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Abstract: Training deep neural networks is often hindered by the fragility of gradient-based methods,
which suffer from vanishing or exploding gradients, sensitivity to initialization, and entrapment in poor
local minima. In response to these shortcomings, we introduce a new gradient-free algorithm called
Quantum-Inspired Adaptive Superposition Optimization (QIASO), which views weight learning as a
probabilistic superposition of candidate solutions, a fundamentally new optimization approach. In contrast
to being dedicated to a single weight ensemble, QIASO maintains a distribution over several candidates,
which are amplified and suppressed according to dynamically changing weights assigned to them. The
variational formulation of the amplitude evolution leads to a KL-regularized formulation of their evolution,
which generalizes statistical physics, information geometry, and online optimization viewpoints. To
prevent invalid convergence, QIASO incorporates a stochastic perturbation operator based on quantum
tunnelling into the optimizer, enabling the optimization process to overcome local minima on the loss
surface and converge to the optimal solution. We provide theoretical bounds, monotone convergence of
loss reduction, and almost-sure convergence to local optima with mild assumptions. Complexity analysis
via empirical techniques suggests that QIASO scales more efficiently than Grover-based quantum-inspired
algorithms and incurs no overhead in gradient computation compared to ADAM. The overall findings
indicated that QIASO is a viable option for neural training, particularly when combined with other
paradigms that utilise either large-scale or gradient-free approaches.
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Notation

e K— finite set of candidates, index k=1, ..., K.

e pt=(pi.....,pH)— amplitude/probability vector at iteration t(lies in the probability simplex Ag).
e wi—weight vector for candidate k.

e L(wy) = L,— loss (empirical risk) evaluated at candidate wy,. For clarity, we write Lj.

« (pL)= Z:;lpk L, — expected loss under distribution p.

e Dy.(qlip) =YK _,qlog (Z—i) Kullback—Leibler divergence.

e 1 > 0— step (inverse temperature/learning) parameter.

e €— perturbation scale for tunnelling operator; & ~ N (0, 52I).

e poand a— initial perturbation probability and decay rate (so p; = poe~*).
e H— Candidate weight vector.

e P(8) — Probability amplitude assigned to a candidate state.

e N — Dimensionality of the parameter vector.

e 1 — Learning-rate-like step parameter in KL-regularized update.

e A — Regularization strength for KL term.

e t(.)— Tunneling perturbation operator.

e £¢() — Loss function.

1. Introduction

Deep neural network optimization is a key issue in machine learning. Standard optimizers, such
as stochastic gradient descent (SGD) and ADAM, have enabled significant advances. However, they
are limited by, among other things, vanishing/exploding gradients [15], excessive sensitivity to
initialization [6], and getting stuck in poor local minima. They become even more critical in large,
highly nonconvex optimization landscapes, where gradient information is both erratic and ill-
conditioned [7].

Quantum-inspired algorithms have been proposed in recent years as a promising avenue for
optimizing non-classical gradient algorithms. Based on concepts of superposition, amplitude
amplification, and tunneling, these methods search in parallel over a multitude of candidate solutions
and probabilistically refine their probabilities of being correct [5], thereby gaining resilience against
local-minima solutions [21]. All these methods share a common theoretical framework that was
recently developed using Gibbs sampling techniques, mirror descent [19], and exponentiated gradient
updates [16], with roots at the intersection between statistical physics, information geometry, and
online learning [20].

Due to these advances, we develop Quantum-Inspired Adaptive Superposition Optimisation
(QIASO), a maximally general trainable model: neural network training is recontextualized as an
optimiser that probabilistically evolves a weight state. QIASO optimises the amplitudes of candidates
with lower loss values and poor candidates by reducing the expected loss monotonically. Additionally,
QIASO has enabled the optimizer [4] to avoid narrow basins of attraction and converge to stagnant
parts of the loss landscape by introducing a stochastic operator perturbation [3] that resembles quantum
tunnelling. The work is grounded in recent progress in quantum-inspired optimization [11,12] and
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gradient-free learning [25,30], and extends these approaches to large-scale training of neural networks.
QIASO connects probability Brownian motion to probable amplitude dynamics, adding stochastic
perturbations and convergence guarantees, and is a principled and scalable algorithmic framework for
non-convex gradient-free optimisation in machine learning applications, including those in modern
deep learning.

