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Abstract: This paper investigated novel predefined-time stability theorems for time-delayed fuzzy
Cohen-Grossberg neural networks. A novel predefined-time stability lemma was introduced via a
newly developed inequality-based analytical framework.The theoretical results demonstrated that,
compared to existing stability criteria in the literature, is provided more precise estimation of
settling time boundaries, but also effectively reduced conservatism. To validate the effectiveness
of the proposed lemma, the stability theorem was applied to the synchronization control problem
of fuzzy Cohen-Grossberg neural networks (FCGNNs).To address this, an adaptive control strategy
was proposed, employing a discontinuous state-feedback approach for the response neural network.
Rigorous algebraic criteria was established to ensure synchronization within the specified time frame,
in line with prior discussions. The effectiveness of the proposed synchronization method was
empirically verified through numerical case studies.
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1. Introduction

1.1. Literature review

Building upon conventional cellular neural networks, Yang and Yang [1] first proposed fuzzy
cellular neural networks in 1996 to address uncertainty in cognitive processes and improve practical
applications including pattern recognition. Later studies primarily focused on delayed fuzzy neural
netwaorks (FCNN) variants.
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An analysis of existing literature reveals that most studies concerning the stability and
synchronization of fuzzy neural networks have been predicated on the assumptions of continuous,
Lipschitz continuous, or smooth activation functions. In practical implementations, however,
neuronal activation functions frequently demonstrate jump discontinuities with respect to system
states. Inspired by the pioneering work of Forti and Nistri [2], researchers in recent years
have progressively redirected their attention to neural network systems incorporating discontinuous
activation functions. As a representative study, Abdujelil [3] conducted an in-depth investigation
into the synchronization of memristor-based Cohen-Grossberg neural networks incorporating mixed
time delays and discontinuous activation functions. Their methodology integrated multiple analytical
tools including Filippov solutions, differential inclusion theory, Lyapunov-Krasovskii functionals, and
diverse inequality techniques. Building upon this foundation, Duan and colleagues [4] made significant
advancements by examining finite-time synchronization in delayed fuzzy cellular neural networks with
discontinuous activation functions, employing a novel discontinuous state feedback control strategy.

The stability of Filippov discontinuous systems (FDSs) has emerged as a significant area of
research, owing not only to their increasing applications in fields such as neuroscience and engineering
involving discontinuous systems, but also due to the potential of discontinuities to compromise
system stability. Early studies in this domain highlighted the challenges in analyzing the stability
of FDSs, primarily due to the lack of suitable theoretical methods. Furthermore, traditional theories,
particularly those concerning the existence of solutions, are not applicable to FDSs. Given the presence
of discontinuities, instability is an inherent characteristic of these systems, and this issue becomes
even more complex when the traditional Lipschitz condition cannot be applied to stability analysis.
This challenge was addressed by Polyakov in 2012 [5], who employed differential inclusion theory,
developed by Filippov in [6], to handle discontinuities. Polyakov introduced an implicit Lyapunov
function to investigate fixed-time (FIXT) stability, making a pioneering contribution by establishing
the first FIXT stability lemmas and results for FDSs. This advancement has led to the Lyapunov
method becoming an essential tool for studying FIXT stability in FDSs. In recent years, several notable
studies, such as [7,8], have further explored the FIXT stability of FDSs. Despite the significant progress
made in FIXT stability analysis for discontinuous systems and neural networks, there remains room
for improvement in the existing stability lemmas. For instance, the conditions imposed on Lyapunov-
Krasovskii functionals (LKF) could be relaxed, and the precision of the stability criteria could be
enhanced.

Time delays are prevalent in natural processes and numerous industrial systems, including chemical,
biological, and networked control systems, often considered a primary cause of instability. Given the
critical role of stability in various systems, extensive research has been conducted in recent years to
analyze the stability of time-delay systems. Some models assume the delay appears in a singular
or simplified form, as discussed in [9, 10]. However, as noted in [11], multiple delays with distinct
characteristics may coexist in certain practical scenarios. Moreover, in networked control systems, the
lower bound of time delays is typically nonzero, and the delay may vary within a specific interval.
Consequently, stability analysis for systems with interval time-varying delays has attracted significant
attention [12, 13]. Nevertheless, limited research has addressed the stability problem for interval
time-delay systems involving two additive delay components. The current investigation focuses
on addressing robust finite-time and fixed-time synchronization control challenges in fuzzy Cohen-
Grossberg neural networks (FCGNNSs) featuring time-varying delays and discontinuous activation
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functions. To methodically address these issues, the Filippov solution framework is adopted to handle
the dynamical behavior of discontinuous systems.

Significant progress has been made in recent years regarding finite-time/fixed-time synchronization
control for time-delay neural networks and multi-agent systems.For fuzzy neural networks,
Abdurahman et al.established a theoretical framework for finite-time synchronization in fuzzy cellular
neural networks with time-varying delays [14]. As control objectives have become more precise,
predefined-time synchronization has emerged as a new direction.Lv et al.proposed an output-feedback
predefined-time leader-following consensus protocol for pure-feedback multi-agent systems [15].
Meanwhile, Li et al. further investigated the adaptive consensus problem for uncertain multi-agent
systems with unified prescribed performance [16]. For nonlinear systems, Lv et al. addressed
the leader-following consensus of nonlinear multi-agent systems via a distributed output-feedback
approach [17]. In terms of methodological innovation, You et al.applied the maximum-valued
method of functions of five variables to achieve finite-time synchronization of fractional-order chaotic
systems [18]. For more challenging discontinuous systems, Zhang et al.realized fixed-time stabilization
and synchronization of delayed discontinuous inertial neural networks based on aperiodically semi-
intermittent control [19]. These achievements provide an important theoretical foundation for the
present study on prescribed finite-time and fixed-time synchronization control of fuzzy Cohen-
Grossberg neural networks with two additive time-varying delays.

1.2. Outline of this paper

This study focuses on examining synchronization control within predefined-time and fixed-time
horizons for FCGNNSs featuring time-varying delays and discontinuous activation characteristics. To
methodically overcome these technical difficulties, the Filippov solution framework is initially adopted
to address the discontinuous righthand terms in the system equations. This paper develops an enhanced
predefined-time stability lemma applicable to discontinuous dynamical systems, which provides
improved accuracy in estimating the required convergence time. Building upon this novel stability
lemma, we further derive sufficient conditions for achieving predefined-time stability in FCGNNs
with discontinuous activation functions. The proposed approach integrates fuzzy logic operations,
time-delay compensation, and non-smooth analysis techniques to establish robust synchronization
criteria. Theoretical analyses verify that under the proposed control scheme, the synchronization error
converges to zero within a prespecified time interval, independent of initial states.

1.3. Key innovations

The principal contributions and novel aspects of this work are manifested through the following key
elements:

(1) An in-depth investigation is conducted on fuzzy Cohen-Grossberg neural networks incorporating
discontinuous activation functions and time-varying delays, thereby extending previous
continuous results reported in [3, 20-22] to the discontinuous scenario. It is particularly
noteworthy that various existing delayed Cohen-Grossberg drive-response systems and fuzzy
cellular drive-response models can be regarded as special cases of our proposed framework, as
demonstrated in [4].

(2) Given the superior practical applicability of predefined-time synchronization compared to
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asymptotic synchronization, the present research is dedicated to addressing the predefined-time
synchronization control challenge for the developed model by establishing novel predefined-
time stability theorems for discontinuous systems, which exhibit significant differences from and
improvements upon existing results, while also providing a refined estimation of the settling time
(ST) that demonstrates higher precision compared to previous estimates.

(3) This study develops an adaptive control scheme to solve the predefined-time synchronization issue
in fuzzy Cohen-Grossberg neural networks. A distinctive feature of the proposed controller lies in
its capability to directly adjust synchronization duration through predefined control parameters.

The organizational framework of this paper is presented below. Section 2 provides the system
formulation and fundamental preliminaries. Section 3 introduces two control design approaches aimed
at achieving predefined-time and fixed-time synchronization. Section 4 demonstrates the effectiveness
of the proposed methods through numerical examples. Lastly, Section 5 provides the conclusion of the
study.

