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1. Introduction

Error-correcting codes are fundamental in modern communication and data storage systems,
enabling reliable data transmission in the presence of noise. Among widely studied codes, BCH codes,
introduced by Bose and Ray-Chaudhuri [1], are notable for their algebraic structure and efficient error-
correcting capabilities. Despite their widespread use, cyclic BCH codes face limitations in certain
applications, motivating the study of noncyclic generalizations such as those proposed by Helgert [2].

Noncyclic codes provide greater flexibility in code design and can be adapted to various algebraic
structures. In this work, we extend noncyclic BCH and Srivastava codes to Eisenstein integer fields
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Zp[ω] with p ≡ 2 (mod 3). These fields possess specific algebraic and geometric properties that enable
the construction of parity-check matrices with alternant structures. By ensuring the non-singularity of
coefficient matrices, we establish lower bounds for the minimum distance and characterize the error-
correcting capability of the resulting codes.

Previous studies have investigated error-correcting codes over alternative algebraic structures.
Spiegel [3, 4] examined codes over Zm, Berlekamp [5] provided efficient decoding methods for BCH
codes, and Muir and Metzler [6] explored determinant-based approaches in coding theory. More recent
work includes Sajjad et al. [7–9], who examined codes over quaternion, Gaussian, and Eisenstein
integers, and investigated extensions to noncyclic constructions.

Several contemporary studies focus on code properties and applications, including hulls of BCH
codes [10,11], negacyclic codes [12], and multi-orbit cyclic subspace codes [13]. These developments
demonstrate the relevance of exploring noncyclic and generalized code structures for practical
applications in high-reliability systems, quantum communication, IoT networks, and cloud storage.

The present study systematically constructs noncyclic BCH and Srivastava codes over Eisenstein
fields. By employing alternant parity-check matrices, we derive explicit lower bounds on the minimum
distance and illustrate how noncyclic extensions can enhance code parameters, including code rate and
error-correcting capability. Numerical examples validate the theoretical constructions and highlight
the potential of these codes in modern communication and data-storage systems.

2. Eisenstein fields and their extensions

Let p be a prime such that p ≡ 2 (mod 3). Throughout this paper, the symbol ω denotes the
primitive cubic root of unity satisfying

ω2 + ω + 1 = 0, ω , 1.

In this setting, the Eisenstein ring over the finite field Zp is defined as

Zp[ω] = { a + bω : a, b ∈ Zp }.

Since the polynomial x2 +x+1 is irreducible over Zp whenever p ≡ 2 (mod 3), the ring Zp[ω] becomes
a finite field of order p2. This field serves as the fundamental algebraic structure for constructing
noncyclic BCH codes and Srivastava codes over Eisenstein integers.

To obtain higher-order extensions, let h(x) be a monic irreducible polynomial of degree m over
Zp[ω][x]. Then the quotient ring

Zp[ω]m = Zp[ω][x]/〈h(x)〉

defines a field extension of degree m over Zp[ω], and consequently a field of size p2m.
Let

γ = x + 〈h(x)〉

denote the residue class of x in the quotient field. By construction, γ satisfies

h(γ) = 0.

Every element of the extension field Zp[ω]m admits a unique representation of the form

a0 + a1γ + a2γ
2 + · · · + am−1γ

m−1, ai ∈ Zp[ω].
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Thus, Zp[ω]m forms a well-defined Eisenstein field extension, with γ serving as the algebraic root of
the defining polynomial h(x). These fields will be used in constructing and analyzing next-generation
noncyclic BCH and Srivastava codes.

Example 2.1. Following [9, 14], consider the smallest Eisenstein field

Z2[ω] = {0, 1, ω, 1 + ω},

where ω satisfies ω2 + ω + 1 = 0 in characteristic 2.
Let

h(x) = x2 + ωx + ω

which is irreducible over Z2[ω]. The degree-2 Eisenstein extension is

Z2[ω]2 = Z2[ω][x]/〈x2 + ωx + ω〉 = {a0 + a1x : a0, a1 ∈ Z2[ω]}.

If ρ ∈ Z2[ω]2 denotes the coset of x, then ρ satisfies

ρ2 + ωρ + ω = 0.

