)) + υV(e(c)) − m

)
.

This satisfies Theorem 2.1, leading to the conclusion that the predefined-time convergence is
achieved. □

Remark 3.1. Previous research efforts, including those documented in [31–34], have thoroughly
examined the issues of stability and predefined-time synchronization in various neural network
architectures with time delays, particularly focusing on fuzzy cellular neural networks and fuzzy
Cohen-Grossberg neural networks. However, the current study distinguishes itself through two
advancements:

• Discontinuous activation functions: Unlike the standard continuity assumptions, we adopt
discontinuous activations to better align with physical implementations.
• Prescribed-time synchronization: In contrast to finite-time synchronization (where convergence

depends on initial conditions), our approach ensures synchronization within a predefined time Tc

independent of initial errors or system parameters. This offers three critical advantages:

– Decoupled convergence time: Tc is user-defined and unaffected by system states or
uncertainties.

– Explicit deadline enforcement: The upper bound for synchronization is directly specified as
a tunable parameter.

Corollary 3.1. To address the discontinuity issues associated with the sign(·) function in the controller
implementation, we adopt a smooth approximation using the hyperbolic tanh(·) function, resulting in
the proposed controller structure:

ui(c) = − ki1tanh(ei(c)) − ki2tanh(ei(c)) |ei(c)| − ki3tanh(ei(c)) |ei(c − d)|

+
Gc

cc
(−αtanh(ei(c)) |ei(c)|p (c) − gtanh(ei(c)) |ei(c)|q (c) + υei (c) − m) .

(3.10)

Remark 3.2. The control inputs specified in controller (3.1) incorporate a discontinuous signum
operator, which as a binary switching element can induce problematic high-frequency oscillations in
the system response [35].

To mitigate this chattering phenomenon, a smooth approximation using the hyperbolic tangent
function is proposed, defined mathematically as tanh(𭟋/ϵ) = e𭟋/ϵ−e−𭟋/ϵ

e𭟋/ϵ+e−𭟋/ϵ . This substitution provides several
beneficial properties for closed-loop control implementations:
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• The tanh function exhibits infinite-order differentiability, ensuring complete elimination of
control signal discontinuities while maintaining mechanical reliability of actuation components.
• Its inherent output constraint (∥ tanh(F)∥ < 1for all real F) provides built-in amplitude limitation

without requiring additional saturation blocks.
• The strictly positive derivative condition (∂ tanh(F)/∂F > 0) preserves the stability characteristics

required for Lyapunov stability analysis in control system synthesis.

3.2. Analysis of key parameter influences

To thoroughly investigate the performance of the proposed controller in controller (3.1), this section
provides a detailed analysis of the influence mechanisms of two pivotal parameters: the predefined-
time parameter Tc and the robustness parameter m. The findings offer clear guidance for parameter
tuning in practical engineering applications.

Theoretically, Tc serves as a tunable parameter that directly prescribes the upper bound of the
system’s settling time. In the controller, the term Gc

Tc
acts as a global gain, whose magnitude directly

scales the strength of the control action.

• Impact on Convergence Speed: The parameter Tc is inversely proportional to the system’s
convergence rate. Decreasing Tc increases the control gain, thereby significantly accelerating
the transient response and driving the error to zero more rapidly. This provides the capability to
meet specific real-time requirements by directly setting Tc.
• Impact on Control Input and Robustness: However, an excessively small Tc leads to high-

amplitude control inputs ui(c), which can cause actuator saturation and exacerbate the control
input chattering induced by the discontinuous sign(·) function. Furthermore, excessively high
gain reduces the system’s phase margin, making it more sensitive to unmodeled dynamics and
measurement noise, thereby compromising the robustness of the closed-loop system.

In summary, the tuning of Tc constitutes a critical trade-off between convergence speed and control
effort/robustness. In practice, the largest possible Tc that satisfies the convergence time requirement
should be selected to ensure smooth control action and robust stability.

