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Abstract: Deep Bayesian networks (DBNs) having deep recurrent neural network (DRNN)
topography, effective forward-backward learning and innate model selection capabilities are
introduced. DBNs provided randomness, Bayes’ factor methods and efficient gradient-free
expectation-maximization-based (EM) learning to the DRNN layout. DBN’s learning, simulation and
Bayes’ factor capabilities provided an effective generative adversarial network (GAN) in the sequential
(RNN) setting. Consequently, deep fakes with real probabilistic models could be created, based upon
training data. Alternatively, DBNs could be thought of as some super generalization of hidden Markov
models (HMMs), which have inputs and multiple hidden layers. The proofs establishing the above
claims were based upon the novel idea to transform the whole network to a completely independent
network where the analysis is trivial using a Girsanov like theorem.
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1. Introduction

Feedforward neural networks (NNs) resemble input-output mappings while recurrent neural
networks (RNNs) allow feedback. RNNs model phase transitions (using Hopfield type RNNs) or
handle sequential data (using Deep RNNs), like time series or natural language data, by maintaining an
internal memory of previous inputs. RNNs can be traced back to the Ising model created and analyzed
by [7,11], which is a nearest-neighbor connected RNN with the nodes only taking two values. [1] made
this architecture adaptive and [5] generalized and popularized the learning of this class of RNN, which
have become known as Hopfields.

Deep recurrent neural network (DRNN) are generally non-thresholded types of RNNs that learn to
recognize sequential data patterns. They have input, hidden and output layers like feedforward NNs
but can take the output from one layer of recurrent unit and feed it into the next recurrent unit (see
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Figure 1), allowing the network to capture more complex relationships between the input and output
sequences. The number of layers in a deep RNN can vary depending on the complexity of the problem
being solved, and the number of hidden units in each layer can also be adjusted. Recently, transformers
have been viewed as infinitely deep RNN (see [13]).
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Figure 1. Deep recurrent neural network expanded in time.

We look at the DRRN a little closer because the model we introduce in this paper shares a similar
structure. As shown in Figure 1, the current output usually does not depend upon prior ones. Indeed,
if W’s represent weight matrices, b’s bias vectors and σ’s represent different activation functions, then
the DRNN equations are:

X1
t = σ

1(W1
U · Ut +W1

X · X
1
t−1 + b1),

X2
t = σ

2(W2
1 · X

1
t +W2

X · X
2
t−1 + b2),

...

XL
t = σL(WL

1 · X
L−1
t +WL

X · X
L
t−1 + bL),

Yt = WY · XL
t + bY ,

where W · x denotes matrix multiplication and each scalar activation function σ is applied separately
to each component. For notational convenience, we let X0

t = Ut for all t, N l be the dimension of the l
layer, so W i

1, W i
X are N i × N i−1 while bi is N i, and θ denote the collection of weights W and biases b

to be learned. The network can be made arbitrarily deep by choosing a large enough L. The universal
approximation theorem of [14] says that any open dynamical system with continuous coefficient can
be approximated arbitrarily well by a DRNN with L = 1 and any T by letting N1 → ∞.

The system parameters Θ (the W’s and b’s here) are normally learned by some adaptive stochastic
gradient method like ADAM but these suffer from the vanishing gradient issue (see [6]) when L and/or
T gets large. In general, DRNNs have the advantages of allowing inputs, multiple hidden layers,
universal approximation of dynamical systems and highly refined computer packages. They have the
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general weaknesses of having no observation dependence, being completely deterministic, having no
model selection and being difficult to learn due to the vanishing/exploding gradient issue. Still, DRNNs
are particularly useful in applications where there is a lot of sequential data to process, like speech
recognition (Amazon’s Alexa, Apple’s Siri), natural language processing (Google Translate), music
generation (Magenta’s MusicVAE), autonomous driving (Waymo), intrusion detection, fraud detection,
protein function prediction, ECG signal denoising, and human activity recognition. Moreover,
tranformers, now considered infinitely deep recurrent networks, are used in Captionbots (Google’s
Show and Tell) and Chatbots (ChatGPT). Long-short-term-memory (LSTM) networks are used as
partial fix to the exploding gradient issue of DRNN but there is no known universal approximation
to dynamical systems for LSTMs. This paper addresses two of main difficulties that arise in using
DRNN, choosing the exact network topography and the vanishing gradient problem when training
large networks, by introducing an alternative (stochastic) network that has a more general layout.

The purpose of this paper is to develop a probabilistic deep recurrent neural network, termed the
deep Bayesian network (DBN), which is parameterized in a different manner. This DBN will generalize
the Markov observation model introduced in [9] and thereby also generalize the hidden Markov model.
Each layer, including the input and output, is a Markov chain that depends on the previous layer. In
the case of the first hidden layer, the Markov chain dependence is on the input, which can be a control
based upon prior outputs. More precisely,

Definition 1.1. Suppose (Ω,F , P) is some probability space. Then, {(Un, X1
n , X

2
n , ..., X

L
n , Yn), n ≥ 0} is a

(r, p, q, µ) DBN on (Ω,F , P) if:

(1) The input {Un, n ≥ 0} is a conditional ru,̂u(y)-Markov chain whose transition probabilities can
depend upon the prior output (if any) i.e.

P(Un = û|Un−1 = u,Yn−1 = y; {Xl
j}

l≤L
j<n, {U j} j<n−1, {Y j} j<n−1) = ru,̂u(y);

(2) The first hidden layer {X1
n , n ≥ 1} is a conditional p1

x,̂x(̂u)-Markov chain whose transition
probabilities depend upon the input (if any) i.e.

P(X1
n = x̂|X1

n−1 = x,Un = û; {Xl
j}

l≤L
j<n, {U j} j<n, {Y j} j<n) = p1

x,̂x(̂u);

(3) The ith hidden layer {Xi
n, n ≥ 1}, 1 < i ≤ L, is a conditional pi

x,̂x(x̂i−1)-Markov chain whose
transition probabilities depend upon the prior layer i.e.