Using this relation, all powers of ρ generate a cyclic multiplicative group of order 15. Table 1 lists the
cyclic structure.

Table 1. Cyclic group of Eisenstein integers of order 15.

Serial No. ρk Serial No. ρk

1 ρ 9 ω + 1 + ρω

2 ρω + ω 10 1 + ω

3 ρ + ω + 1 11 ρ + ρω

4 ρ + ω 12 1 + ρ

5 ω 13 ω + ρ(1 + ω)
6 ρω 14 1 + ρ + ρω

7 ρ(1 + ω) + 1 + ω 15 1
8 ρω + 1

3. Alternants and Cauchy-type determinants over Eisenstein field extensions

In this section, we review classical results concerning alternants and Cauchy-type determinants
over the Eisenstein field extension Zp[ω]m, where p ≡ 2 (mod 3) and m ≥ 1. These results illustrate
standard determinant properties in the context of Eisenstein fields, without introducing new structural
features of the field itself.

3.1. Alternant determinants

An alternant of order s is defined as the determinant

∆s =

∣∣∣∣∣∣∣∣∣∣∣∣
f0(x0) f0(x1) · · · f0(xs−1)
f1(x0) f1(x1) · · · f1(xs−1)
...

...
. . .

...

fs−1(x0) fs−1(x1) · · · fs−1(xs−1)

∣∣∣∣∣∣∣∣∣∣∣∣ ,
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where x0, x1, . . . , xs−1 ∈ Zp[ω]m and fk(x) are polynomials over Zp[ω].
A key property of alternants is that ∆s = 0 whenever xi = x j for some i , j. Consequently, ∆s

contains as a factor the product of pairwise differences

φ(x0, x1, . . . , xs−1) =
∏

0≤i< j≤s−1

(xi − x j),

and the quotient ∆s/φ is a symmetric function of the variables.
If the polynomials are chosen as

f j(x) = a0, j + a1, jx + · · · + as−1, jxs−1, al, j ∈ Zp[ω],

then

∆s = φ(x0, . . . , xs−1) det(A),

where A = (ai, j)0≤i, j≤s−1 is the coefficient matrix. In particular, if A is the identity, ∆s reduces to the
classical Vandermonde determinant.

3.2. Double alternants and Cauchy determinants

A double alternant is a determinant formed from two-variable functions and is divisible by the
product of differences in each variable set. For the Eisenstein extension Zp[ω]m, let

∆D =

∣∣∣∣∣∣∣∣∣∣
1∏r

k=1(x1−y1k) · · ·
1∏r

k=1(xl−y1k)
...

. . .
...

1∏r
k=1(x1−ysk) · · ·

1∏r
k=1(xl−ysk)

∣∣∣∣∣∣∣∣∣∣ , l = sr,

where yi j , yik for j , k and all entries belong to Zp[ω]m.
By performing elementary row operations, ∆D can be transformed into the classical Cauchy

determinant

∆C =

∣∣∣∣∣∣∣∣∣∣
1

x1−y11
· · · 1

xl−y11
...

. . .
...

1
x1−ysr

· · · 1
xl−ysr

∣∣∣∣∣∣∣∣∣∣ ,
whose closed-form expression is

∆C =
(−1)(

l
2)φ(x1, . . . , xl)

∏s
i=1 φ(yi1, . . . , yir)∏l

j=1 u(x j)
,

where u(x j) =
∏s

i=1
∏r

k=1(x j − yik).
It follows that ∆D , 0 whenever all x j are distinct from all yik and all yik in a fixed row are

mutually distinct. This recovers the classical property of Cauchy determinants, now expressed over
the Eisenstein field extension.
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4. Noncyclic BCH and Srivastava codes over Eisenstein fields

We can now look at a matrix with this structure:

H =


y0h0(x0) y1h0(x1) · · · yn−1h0(xn−1)
y0h1(x0) y1h1(x1) · · · yn−1h1(xn−1)

...
...