The parameter m is crucial for ensuring exact convergence in the presence of disturbances.

• Impact on Steady-State Accuracy: The primary role of m is to counteract bounded lumped
uncertainties, such as external disturbances and model errors. When m > 0 and it is sufficiently
large, it guarantees that the system state converges exactly to the equilibrium point (i.e., with zero
steady-state error) within the predefined time. Conversely, the system can only converge to a
neighborhood of the origin.
• Impact on Convergence Process: During the final stage of convergence, when the error becomes

small, the term −m · sign(ei(c)) dominates, providing the final converging force. However, as
a discontinuous term, an excessively large value of m will significantly intensify control input
chattering near the steady state.

In summary, the tuning of m represents a trade-off between steady-state accuracy and control
smoothness. Its value should be selected based on a conservative estimate of the disturbance upper
bound, adhering to the principle of being “sufficient but not excessive” to ensure precision while
mitigating chattering.
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Collectively, the adjustment of Tc and m dictates the core performance of the controller from the
dimensions of temporal response and accuracy, respectively. The above analysis provides a theoretical
foundation and practical guidance for the effective implementation of the proposed scheme.

3.3. Synchronization achieved within predefined-time intervals by means of a discontinuous adaptive
controller

This subsection develops a novel adaptive control scheme to achieve synchronization within finite-
time for the drive system (2.5) and its corresponding response system (2.6).

ui(c) = −γ̂sign(εi(c)) − ξ̂i(c)sign(εi(c))|εi(c)| − δ̂sign(εi(c))|εi
(
c − ϱ j(c) − ϑ j(c)

)
|, (3.11)

where εi(c) = Xi(c)−Yi(c), γ̂, δ̂ represent tunable parameters that will be specified in subsequent design
procedures, with indices i, j = 1, 2, ..., n.

Regarding the adaptation mechanism, when εi(c) , 0, the time-varying feedback gains µ̂i(c) evolve
according to the update rule:

d
dc
ξ̂i(c) = ωi|εi(c)|,

in which ωi denotes a positive constant. In the special case where εi(c) = 0, the gains are maintained
at fixed values ξ̂∗i , which are selected to be adequately large positive constants.

Theorem 3.2. Provided that assumptions (A1)–(A4) hold, the response system (2.6) is able to attain
synchronization with the drive system (2.5) within a finite-time period by applying the control
law (3.11), provided that the design parameters are properly chosen to satisfy:

Γi = lim inf
c≥0

{
γ̂ − 2λ2ai j(c)B j − 2λ2

∣∣∣αi j(c)
∣∣∣B j − 2λ2

∣∣∣gi j(c)
∣∣∣B j

}
> 0,

lim inf
c≥0

µ̂ − q̇i(c) − 2λ1

n∑
i=1

Λi(c)di −

n∑
j=1

2λ2d̆iA jai j(c)

 > 0,

lim inf
c≥0

{
δ̂ −

∣∣∣αi j(c)
∣∣∣ − ∣∣∣gi j(c)

∣∣∣} > 0.

Additionally, the maximum value of the convergence time needed to achieve synchronization can be
calculated as follows:

c
∗ ≤ ĉ =

V̂(0)∑n
i=1 Γi

.

Proof. Consider the following Lyapunov-Krasovskii functional candidate: V̂(c) = V1(c) + V2(c), with

V1(c) = εT (c)Q(τ)ε(c), V2(c) =
1
2

n∑
i=1

1
ωi

(ξ̂i(c) − ξ̂∗i )2.