2. System description and preliminaries

2.1. System description

This paper focuses on delayed FCGNNs that incorporate piecewise continuous activation functions,
described as follows:

n

Xi(c) :—ldi(Xi(c))[ - 7i(c, Xi(0) + /\ a;;(¢) 1, (Xj(c —0j(0) - ﬁj(c))) + Z a;;(¢) 1 (Xj(c))
=1

J=1

+ ) bivi+ \/ 80 15 (Xi(e = 000 = 9,(0)) 2.1)
j=1 j=1

+ /\ Tijvj + \/Sijvj + Ii(t)] i=1,2,..,n
J=1 j=1

The system is initialized with: X;o(8) = ¢:(0), 6 € [-d,0] where: i,j = 1,2,...,n withn > 2
represents the number of neurons in the network. X;(¢) describes the dynamic state of the i -th neuron
at time ¢. 'd;(X;(¢)) and 7;(X;(¢)) correspond to the amplification and behavior functions, respectively.
a;j and b;; are elements of feedback and feed-forward templates. The parameters «;; and g;; correspond
to the fuzzy feedback MIN and MAX template components, respectively. The symbolic operators /\
and \/ represent the fuzzy logical AND and OR operations, while T;; and S ;; specify the fuzzy feed-
forward MIN and MAX template elements.The variables v; and I; denote the external input to the j-th
neuron and the bias term of the i-th neuron, respectively. T; is the neuronal activation function. ¢;(¢)
and o;(¢) are time-varying transmission and leakage delays satisfying: 0 < 9;(c) <, 0 <p;(¢) <p
where ¥ = max, <, sup .y [#;(0)] and 0 = max <, sup . lo;(¢)| are finite bounds, with d = ¥ + o.

Remark 2.1. In contrast to the referenced study [23], our model demonstrates enhanced generality as
it no longer imposes the restrictive assumptions of continuity and Lipschitz continuity on activation
functions.
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Considering the principle of drive-response synchronization, we designate system (2.1) as the
driving component and formulate the corresponding response system as follows:

n

yi(c) zjdi(yi(c))[ -7, Yi(0) + /\ a;;i(¢) 1; (yj(c —0j(0) = ﬁj(c))) + Z a;;(¢) 1; («Vj(c))

J=1 Jj=1

+ 3 b+ \ 80 15 (e = 0,0 = 8,(0) (22)
j=1

J=1

+u(c), i=12,..,n,

+ /\1 levj + \/l S,JVJ + Il'(C)
J= J=

with initial conditions, Y;o(0) = ¢;(0), 6 € [—d, 0], and u;(¢) is the control input that will be designed
later.
The present study requires the following fundamental assumptions:

Al) For every index i (where i = 1,2,...,n), the function 7,: R — R exhibits piecewise continuity.
Specifically, T; remains continuous across its domain except at a countable collection of points
{p\}. At each such point p}, the righthand limit 1} (p}) and the left-hand limit 17 (o}) both exist
and are finite. Furthermore, within any bounded subinterval of R, the number of discontinuities
of T; is guaranteed to be finite.

A2) For each index i in the set 1,2, ..., n, one can define nonnegative coefficients A; and B; such that

sup lyi =il < ANX; =Yl + B, VF, Y, eR,

yi€co[ i(Xp)].mi€co[ (Y )]

where

co[ 1i(X)] = [min {17 (X)), 1/ (X))}, max {77 (X)), 17 (XD}],
co[1i(¥Yn] = [min {17 (Y), 1/ (Y}, max {1, (Y, 17 (YD}].

Furthermore, assuming the continuity of T; at the point X;, the closed convex hull of 1;(X))
reduces to the singleton set {1;(X;)}.

A3) The functiond;(X) exhibits continuity and boundedness. Additionally, one can define two strictly
positive constants, d. and d;, satisfying the inequality:

0<d <d(X)<d, for i=12,..,n,XeR

A4) Given any X € R, the function 7;(-, X) remains continuous.This function satisfies 7;(c,0) = O for
all ¢, and we can find a positive continuous function A;(c) > 0 fulfilling the condition that

T,‘(C, X) - Ti(c’ y)
X-Y

As implied by assumption (A3), we have 1/7d;(X) is positive and continuous for all X € R. Consider
the transformation function 1/7,(X) defined to satisfy the differential equation:

d
ﬁhi(X) =

>AN(0), X YeR X+UV.

1
T(X)’ with initial condition 7#;(0) = O.
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This construction ensures that 1/7;(X) is strictly monotone increasing in X. Furthermore, the
differentiability of the inverse function %;' implies the relation: La;'(u) =" di(u). We give the
definition

zi(0) = Ii(X(0)), wi(c) = h(Y(0)),

and it can be directly obtained that

Xi(o) = hi_l(Zi(C)), Yi(o) = hi_](Wi(C)),

and
SN ; _ Xi(0)
2i(0) = G(Xi(0)Xi(e) = WX
SN POSN // (O
W,'(C) - hz(yt(c))yt(c) - -,di(yi(c))-

By applying the aforementioned variable transformations to the original drive-response systems (2.1)
and (2.2), we obtain the following expressions respectively:

-7:(7, hi_l(Zi(C))) + /\?:1 a;i(0) T (hfl(Zj(C —0i(0) = 3(0))))
24(0) = + 20 aij(0) 1 (hj_-l(zj(())) + 21 bivi+ Niei Tijv, (2.3)
+ Vi1 8ij(0) T (h}I(Zj(C —0j(0) =F(0)) + V' Sijv; + L),
zio(0) = hi(¢;(0)), 6€[-d,0], i=1,2,...,n,
—7:(¢, 17 (wi(9) + Ny @if(O) 1 (h]_-l(Wj(C —0;(c) = 9;(0))))
+ 2 aii(o) 1; (h;](wj(c))) + X bivi+ Nis Tiyvj
wi(c) = + \/?:1 8ij(0) T (h;-l(Wj(c —0;(c) = 9;(0))) + \/?:1 Sivi+ 1i(©) (2.4)
Ep(0) = hi(¢i(0)), 0€[-d,0], i=1,2,...,n.

Consequently, the synchronization objective for systems (2.1) and (2.2) can be simplified to
achieving synchronization between the transformed systems (2.3) and (2.4).

2.2. Fundamental concepts

The solution concept for discontinuous systems (2.3) and (2.4) will be established through
Filippov’s solution theory.

z2(¢6) = (z1(0), 22(0), ..., ()T and w(c) = (wy(¢), wa(¢), ..., w,(¢))T as the vector-valued functions are
considered, which represent solutions to the initial value problems (2.3) and (2.4) defined over the
interval [0,T), with T € (0, +o0], For these solutions to be valid, each component z;(¢) and w;(c)
(where i = 1,2, ..., n)must maintain absolute continuity on all compact subintervals within [0, 7') while
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simultaneously satisfying the subsequent inclusion condition:

2(0) € = 7ile, B @) + /\ @] 15 (15 zj(c = 0,() = B())]
j=1

+ D a0zl 5 @M + \/ gij(eo| 1, (1 2;(c = 0,(0) = 9,())]
J=1 j=1

+ Zbijvj + /\T,‘jVj + \/Sijvj +I,'((), fora.e.c e [O,d), i = 1,2,...,”,

J=1 J=1 J=1

and
Wi(©) € = (e Ty (wi(0)) + Al a;(9)o| 1 (15 (wj(c = 0,() = 3()|
A

= Z agi(e)colt (15 (wi(eN)] + Z bijv; + \/1 gij(e)co| 1 (75 wi(c = 0;(0) = #,()|

+ A T,vi+ VS,JVJ +1(0) + W(;l—((o,()) fora.e.c € [0,d), i =1,2,..,n
It follows directly that for i = 1,2, .., n, the corresponding set-valued mappings take the form:

2i(0) = = 76, B @) + A} ;20| 1; (7 (zj(c = 0,(c) = 9,(e)))]
A
+ Zn;a,-j(c)m[n(h;l(zj(c)))] + z”;bijvj + /\1 Tijvj+ le,.jvj + Ii(¢)
J= Jj= Jj= Jj=

+\/ g(9@0] 1; (7' (2 = 0,(0) = B,
j=1

and

Wi(0) = = (6, I (i) + A a;j(c)co| 1 (7' wj(c = 0,(c) = B,())]

+ Z ai(0)col ;17" (wi(c))] + Z biv; + A Ty, + V Syv; + 100

J=1 j=1
N 7] 50— 20 - 0]+ =
ij At AW j J —'di(hi_l(wi(c)))'

=1

These set-valued mappings possess nonempty, compact, and convex values, ensuring their upper
semicontinuity and measurability properties. Applying the measurable selection theorem to the
solutions z;(¢) and w;(¢) of systems (2.3) and (2.4), we can establish the existence of measurable vector
functions y = (y1,v2, ..y ¥n) " : [=d,T) > R"and n = (g1, m2, ..., 11,) " : [—d, T) — R". These functions
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satisfy the inclusion relations y;(¢) € co[ T; (hj‘.l(zj(c)))] and 1;(c) € co| T1; (h;l(w (0)))] for almost
every ¢ € [-d, T).