P(Xi
n = x̂|Xi

n−1 = x, Xi−1
n = x̂i−1; {Xl

n}
l<i−1, {Xl

j}
l≤L
j<n, {U j} j≤n, {Y j} j<n) = pi

x,̂x(x̂i−1);

(4) The output layer {Yn, n ≥ 1} is a conditional qy,̂y(x̂L)-Markov chain whose transition probabilities
depend upon the last hidden layer i.e.

P(Yn = ŷ|Yn−1 = y, XL
n = x̂L; {Xl

n}
l<L, {Xl

j}
l≤L
j<n, {U j} j≤n, {Y j} j<n−1) = qy,̂y(x̂L);

(5) The joint initial distribution satisfies µ(A) = P(U0, X1
0 , ..., X

L
0 , Y0 ∈ A) for Borel A

for all n, u, û, x, û, y, ŷ.

Remark 1.2. In (3), there is double restriction on Xi
n−1 through Xi

n−1 = x and {Xl
n}

l≤L
j<n to avoid overly

complicating the notation. The second one becomes meaningless for the ith-layer in presence of the
first one Xi

n−1 = x. A similar notation simplification is done in (2).
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Remark 1.3. We set X0
j = U j, XL+1

j = Y j for all j for notational ease.

These conditions collectively establish that the hidden layers are Markov given the past inputs
and observations. Indeed, it follows from the multiplication rule and the previous definition that for
j ∈ {1, ..., L}

P
({

Xl
n+1 = x̂l

} j
l=1
| Un+1 = x̂0,

{
Xl

n = xl
} j

l=1
,
{
Xl

j

}l≤L

j≤n−1
,
{
U j

}
j≤n
,
{
Y j

}
j≤n

)
(1.1)

= P
(
X j

n+1 = x̂ j
∣∣∣ {Xl

n+1 = x̂l
} j−1

l=1
,Un+1 = x̂0,

{
Xl

n = xl
} j

l=1
,
{
Xl

j

}l≤L

j≤n−1
,
{
U j

}
j≤n
,
{
Y j

}
j≤n

)
× P
(
X j−1

n+1 = x̂ j−1
∣∣∣ {Xl

n+1 = x̂l
} j−2

l=1
,Un+1 = x̂0,

{
Xl

n = xl
} j

l=1
,
{
Xl

j

}l≤L

j≤n−1
,
{
U j

}
j≤n
,
{
Y j

}
j≤n

)
× · · · × P

(
X1

n+1 = x̂1 | Un+1 = x̂0,
{
Xl

n = xl
} j

l=1
,
{
Xl

j

}l≤L

j≤n−1
,
{
U j

}
j≤n
,
{
Y j

}
j≤n

)
=

j∏
l=1

pl
xl ,̂xl

(
x̂l−1
)
,

where x̂0 = u. In a similar way, one can show
{
U j, {Xl

j}
L
l=1, Y j

}
j≤n

is Markov

P
(
Un+1 = û,

{
Xl

n+1 = x̂l
}
, Yn+1 = ŷ

∣∣∣Un = u,
{
Xl

n = xl
}
, Yn = y;

{
U j,
{
Xl

j

}
, Y j

}
j<n

)
(1.2)

= P
(
Yn+1 = ŷ

∣∣∣Yn = y,
{
Xl

n+1 = x̂l
}
,Un+1 = û,Un = u,

{
Xl

n = xl
}

;
{
U j,
{
Xl

j

}
, Y j

}
j<n

)
×P
({

Xl
n+1 = x̂l

}
|
{
Xl

n = xl
}
,Un+1 = û, Yn = y,Un = u;

{
U j,
{
Xl

j

}
, Y j

}
j<n

)
×P
(
Un+1 = û |Un = u,Yn = y,

{
Xl

n = xl
}
;
{
U j,
{
Xl

j

}
, Y j

}
j<n

)
= qy,̂y(x̂L)

 L∏
l=1

pl
xl ,̂xl

(
x̂l−1
) ru,̂u(y),

where the last line is the transition probability for
{
U j, {Xl

j}
L
l=1, Y j

}
j≤n

.

The weight and bias parameters of the usual DRNN are replaced with the new model parameters θ
of µ, ru,̂u(y), pi

x,̂x(x̂i−1) all i, qy,̂y(x̂L) for DBN. This is why we also refer to DBN as a reparameterized
DRNN. With these new parameters we will show that there is a Baum-Welch-like expectation-
maximization algorithm that is computationaly stable for learning these new parameters. In particular,
there is no (vanishing) gradient typical for RNN learning. As it is a probabilistic alternative, DBN is a
natural network for representing random time-series, stochastic differential equations or other Markov
phenomena. DBN can be used as DRNN but also for such things as learning stochastic differential
equations or producing deep fakes backed by known stochastic models. The main advantages of this
model over DRNN are: It allows input and observation dependence as shown in Figure 2, model
selection and model averaging, Baum-Welch-like EM learning and Viterbi maximally likely hidden
sequence determination.
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Figure 2. Deep Markov observation model.

The point of this paper is to introduce a new model and the mathematics behind it. There are
obviously many possible interesting applications. For example, this work extends the models in [9] so
deepfake applications in that paper apply to our present work. Furthermore, these models seem to be
able to replace particle filters (like those in [2, 10]) so applications like those in [3, 4, 12] should apply
as well as many others. However, proper investigation of applications will be left to future works so as
not to lose focus.

2. Reference space

Motivated in part by [8], our approach is to construct the real or target DBN model through measure
transform, starting from a canonical, overly simple, proposal model for {(Un, X1

n , X
2
n , ..., X

L
n , Yn), n ≥ 0}.

The proposal model existence is obvious and it is created on a measurable space (Ω,F ) with a reference
measure P. With respect to this reference measure, we assume that:

(1) The input {Un, n ≥ 0} is a conditional ru,̂u(y)-Markov chain whose transition probabilities can
depend upon the prior output (if any). Hence, the input model is the same under the proposal and
DBN models. This is because both the input and output sequences are known during training and
the input model just depends upon these two sequences;

(2) {X1
n , n ≥ 1} is a p1

x,̂x-Markov chain. It does not depend upon input nor output;
(3) Each {Xi

n, n ≥ 1} is a pi
x,̂x-Markov chain. It does not depend upon prior hidden layers;

(4) {Yn, n ≥ 1} is a qy,̂y-Markov chain. It does not depend upon the hidden layers;
(5) P(U0 = u0, X1

0 = x1, ..., XL
0 = xL, Y0 = y0) = µ1(x1) · · · µL(xL)µUY(u0, y0) for some probability

measures µ1, ..., µL, µUY .