Taking the time derivative of the second component yields V2(c), and we have

dV2(c)
dc

=

n∑
i=1

ξ̂i(c)|εi(c)| −
n∑

i=1

ξ̂∗i |εi(c)|.
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Furthermore, the composite function V̂(c) can be straightforwardly shown to possess C-regularity.
By evaluating its time derivative along the solution trajectories of the error dynamic system described
in (2.7), under the action of the switching adaptive control law specified in (3.11), we obtain:

D+V̂(c) =
n∑

i=1

2qi(c)εi(c)[−(τi(c, ℏ−1
i (wi(c))) − τi(c, ℏ−1

i (zi(c)))]

+

n∑
i=1

2qi(c)εi(c)
n∑

i=1

ai j (c) [η j(c) − γ j(c))]

+

n∑
i=1

2qi(c)εi(c)
n∧

j=1

αi j (c)
[
η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)]
+

n∑
i=1

2qi(c)εi(c)
n∨

j=1

gi j (c)
[
η j

(
c − ϱ j(c) − ϑ j(c)

)
− γ j

(
c − ϱ j(c) − ϑ j(c)

)]
+

n∑
i=1

2qi(c)εi(c)
−γ̂sign(εi(c)) − ξ̂i(c)sign(εi(c))|εi(c)| − δ̂sign(εi(c))|εi(c − ϱ j(c) − ϑ j(c))|

⌝di(ℏ−1
i (ui(c)))

+

n∑
i=1

q̇i(c)ε2
i (c)

+

n∑
i=1

ξ̂i(c)|εi(c)| −
n∑

i=1

ξ̂∗i |εi(c)|.

Building upon the demonstration presented in Theorem 3.1, we can additionally derive

D+V̂(c) ≤ −
n∑

i=1

2qi(c) |εi(c)|
[
γ̂ − 2λ2ai j(c)B j − 2λ2

∣∣∣αi j(c)
∣∣∣B j − 2λ2

∣∣∣gi j(c)
∣∣∣B j

]
−

n∑
i=1

|εi(c)|2
ξ̂ − q̇i (c) − 2λ1

n∑
i=1

Λi (c) di −

n∑
j=1

2λ2d̆iA jai j(c)


−

n∑
i=1

n∑
j=1

2qi(c)dAi j |εi(c − d)| |εi(c)|
[
δ̂ −

∣∣∣αi j(c)
∣∣∣ − ∣∣∣gi j(c)

∣∣∣] ,
consequently resulting in

D+V̂(c) ≤ −
n∑

i=1

Γi ≤ 0, for a.e. c ≥ 0, (3.12)

where,

Γi = lim
c≥0

inf

γ̂ − n∑
j=1

(|ai j(c)|B j + |αi j(c)|B j + |gi j(c)|)B j

 .
We shall demonstrate the existence of a finite time instant c∗ ∈ [0, ∞),at which the Lyapunov

function vanishes, i.e., V̂(c∗) = 0. To establish this result, suppose conversely that V̂(c) maintains
strictly positive values for all c > 0.
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Consequently,

D+V̂(c) ≤ −
n∑

i=1

Γi, for a.e. c ≥ 0. (3.13)

By integrating inequality (3.13) over the time domain [0, c], we derive the following upper bound:

V̂(c) ≤ V̂(0) −
n∑

i=1

Γi, for each c ≥ 0.

This immediately implies:

V̂(c) < 0, for c > cmax =
V̂(0)∑n

i=1 Γi
,

resulting in a logical inconsistency. Applying analogous reasoning yields c∗ ≤ cmax. Subsequent
analysis demonstrates that:

V̂(c) ≡ 0, for each c ≥ c∗.

To verify this claim, suppose there exists c′ > c∗ with V̂(c′) > 0. Under this assumption, one could
identify a nonempty interval (c1, c2) ⊂ (c∗, c′), where the Dini derivative satisfies D+Ṽ(c) > 0, for all
c ∈ (c1, c2), directly contradicting (3.13). Consequently, we establish that Ṽ(c) = 0, for each c ≥ c∗.
thereby completing the proof. □

Remark 3.3. The selection of Γi over the other two conditions is justified by:

• Structural Dominance: Γi encapsulates the key stability terms (γ̂, αi j, gi j, ai j), while the
alternatives only address partial dynamics (ξ̂ or δ̂-related effects).
• Lyapunov Decay Dominance: Γi directly governs the decay rate of V̂(c) in (3.12), whereas the

other conditions are secondary constraints.
• Control Theoretic Necessity : Γi > 0 enforces diagonal dominance in the error system, a

fundamental criterion for networked stability.