40 = = (e 7 @) + ) gy + Y b+ N\ Ty,

=1 = =1
+ /\ @;j()yi(c —0;(0) = 9;(0)) + \/ gij()y(c = 0j(c) = 3;(0) (2.5)
J=1 j=1

+\/ Sijy; + I0), forae.c>0,i=12,..n,
j=1
and
Wi = =7 1 wi©)) + Y ai(emi©) + D byvi+ N\ Ty,
= =1

j=1
+ N\ @m0 = 9,9) + \/ gii(mi(c = 0,(0) = 95(0) (2.6)
j=1 j=1

u;(¢)

— forae.¢c>0,i=1,2,...,n.
di(h,' (wi(0)))

+ \/ Sijvj + I,‘(C) +
j=1
Let the error variable be given by

ei(0) = w;i(©) — z;(0).
Then, combining Eqgs (2.5) and (2.6) yields the error dynamic system:

éi(©) = = [1i(c, 57 (wi0))) — 7ile, iy ' (zi(0)))] + Z a;j(O)[n;(c) —v;(0]

j=1
+ /\ @ (0n(c = 0,(0) = 9,(9) = ¥,(c = 0,(0) = B;(0)]
J=1 2.7)
+\/ £i(0n(c = 0,(0) = 9,(0)) = yi(c = 0,(c) = B,(0)]
j=1
u;(¢)

" @ w(0)
with initial conditions
ein(0) = hi(pi(0)) — hi(¢:i(9)), 6 € [-d, 0].
For convenience, let ey(0) = (e10(6), e20(6), ..., eno(G))T, 6 €[-d,0].

Definition 2.1. (Predefined-time stability [24])

For vector p and a predefined-time constant 7, := T, (p) > 0, the origin of system (2.1) is noted
as (i) Globally weakly predefined-time stable for system (2.1) if it is fixed-time stable and the settling-
time function 7 : R” — R is such that T (Fy) < T.,VYF, € R". ii) Globally strongly predefined-time
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stable for system (2.1) if it is fixed-time stable and the settling-time function 7" : R" — R is such that
sup, epe I' (Fo) = Tt.

Definition 2.2. If the error system (2.7) achieves predefined-time stability according to Definition 2.1,
then the drive system (2.5) and the response system (2.6) will realize predefined-time synchronization.

Lemma 2.1. (See [25, 26]) Suppose X and VY are two states of system (2.1). Then, the following
inequalities hold:

/\ @i 1; (X)) - /\%‘ 17, (Y| < Z lifl| 15 (X)) = 1)), (2.8)
J=1 j=1 =1
\/&'j Tj (X)) = \/gij i ()| = Z lgifll 75 (X)) = 1)), (2.9)
J=1 j=1 =1

Lemma 2.2. (See [27]) Let X;,X5,...,X,>0,0<p<1,¢g> 1. Then:

i(\’f > (i X,‘]p , ixlq > nl_q [i X,]
i=1 i=1 i=1 i=1

Lemma 2.3. (see [28]) Consider the system F = 1(F). If there exists a continuous function V(F),
scalarsv > 0, > 0,0 < ¢ < 1, and m > 0O such that

q

V(F) < —vV(F) — aV*(F) + m,

then the trajectory of system F = 1(F) is practical fixed-time stable. The residual set of the solution is

given by
. 3 m m ?
{F' hrcriillp V(F) < mln{(l _ g)v’((l - 9)0/) }}

for some 0 < 8 < 1, where 6, satisfies 0 < §y < 1. The setting time is bounded as

1 %l 1 V= 0
T, < max{cy + n i () + a’ ¢+ In Y () + 0OK}. (2.10)
OBou(1 — &) a u(l - &) O

Lemma 2.4. (See [29]) Suppose V() : R" — R, U {0} is a continuous, radially unbounded function
and satisfies:

(1) V(e(c)) =0 < e(c) = 0.
(2) For any e(c) # 0, there exist constants @, G,m > 0,0 < ¢ < 1, and > 1 such that

V(e(0)) < —aVé(e(c)) — gV'(e(c)) — m. (2.11)

(3) If e(¢) = 0, then V(e(c)) < 0.
Then the zero solution of system (2.7) is fixed-time stable, and the settling time satisfies

1 1o e ol (oh 1y 1=n
(@t +me)' ¢ —me g" +mn
= + .

Tnax, = 1 : (2.12)
at(l = &) g'(n—1)
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Theorem 2.1. Consider the dynamical system described by (2.7), Suppose there exists a radially
unbounded Lyapunov function candidate V(e(c)) : R — R, that is strictly positive definite, where
T, denotes a tunable parameter. The system is guaranteed to exhibit the desired behavior, provided the
following criteria are satisfied:

() V(e(0)) =0 & e(c) =
(2) For any V(e(c)) > O, there exist a, g, m, G.,, T, > 0,0 < ¢ < 1, n > 1, where v < min{«, g}

satisfying
G,

D*V(F(0)) < 7( — aVé(e(0)) — gV(e(0)) + vV (e(c)) — m). (2.13)
Then, within the predefined time 7, = Ty, the origin of system (2.7) exhibits predefined - time
stability.

1-¢ - 1-
[(af - v)% + mé] - mlTS 2m-1 [(g - v)'ll + m%] !
Thax, =G, = + .

(@-v)i(l-¢&) (g-v)(—-1)

Proof. The function representing the settling time can be written as

0 V(e(0))
G. 1 T, 1
T(e(0)) < f —— du < f —~— du.
vy Te —aut —gu +vu—m 0 G.au® +gu"—vu+m

About v < min{a, g}, two cases can be identified 0 < v < min{e, g}, v < 0.

Case 1: where 0 < v < min{a, g}.
Case 1.1: 0 < V(e(0)) < 1, consequently, it follows that

L. 1
— du—f u
o Geaut + gu’ —vué +m G.(a- v)uf+gu’7+m

B fl T. 1 P f 1 J
< —  du=— u
o Ge(a—vut+m Ge Jo [(@ - v)"éu + mVEf

1-¢ _
T, [(a — )V 4 ml/f] — m1-91¢

" G. (@—-v)E(1 - &)

Vo) 7 | T,
T(e(0)) < f — f — du
0 Gca/u‘f+gu’7—vu+m Gau§+gu’7—vu+m
T,

<

Case 1.2: V(e(0)) > 1,consequently, it follows that

Vo) T 1
T (e(0)) < f du

G, au5+gu”—vu+m

T. V(e©) T 1

< f — du +f — du
Gauf+gu’7—vu+m 1 Gc.auf+gu'7—vu+m
T, oo 1

< f L . f EL S —
Ga/uf—vuf+m . G.gu'—uvu+m

Similarity, we have
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1’1—'. 1 +00 T 1
T(e(0)) < e - 4 . 1
o= [ Gz | e
T [(a —v)t mé]l_f -me T, 2" [(g —u)r + m%]l_n
Zc ] I |
o a-via-9 Ge (g-v(-1D
1- - 1-
[(@ = )" + ] m? o (¢ —v)1 +m] ﬂ
+

(@—-v)i(1-&) g-v)1(p—1)

T,

[

IA
o3

Case 2: where v < 0.
Case 2.1: 0 < V(e(0)) < 1, thus, we arrive at

V) 7 d Vo) 7 1
reoms [ & “ [
0 G.auf +gu"—vu+m 0 G.auf + gu" +m

"7, 1
S —
o Goauf +m

du.