The calculations are trivial for the proposal model as we can treat each layer on its own with the
exception that the input transitions can still depend upon the output. The proposal model clearly exists
and is easy to simulate. We turn to changing the proposal into the target.
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Let Ft = σ{Us, X1
s , ..., X

L
s , Ys; s ≤ t,Ut+1} be the information up to t and define the likelihood ratio

At =
µ
(
U0, X1

0 , .., X
L
0 , Y0

)
µ1

(
X1

0

)
· · · µL

(
XL

0

)
µUY (U0, Y0)

t∏
n=1

qYn−1,Yn

(
XL

n

)
qYn−1,Yn

L∏
i=1

pXi
n−1,X

i
n
(Xi−1

n )

pXi
n−1,X

i
n

. (2.1)

Let E denote (conditional) expectation using probability measure P. Then, the likelihood A defined
above will turn the proposal model into the target DBN model.

Lemma 2.1. {At, t ≥ 0} is a {Ft}t≥0-martingale with respect to P. If {(Ut, {Xl
t}l≤L, Yt), t ∈ {0, 1, 2, ..., T }}

is the proposal model defined above in (1)–(5) with respect to P, then it becomes the target (r, p, q, µ)
DBN model with respect on (Ω,FT , P), where dP

dP
= AT on FT .

Proof. The martingale property follows from the tower property and

E [At+1 | Ft] = AtE

qYt ,Yt+1

(
XL

t+1

)
qYt ,Yt+1

 L∏
i=2

pXi
t ,X

i
t+1

(Xi−1
t+1)

pXi
t ,X

i
t+1

 pX1
t ,X

1
t+1

(Ut+1)

pXi
t ,X

i
t+1

| Ft

 (2.2)

= At

∑
x1

t+1

· · ·
∑
xL

t+1

∑
yt+1

qYt ,yt+1

(
xL

t+1

)  L∏
i=2

pXi
t ,x

i
t+1

(xi−1
t+1)

 pX1
t ,x

1
t+1

(Ut+1)

= At,

using the previsibility of U with {Ft} defined above and summing from the inside out. Next, using the
Bayes’ rule lemma to follow immediately (with s = t and Gs = Fs) and (2.2), one has that

P
(
Ut+1 = u, {Xi

t+1 = xi}Li=1, Yt+1 = y | Ft

)
(2.3)

=
E
[
At+11Ut+1=u,{Xi

t+1=xi},Yt+1=y | Ft

]
E [At+1 | Ft]

=

AtE
[

qYt ,y(xL)
qYt ,y

[
L∏

i=2

pXi
t ,x

i (xi−1)

pXi
t ,x

i

]
pX1

t ,x
1 (u)

pXi
t ,x

i
1Ut+1=u,{Xi

t+1=xi},Yt+1=y | Ft

]
At

= qYt ,y

(
xL
)  L∏

i=2

pXi
t ,xi(xi−1)

 pX1
t ,x1(u)rUt ,u(Yt),

so the DBN model has been achieved by measure change. □

We just used the following Bayes’ rule with Gt = Ft. Later, we will use it with Gt = σ{Y1, ...,Yt}

when concerned about the filter.

Lemma 2.2 (Bayes). Let dP
dP
= AT on FT , Gs ⊂ Fs, Zt be a bounded Ft random variable and s ≤ t ≤ T.

Then, E
[
Zt

∣∣∣Gs

]
=

E
[
AtZt

∣∣∣Gs

]
E
[
As

∣∣∣Gs

] .

Proof. Cross multiplying and using martingale property, one needs to show

E
[
E
[
Zt

∣∣∣Gs

]
E
[
As

∣∣∣Gs

]
1F

]
= E [AtZt1F] = E [AT Zt1F]
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for all F ∈ Gs. However, by martingale property for A

E
[
As

∣∣∣Gs

]
= E
[
E
[
AT

∣∣∣Fs

] ∣∣∣Gs

]
= E
[
AT

∣∣∣Gs

]
and then taking out knowns and finally total expectation

E
[
E
[
Zt

∣∣∣Gs

]
E
[
AT

∣∣∣Gs

]
1F

]
= E

[
E[AT E

[
Zt

∣∣∣Gs

]
1F

∣∣∣Gs]
]

= E
[
AT E
[
Zt

∣∣∣Gs

]
1F

]
= E

[
E
[
Zt

∣∣∣Gs

]
1F

]
= E

[
E
[
Zt1F

∣∣∣Gs

]]
= E [Zt1F]
= E [AT Zt1F]

for all F ∈ Gs. □

3. Forward ratio, Filter and Bayes’ factor

In this section, we will introduce the filter for estimating the hidden states based upon back inputs
and outputs. This will be formed in terms of a particular unnormalized filter, which is formed from
the forward ratio that has a nice recursion. The total mass of this forward ratio also gives the Bayes’
factor of the DBN model under question over the canonical proposal model. To ease the notation in
the sequel, we will let

Ui, j =

{
(Ui, ...,U j) j ≥ i
1 j < i

and similar for outputs Y as well as other variables.
The filter, π, is the conditional distribution of the hidden states given the inputs and outputs up to

the current time. Specifically, it is defined as the measure-valued process:

πt({xl}Ll=1) = P
(
{Xl

t} = {x
l} | U1,t, Y1,t

)
(3.1)

for t = 0, 1, ..., T . The filter is often found by normalizing an unnormalized filter. Such an
unnormalized filter can be formed by shifting the forward ratio, which is defined as:

αt({x̂l}Ll=1) =
P(U1,t−1, Y1,t−1, {Xl

t−1 = x̂l}Ll=1 | θ)

P(U2,t−1, Y2,t−1|U1, Y1)
(3.2)

for t = 2, ..., T, T + 1 with

α1({x̂l}Ll=1, u, y) = P({Xl
0 = x̂l}Ll=1,U0 = u,Y0 = y | θ) = µ(u, {x̂l}Ll=1, y). (3.3)