Thus, Γi provides a unified and stringent condition for guaranteed synchronization.

4. Examples of numerical computations and simulation results

4.1. Numerical example of feedback controller

In this section, three simulation instances are presented to validate the accuracy and efficacy of
Theorems 2.1 and 2.2.

Example 4.1. Consider the following 3-D memristive CohenGrossberg neural networks:

Ẋi(c) =⌝di(Xi(c))
[
− τi(c,Xi(c)) +

n∧
j=1

αi j(c) ⊺ j (X j(c − ϱ j(c) − ϑ j(c))) +
n∑

j=1

ai j(c) ⊺ j (X j(c))

+

n∑
j=1

bi jν j +

n∨
j=1

gi j(c) ⊺ j (X j(c − ϱ j(c) − ϑ j(c))) +
n∧

j=1

Ti jν j +

n∨
j=1

S i jν j + Ii(c)
]
, i = 1, 2, 3,

(4.1)
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where

τ1(c,X) = τ2(c,X) = τ3(c,X) = (0.8 + 0.2 sin(0.5c))X + 0.1X3,

(ai j)3×3 =


0.8 −0.6 0.4
−0.7 1.0 −0.5
0.5 −0.4 0.9

 , (αi j)3×3 =


0.15 −0.1 0.08
0.1 0.2 −0.1
0.08 0.1 0.15

 ,
(bi j)3×3 =


0.05 −0.02 0.01
−0.05 0.1 −0.02
0.01 −0.05 0.1

 , (gi j)3×3 =


0.1 0.15 −0.05
−0.1 0.1 0.15
−0.05 0.15 0.1

 ,
(Ti j)3×3 =


0.1 0.05 0.03

0.05 0.1 0.03
0.03 0.03 0.1

 , (S i j)3×3 =


0.05 0.1 0.02
0.1 0.05 0.02

0.02 0.02 0.1

 ,
ν1 = 0.2, ν2 = 0.1, ν3 = 0.15,

⌝di(X) = 1.0 + 0.2 tanh(X) + 0.05 sin(5X), i = 1, 2, 3,

I1(c) = 0.5[sin(c) + 0.3 sin(3c)], I2(c) = 0.5 cos(0.8c), I3(c) = 0.5[sin(0.6c) + 0.1 cos(2c)],

ϱ1(c) = 0.1(1 + sin(c)), ϱ2(c) = 0.1(1 + cos(c)), ϱ3(c) = 0.1(1 + sin(2c)),

ϑ1(c) = 0.05(1 + sin(2c)), ϑ2(c) = 0.05(1 + cos(2c)), ϑ3(c) = 0.05(1 + sin(3c)).

Moreover, let

⊺1(X) = ⊺2(X) = ⊺3(X) =

tanh(1.2X) + 0.15X · exp(−0.15X2) + 1, X ≥ 0,
tanh(1.2X) + 0.15X · exp(−0.15X2) − 1, X < 0.

(4.2)

The response system is given as:

Ẏi(c) =⌝di(Yi(c))
[
− τi(c,Yi(c)) +

n∧
j=1

αi j(c) ⊺ j (Y j(c − ϱ j(c) − ϑ j(c))) +
n∑

j=1

ai j(c) ⊺ j (Y j(c))

+

n∑
j=1

bi jν j +

n∨
j=1

gi j(c) ⊺ j (Y j(c − ϱ j(c) − ϑ j(c))) +
n∧

j=1

Ti jν j +

n∨
j=1

S i jν j + Ii((c))
]