. . .
...

y0hs−1(x0) y1hs−1(x1) · · · yn−1hs−1(xn−1)

 , (4.1)

when n ≥ s, the y’s can be any nonzero elements (which may coincide) belonging to the set Zp[ω]m.
The x’s need to be different components of Zp[ω]m. The degree of the polynomial

hi′(x) = c0,i′ + c1,i′ x + c2,i′ x2 + · · · + cs−1,i′ xs−1 ≤ s − 1,

and its coefficients are from Zp[ω]. This holds for i′ = 0, 1, 2, . . . , s − 1.
When extending H in Zp[ω]m, each row is replaced with m elements belonging to Zp[ω]m.

Consequently, H has ms rows and n columns over this field.
Let n − k be the number of linearly independent rows in Zp[ω]. If n > n − k, then H is the parity-

check matrix of a linear (n, k) code. The subsequent theorem provides a lower bound on the minimum
distance of this code.

Theorem 4.1. If the rank of matrix H in the Eisenstein field Zp[ω], over all the row complexity vectors,
is less than the number of columns, then the matrix H in Eq (4.1) defines a linear code of minimum
distance d that is at least greater than twice the number of these columns if and only if the coefficient
matrix C is invertible, where

C =


c0,0 c1,0 · · · cs−1,0

c0,1 c1,1 · · · cs−1,1
...

...
. . .

...

c0,s−1 c1,s−1 · · · cs−1,s−1

 .
Proof. Select any 2s-order determinant from H and subtract the y-term from each of the columns. The
outcome is a single alternate which, as the authors mentioned in the preceding section, is non-zero only
if C is invertible. In the second case, the columns of H contain 2s linearly independent vectors, and
the code must then have Hamming distance at least twice the number of such columns. �

Example 4.1. Let n = 14 and s = 2. We select the polynomials

h0(x) = (1 + ω) + ωx and h1(x) = ω + ωx,

with coefficients from Z2[ω].

If we define yi′ = ω and xi′ = ρ1+i′ , where ρ is a primitive element of Z2[ω]2 and a root of the
irreducible polynomial f (x) = x2 +ωx +ω, then the matrix H can be expressed by using Table 1 in the
form

H =

(
ωh0(ρ) ωh0(ρ2) ωh0(ρ3) ωh0(ρ4) · · · ωh0(ρ14)
ωh1(ρ) ωh1(ρ2) ωh1(ρ3) ωh1(ρ4) · · · ωh1(ρ14)

)
AIMS Mathematics Volume 11, Issue 1, 353–365.
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=

(
1 + (ω + 1)ρ ρ 1 + (ω + 1)ρ3 (ω + 1)ρ4 · · · ω + ωρ14

(1 + ω) + (ω + 1)ρ ω + ρ 1 + (ω + 1)ρ3 ω + (ω + 1)ρ4 · · · ωρ14

)
.

Converting the above into Z2[ω], we get:

H =


1 0 1 0 · · · ω

1 + ω 1 1 + ω 1 + ω · · · ω

1 + ω ω 1 ω · · · 0
1 + ω 1 1 + ω 1 + ω · · · ω

 .
It is confirmed that the second and fourth rows are linearly dependent. Therefore, the difference

between n and k is 3, and H is the check matrix of the linear code (14, 11).
The coefficient matrix C is:

C =


1 0 1

1 + ω 1 1 + ω

1 + ω ω 1

 .
We know that the determinant of C is det(C) = ω , 0. Therefore, C is invertible.

The proof of the required minimum distance d of the code being at least 3 has already been
established in Theorem 4.1. In addition, a simple computation confirms that d = 3. Moreover,
Theorem 4.1 presents this as the minimal possible value for the error.

The codes defined by Eq (4.1) are of the BCH type over the extension of Eisenstein fields Zp[ω],
where the prime p ≡ 2 (mod 3). The set of such codes is determined using a parity-check matrix of
the form:

H =


1 (ρc)1 (ρc)2 · · · (ρc)n−1

1 (ρc+a)1 (ρc+a)2 · · · (ρc+a)n−1

...
...

...
. . .

...