When this is combined with Lemma 2.2, the result is
1

| 'T
T(e(0)) < f du < f R
0 aué +m 0 G, (a%u + mé)ff
1 1\1-¢ 1=¢
T. (a/f + mf) —mE

Ge  ai(1-¢)

du

Case 2.2: V(e(0)) > 1, accordingly, we attain

V(o) d
T(e(0)) < f < =
0 G.aut + gu’" —vu+m

tr. du fwe(o” T, du
+
1

< -
G.aut + gu’ +m

“Jo Geaut +gul+m

"T. du f*“’ T. du
< | = + — :
o Geaut +m . G.gu'+m

By leveraging Lemma 2.2, we derive

"'T. d T, d
T(e(0)) < f o2y f L
o G.aut+m . G.gu"+m

1 1\1-¢ 1-¢
T, (af + mf) —m¥ N f+oo T. du
af(l —¢&) 1 Gegu'+m

IA

G.
- - 1-
T, (cxé + mé) £ me T. 2n-1 (ngz + m%) !
= E 1 E 1
c ai(l =& e grn—1)
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(a/sl‘ + m%)l_f —mE o (g% + m%)l_n
I + I
af(l-¢) grm—1)

A
QA

IA
~

Cce

It follows that when v, the parameter 7, in Case 2 coincides with 7, in Case 1. Having satisfied all
necessary conditions, we may now formulate our central theorem. m|

Remark 2.2. The present work makes three key advances. First, Theorems 2.1 formulate previously
undisclosed inequality conditions. Second, they develop genuinely novel fixed-time stability criteria
for discontinuous function dynamical systems (DFDS), complete with settling time bounds involving
our newly introduced parameters. Third, and most importantly, these results properly subsume those
in [29,30] as special cases, establishing their broader theoretical scope.

Theorem 2.2. If m > max{(g— v)”/f,mo}, a>v,g>p, €0, 1),n>1,6 € 0,1), @ >v,g >,
£€(0,1),7>1,6)€(0,1), we have T, <T,.

Proof. We aim to prove the following inequality under the given conditions:

Ll + Lz < max{Tl, Tz},

where: e 1 -~
[(a/—v)% +mé] —mE 211 [(g—v)% +m%] !
= 1 > 2= 1
1 (@)t - (g - v -1)
1-¢ 1-¢
T]:C()-i-;hl(l M), Tr) = ¢+ ! hl(l-i—vV—(CO)),
Bou(1 — &) a u(l =& G

subject to the limit condition:

. ] m m %
lim VF(©O) < mm{(l - e>u’(<1 - 9)a) }

Assumptions: @ > v, g > v (to ensure positivity under roots), & € (0, 1), n > 1 (to ensure exponents
are well-defined), m > 0, V(¢g) > 0, 6y € (0,1), v > 0.
(1) Bounding the left-hand side (LHS)
LetL=L;+L,, andx= (oz—v)%,y:m%,u = (g—v)%,v:m%.
(a) Boundedness analysis of L;:
_ ()t
x(1-¢)

1
By the integral inequality:
X+y
x4+ =yt =(1-8) f Tt < (1 - 6wy,
y

we obtain: L; <y =m™!.
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(b) Boundedness analysis of L,:

L - 271Ny 4+ )
u(n—1)

Fornp > 1landv > u(ie.,m> (g — v)"%):

1- 1-
(u+v)y T<v™,

thus:

17
2yl

RS = - .
utn =1 (g-vyim-1

(c) Combined bound for L:
2'7_1m%

T .
g-vrm-1)

(2) Analysis of the right-hand side (RHS). The RHS is max{T, T»}. We analyze both terms:

(a) Bound for V(¢p): from the limit condition:

L<m!'+

1

£
( in@)a) - VI_E(CO)S(

(b) Asymptotic expansion of 7'y and 7,: For T':

T13c0+;ln(1+00—’0( n )5]
Oov(1 - &) a \(1-0)a

1-¢
m z
V(Co) < ( (1 — 9)0) .

For T5:

TQSCO+

1 v ( m )If_f
In{1+ — .
pl =& [ Goa \ (1 — O

(c) Dominant terms for m — oo:

T1~c0+ln—m, T2~co+ln—m.
Oové vé
Since 6, € (0, 1), T, dominates:
Inm

max{Tl,Tz} =T, ~¢q+—.
vé

(3) Verification of the inequality. We require:

1-n
21l Inm

L<m!'+ - <c¢+—.
tam-1) vé

(g-v)

m

(a) Decay of L: m~ — 0 (exponential decay), m% — 0 (since n > 1). (b) Growth of T5: “‘U—f
(logarithmic growth). Thus, there exists mg > 0 such that for all m > my, the inequality holds. Under
the stated conditions, for sufficiently large m,

1 — +00

L<T,= max{Tl, Tz},

with the asymptotic behavior of 7, dominated by 12—;” This completes the proof. O
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Remark 2.3. From Lemma 2.3 and Theorem 2.2, we observe that both provide estimates for the
settling times STs. However, the theorem reveals that Ty,,,, < T, when m is sufficiently large. This
implies that: Theorem 2.1 imposes less restrictive conditions compared to Lemma 2.3. The control
strategy derived from Theorem 2.2 offers superior performance characteristics, as evidenced by: Faster
convergence (shorter settling times), broader applicability (valid for larger parameter ranges),and
improved robustness (better tolerance to system variations).

3. Main results of synchronization

3.1. Synchronization within predefined time intervals achieved by a discontinuous state - feedback
controller

Theorem 3.1. Based on A1-4 and controller (3.1), take into account a positive definite diagonal matrix
function Q(¢) = diag(q,(c), g2(¢), - - - ga(c)) € R™" that complies with the inequality Q(¢) > &I, where
£ represents a positive constant. If

2 n
dvfllkil > Z[z/lzaij (0) B+ 24, |aij (C)| B +24, |gij (C)| 8],
. “

1

2 & .
dTi/llkiZ > qi(c) — 24 Z Ai(O)d; + 2,d;Aa;(0),

i=1

2
dii3 > Javy; (0] + |21 (9]
(oz% + m%)l_g —mE ! (g% + m%)l_n
G, = : + T ,
at (1-¢) ge(n—1)
under such circumstances, systems (2.5) and (2.6) accomplish the predefined-time synchronization.
This controller is:

ui(c) = — kirsign(e;(c)) — kipsign(e;(c))le;(c)| — kizsign(e;(¢))le;(¢c — d)|

* %( ~ asign(eO)leO — gsign(e(Nlei(Ol + ve;(c) — m),

c

(3.1

where ki1, ki, kiz, Gey Te, @, 8 > 0,0< p< 1,g> 1,m> 0, and d; = max{d;}, A = infesof Amin(Q())},
Ay = SUP 0 {Amax (Q ()}, d = max{o + ¥}

Proof. The subsequent Lyapunov function is formulated as:
V() = " (0)0()e(o).

Upon computing the derivative of the function V(¢), the following outcomes are obtained:

n

D'V() = )" [2q:(9ei(9é©) + (e} (0]

i=1
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= > 26190 = (rile, b i) = (e, b7 2())))]
i=1
+372qi(9ei0) Y aij(©)[n(0) = 7,(0)]
i=1 j=1
+32610ei(©) )\ aij©[ni(c = 0,() = 9©) = yi(c — 00 - 9,())] (B2
i=1 j=1

+ 21] 2q,(9)ei(c) vl g/ (O[n,(c = 0,(9) = 9,(9) = (e = 0,() = 9,(0))]
= J=

- u;(¢)
* Z] 20095 T
+ 4.

i=1

The existence of u; € [hl.‘l(wi(c)), hl.“(zi(c))], tr € [wi(c), zi(¢)] can be established through an
application of the mean value theorem under Assumptions 3 and 4.