+ ui((c)), (i = 1, 2, 3),

(4.3)

ui(c) represents a predefined-time feedback controller with design.
Then choosing k11 = 3 ; k21 = 1.5; k31 = 1.0; k12 = 2.8; k22 = 1.3; k32 = 0.9; k13 = 3.2; k23 = 1.7;

k33 = 1.1; Gc = 2.0; Tc = 0.8; α = 0.8; g = 0.8; υ1 = 0.5; υ2 = −0.5; υ3 = −0.5; c = 0.01;
p = 0.7; q = 0.7; d = 0.5. The discontinuous synchronization control inputs of the response system
are formulated as:

u1(c) = 3 sign(e1(c)) + 2.8 sign(e1(c))|e1(c)| − 3.2 sign(e1(c))|e1(c − 0.5)|

+
2.0
0.8

(
−0.8 |e1(c)|0.7 − 0.8 |e1(c)|1.7 + 0.5e1(c) − 0.01

)
.

(4.4)
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u2(c) = 1.5 sign(e2(c)) − 1.3sign(e2(c))|e2(c)| − 1.7 sign(e2(c))|e2(c − 0.5)|

+
2.0
0.8

(
−0.8 |e2(c)|0.7 − 0.8 |e2(c)|1.7 − 0.5e2(c) − 0.01

)
.

(4.5)

u3(c) = 1.0 sign(e3((c))) − 0.9sign(e3((c)))|e3((c))| − 1.1 sign(e3((c)))|e3(c − 0.5)|

+
2.0
0.8

(
−0.8 |e3(c)|0.7 − 0.8 |e3(c)|1.7 − 0.5e3(c) − 0.01

)
.

(4.6)

Figure 1 shows the time responses of state variables X and Y, which is without controller.

0 1 2 3 4 5 6 7 8 9 10

Time (s)
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-1

0

1

2

3

4

Figure 1. Synchronization error dynamics without control.

As demonstrated in Figure 2, the implementation of synchronization controllers (28),(29), and (30)
in the response system (4.3) yields conclusive evidence of predefined-time convergence. All states
of the response system (4.3) asymptotically synchronize with the drive system (4.1) within the
theoretically predicted settling time T . The synchronization error dynamics exhibit stable convergence
to zero equilibrium; The error magnitude remains strictly maintained at zero for c > T.
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Figure 2. Synchronization between the master system (4.1) and its slave counterpart (4.3).
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These results provide rigorous numerical validation of the predefined-time synchronization theorem
presented in Section 4, confirming both the theoretical stability analysis and controller efficacy.

The exact match between theoretical predictions and numerical observations substantiates the
following key findings: The sufficient conditions derived in Theorem 2.1 are indeed necessary for
guaranteed synchronization;the proposed control strategy successfully overcomes the initial condition
sensitivity observed in conventional methods;the settling time bound T remains invariant to system
parameters, as theoretically.

Remark 4.1. To rigorously validate the conclusions of Theorem 2.1, we intentionally implemented
antipodal control parameters (υ1 = +0.05 vs υ2 = −0.05), both satisfying the key theorem condition
υ < min{α, g}. This parametric dichotomy: (i) confirms the controller’s efficacy under opposite
feedback polarities; (ii) verifies that the predefined-time stability is attained as long as the condition
υ < min{α, g} is fulfilled, regardless of the sign of υ; and (iii) demonstrates the scheme’s adaptability
to different convergence characteristics.

Figure 3 demonstrates the synchronization dynamics between the drive system states Xi(c) and
controlled response system states Yi(c). The numerical results explicitly show that: (1) Complete state
synchronization is achieved within predefined-time Tc. (2) The error norm ||Xi(c)−Yi(c)|| converges to
zero exponentially. (3) All trajectories maintain synchronized behavior for c > Tc.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1

0

1

2

3

4

5

6
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Figure 3. Systems (4.1) and (4.3) with feedback controller.