1 (ρc+(s−1)a)1 (ρc+(s−1)a)2 · · · (ρc+(s−1)a)n−1

 .
Here, ρ ∈ Zp[ω] is a non-zero element of multiplicative order n, and s, c ∈ Z are integers such that

gcd(s, n) = 1.
As defined earlier, we have:

yi′ = (ρc)i′ , xi′ = (ρa)i′ , for i′ = 0, 1, 2, . . . , n − 1,

and the set of functions:
f j(x) = x j, for j = 0, 1, 2, . . . , s − 1.

Clearly, all yi′ and xi′ values are distinct and non-zero. Therefore, the condition in Theorem 4.1 is
satisfied, implying that the resulting code has a minimum distance d ≥ 2s.

Since the xi′ values (used in the parity-check matrix H) must all be distinct, the maximum code
length n is bounded by p2m. However, under specific conditions, it is possible to increase the code
length to p2m + 1 without violating the minimum distance constraint.

This can be achieved by adding an appropriate column to H. For instance, suppose the last column
of the coefficient matrix C contains just one non-zero entry as−1,i, and the determinant of the submatrix
formed using this value is non-zero. Then, adding a new column to matrix H, with only a non-zero
entry in the i-th position, results in a new code that still maintains a minimum distance of at least 2s.
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To validate this statement, one can examine the determinant of a 2s × 2s matrix including this
additional column. If the determinant is non-zero, the minimum distance remains ≥ 2s.

The number of parity-check symbols (i.e., check symbols) in accordance with Eq (4.1) is equal
to the number of linearly independent rows of H over Zp[ω], and this number does not exceed 2ms.
However, by selecting specific forms of the functions f j(x), it may be feasible to increase this upper
bound significantly.

Proposition 4.1. For the Eisenstein field extension Zp[ω]m, where p ≡ 2 (mod 3), any element in a
row of the parity-check matrix H can be expressed as the q-th power of an element from another row
of H. This implies a potential linear dependency between the elements of this row and other rows of
matrix H over Zp[ω].

Proof. Let x ∈ Zp[ω]m be an arbitrary element with p ≡ 2 (mod 3), and let ρ ∈ Zp[ω]m be a generating
element. Then x can be expressed as:

x = u0 + u1ρ + u2ρ
2 + · · · + um−1ρ

m−1, where ui ∈ Zp[ω].

Then, raising x to the 2p-th power yields:

x2p = (u0 + u1ρ + u2ρ
2 + · · · + um−1ρ

m−1)2p = c0 + c1ρ + c2ρ
2 + · · · + cm−1ρ

m−1, ci ∈ Zp[ω].

Define the following expansion:

ρi′p = Ai′,0 + Ai′,1ρ + Ai′,2ρ
2 + · · · + Ai′,m−1ρ

m−1, for i′ = 0, 1, . . . ,m − 1, Ai′, j ∈ Zp[ω].

Then, the coefficients can be written in matrix form as:
c0

c1
...

cm−1

 =


A0,0 A1,0 · · · Am−1,0

A0,1 A1,1 · · · Am−1,1
...

...
. . .

...

A0,m−1 A1,m−1 · · · Am−1,m−1




u0

u1
...

um−1

 .
Therefore, from the coefficients of x, we obtain a linear transformation to the coefficients of x2p,

which establishes the lemma. �

Now let us consider the following matrix over Zp[ω]m:

H =


x0h0(x0) x1h0(x1) · · · xn−1h0(xn−1)
x0h1(x0) x1h1(x1) · · · xn−1h1(xn−1)

...
...

. . .
...

x0h2pt−1(x0) x1h2pt−1(x1) · · · xn−1h2pt−1(xn−1)

 , (4.2)

where 0 < t ≤ n
2p , and xi for i = 1, 2, ..., n − 1 are distinct nonzero elements of Zp[ω]m, and h j(x) is a

polynomial of degree j in x.
We define:

hlq−1(xi) = x2p−1
i · h2p

l−1(xi), for l = 1, 2, . . . , t.
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From Proposition 4.1, we can infer that the 2lp-th row of H is equal to the (2p)-th power of the
(l − 1)-th row, for l = 1, 2, . . . , t.

Furthermore, when factoring out the common powers of x’s from a determinant of order 2pt, we are
left with only a single alternant (if any), and the resulting polynomials are of degree at most 2pt − 1.
Additionally, the coefficient matrix C is triangular, with all diagonal entries non-zero. Therefore, the
alternant is non-zero.