> 24i0)ei(0)| = (e, i (wile) = 7ile 1 @)
i=1
== > 2qi(e i) (77 (wi(©) = 17 (2(0))) (3.3)
i=1
== > 26i(Qe AT pa(wi() = 2i(©))
i=1

< =241 ) d AP
i=1

According to Lemma 2.1, it can be concluded that

AIMS Mathematics

> 2410)ei©) Y aii(O[ni(©) = y,(0)]
i=1 j=1

< 3" 2410l Y | O A5 wi()) = 17 (2100)) + B
i=1 j=1

< Z} 24:(0)lei()| Z‘ @i (O A Y paw(©) - 2,() + B (34)
i= Jj=

< 22000601 3|01 Adie© + 8]
i= j=

<> D 20diAayOlleOF + > " 2B laii(O)lleo).

i=1 j=1 i=1 j=1
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Utilizing Lemma 2.1 and Assumption 2, and applying the mean value theorem, we can demonstrate
the existence of u3 € [hl.‘l(w,-(c —0;(0) = (), i, (zi(c — 0j(0) — ﬁj(c)))] such that

D 24i0)ei(e) \ @ij(@[n(c = 0,0) = 8;(0) = ¥i(c = () = 9,(0))
i=1 Jj=1

< Zl 24:(0)lei(©)| Al @;(On,(c = 0(6) = 9,(0)) - Al @;/()y(c — 0(0) = 9,(0))
i= J= J=

< 22010001 (sl = 0,() = B,(0)) = 75(c = 0,(0) = B,(©)|
= J=

<3 24101l O A (1 (w(c = 0,() = D,(9) = 1} (¢ = 0,0 = D)) + B (3.5)

i=1 j=1

<> 2410led Ol Ol A 7Y s 0wc = 01(0) = 90)) = 2,(¢ = 0(0) = B(6)) + B|

i=1 j=1

<373 2410kl | Adje (< - 0,(0) = B(6)) + B|

i=1 j=1

< > D 20lai@lAd leiOllej(c = D)l + | > 2lai(0lB e,

i=1 j=1 =1 j=1

Similarly, we have
D240 \/ 811 | (c = 0,0 = 9,9) = v (¢ = () = 9,(0)
i=1 j=1

<" 2610 lei(0)l
i=1

\/ 205 (c = 0,0 = 9,9) = \/ £15(0)y; (¢ = 0,(0) = 9,(0))
J=1 J=1

<73 241010 || 1 (¢ = 0000 = 9,00) = v, (¢ = 0,() = 9;00)) (3.6)
i=1 j=1
< D 2 200l 7 (¢ = 000 = 8,() = 17 (21(c = 0,00 = 8,(0) ) + 8,

i=1 j=1

<3 240l Olgi (A Y 3(w,c = 04(0) = D) = 21(c = 0,) = T + B} (B.T)

i=1 j=1

<33 24:0ledOlgi (0| Adjei(c — 0,(0) = 9(0)) + B
i=1 j=1

< 202 Adslei(Ol e (c = D] + D> 245 [ii(0)] Bylei()l
=1 j=1 i=1 j=1
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From Lemma 2.1, it follows that

2g;
Z WO T o) 1( o)
X [ — kjsign(e;(c)) — kppsign(e;(c))le;(¢)| — k;zsign(e;(c))le;(¢c — 0;(c) — F;(0))|

+ ==( - asign(e)lei() ~ gsign(e(leiO)l’ + vei(c) - m))|

c

2 2
< — < Aikilei(o)l — dT/llki2|€i(C)|2 - dT/llkBlei(c)”ei(c —0i(0) = 3,(0)]

i i

Q& NQ

+ —=( - asign(ei(0))le(0)l” — gsign(e(©)lei(0)l” + vei() — m)|

c

2 2
< = < Aikale(0)] - dT/llkiZ e - dT/hki3|€i(C)| lei(c — 0,(c) = 9,(0)|

i

N N

2

2 G, 2 G, 2 G, 2 G,
- dTi/lla’TCei(c) lei(O) — dTi/lchgei(C) lei(0)? + Ziv/lz 7.6 e;(c) — Zﬂlime i(©)
2 2 , 2
< = < Aikile (O = — Aikple (O — < Aikislei(0)] - lei(c — (¢) — F;(0)| (3.8)
d[ di di
G. B

———

g+1
2 A En 2(¢) 2 2 An? En 2(0) 2 + 2 Are2(¢) 2/1 (0)
——a e; - —ghn e; —vdye;(c) — —Aime;
d 1 d,-g : d d; :

¢ i i=1 i=1

=i

2 2 2
- dT/llkillei(c)l - dT/llkiZ lei(0)* — dT/llkBlei(()l lei(c — d)|

i i i

G, 2 2 2
+ 20| 2 VE O - Zel 5T v (0 + Zovie
[d ©- z8l 0+ =0V(O - ]

¢ i i i

Combining formulas (3.2)—(3.8), hence, we conclude

D) < >0 Y 20diAlai@lleOF + > > 206B/lai(0)llei(o)]

=1 j=1 =l j=1
+ i i 20di A a;;(Olle (0l + i i 2,8jla;;(O)lle: (o)
=1 j=1 i=1 j=1
+ Zn] i 21l (ONAd lexOllej(c — d)] + i i 2|a;i(0)|Blei(c)].
i=1 j=1 pay e
" Z Z 225 [g3i(9)| Aid lei(O)l e (c — )| + Z Z 22 |g()] By lei(o)].
i=1 j=1 parge
* g [—dzaﬂ V@ - dzgﬁ 5TV (0 + dqu(c) m] (3.9)

2
delzkil]

i

<> |ei(c)|[ D (20a(9B; + 2ol (IB; + 2Algi(1B;) -
i= j=1
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n n n . 2
+ Z |€i(C)|2[5]i(C) - 24 Z Ai(od; + Z 2hdiA a;(c) — dT/llkiZ]
i=1 i=1 j=1 i

n n . 2
) a0diAjlei(c - d)||e,~<c>|[|a,-,-<c>| +1gij(0)l - dvkig]

i=1 j=1 i

Gc 2 2l pel 2 _gv, 4L 2
1 RS VE (0 - FEUTVE O+ TV - m]
Gef e
< 7 = aVi(e(0) - gV(e(0) + vV (e() — m)

This satisfies Theorem 2.1, leading to the conclusion that the predefined-time convergence is
achieved. O

Remark 3.1. Previous research efforts, including those documented in [31-34], have thoroughly
examined the issues of stability and predefined-time synchronization in various neural network
architectures with time delays, particularly focusing on fuzzy cellular neural networks and fuzzy
Cohen-Grossberg neural networks. However, the current study distinguishes itself through two
advancements:

e Discontinuous activation functions: Unlike the standard continuity assumptions, we adopt
discontinuous activations to better align with physical implementations.

e Prescribed-time synchronization: In contrast to finite-time synchronization (where convergence
depends on initial conditions), our approach ensures synchronization within a predefined time 7',
independent of initial errors or system parameters. This offers three critical advantages:

— Decoupled convergence time: 7. is user-defined and unaffected by system states or
uncertainties.

— Explicit deadline enforcement: The upper bound for synchronization is directly specified as
a tunable parameter.

Corollary 3.1. To address the discontinuity issues associated with the sign(-) function in the controller
implementation, we adopt a smooth approximation using the hyperbolic tanh(-) function, resulting in
the proposed controller structure:

ui(¢) = — kntanh(e;(¢)) — kntanh(e;(0)) le:(0)| — kiztanh(e;(0)) lei(c — d)|

G, (3.10)
+ — (-atanh(ei(0)) le:(O” (¢) — gtanh(e;(0)) le (O’ (¢) + ve; () —m).
Remark 3.2. The control inputs specified in controller (3.1) incorporate a discontinuous signum
operator, which as a binary switching element can induce problematic high-frequency oscillations in
the system response [35].

To mitigate this chattering phenomenon, a smooth approximation using the hyperbolic tangent
function is proposed, defined mathematically as tanh(F/€) = % This substitution provides several

beneficial properties for closed-loop control implementations:
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e The tanh function exhibits infinite-order differentiability, ensuring complete elimination of
control signal discontinuities while maintaining mechanical reliability of actuation components.
e Its inherent output constraint (|| tanh(F)|| < 1for all real F) provides built-in amplitude limitation
without requiring additional saturation blocks.

e The strictly positive derivative condition (d tanh(F)/0F > 0) preserves the stability characteristics
required for Lyapunov stability analysis in control system synthesis.

3.2. Analysis of key parameter influences

To thoroughly investigate the performance of the proposed controller in controller (3.1), this section

provides a detailed analysis of the influence mechanisms of two pivotal parameters: the predefined-
time parameter 7. and the robustness parameter m. The findings offer clear guidance for parameter
tuning in practical engineering applications.

Theoretically, 7. serves as a tunable parameter that directly prescribes the upper bound of the

system’s settling time. In the controller, the term (T;— acts as a global gain, whose magnitude directly
scales the strength of the control action.

e Impact on Convergence Speed: The parameter 7. is inversely proportional to the system’s
convergence rate. Decreasing 7. increases the control gain, thereby significantly accelerating
the transient response and driving the error to zero more rapidly. This provides the capability to
meet specific real-time requirements by directly setting 7.