The topic of optimizing deep neural networks has been extensively investigated, and gradient-
based methods have been known to suffer from shortcomings from an early time. The vanishing
gradient issue in recurrent neural networks was noted by Bengio et. al. [5]. Despite adaptive approaches
such as ADAM, these methods remain vulnerable to initialization and convergence issues in
nonconvex loss landscapes [7]. To overcome such challenges, gradient-free optimization techniques
have been explored. Backpropagation-free learning is feasible with evolution strategies [25], random
search techniques [10], and natural evolution strategies [13]. Likewise, zeroth-order optimization [17]
has been proposed as a scalable alternative to gradient-based updates in the black-box case.

In tandem with these, the quantum-inspired algorithms have made a second sight of optimization.
Needle-based studies on quantum annealing [2,11,14] and quantum adiabatic computation [8] have
demonstrated how functional tunnelling dynamics can be used to escape local minima. Most recently, [3]
discussed the feasibility of applying quantum annealing and tunnelling effects to challenging
optimization landscapes. Classical analogues of these ideas have been inspired by, e.g., simulated
annealing [22] and its variants, which mimic the effects of a quantum system without using physical
quantum hardware. Theoretically, the relationship between optimization, statistical physics, and
information geometry has already been well established. Mirror descent [19] and exponentiated
gradient methods [15,16] demonstrate that Bregman divergences can govern probability distributions
over the set of candidate solutions in a sensible way. These methods were further formalized in recent
work on online convex optimization [2,23], which established connections with regret minimization
guarantees.

Finally, there has been a growing interest in quantum machine learning [21,24], which seeks to
integrate concepts from quantum mechanics and learning theory. Although most quantum algorithms
are still tied to hardware, quantum-inspired algorithms have become a practical alternative,
implementing the core principles of superposition, amplitude amplification, and tunnelling in entirely
classical settings [28]. Sajjad et al. [8] proposed an adaptive Grover-based, gradient-free quantum-
inspired deep learning optimizer that demonstrated greater robustness and improved training
performance for deep neural networks. In summary, these threads of research converge on the idea that
probabilistic updates propagated along distributions can circumvent the brittleness of deterministic
gradient descent. The QIASO innovation directly follows this observation, combining amplitude
evolution, KL-regularized updates, and stochastic tunnelling in a single optimizer for large-scale neural
network training (see more references [9,18,20,29]).

Over the past few years, the combination of quantum-inspired algorithms with standard classical
machine learning optimizers has become increasingly popular, demonstrating effectiveness in
improving training stability and generalization in deep neural networks. Indicatively, a generalized
consideration by AL Ajmi and Shoaib [1] suggests that quantum-inspired optimization algorithms
could be more robust and efficient than classical optimizers in quantum machine learning. In the
meantime, Si et al. [27] proposed the QSHO (Quantum Spotted Hyena Optimizer), demonstrating that
quantum-inspired swarm algorithms are more effective at avoiding local minima in complex
landscapes. Moreover, Rizvi et al. [23] also emphasized that hybrid quantum-classical vision models
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leverage principles of superposition and interference to enhance feature learning in deep architectures.
These new writings suggest a shift away from systems that rely solely on gradient-based optimizers to
systems that explicitly model probabilistic amplitude evolution and stochastic perturbation dynamics.
This paper presents a new gradient-free optimization paradigm for deep-network training that
integrates quantum-inspired amplitude modulation with classical efficient computation. New
quantum-inspired methods have investigated probabilistic superposition, dimensionality reduction,
and non-gradient search methods for neural optimization, including techniques to reduce the
dimensionality of the variables being searched and adaptive candidate search [26]. These publications
provide additional inspiration for the amplitude-based optimization model of QIASO.

1.1. Novelty and contributions of QIASO

Although QIASO incorporates specific ideas from mirror descent, exponentiated gradient, and
evolutionary strategies, its mechanism is entirely distinct. QIASO proposes a probabilistic encoding
based on superposition and is considered a distribution over states rather than a set of independent
samples. The KL-regularized mirror-descent update dynamically remolds the probability amplitudes
of these states, enabling the optimization trajectory to switch between exploration and exploitation. In
contrast to classical evolutionary perturbation or exponentiated-gradient schemes, QIASO combines a

L

tunnelling-based non-local update as g+ = Hi(t) +Et-T(9i(t)), where T(Bi(t)) introduces

targeted jumps of the loss landscape, corresponding to quantum tunneling. The combined form of (i)
superposition-based representation, (ii) KL-regularized amplitude reshaping, and (iii) tunnelling
perturbation is a new framework that is not found in the existing optimization literature.