α is also important for determining parameters θ through the EM algorithm and satisfies a very
convenient forward recursion that will help make this EM algorithm efficient. Indeed, it follows by
partitioning, the multiplication rule, (3.2, 3.3) as well as the Markov properties with P and P that
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α2({x̂l})
=
∑

u;{xl};y

P({Xl
0 = xl},U0 = u,Y0 = y)P({Xl

1 = x̂l},U1, Y1 | {Xl
0 = xl},U0 = u,Y0 = y)

=
∑

u;{xl};y

α1

(
{xl}, u, y

)
ru,U1(y)qy,Y1

(
x̂L
) L∏

l=1

pl
xl ,̂xl(x̂l−1),

where x̂0 could also be denoted û, and, for all t = 3, 4, ..., T + 1,

αt({x̂l}) =
qYt−2,Yt−1

(
x̂L
)

qYt−2,Yt−1

∑
{xl}

αt−1

(
{xl}
) L∏

l=1

pl
xl ,̂xl(x̂l−1). (3.4)

Remark 3.1. If not for initial distribution estimation, it would have been simpler to use the
denominator P(U1,t−1, Y1,t−1) instead of P(U2,t−1, Y2,t−1|U1, Y1) in the definition of α. Indeed, several
small simplifications would occur with this natural replacement. However, the proper expectation-
maximization-type update of initial distribution µ would then become problematic.

Remark 3.2. One issue in computing α on real problems when T is large is that α, essentially being
the product of probability ratios, can vary dramatically and become extremely large or small. Hence,
we will use the filter instead of α in our EM algorithm.

To see how to recover the filter π from α, we first note by the definition of conditional expectation
and

E
1U1,t=u1,t ,Y1,t=y1,t

P({Xl
t = xl}Ll=1,U1,t, Y1,t)

P(U1,t, Y1,t)

 (3.5)

=
P({Xl

t = xl}Ll=1,U1,t = u1,t, Y1,t = y1,t)

P(U1,t = u1,t, Y1,t = y1,t)
E
(
1U1,t=u1,t ,Y1,t=y1,t

)
= P({Xl

t = xl}Ll=1,U1,t = u1,t, Y1,t = y1,t)
= E
[
1U1,t=u1,t ,Y1,t=y1,t At1{Xl

t=xl}Ll=1

]
that

E
[
At1{Xl

t }={xl} | U1,t, Y1,t

]
=

P(U1,t, Y1,t, {Xi
t = xi}Li=1)

P(U1,t, Y1,t)
(3.6)

=
P(U1,t, Y1,t, {Xi

t = xi}Li=1)

P(U2,t, Y2,t

∣∣∣U1, Y1)P(U1, Y1)
,

where we just used the multiplication rule in the last equality, and summing over the {xi}

E
[
At | U1,t, Y1,t

]
=

P(U1,t, Y1,t | θ)

P(U1,t, Y1,t)
=

P(U1,t, Y1,t | θ)

P(U2,t, Y2,t

∣∣∣U1, Y1)P(U1, Y1)
. (3.7)
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Then, by (3.1), Bayes’ rule, (3.2), (3.6), and (3.7)

πt({xl}) = P
(
{Xl

t = xl} | U1,t, Y1,t

)
(3.8)

=
E
[
At1{Xl

t }={xl} | U1,t, Y1,t

]
E
[
At | U1,t, Y1,t

]
=
αt+1

(
{xl}
)

bt
, ∀{xl},

where bt is the forward Bayes’ factor bt and full Bayes’ factor Bt are defined as:

bt =
P
(
U1,t, Y1,t | θ

)
P
(
U2,t, Y2,t | U1, Y1

) =∑
{xl

t}

αt+1({xl
t}), ∀t ∈ {1, 2, ..., T } (3.9)

and

Bt = E
[
At

∣∣∣U1,t, Y1,t

]
=

P
(
U1,t, Y1,t | θ

)
P
(
U1,t, Y1,t

) (3.10)

=
bt

P (U1, Y1)

=
bt∑

u0,y0

µUY(u0, y0)ru0,U1(y0)qy0,Y1

, ∀t ∈ {1, 2, ...,T }.

In addition to being the filter, π is a normalized, shifted version of α that does not have extreme value
problems that α does. As such, it is better to use a forward recursion for π than for α. To make this
work effectively, we introduce a new variable ρ that is normalized like π except for the last step, where
it is unnormalized like α.

Proposition 3.3. The filter and forward Bayes’ factor satisfy π0 = µ, b0 = 1

ρt({x̂i}) =


∑

u,{xi},y
πt−1

(
u, {xi}, y

)
ru,U1(y)qy,Y1

(
x̂L
) L∏

l=1
pl

xl ,̂xl(x̂l−1) t = 1,

qYt−1 ,Yt(x̂L)
qYt−1 ,Yt

∑
{xi}

πt−1

(
{xi}
) L∏

l=1
pl

xl ,̂xl(x̂l−1) t > 1,

bt = atbt−1, at =
∑
{xl}

ρt({xl}),

πt({x̂l}) =
ρt({x̂l})

at
,

for t = 1, 2, ..., T. Then, the Bayes’ factor is computed by

Bt =
bt∑

u0,y0

µUY(u0, y0)ru0,U1(y0)qy0,Y1

, ∀t ∈ {1, 2, ...,T }. (3.11)

Proof. The result follows from prior developments (3.4), (3.8)–(3.10) and the linearity of the equations.
□

AIMS Mathematics Volume 11, Issue 1, 272–290.



281

Due to cancellation, the Bayes’ factor compares the target DBN model to the proposal model where
inputs and outputs do not depend upon any hidden state (or input), but rather evolve as

(U0, Y0) ∼ µUY , P
(
Ut = û, Yt = ŷ

∣∣∣Ut−1 = u,Yt−1 = y
)
= ru,̂u(y)qy,̂y.

The one-step predictor and smoother follow from the filter as a simple corollary.