Remark 4.2. The experimental validation quantitatively matches our theoretical predictions in
Section 3, particularly regarding: the strict negativity of Lyapunov derivative D+Ṽ((c)) ≤ 0;
the invariance of settling time upper-bound Tc; and the absence of chattering phenomena despite
discontinuous control.

Example 4.2. In the same 3-D memristive CohenGrossberg neural networks, we will examine and
implement different control strategies in the controller design, as specified below:

ui(c) = − ki1tanh(ei(c)) − ki2tanh(ei(c)) |ei(c)| − ki3tanh(ei(c)) |ei(c − d)|

+
Gc

Tc
(−αtanh(ei(c)) |ei(c)|p (c) − gtanh(ei(c)) |ei(c)|q (c) + υei (c) − m) ,

(4.7)
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where

τ1(c,X) = τ2(c,X) = τ3(c,X) = (0.8 + 0.2 sin(0.5c))X + 0.1X3,

(ai j)3×3 =


0.8 −0.6 0.4
−0.7 1.0 −0.5
0.5 −0.4 0.9

 , (αi j)3×3 =


0.15 −0.1 0.08
0.1 0.2 −0.1
0.08 0.1 0.15

 ,
(bi j)3×3 =


0.05 −0.02 0.01
−0.05 0.1 −0.02
0.01 −0.05 0.1

 , (gi j)3×3 =


0.1 0.15 −0.05
−0.1 0.1 0.15
−0.05 0.15 0.1

 ,
(Ti j)3×3 =


0.1 0.05 0.03

0.05 0.1 0.03
0.03 0.03 0.1

 , (S i j)3×3 =


0.05 0.1 0.02
0.1 0.05 0.02

0.02 0.02 0.1

 ,
ν1 = 0.2, ν2 = 0.1, ν3 = 0.15,

⌝di(X) = 1.0 + 0.2 tanh(X) + 0.05 sin(5X), i = 1, 2, 3,

I1(c) = 0.5[sin(c) + 0.3 sin(3c)], I2(c) = 0.5 cos(0.8c), I3(c) = 0.5[sin(0.6c) + 0.1 cos(2c)],

ϱ1(c) = 0.1(1 + sin(c)), ϱ2(c) = 0.1(1 + cos(c)), ϱ3(c) = 0.1(1 + sin(2c)),

ϑ1(c) = 0.05(1 + sin(2c)), ϑ2(c) = 0.05(1 + cos(2c)), ϑ3(c) = 0.05(1 + sin(3c)).

Moreover, let

⊺1(X) = ⊺2(X) = ⊺3(X) =

tanh(1.2X) + 0.15X · exp(−0.15X2) + 1, X ≥ 0,
tanh(1.2X) + 0.15X · exp(−0.15X2) − 1, X < 0.

(4.8)

Then, choosing k11 = 3; k21 = 1.5; k31 = 1.0; k12 = 2.8; k22 = 1.3; k32 = 0.9; k13 = 3.2; k23 = 1.7;
k33 = 1.1; Gc = 2.0; Tc = 0.8; α = 0.8; g = 0.8; υ1 = 0.5; υ2 = −0.5; υ3 = −0.5; c = 0.01; p = 0.7;
q = 0.7; d = 0.5.

The continuous synchronization control inputs of the response system are formulated as

u1(τ) = 3 tanh(e1(c)) + 2.8 tanh(e1(τ))|e1(c)| − 3.2 tanh(e1(c))|e1(c − 0.5)|

+
2.0
0.8

(
−0.8 |e1(c)|0.7 − 0.8 |e1(c)|1.7 − 0.5e1(c) − 0.01

)
.

(4.9)

u2(c) = 1.5 tanh(e2(c)) − 1.3tanh(e2(c))|e2(c)| − 1.7 tanh(e2(c))|e2(c − 0.5)|

+
2.0
0.8

(
−0.8 |e2(c)|0.7 − 0.8 |e2(c)|1.7 − 0.5e2(c) − 0.01

)
.