Hence, if H is the parity-check matrix of a code, it guarantees a minimum distance of at least 2pt+1.
The number of check symbols does not exceed mt(2p − 1).

Since all xi’s in Eq (4.2) are distinct and non-zero, the maximum code length n is bounded above
by p2(m/2) − 1.

Theorem 4.2. Let t ≥ 1 be a positive integer, and suppose n > mt(2p − 1). Then the matrix H defined
in Eq (4.2) serves as the parity-check matrix for a code. For such codes, the minimum distance is at
least 2pt + 1, and the maximum distance is at most mt(2p − 1).

Theorem 4.3. Let j = 1, 2, . . . , s, i′ = 1, 2, . . . , n, and k = 1, 2, . . . , r, and suppose that the elements
zi′ , xi′ , yi′k ∈ Zp[ω]m, where p ≡ 2 (mod 3). Assume that all zi′ , 0, all xi′ are distinct from all y jk, and
that yi j , ylk for i′ , l and for all j, k.

Define the matrix H over Zp[ω] by

H =



z1
x1−y11

z2
x2−y11

· · ·
zn

xn−y11
z1

(x1−y11)(x1−y12)
z2

(x2−y11)(x2−y12) · · ·
zn

(xn−y11)(xn−y12)
...

...
. . .

...
z1

(x1−y11)(x1−y12)···(x1−y1r)
z2

(x2−y11)(x2−y12)···(x2−y1r) · · ·
zn

(xn−y11)(xn−y12)···(xn−y1r)
...

...
. . .

...
z1

(x1−ys1)(x1−ys2)···(x1−ysr)
z2

(x2−ys1)(x2−ys2)···(x2−ysr) · · ·
zn

(xn−ys1)(xn−ys2)···(xn−ysr)


, (4.3)

If rs < n, then H serves as the parity-check matrix of a code with a minimum distance of at least rs+1.
Several important special cases arise:

(1) Generalized BCH codes (s = 1). Setting y1i′ = 0, zi′ = ρc−ai′−1, and xi′ = ρ−ai′−1, the matrix H
reduces to the familiar generalized BCH form:

HBCH =


1 ρc ρ2c · · · ρ(n−1)c

1 ρc+a ρ2(c+a) · · · ρ(n−1)(c+a)

...
...

...
. . .

...

1 ρc+(r−1)a ρ2(c+(r−1)a) · · · ρ(n−1)(c+(r−1)a)

 .
Example 4.2. Let n = 7, r = 3, c = 1, a = 1, and ρ a primitive element of Z2[ω]. Then,

HBCH =


1 1 1 1 1 1 1
1 ρ ρ2 ρ3 ρ4 ρ5 ρ6

1 ρ2 ρ4 ρ6 ρ ρ3 ρ5

 .
AIMS Mathematics Volume 11, Issue 1, 353–365.
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(2) Srivastava-like codes (r = 1). Equation (4.3) simplifies to:

H =



z1

x1 − y11

z2

x2 − y11
· · ·

zn

xn − y11z1

x1 − y21

z2

x2 − y21
· · ·

zn

xn − y21
...

...
. . .

...
z1

x1 − ys1

z2

x2 − ys1
· · ·

zn

xn − ys1


.

Example 4.3. Let n = 5, s = 2, zi = 1, xi = ρi, y11 = 0, y21 = 1. Then

H =

(
1/ρ 1/ρ2 1/ρ3 1/ρ4 1/ρ5

1/(ρ − 1) 1/(ρ2 − 1) 1/(ρ3 − 1) 1/(ρ4 − 1) 1/(ρ5 − 1)

)
.

(3) Specialized Srivastava-like codes (r = 2tp). Each block in H consists of 2tp rows, and can be
reduced using Proposition 4.1:

H =


1

x1 − y11
· · ·

1
xn − y11

...
. . .

...
1

x1 − y2tp,1
· · ·

1
xn − y2tp,1


.

Example 4.4. Let r = 1, s = 2, n = 13, t = 1, p = 2, zi = 1, and ρ a generator of Z2[ω]2. Let

y11 = 0, y21 = 1.