Corollary 3.4. The one-step predictor satisfies:

P
(
{Xl

t+1 = xl} |U1,t, Y1,t

)
=
∑

y

qYt ,y

(
xL
)∑
{xl

t}

πt({xl
t})

L∏
l=1

pl
xl

t ,xl(xl−1), ∀{xl} (3.12)

for t = 1, 2, ..., T while the one-step smoother satisfies:

P
(
{Xl

t−1 = xl} |U1,t, Y1,t

)
=


bt−1
bt

∑
{xl

t}

qYt−1 ,Yt(xL
t )

qYt−1 ,Yt
πt−1({xl})

L∏
l=1

pl
xl,xl

t
(xl−1

t ) t = 2, ..., T,

1
b1

∑
u,{xl

1},y
qy,Y1

(
xL

1

)
ru,U1(y)π0({xl}, u, y)

L∏
l=1

pl
xl,xl

1
(xl−1

1 ) t = 1.
(3.13)

Proof. We first consider the one step predictor. First, it follows by (3.2), (3.6) and the tower property
that

E
[
At+11{Xl

t+1}={x
l} |U1,t, Y1,t

]
=

E
[
αt+2

(
{xl}
)
|U1,t, Y1,t

]
P(U1, Y1)

. (3.14)

Hence, by Bayes’ rule, the martingale property, the tower property, (3.4), (3.8) and (3.10)

P
(
{Xl

t+1} = {x
l} |U1,t, Y1,t

)
=

E
[
At+11{Xl

t+1}={x
l} |U1,t, Y1,t

]
E
[
At | U1,t, Y1,t

] (3.15)

=
E
[
αt+2

(
{xl}
)
|U1,t, Y1,t

]
P(U1, Y1)Bt

=

E

 qYt ,Yt+1(xL)
qYt ,Yt+1

∑
{xl

t}

αt+1

(
{xl

t}
) L∏

l=1
pl

xl
t ,xl(xl−1) |U1,t, Y1,t


bt

=E
[
qYt ,Yt+1(xL)

qYt ,Yt+1

|Yt

]∑
{xl

t}

πt({xl
t})

L∏
l=1

pl
xl

t ,xl(xl−1)

=
∑

y

qYt ,y

(
xL
)∑
{xl

t}

πt({xl
t})

L∏
l=1

pl
xl

t ,xl(xl−1), ∀{xl}

for t = 1, 2, ..., T .
Turning to the smoother, one finds from Bayes’ rule, (2.1) and (3.10) as well as independence under

the proposal model that for t = 2, ..., T
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P
(
{Xl

t−1 = xl} |U1,t, Y1,t

)
=

E
[
At1{Xl

t−1=xl}Ll=1
|U1,t, Y1,t

]
Bt

(3.16)

=

E
[

qYt−1 ,Yt(XL
t )

qYt−1 ,Yt
At−1

L∏
l=1

pxl ,Xl
t
(Xl−1

t )

pxl ,Xl
t

1{Xl
t−1=xl} |U1,t, Y1,t

]
Bt

=

∑
{xl

t}

qYt−1 ,Yt(xL
t )

qYt−1 ,Yt
E
[
At−11{Xl

t−1=xl}|U1,t, Y1,t

] L∏
l=1

pl
xl,xl

t
(xl−1

t )

Bt

=
∑
{xl

t}

qYt−1,Yt

(
xL

t

)
qYt−1,Yt

αt({xl})
bt

L∏
l=1

pl
xl,xl

t
(xl−1

t )

=
bt−1

bt

∑
{xl

t}

qYt−1,Yt

(
xL

t

)
qYt−1,Yt

πt−1({xl})
L∏

l=1

pl
xl,xl

t
(xl−1

t ),

where we used independence, (3.2) and (3.6) again in the second last equality. It follows from Bayes’
rule and the Markov property for (U, Y) under P

P
(
U0 = u,Y0 = y

∣∣∣U1, Y1

)
=

ru,U1(y)qy,Y1
P(U0 = u,Y0 = y)

P(U1, Y1)
(3.17)

=
ru,U1(y)qy,Y1

µUY (u, y)∑
u′,y′

ru′,U1(y′)qy′,Y1
µUY (u′, y′)

,

so when t = 1

P
(
{Xl

0 = xl} |U1, Y1

)
=

E
[
A11{Xl

0=xl}Ll=1
|U1, Y1

]
B1

(3.18)

=

E
[

µ(U0,x1,...,xL,Y0)
µ1(x1)···µL(xL)µUY (U0,Y0)

qY0 ,Y1(XL
1 )

qY0 ,Y1

L∏
l=1

pxl ,Xl
1
(Xl−1

1 )

pxl ,Xl
1

1{Xl
0=xl} |U1, Y1

]
B1

=

∑
u,{xl

1},y

qy,Y1(xL
1)ru,U1 (y)∑

u′ ,y′
ru′ ,U1

(y′)qy′ ,Y1
µUY (u′,y′)µ(u, x

1, ..., xL, y)
L∏

l=1
pl

xl,xl
1
(xl−1

1 )

B1

=
1
b1

∑
u,{xl

1},y

qy,Y1

(
xL

1

)
ru,U1(y)π0({xl}Ll=1, u, y)

L∏
l=1

pl
xl,xl

1
(xl−1

1 ),

since b1 = P(U1, Y1)B1. □

4. Path ratios and path filters

The filter, as defined above, estimates the current hidden state based upon the historical back
observations of the inputs and outputs. However, in many cases such as batch learning one has access
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to whole sequence observations from which to make estimates. In this case, we can define the path
filter

Φt({xl}) = P({Xl
t = xl} | U1,T , Y1,T ) t ∈ {1, 2, ..., T },

Φ0({xl}, u, y) = P(U0 = u, {Xl
0 = xl}, Y0 = y | U1,T , Y1,T ) t = 0,

(4.1)

and
Φt−1,t({xl}, {x̂l}) = P({Xl

t−1 = xl}, {Xl
t = x̂l} | U1,T , Y1,T ) t ≥ 2,

Φ0,1({xl}, u, y, {x̂l}) = P(U0 = u, {Xl
0 = xl}, Y0 = y, {Xl

1 = x̂l} | U1,T , Y1,T ) t = 1,
(4.2)

that estimates the hidden states at all levels at the current and prior time given all observations. Then,
by (4.2), Bayes’ rule and the argument in (3.6) and (3.7)

Φt−1,t({xl}, {x̂l}) =
E
[
AT 1{Xl

t−1=xl},{Xl
t=x̂l} | U1,T , Y1,T

]
E
[
AT | U1,T , Y1,T

] (4.3)