(4.10)

u3(c) = 1.0 tanh(e3(c)) − 0.9tanh(e3(c))|e3(c)| − 1.1 tanh(e3(c))|e3(c − 0.5)|

+
2.0
0.8

(
−0.8 |e3(c)|0.7 − 0.8 |e3(c)|1.7 − 0.5e3(c) − 0.01

)
.

(4.11)

The synchronization error is defined as

ei(c) = Xi(c) − Yi(c), i = 1, 2, 3, (4.12)
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where ei(c) represents the state deviation between the response and drive systems.Through the
preceding analysis, all conditions specified in Corollary 3.1 are satisfied.Consequently, the response
system (4.3) achieves fixed-time synchronization with the drive system (4.1) within a prescribed
settling time Tmax, with the error norm satisfying

lim
c→Tmax

∥ei(c)∥ = 0. (4.13)

Upon implementation of the synchronization controller in the response system (4.3), the state
trajectories exhibit asymptotic convergence to those of the drive system (4.1). Full synchronization
is attained within a predetermined convergence duration Tmax. Notably, Figure 4 demonstrates that
the synchronization error stabilizes to zero and remains negligible thereafter. These simulation results
validate the theoretical findings of robust fixed-time synchronization presented in this work.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-2.5
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Figure 4. Synchronization error dynamics in the controlled drive-response system pair (4.1)–
(4.3).

Example 4.3. In 3-D memristive Cohen-Grossberg neural networks,we choose the difference system-
specific parameters as:

τ1(c,X) = τ2(c,X) = τ3(c,X) = 0.5X,

(ai j)3×3 =


0.2 −0.1 0.05
0.1 0.3 −0.05

0.05 0.1 0.2

 , (αi j)3×3 =


0.15 −0.1 0.08
0.1 0.2 −0.1

0.08 0.1 0.15

 ,
(bi j)3×3 =


0.05 −0.02 0.01
−0.05 0.1 −0.02
0.01 −0.05 0.1

 , (gi j)3×3 =


0.1 0.15 −0.05
−0.1 0.1 0.15
−0.05 0.15 0.1

 ,
(Ti j)3×3 =


0.1 0.05 0.03

0.05 0.1 0.03
0.03 0.03 0.1

 , (S i j)3×3 =


0.05 0.1 0.02
0.1 0.05 0.02
0.02 0.02 0.1

 ,
AIMS Mathematics Volume 11, Issue 1, 366–398.
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ν1 = 0.2, ν2 = 0.1, ν3 = 0.15, ⌝di(X) =
1

1 + e−X
, i = 1, 2, 3,

I1(c) = 0.1sin(c), I2(c) = 0.2cos(c), I3(c) = 0.15sin(2c),

ϱ1(c) = 0.1(1 + sin(c)), ϱ2(c) = 0.1(1 + cos(c)), ϱ3(c) = 0.1(1 + sin(2c)),

ϑ1(c) = 0.05(1 + sin(2c)), ϑ2(c) = 0.05(1 + cos(2c)), ϑ3(c) = 0.05(1 + sin(3c)).

Let

⊺1(X) = ⊺2(X) = ⊺3(X) =

tanh(1.2X) + 0.15X · exp(−0.15X2) + 1, X ≥ 0,
tanh(1.2X) + 0.15X · exp(−0.15X2) − 1, X < 0.

(4.14)

Comparison of the system error trajectories and convergence times under the control method
proposed in controller (3.1) and traditional methods.