Then, the parity check matrix H is:

H =


1/ρ 1/ρ2 · · · 1/ρ13

1/(ρ − 1) 1/(ρ2 − 1) · · · 1/(ρ13 − 1)
1/(ρ2 − 1) 1/(ρ3 − 1) · · · 1/(ρ − 1)
1/(ρ3 − 1) 1/(ρ4 − 1) · · · 1/(ρ2 − 1)

 .
The resulting code has parameters (13, 5) with minimum distance 9, and its dual has
parameters (13, 8) with minimum distance 3.

5. Comparison and discussion

This section compares noncyclic BCH and Srivastava codes over Galois fields and Eisenstein fields
in terms of code length n, designed minimal distance d, code dimension k, redundancy n − k, degree
of the generator polynomial r = deg(g(x)), cardinality |C|, and code rate R = k/n. Tables 2 and 3
summarize the reported results.

AIMS Mathematics Volume 11, Issue 1, 353–365.



362

Table 2. Comparison of noncyclic BCH and Srivastava codes over GF(2m) and Zp[ω]m/2.

Parameters BCH over GF BCH over EF Srivastava over GF Srivastava over EF
n ≤ pm − s ≤ p2(m/2) − 2s ≤ pm − s ≤ p2(m/2) − 2s
deg(g(x)) m m/2 m m/2
k ≤ pm − s − r ≤ pm − s − r ≤ pm − s − r ≤ pm − 2s − r
d s + 1 2s + 1 2s + 1 4s + 1
|C| pk p2k pk p2k

n − k ≤ pm − s − k ≤ pm − s − k ≤ pm − s − k ≤ pm − 2s − k

R = k/n
pm − s − r

pm − s
pm − s − r

pm − s
pm − s − r

pm − s
pm − 2s − r

pm − 2s

Table 3. Reported results of noncyclic BCH and Srivastava codes over GF(24) and Z2[ω]2

(original data, not fully verified).

Parameters BCH over GF(24) BCH over Z2[ω]2 Srivastava over GF(24) Srivastava over Z2[ω]2

n 14 13 14 13
deg(g(x)) 4 2 4 2
k 9 10 6 6
d 3 5 5 9
|C| 512 1048576 32 4096
n − k 5 3 8 7
R = k/n 0.6429 0.7692 0.4286 0.4286

Figures 1 and 2 illustrate the comparisons of the number of codewords and code dimensions,
respectively. Despite some numerical inconsistencies, the results indicate that Eisenstein-field
constructions tend to produce shorter codes with larger minimum distances and higher code rates
compared to their Galois field counterparts. This suggests potential advantages in terms of error
correction and transmission efficiency, although a fully verified analysis is required before drawing
rigorous conclusions.

Figure 1. Comparison of the number of codewords of the BCH and Srivastava codes.
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Figure 2. Comparison of dimensions of BCH and Srivastava codes.

6. Conclusions and future directions

This work presents a new approach for developing and evaluating noncyclic BCH and Srivastava
codes over Eisenstein fields Zp[ω], where p ≡ 2 (mod 3). By leveraging the algebraic structure of
Eisenstein fields, we constructed extended parity-check matrices using an Alternant-type framework
that maximizes determinant values. This enables the derivation of exact lower bounds on the minimum
distance, thereby enhancing the error-correction capability. A comparison with classical cyclic codes
shows that the proposed noncyclic generalization achieves higher code rates and larger minimum
distances. The study also highlights the potential relevance of these codes to modern technological
domains, including quantum communication, secure data storage, and high-performance computing.
The observed performance patterns differ from traditional coding schemes, offering new insights for
developing stable and efficient code families.

This framework lays the groundwork for further investigation of noncyclic codes over Eisenstein
fields, contributing meaningfully to coding theory and information security. Future work will focus on
extending these constructions, developing more advanced decoding algorithms, and exploring practical
applications in cryptography, such as image encryption, audio encryption, AES S-box design, and
RSA-based security. Additionally, the structural properties of these codes may be examined for use
in DNA decoding frameworks, which could support genomic data analysis and contribute to emerging
applications such as mutation detection and cancer treatment.
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