=
νt−1,t

(
{xl}, {x̂l}

)
bT

, ∀{xl}, {x̂l},

for t = 2, 3, ..., T , where bT = E
[
AT | U1,T , Y1,T

]
P(U1, Y1) is the forward Bayes’ factor defined in (3.9)

and full path ratio is defined as

νt−1,t({xl}, {x̂l}) =
P(U1,T , Y1,T , {Xl

t−1 = xl}, {Xl
t = x̂l})

P(U2,T , Y2,T | U1, Y1)
(4.4)

= E
[
AT 1{Xl

t−1=xl},{Xl
t=x̂l}) | U1,T , Y1,T

]
P(U1, Y1),

for t = 2, 3, ..., T . Here we used the definition of conditional expectation again. Similarly, in the case
t = 1 one finds

Φ0,1({xl}, u, y, {x̂l}) =
ν0,1

(
{xl}, u, y, {x̂l}

)
bT

, ∀{xl}, {x̂l}, (4.5)

and full path ratio is defined as

ν0,1({xl}, u, y, {x̂l}) =
P(U1,T , Y1,T ,U0 = u, {Xl

0 = xl}, Y0 = y, {Xl
1 = x̂l})

P(U2,T , Y2,T | U1, Y1)
(4.6)

= E
[
AT 1U0=u,{Xl

0=xl},Y0=y,{Xl
1=x̂l}) | U1,T , Y1,T

]
P(U1, Y1).

The forward ratio α for filter π has a nice forward recursion but is only based upon the back
observations. We often want estimates based upon the whole collection of observations, meaning
we want to use Φ. The path ratio ν for Φ does not have a recursion. However, α or π can be combined
with a backward variable to form the path filter Φ as follows: First, the backward ratio is defined as

βt({x̂l}) =
P(Ut+1,T , Yt+1,T | Ut, Yt, {Xl

t = x̂l}, θ)

P(Ut+1,T , Yt+1,T | Ut, Yt)
(4.7)

for t = 1, ..., T − 1, T (so βT = 1) with

β0({x̂l}, u, y) =
P(U1,T , Y1,T | {Xl

0 = x̂l},U0 = u,Y0 = y, θ)

P(U1,T , Y1,T | U0 = u,Y0 = y)
. (4.8)
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Then, the path ratio is reduced to the forward and backward ratios by the definition of conditional
expectation, the multiplication rule and (3.2), (4.4), (4.7)

νt−1,t({xl}, {x̂l}) (4.9)

=
P({Xl

t−1 = xl}, {Xl
t = x̂l},U1,T , Y1,T )

P(U2,T , Y2,T | U1, Y1)

=
P({Xl

t−1 = xl},U1,t−1, Y1,t−1)rUt−1,Ut(Yt−1)P(Ut+1,T , Yt+1,T

∣∣∣{Xl
t = x̂l},Ut, Yt)

P(U2,t−1, Y2,t−1

∣∣∣U1, Y1)rUt−1,Ut(Yt−1)qYt−1,Yt
P(Ut+1,T , Yt+1,T |Ut, Yt)

×qYt−1,Yt(x̂L)

 L∏
i=1

pi
xi ,̂xi(x̂i−1)


=αt

(
{xl}
) [∏L

i=1 pi
xi ,̂xi(x̂i−1)

]
qYt−1,Yt(x̂L)

qYt−1,Yt

βt

(
{x̂l}
)
,

for all t = 2, 3, ..., T . Hence, the path filter decomposition follows from (3.8), (4.3), (4.9), and
Proposition 3.3:

Φt−1,t({xl}, {x̂l})=
νt−1,t({xl}, {x̂l})

bT
(4.10)

= πt−1

(
{xl}
) [∏L

i=1 pi
xi ,̂xi(x̂i−1)

]
qYt−1,Yt(x̂L)

qYt−1,Yt

χt

(
{x̂l}
)
,

for all t = 2, 3, ..., T , where

χt

(
{x̂l}
)
=

bt−1

bT
βt

(
{x̂l}
)
=
βt

(
{x̂l}
)

at · · · aT
, ∀{x̂l}, t = 1, 2, ...,T. (4.11)

Similarly, in the case t = 1 one finds that

Φ0,1({xl}, u, y, {x̂l})= π0

(
u, {xl}, y

) [∏L
i=1 pi

xi ,̂xi(x̂i−1)
]
qy,Y1(x̂L)

qy,Y1

χ1

(
{x̂l}
)
. (4.12)

Now, it follows by (4.7), (4.8) as well as the Markov properties with P and P that

βt

(
{x̂l}
)

(4.13)

=
∑
{xl}

P(Ut+1,Yt+1,{Xl
t+1= xl}

∣∣∣Ut,Yt,{Xl
t = x̂l})P(Ut+2,T ,Yt+2,T

∣∣∣Ut+1,Yt+1,{Xl
t+1= xl})

P(Ut+1, Yt+1 | Ut, Yt)P(Ut+2,T , Yt+2,T

∣∣∣Ut+1, Yt+1)

=
∑
{xl}

qYt ,Yt+1

(
xL
)

qYt ,Yt+1

βt+1

(
{xl}
) L∏

i=1

pi
x̂i,xi(xi−1)

for all t = T − 1, T − 2, ..., 1 starting from βT = 1 and then

β0

(
{x̂l}, u, y

)
= β0

(
{x̂l}, y

)
=
∑
{xl}

qy,Y1

(
xL
)

qy,Y1

β1

(
{xl}
) L∏

i=1

pi
x̂i,xi(xi−1) (4.14)
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(does not actually depend upon u). Thus,

χt

(
{x̂l}
)
=
∑
{xl}

qYt ,Yt+1

(
xL
)

at qYt ,Yt+1

χt+1

(
{xl}
) L∏

i=1

pi
x̂i,xi(xi−1) (4.15)

for all t = T − 1, T − 2, ..., 1 starting from χT =
1

aT
and then

χ0

(
{x̂l}, y

)
=
∑
{xl}

qy,Y1

(
xL
)

qy,Y1

χ1

(
{xl}
) L∏

i=1

pi
x̂i,xi(xi−1). (4.16)