From the controller error comparison graph (Figure 5), both errors remain at a high level with no
significant attenuation before the control is activated. After the control takes effect, the error of the
proposed controller shows a rapid downward trend, and its error amplitude remains lower than that
of the traditional controller throughout the observation period, with the gap gradually widening over
time. Eventually, the error of the proposed controller approaches 0, while the error of the traditional
controller, although decreasing, remains at a relatively high level and fails to converge effectively.
Overall, this indicates that the designed novel controller is significantly superior to the traditional
controller in terms of error attenuation rate, error suppression degree, and convergence effect, fully
verifying the effectiveness and advantages of the proposed control strategy.
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Figure 5. Temporal dynamics of the synchronization discrepancy in the master-slave
configuration comprising systems (4.1) and (4.3) with implemented control.

4.2. Numerical example of adaptive controller

In this section, we will conduct a comparative analysis of the adaptive control strategy and the fixed-
gain control strategy. The system model and the selection of various system parameters are exactly the

AIMS Mathematics Volume 11, Issue 1, 366–398.



394

same as those in Example 4.1, and the following two controllers are considered:

u1(c) = −1.8sign(ε1(c)) − ξ̂1(c)sign(ε1(c))|ε1(c)| − 1.2sign(ε1(c))|ε1
(
c − 0.5)

)
|, (4.15)

u2(c) = −1.8sign(ε2(c)) − 2.5sign(ε2(c))|ε2(c)| − 1.2sign(ε2(c))|ε2
(
c − 0.5)

)
|, (4.16)

where d
dc ξ̂1(c) = 5.0 · |ϵ1(t)|, ξ̂i(0) = 0.2.

Figure 6 presents the neuron state trajectories and synchronization time characteristics of the
drive system x1, the response system under fixed-gain control yfix

1 , and the response system under
adaptive control yadp

1 . Based on the image data, the following conclusions can be drawn: In terms
of synchronization efficiency, the synchronization time of the adaptive control tadp = 2.70 s is
approximately 0.39 s shorter than that of the fixed-gain control tfixed = 3.09 s, enabling the response
system to achieve state synchronization with the drive system more quickly. Regarding trajectory
tracking performance, the trajectory of yadp

1 under adaptive control is more closely aligned with that of
the drive system x1 throughout the entire process. Especially within the time interval of 0 ∼ 4 s, the
state deviation between yadp

1 and x1 is much smaller than that between yfix
1 (under fixed-gain control)

and x1 (with the maximum deviation of yfix
1 being approximately 0.5 state units). In terms of practicality,

considering that neuron systems exhibit nonlinear and time-varying dynamic characteristics, fixed-gain
control is difficult to adapt to the dynamic changes of the system due to its unadjustable parameters.
In contrast, adaptive control can accurately match the system characteristics by adjusting parameters
in real time, ultimately demonstrating better control performance in both synchronization efficiency
and tracking accuracy, and thus is more suitable for the synchronization control scenario of neuron
systems.
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Figure 6. Comparative analysis of the adaptive control strategy and the fixed-gain control
strategy.

5. Conclusions

This paper addresses the synchronization problem in prescribed-time and fixed-time settings
for fuzzy Cohen-Grossberg neural networks with discontinuous activation functions. To achieve
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synchronization within a specified time for the drive-response systems, we examine the fixed-time
stability of the error dynamics between the drive and response systems. A new lemma for prescribed-
time stability is developed, utilizing advanced inequality techniques to provide a more precise estimate
of the settling time for discontinuous systems. Building upon this newly derived lemma, we establish
sufficient conditions for the prescribed-time stability of a class of fuzzy Cohen-Grossberg neural
networks, which include time-varying delays. The theoretical framework integrates non-smooth
analysis methods for managing discontinuous dynamics, alongside time-delay compensation strategies,
to show that synchronization errors can converge to zero within a user-defined period while ensuring
robustness against discontinuous disturbances and time-delay impacts. Compared to traditional
methods, the proposed approach improves settling time estimates and offers less conservative stability
conditions. Numerical simulations confirm the validity of the theoretical results across different
discontinuous activation patterns. This work advances synchronization control techniques for neural
networks and contributes to the understanding of prescribed-time stability in non-smooth dynamical
systems.
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