Impact on Control Input and Robustness: However, an excessively small 7, leads to high-
amplitude control inputs u;(¢), which can cause actuator saturation and exacerbate the control
input chattering induced by the discontinuous sign(-) function. Furthermore, excessively high
gain reduces the system’s phase margin, making it more sensitive to unmodeled dynamics and
measurement noise, thereby compromising the robustness of the closed-loop system.

In summary, the tuning of 7. constitutes a critical trade-off between convergence speed and control

effort/robustness. In practice, the largest possible 7. that satisfies the convergence time requirement
should be selected to ensure smooth control action and robust stability.

The parameter m is crucial for ensuring exact convergence in the presence of disturbances.

e Impact on Steady-State Accuracy: The primary role of m is to counteract bounded lumped
uncertainties, such as external disturbances and model errors. When m > 0 and it is sufficiently
large, it guarantees that the system state converges exactly to the equilibrium point (i.e., with zero
steady-state error) within the predefined time. Conversely, the system can only converge to a
neighborhood of the origin.

Impact on Convergence Process: During the final stage of convergence, when the error becomes
small, the term —m - sign(e;(¢)) dominates, providing the final converging force. However, as
a discontinuous term, an excessively large value of m will significantly intensify control input
chattering near the steady state.

In summary, the tuning of m represents a trade-off between steady-state accuracy and control

smoothness. Its value should be selected based on a conservative estimate of the disturbance upper
bound, adhering to the principle of being “sufficient but not excessive” to ensure precision while
mitigating chattering.

AIMS Mathematics Volume 11, Issue 1, 366-398.



385

Collectively, the adjustment of 7. and m dictates the core performance of the controller from the
dimensions of temporal response and accuracy, respectively. The above analysis provides a theoretical
foundation and practical guidance for the effective implementation of the proposed scheme.

3.3. Synchronization achieved within predefined-time intervals by means of a discontinuous adaptive
controller

This subsection develops a novel adaptive control scheme to achieve synchronization within finite-
time for the drive system (2.5) and its corresponding response system (2.6).

ui(c) = —Psign(ei(c)) — &(c)sign(e,(0))lei () — dsign(ei()lei(c — 0,(c) — #;())l, (3.11)

where g;(¢) = X;(¢)-Y.(0), ¥, 5 represent tunable parameters that will be specified in subsequent design
procedures, with indices i, j = 1,2, ..., n.

Regarding the adaptation mechanism, when g;(c) # 0, the time-varying feedback gains j1;(¢) evolve
according to the update rule:

d .
Efz‘(t) = wjlgi(0)l,

in which w; denotes a positive constant. In the special case where g;(¢) = 0, the gains are maintained
at fixed values é‘l* which are selected to be adequately large positive constants.

Theorem 3.2. Provided that assumptions (A1)—(A4) hold, the response system (2.6) is able to attain
synchronization with the drive system (2.5) within a finite-time period by applying the control
law (3.11), provided that the design parameters are properly chosen to satisfy:

I’ = lim inf {7 = 200,08, = 22 | (0)| B; = 242 [g:;(0)| B,} > 0,

lim inf {ﬁ = 4i(©) =24 ) Aiod, - ) mzcmjaij(c)} >0,

P =
hlgg)nf {3 - |Q’,‘j(()| - Ig,J(C)|} > 0.

Additionally, the maximum value of the convergence time needed to achieve synchronization can be
calculated as follows: .

V(0)
Y T

Proof. Consider the following Lyapunov-Krasovskii functional candidate: V(©) = Vi(¢) + V»(0), with

F<t=

Il 1, .
Vi = 6" (00me(), Va0 =5 ) —(E(©0 - &)
-1 Wi
Taking the time derivative of the second component yields V,(¢), and we have

av. Sh > 2
N G WA
i=1 i=1

dc
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Furthermore, the composite function V(c) can be straightforwardly shown to possess C-regularity.
By evaluating its time derivative along the solution trajectories of the error dynamic system described
in (2.7), under the action of the switching adaptive control law specified in (3.11), we obtain:

D*V(©) = Y 241 0)[=(ri(e. 77 (wi(0)) = e, 7 (@)
i=1
+3724:(08(0) Y ai (9 [7(0) = ¥(0))]
i=1 i=1
+ 22610810 \ @i (9 [nj (¢ = 0,0 = 9,0)) = v (¢ = 0,0) = 8,(0)|
i=1 j=1

+ 22610810 \/ 2 © [1;(c = 0(0) = #(0) = ¥ (c = 0,(©) = #,0))]
i=1 Jj=1

. ~ysign(ei(c)) — &(c)sign(e(0)lei(0)] — dsign(ei(c))leic — 0,(c) — 9;(0))|
i Zl 2400 A G O)
NGO

=1

NGO EWACN
i=1 i=1

Building upon the demonstration presented in Theorem 3.1, we can additionally derive

D*P(9) < = 240 el |7 = 2420:()B; = 25 |0 (0)] B; - 242 [gis(0)| B

i=1

= DO £ ¢i() =241 D A d, = D 2diA;:(0)
i=1 i=1 j=1

I

= D D, 2a(0d A lei(c = )10l [8 = [ ()] - |gis(©

i=1 j=1
consequently resulting in

D*P(e) <= > T <0, forae. >0, (3.12)
i=1
where,
I = l(ig)l inf {?A’ - Z(|aij(c)|8j + |a;(0)|B; + |gij(c)|)8j}-
> =

We shall demonstrate the existence of a finite time instant ¢* € [0, oo0),at which the Lyapunov
function vanishes, i.e., V(c*) = 0. To establish this result, suppose conversely that V(c) maintains
strictly positive values for all ¢ > 0.
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Consequently,
D*V(0) < = ) T forae. ¢>0. (3.13)
i=1

By integrating inequality (3.13) over the time domain [0, c], we derive the following upper bound:

¥(c) < V(0) - ) T, for each ¢ > 0,
i=1
This immediately implies: R
V(0)
Y T
resulting in a logical inconsistency. Applying analogous reasoning yields ¢ < ¢,,,. Subsequent
analysis demonstrates that:

V(c) <0, for ¢ > ¢y =

V(c) = 0, for each ¢ > ¢*.

To verify this claim, suppose there exists ¢’ > ¢* with V(¢) > 0. Under this assumption, one could
identify a nonempty interval (¢, ;) C (¢*, ¢’), where the Dini derivative satisfies D*V(c) > 0, for all
¢ € (¢, ), directly contradicting (3.13). Consequently, we establish that V(c) = (0, for each ¢ > ¢*.
thereby completing the proof. m|

Remark 3.3. The selection of I'; over the other two conditions is justified by:

e Structural Dominance: I'; encapsulates the key stability terms (¥,a;j,gij,ai)), while the
alternatives only address partial dynamics (£ or §-related effects).

e Lyapunov Decay Dominance: T'; directly governs the decay rate of V(c) in (3.12), whereas the
other conditions are secondary constraints.

e Control Theoretic Necessity : I'; > 0 enforces diagonal dominance in the error system, a
fundamental criterion for networked stability.

Thus, I'; provides a unified and stringent condition for guaranteed synchronization.
4. Examples of numerical computations and simulation results

4.1. Numerical example of feedback controller

In this section, three simulation instances are presented to validate the accuracy and efficacy of
Theorems 2.1 and 2.2.

Example 4.1. Consider the following 3-D memristive CohenGrossberg neural networks:

Xi(c) :—Idi(Xi(c))[ - 7i(¢, Xi(0) + A CVij(C) T (Xj(C - Qj(c) - ﬁj(c))) + Z aij(c) T (Xj(c))

j=1 =1

H i:1a2,3’

+ Z; bijv; + \/1 8ij(0) 1j (Xj(c—0(c) = 3;(0) + /\1 Tijv;+ \/1 Sijvi+1;(0)
= = = i

4.1)
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where

7106, X) = 12(c, X) = 13(¢, X) = (0.8 + 0.2 5in(0.50))X + 0.1X>,

08 -06 04 0.15 -0.1 0.08
(aij)3><3: -0.7 1.0 -0.5 , (a’ij)3><3 =1 0.1 0.2 -0.1 ,

05 -04 09 0.08 0.1 0.15
0.05 -0.02 0.01 0.1 0.15 -0.05

(bij)3x3 =[-0.05 0.1 -0.02], (g3 =|-01 0.1 0.15 |,
0.01 -0.05 0.1 -0.05 0.15 0.1
0.1 0.05 0.03 0.05 0.1 0.02

(Tij)3x3 =[0.05 0.1 0.03|, (Si)x3=|0.1 005 0.02,

0.03 0.03 0.1 0.02 0.02 0.1

vi=02, v,=01, v;=0.15,
'di(X) = 1.0 + 0.2tanh(X) + 0.05sin(5X), i=1,2,3,
I;(c) = 0.5[sin(c) + 0.3sin(3¢)], I»(¢) = 0.5c0s(0.8¢), I3(¢) = 0.5[sin(0.6¢) + 0.1 cos(20)],
01(c) = 0.1(1 + sin(c)), ©02(c) = 0.1(1 + cos(c)), ©3(c) = 0.1(1 + sin(2c)),

P1(c) = 0.05(1 + sin(2¢)), () = 0.05(1 + cos(2¢)), ¥5(c) = 0.05(1 + sin(3¢)).