We can now state the efficient method to compute the path filter:

Theorem 4.1. Suppose that filters πt and ρt are as in Proposition 3.3. Let backward recursion for χ be
given by (4.15), (4.16) starting with χT =

1
aT

. Then, the path filter satisfies:

Φt({x̂l})= ρt

(
{xl}
)
χt

(
{xl}
)
, ∀t = 1, ..., T, (4.17)

Φ0(u, {x̂l}, y)= π0

(
u, {xl}, y

)
χ0

(
{xl}, y

)
, (4.18)

Φt−1,t({xl}, {x̂l})= πt−1

(
{xl}
)[∏L

i=1 pi
xi ,̂xi(x̂i−1)

]
qYt−1,Yt(x̂L)

qYt−1,Yt

χt

(
{x̂l}
)
, ∀t = 2, ...,T, (4.19)

Φ0,1({xl},u, y, {x̂l})= π0

(
u, {xl}, y

) [∏L
i=1 pi

xi ,̂xi(x̂i−1)
]
qy,Y1(x̂L)

qy,Y1

χ1

(
{x̂l}
)

(4.20)

for all u, y, {xl}, {x̂l}.

Proof. The final two equations are established above. The prior ones are then established by summing
out the appropriate index and substitution. □

5. DBN expectation maximization algorithm

In this section, we consider learning all the parameters of the DBN model. Since the input rate
ru,̂u(y) only depends upon inputs and outputs, all of which are observable during the training period,
this rate can be learned by elementary methods and we will move to the other parameters.

Turning to the estimate for the initial condition, we find from Bayes’ rule, total probability and the
DBN assumptions that

µ̌(u, {xl}, y)= P
(
U0 = u, {Xl

0 = xl}, Y0 = y
∣∣∣U1,T , Y1,T

)
(5.1)

=
P
(
U1,T , Y1,T

∣∣∣{Xl
0 = xl},U0 = u,Y0 = y

)
P
(
{Xl

0 = xl},U0 = u,Y0 = y
)

P
(
U1,T , Y1,T

) .

Hence, if we divide numerator and denominator of (5.1) by

P(U1,T , Y1,T |U0 = u,Y0 = y) = ru,U1(y)qy,Y1

 T∏
j=2

rU j−1,U j(Y j−1)qY j−1,Y j

 , (5.2)
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then we get from (4.8) and (3.9) the initial distribution update

µ̌
(
u, {xl}, y

)
=

ru,U1(y)qy,Y1
β0({xl}, u, y)µ

(
u, {xl}, y

)
bT

(5.3)

= ru,U1(y)qy,Y1
χ0({xl}, u, y)µ

(
u, {xl}, y

)
,

which is already reduced to the forward and backward ratios as well as the prior estimates.
Assigning the new rate to be the expected average rate, we have that:

p̌1
x1 ,̂x1(u) =

T∑
t=1

P
(
X1

t−1 = x1, X1
t = x̂1,Ut = u

∣∣∣U1,T , Y1,T

)
T∑

t=1
P
(
X1

t−1 = x1,Ut = u
∣∣∣U1,T , Y1,T

) (5.4)

=

∑̂
u,y

∑̂
x2,L

∑
x2,L
Φ0,1({xl}, û, y, {x̂l})1U1=u +

T∑
t=2

∑̂
x2,L

∑
x2,L
Φt−1,t({xl}, {x̂l})1Ut=u

∑̂
u,y

∑
x2,L
Φ0(̂u, {xl}, y)1U1=u +

T∑
t=2

∑
x2,L
Φt−1({xl})1Ut=u

.

Similarly, the new estimates for the rates for the ith hidden layer are:

p̌i
xi ,̂xi(x̂i−1) =

T∑
t=1

P
(
Xi

t−1 = xi, Xi
t = x̂i, Xi−1

t = x̂i−1
∣∣∣U1,T , Y1,T

)
T∑

t=1
P
(
Xi

t−1 = xi, Xi−1
t = x̂i−1

∣∣∣U1,T , Y1,T

) (5.5)

=

∑
{̂ξl}

∑
{ξl}

[∑
u,y
Φ0,1({ξl}, u, y,{̂ξl}) +

T∑
t=2
Φt−1,t({ξl},{̂ξl})

]
1ξi=xi ,̂ξi−1=x̂i−1 ,̂ξi=x̂i

∑
{̂ξl}

∑
{ξl}

[∑
u,y
Φ0,1({ξl}, u, y,{̂ξl}) +

T∑
t=2
Φt−1,t({ξl},{̂ξl})

]
1ξi=xi ,̂ξi−1=x̂i−1

for i ∈ {2, ..., L} and the new output layer rate estimates are:

q̌y,̂y(x̂L) =

∑
u

∑
{xl}

∑
x̂1,L−1
Φ0,1({xl}, u, y, {x̂l})1Y1=̂y +

T∑
t=2

∑
x̂1,L−1
Φt({x̂l})1Yt−1=y,Yt=̂y

∑
u

∑
{xl}

∑
x̂1,L−1
Φ0,1({xl}, u, y, {x̂l}) +

T∑
t=2

∑
x̂1,L−1
Φt({x̂l})1Yt−1=y

. (5.6)

Now, we have all the equations required for the forward-backward expectation-maximization
algorithm to determine the system parameters, which is given in Algorithm 1.
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Algorithm 1: EM algorithm for DBN.

Data: Input, Output sequence: U1, Y1; U2, Y2; ...; UT , YT

Input: Initial Estimates: {pl
xl→x̂l(x̂l−1)}, qy→ŷ(x̂L), µ(u, {xl}, y)

Output: Final Estimates: {pl
xl→x̂l(x̂l−1)}, qy→ŷ(x̂L), µ(u, {xl}, y)

Initialization: π0 = µ; b0 = 1

1 while p, q, and µ have not converged do
/* Compute forward Bayes’ and Filter. */

2 ρ1({x̂i})=
∑

u,{xi},y
π0

(
u, {xi}, y

)
ru,U1(y)qy,Y1

(
x̂L
) L∏

l=1
pl

xl ,̂xl(x̂l−1)

3 for t = 1, 2, ..., T do
4 at =

∑
{xl}

ρt({xl}), bt = atbt−1, πt({x̂l}) = ρt({x̂l})
at

.