Moreover, let

tanh(1.2X) + 0.15X - exp(-0.15X*) + 1, X >0,

= = = 4.2
(&) = 12(&) = 12() {tanh(1.2/\’) +0.15X - exp(=0.15X%) — 1, X <0. (42
The response system is given as:
%@:WMmmmeym»yAmﬁhﬂyﬂ—gw—mw»+Zﬁ¢on@mm
j=1 j=1
+ Z bijv;+ \/ 8ij(0) 1 (Y j(c —0j(c) —F;(0)) + /\ Tijv;+ \/ Sijvi+ Ii((f))]
=1 j=1 =1 =

+ui((0), (= 1,2,3),

u;(¢) represents a predefined-time feedback controller with design.

Then ChOOSil’lg k]l =3 ) k21 = 15, k31 = 10, k12 = 28, k22 = 13, k32 = 09, k13 = 32, k23 = 17,
kiz = 1.1, G, = 2.0; T, = 0.8; = 0.8; g = 0.8; v; = 0.5; vy, = -0.5; v3 = -0.5; ¢ = 0.01;
p =0.7;q =0.7;d = 0.5. The discontinuous synchronization control inputs of the response system
are formulated as:

u(c) = 3 sign(e;(c)) + 2.8 sign(e;(¢))le; (¢)| — 3.2 sign(e;(c))le; (¢ — 0.5)|

20 “4.4)
+ 52 (-081ex (07 - 0.81e1()]'7 + 0.5¢1(0) - 0.01).
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u(¢) = 1.5 sign(ey(c)) — 1.3sign(es(c))lea(c)] — 1.7 sign(ez(¢))lex(c — 0.5)]

2.0 “s)
* 08 (—0.8 lea()%7 = 0.8 |ea ()17 = 0.5e5(¢) — 0.01).
uz(¢) = 1.0sign(es((¢))) — 0.9sign(es((c)))les((¢))| — 1.1 sign(es((0)))les(c — 0.5)]
(4.6)

2.0
+ == (<0.81e3()"7 = 0.8 |e3(0)]"” = 0.5¢3(c) = 0.01).
0.8
Figure 1 shows the time responses of state variables X and Y, which is without controller.

Driving and Response Neuron States

4
3 R —— L —
W __________
/:="= __________ SsaL___
Il’ _______
24 = i1
v ',’ X
% 1 - -
= ’t X
L 1 i -——
= 1 Ay
N 1 ' ---yfﬁ
11
0y )
1
1
1Lt
]
o . . . . . . . . I
0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 1. Synchronization error dynamics without control.

As demonstrated in Figure 2, the implementation of synchronization controllers (28),(29), and (30)
in the response system (4.3) yields conclusive evidence of predefined-time convergence. All states
of the response system (4.3) asymptotically synchronize with the drive system (4.1) within the
theoretically predicted settling time 7". The synchronization error dynamics exhibit stable convergence
to zero equilibrium; The error magnitude remains strictly maintained at zero for ¢ > 7.

Driving and Response Neuron States

State Value

X
)
X,
-

Ay
-
.......... Control On

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 2. Synchronization between the master system (4.1) and its slave counterpart (4.3).
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These results provide rigorous numerical validation of the predefined-time synchronization theorem
presented in Section 4, confirming both the theoretical stability analysis and controller efficacy.

The exact match between theoretical predictions and numerical observations substantiates the
following key findings: The sufficient conditions derived in Theorem 2.1 are indeed necessary for
guaranteed synchronization;the proposed control strategy successfully overcomes the initial condition
sensitivity observed in conventional methods;the settling time bound 7" remains invariant to system
parameters, as theoretically.

Remark 4.1. To rigorously validate the conclusions of Theorem 2.1, we intentionally implemented
antipodal control parameters (v; = +0.05 vs v, = —0.05), both satisfying the key theorem condition
v < min{a, g}. This parametric dichotomy: (i) confirms the controller’s efficacy under opposite
feedback polarities; (ii) verifies that the predefined-time stability is attained as long as the condition
v < min{a, g} is fulfilled, regardless of the sign of v; and (iii) demonstrates the scheme’s adaptability
to different convergence characteristics.

Figure 3 demonstrates the synchronization dynamics between the drive system states X;(¢) and
controlled response system states Y;(¢). The numerical results explicitly show that: (1) Complete state
synchronization is achieved within predefined-time 7. (2) The error norm ||X;(¢) — Y;(¢)|| converges to
zero exponentially. (3) All trajectories maintain synchronized behavior for ¢ > T..

Synchronization Error e; = &; — Y,

—
6 -

€3
— — —datal
---------- Control On

Error

Figure 3. Systems (4.1) and (4.3) with feedback controller.

Remark 4.2. The experimental validation quantitatively matches our theoretical predictions in
Section 3, particularly regarding: the strict negativity of Lyapunov derivative D*V((c)) < 0;
the invariance of settling time upper-bound 7,; and the absence of chattering phenomena despite
discontinuous control.

Example 4.2. In the same 3-D memristive CohenGrossberg neural networks, we will examine and
implement different control strategies in the controller design, as specified below:
ui(¢) = — kitanh(e;(¢)) — kntanh(e;(¢)) le;(0)| — kiztanh(e;(0)) lei(c — d)|

G. 4.7)
+ o (—atanh(ei(0)) lei(O" () — gtanh(ei()) lei()I (6) + ve; () —m),
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where
7106, X) = 12(¢, X) = 13(¢, X) = (0.8 + 0.2 sin(0.5¢))X + 0.1X°,
0.8 -0.6 04 0.15 -0.1 0.08
(@ij)3x3=(-07 1.0 =05, (a;j)s3=[01 02 -0.1],
0.5 -04 0.9 0.08 0.1 0.15
0.05 -0.02 0.01 0.1 0.15 -0.05
(bij)3x3 =[-0.05 0.1 -0.02f, (gij)sxs=]-01 0.1 0.15 |,
0.01 -0.05 0.1

-0.05 0.15 0.1
0.1 0.05 0.03 0.05 0.1 0.02
(Tij)3><3 = 005 01 003 . (Sij)3><3 = 01 005 002 .
0.03 0.03 0.1 0.02 0.02 0.1

vi=02, v,=0.1, v3=0.15,
1d,(X) = 1.0 + 0.2 tanh(X) + 0.05sin(5X), i=1,2,3,

I (¢) = 0.5[sin(c) + 0.3sin(3¢)], L (¢) = 0.5¢c0s8(0.8¢c), I3(c) = 0.5[sin(0.6¢) + 0.1 cos(2¢)],
01(¢) = 0.1(1 + sin(c)), ©2(¢) = 0.1(1 + cos(c)), ©3(¢) = 0.1(1 + sin(2c)),

P1(c) = 0.05(1 + sin(2¢)),  F2(c) = 0.05(1 + cos(2¢)), ¥s(c) = 0.05(1 + sin(3c)).

Moreover, let

tanh(1.2X) + 0.15X - ex (—0.15X2) +1, X>0,
1) = 12(X) = 13(X) = { P

4.8)
tanh(1.2X) + 0.15X - exp(-0.15X*) -1, X <O0.

Then, ChOOSng kll = 3; k21 = 15, k31 = 10, k12 = 28, k22 = 13, k32 = 09, k13 = 32, k23 = 17,

k3 =1.1;,G.=2.0;T. =08, =0.8; g =08; v, =05, v, = -0.5; v3 = -0.5; c = 0.01; p = 0.7;
q=0.7,d=0.5.

The continuous synchronization control inputs of the response system are formulated as
uy (1) = 3 tanh(e;(c)) + 2.8 tanh(e;(7))|e;(¢)| — 3.2 tanh(e;(¢))|e; (¢ — 0.5)]

4.9)
08 (_0'8 ler(01*7 = 0.8er(0)'” — 0.5€;(c) - 0.01) .
ur(¢) = 1.5 tanh(e,(c)) — 1.3tanh(ex(¢))lex(¢)| — 1.7 tanh(ep(¢))lex(c — 0.5)]
20 0.8 07_0.8 L7_05 0.01 (4.10)
+ 22 (<081ex(0"7 = 081ex(0' = 0.5¢2(6) - 0.01).

u3(¢) = 1.0 tanh(es(c)) — 0.9tanh(es3(¢))|es(¢)] — 1.1 tanh(ez(c))|es(c — 0.5)|

2.0 (4.11)
+ == (~0.81e3(0)™” = 0.8 lex(0)]'” = 0.5e3(c) - 0.01).
0.8
The synchronization error is defined as
ei(0) = Xi(o)-Yi(o), i=12,3, 4.12)
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where e;(c) represents the state deviation between the response and drive systems.Through the
preceding analysis, all conditions specified in Corollary 3.1 are satisfied.Consequently, the response
system (4.3) achieves fixed-time synchronization with the drive system (4.1) within a prescribed
settling time 7T'y,,x, With the error norm satisfying

li%n lle;(o)|| = 0. (4.13)

Upon implementation of the synchronization controller in the response system (4.3), the state
trajectories exhibit asymptotic convergence to those of the drive system (4.1). Full synchronization
is attained within a predetermined convergence duration 7,,,. Notably, Figure 4 demonstrates that
the synchronization error stabilizes to zero and remains negligible thereafter. These simulation results
validate the theoretical findings of robust fixed-time synchronization presented in this work.

Synchronization Error e;
151 :

— €

€3
— — —datal
.......... Control On

Error

6 7 8 9 10

Time (s)

Figure 4. Synchronization error dynamics in the controlled drive-response system pair (4.1)—
(4.3).

Example 4.3. In 3-D memristive Cohen-Grossberg neural networks,we choose the difference system-
specific parameters as:

71(¢, X) = 12(¢, X) = 13(c, X) = 0.54X,

02 -0.1 0.05 0.15 -0.1 0.08
(aij)3><3 =| 0.1 0.3 -0.05 , (Clij)3><3 =1 0.1 0.2 -0.1 ,
005 01 02 0.08 0.1 0.15

0.05 -0.02 0.01 0.1 0.15 -0.05
(bij)3x3 =1-0.05 0.1 -0.02], (gij)xz=|-0.1 0.1 0.15 |,
0.01 -0.05 0.1 -0.05 0.15 0.1

0.1 0.05 0.03 0.05 0.1 0.02
(Tij)3x3 =[0.05 0.1 0.03|, (Si)sx3=|01 005 0.02{,

0.03 0.03 0.1 0.02 0.02 0.1
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1
=0.2, =0.1, =0.15, d(X)=——, i=1,2,3,
Vi 12 V3 (X) T o X i
I;(¢) = 0.1sin(c), I©(c)=0.2cos(c), I;3(c)=0.15sin(2¢),

01(c) = 0.1(1 + sin(c)), 2(c) = 0.1(1 + cos(c)), ©3(c) = 0.1(1 + sin(2c¢)),

% (c) = 0.05(1 + sin(2¢)), (c) = 0.05(1 + cos(2¢)), ¥5(c) = 0.05(1 + sin(3¢)).
Let

tanh(1.2X) + 0.15X - exp(-0.15X*) +1, X >0,
11X = 12(X) = 13(X) = { P 4.14)

tanh(1.2X) + 0.15X - exp(=0.15X?) -1, X <O.

Comparison of the system error trajectories and convergence times under the control method
proposed in controller (3.1) and traditional methods.

From the controller error comparison graph (Figure 5), both errors remain at a high level with no
significant attenuation before the control is activated. After the control takes effect, the error of the
proposed controller shows a rapid downward trend, and its error amplitude remains lower than that
of the traditional controller throughout the observation period, with the gap gradually widening over
time. Eventually, the error of the proposed controller approaches 0, while the error of the traditional
controller, although decreasing, remains at a relatively high level and fails to converge effectively.
Overall, this indicates that the designed novel controller is significantly superior to the traditional

controller in terms of error attenuation rate, error suppression degree, and convergence effect, fully
verifying the effectiveness and advantages of the proposed control strategy.

New vs Traditional

3 — llepre(®)l2
\ = = = lew(®)]:
L | Control On

o<}

[6,] [} ~
T
-
-

Error Norm
N
T

Time (s)

Figure 5. Temporal dynamics of the synchronization discrepancy in the master-slave
configuration comprising systems (4.1) and (4.3) with implemented control.

4.2. Numerical example of adaptive controller

In this section, we will conduct a comparative analysis of the adaptive control strategy and the fixed-
gain control strategy. The system model and the selection of various system parameters are exactly the
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same as those in Example 4.1, and the following two controllers are considered:
u1(¢) = —1.8sign(e1(0)) — &()sign(e1(0))|e1 (0] — 1.2sign(e1(0)ler (¢ — 0.5)), (4.15)

uy(¢) = —1.8sign(ey(¢)) — 2.5sign(ex(¢))lex ()| — 1.2sign(e,(¢))lex(c — 0.5))), (4.16)

where ££,(c) = 5.0 - | (1], £(0) = 0.2.

Figure 6 presents the neuron state trajectories and synchronization time characteristics of the
drive system x;, the response system under fixed-gain control yfli", and the response system under
adaptive control y"lldp . Based on the image data, the following conclusions can be drawn: In terms
of synchronization efficiency, the synchronization time of the adaptive control t,q, = 2.70s is
approximately 0.39 s shorter than that of the fixed-gain control #4q = 3.09 s, enabling the response
system to achieve state synchronization with the drive system more quickly. Regarding trajectory
tracking performance, the trajectory of yi‘dp under adaptive control is more closely aligned with that of
the drive system x; throughout the entire process. Especially within the time interval of O ~ 4s, the
state deviation between y?dp and x; is much smaller than that between y?" (under fixed-gain control)
and x; (with the maximum deviation of y!* being approximately 0.5 state units). In terms of practicality,
considering that neuron systems exhibit nonlinear and time-varying dynamic characteristics, fixed-gain
control is difficult to adapt to the dynamic changes of the system due to its unadjustable parameters.
In contrast, adaptive control can accurately match the system characteristics by adjusting parameters
in real time, ultimately demonstrating better control performance in both synchronization efficiency
and tracking accuracy, and thus is more suitable for the synchronization control scenario of neuron
systems.

State trajectories of neuron
|

Hl
tfixed _3g9 g
1+ sync ~

Dhade 5706
: Isync_ :

State
S
(6]

Drive system x,

- - —Response (fixed gain) y™

Response (adaptive) yfdp

0 2 4 6 8 10
Time t (s)
Figure 6. Comparative analysis of the adaptive control strategy and the fixed-gain control

strategy.

5. Conclusions

This paper addresses the synchronization problem in prescribed-time and fixed-time settings
for fuzzy Cohen-Grossberg neural networks with discontinuous activation functions. To achieve
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synchronization within a specified time for the drive-response systems, we examine the fixed-time
stability of the error dynamics between the drive and response systems. A new lemma for prescribed-
time stability is developed, utilizing advanced inequality techniques to provide a more precise estimate
of the settling time for discontinuous systems. Building upon this newly derived lemma, we establish
sufficient conditions for the prescribed-time stability of a class of fuzzy Cohen-Grossberg neural
networks, which include time-varying delays. The theoretical framework integrates non-smooth
analysis methods for managing discontinuous dynamics, alongside time-delay compensation strategies,
to show that synchronization errors can converge to zero within a user-defined period while ensuring
robustness against discontinuous disturbances and time-delay impacts. Compared to traditional
methods, the proposed approach improves settling time estimates and offers less conservative stability
conditions. Numerical simulations confirm the validity of the theoretical results across different
discontinuous activation patterns. This work advances synchronization control techniques for neural
networks and contributes to the understanding of prescribed-time stability in non-smooth dynamical
systems.
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