5 If t , T then ρt+1({x̂i})=
qYt ,Yt+1(x̂L)

qYt ,Yt+1

∑
{xi}

πt

(
{xi}
) L∏

l=1
pl

xl ,̂xl(x̂l−1).

/* Backward propagation and Path Filter. */

6 χT =
1

aT
, ΦT ({xl}) = ρT

(
{xl}
)
χT

7 for t = T − 1, T − 2, ..., 1 do
8 χt

(
{x̂l}
)
=
∑
{xl}

qYt ,Yt+1(xL)
at qYt ,Yt+1

χt+1

(
{xl}
) L∏

i=1
pi

x̂i,xi(xi−1)

9 Φt({xl}) = ρt

(
{xl}
)
χt

(
{xl}
)

10 χ0

(
{x̂l}, u, y

)
=
∑
{xl}

qy,Y1(xL)
qy,Y1

χ1

(
{xl}
) L∏

i=1
pi

x̂i,xi(xi−1)

11 Φ0(u, {xl}, y) = π0

(
u, {xl}, y

)
χ0

(
{xl}, u, y

)
12 for t = 2, ...,T do

13 Φt−1,t({xl}, {x̂l}) = πt−1

(
{xl}
) [∏L

i=1 pi
xi ,̂xi (x̂i−1)

]
qYt−1 ,Yt (x̂L)

qYt−1 ,Yt
χt

(
{x̂l}
)

14 Φ0,1({xl},u, y, {x̂l}) =π0

(
u, {xl}, y

) [∏L
i=1 pi

xi ,̂xi (x̂i−1)
]
qy,Y1 (x̂L)

qy,Y1
χ1

(
{x̂l}
)

/* Probability Updates. */

15 µ̌
(
u, {xl}, y

)
= ru,U1(y)qy,Y1

χ0({xl}, u, y)µ
(
u, {xl}, y

)
.

16 for i = 2, ..., L do

17 p̌i
xi ,̂xi(x̂i−1) =

∑
{̂ξl}

∑
{ξl}

[∑
u,y
Φ0,1({ξl},u,y,{̂ξl})+

T∑
t=2
Φt−1,t({ξl},{̂ξl})

]
1ξi=xi ,̂ξi−1=x̂i−1 ,̂ξi=x̂i

∑
{̂ξl}

∑
{ξl}

[∑
u,y
Φ0,1({ξl},u,y,{̂ξl})+

T∑
t=2
Φt−1,t({ξl},{̂ξl})

]
1ξi=xi ,̂ξi−1=x̂i−1

18 p̌1
x1 ,̂x1(u) =

∑̂
u,y

∑̂
x2,L

∑
x2,L
Φ0,1({xl},̂u,y,{x̂l})1U1=u+

T∑
t=2

∑̂
x2,L

∑
x2,L
Φt−1,t({xl},{x̂l})1Ut=u

∑̂
u,y

∑
x2,L
Φ0 (̂u,{xl},y)1U1=u+

T∑
t=2

∑
x2,L
Φt−1({xl})1Ut=u

,

19 q̌y,̂y(x̂L) =

∑
u

∑
{xl}

∑
x̂1,L−1

Φ0,1({xl},u,y,{x̂l})1Y1=̂y+
T∑

t=2

∑
x̂1,L−1

Φt({x̂l})1Yt−1=y,Yt =̂y

∑
u

∑
{xl}

∑
x̂1,L−1

Φ0,1({xl},u,y,{x̂l})+
T∑

t=2

∑
x̂1,L−1

Φt({x̂l})1Yt−1=y

.
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Note: The following three potential speed up tricks were not included in the algorithm for
assimilation purposes. However, in some cases they prove quite useful.

(1) One can compute t → p(x1, ..., xL, x̂1, ..., x̂L,Ut+1, Yt, Yt+1) =
L∏

l=1
pl

xl ,̂xl(x̂l−1)qYt ,Yt+1(X̂
L) once before

the computation of the unnormalized filter ρ and then reuse thereafter.
(2) If there is no natural canonical, stateless model, then we can choose q = 1

M , where M is the
number of observation states, and then remove q from the calculations e.g.,

ρt({x̂i}) = qYt−1,Yt

(
x̂L
)∑
{xi}

πt−1

(
{xi}
) L∏

l=1

pl
xl ,̂xl(x̂l−1).

χt

(
{x̂l}
)
=
∑
{xl}

qYt ,Yt+1

(
xL
)

at
χt+1

(
{xl}
) L∏

i=1

pi
x̂i,xi(xi−1).

Φt−1,t = Mπt−1

(
{xl}
) L∏

i=1

pi
xi ,̂xi(x̂i−1)

qYt−1,Yt(x̂L)χt

(
{x̂l}
)
.

(3) First compute the numerator of the probabilities like

∑
{̂ξl}

∑
{ξl}

∑
u,y

Φ0,1({ξl}, u, y,{̂ξl}) +
T∑

t=2

Φt−1,t({ξl},{̂ξl})

 1ξi=xi ,̂ξi−1=x̂i−1 ,̂ξi=x̂i

for p̌i
xi ,̂xi(x̂i−1) and then normalize that to form a probability mass function.

6. Conclusions

A probabilistic deep recurrent neural network, termed the deep Bayesian Network (DBN), which is
parameterized in a different manner was introduced. This DBN generalizes the Markov Observation
Model and the Pairwise Markov Chain models developed in [9] and thereby also generalizes the
hidden Markov model. Each layer, including the input and output, is a Markov chain that depends the
previous layer. Herein DBN’s powerful filtering, learning, simulation and Bayes’ factor capabilities
were established mathematically. These can be use for example to provide an effective generative
adversarial network (GAN) in the sequential (RNN) setting.

The proofs herein developed the method based upon the novel idea to transform the whole network
to a completely independent network where the analysis is trivial using a Girsanov like theorem. This
idea in its own right may turn out to be important.

The given DBN algorithm has been tested by students on up to three hidden levels on very simple
problems. However, it is believed that the given algorithm can be made far more computer efficient
and that DBNs may be better suited GPU machines and serious problems. We look forward to seeing
where this technology might go.
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