QIASO does not mutate candidates on its own, unlike classical random-walk or ensemble
methods. Rather, we couple all candidates with a common KL-regularized variational objective that
forces probability amplitudes to co-evolve equally under a given potential loss. The resulting dynamics
are reminiscent of the redistribution of amplitudes rather than independent stochastic trajectories,
which is the main distinction between QIASO and conventional ensemble optimization schemes. This
work aims to develop a QIASO for training deep neural networks and to test it rigorously. To be more
exact, we will (1) extract the theoretical principles of the evolution of candidate weights based on
amplitude, (2) show the empirical benefits of convergence stability and generalization over state-of-
the-art optimization algorithms (SGD, Adam, Nadam, RMSprop, CMA-ES), and (3) evaluate the
scalability and the resistance to initialization, as well as, the complexity overhead of the algorithm in
a realistic deep-learning environment.

2. Materials and methods

Training deep neural networks remains a fundamental challenge due to the fragility of gradient-
based optimization. The traditional approaches, such as stochastic gradient descent or ADAM, may
encounter problems such as exploding/vanishing gradients, sensitivity to initialization, and entrapment
in local minima. The novelty of quantum-inspired algorithms, particularly those based on
superposition and the dynamics of amplitudes, is presented in Figure 1. Instead of having to decide on
a single weight configuration iteration after iteration, it allows for the simultaneous evolution of
multiple possible candidate weights in a superposition. This instinct leads us to our suggested
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procedure: QIASO. Rather than viewing weight optimization as a deterministic process, QIASO treats
it as a probabilistic process of weight state development, in which more successful candidates are
enhanced and less successful candidates are depressed. Regular perturbations are added to or removed
from the system to facilitate the search for the global landscape.
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Figure 1. Model architecture of the QIASO framework.

In QIASO, the term “quantum-inspired” is not used to refer to the application of physical quantum
computation. Instead, it is defined by adopting ideas from quantum mechanics, namely superposition
and tunneling, to build new classical optimization behavior.

In the superposition analogy, QIASO maintains a distribution over K candidate states @®) =

{6, ...,HK},p(Hi(t)) >0, Zip(ei(t)) = 1, analogous to probability amplitude in quantum systems.

Whereas, we propose a tunneling-inspired non-local operator T(6) =y. m, that

increases the likelihood of making jumps out of high-loss areas, analogous to tunneling over an energy
barrier. These mechanisms underscore that QIASO is not a classical random walk or a mere
perturbation heuristic. Its update rules use structural analogies to quantum superposition and tunneling
to guide the optimizer in balancing exploration and exploitation.

2.1. Representing weights as superpositions

In QIASO, the network weight @ is not fixed at a single value; thus, the entire system is not a
constant. Instead, it is described as a combination of the candidate values:

<w”>=§<ok o) S| = 1. (1)
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are trial values of the variable sampled according to a Gaussian distribution, i.e., o) ~

where w ;

i
N(ul@, 02), center at the starting weight, and ¢;are amplitude factors representing the likelihood of

each of them. The wék) ~ N(ug, 62), is used as the initializing Gaussian sample of diversity only.

Because of the KL-regularized update of the probability mass, a probability mass quickly becomes
concentrated about low-loss candidates, and the effect of u, and of disappears in a small number of
iterations. This means that QIASO converges essentially to the same behavior, irrespective of the
choice of yu, and 2. With this representation, the network can now simultaneously explore the
possible values of each weight. The expected weight value becomes:

B[] = 2oy @ = 1. @

Every parameter is now distributed over the possible values. Initially, in the training of this triangle,
the distribution is scattered (exploratory).

2.2. Loss guided amplitude evolution

We now present the primary method by which QIASO adjusts its probabilistic representation of

weights. Every value wl.(k)of the weight @; is considered on behalf of its role in the overall loss

function:
k
L(L. ) — é’(w_l,wi(t)). 3)

In which @_, is the set of all the weights other than @;. Such a definition isolates the influence
of the individual candidate in the objective landscape. The training process consists of forward passes
through the network, followed by probabilistic updates to the amplitudes. QIASO measures the
contribution of each candidate weight to the loss function rather than computing gradients L. The
amplitudes are then changed in a soft amplitude amplification rule:

oo o)
k ,(ct).e—aL<wg.()>’

(4)

Z§1=1‘P

where a isthe amount of selectivity can be determined by betraying. The probability mass is allocated
to those candidates who generate the least loss. Bad candidates are slowly quashed. One can think of
this process as quantum amplitude amplification, adapted into a differentiable, continuous reallocation
mechanism usable for training a neural network. Empirically, varying u, € [—0.02,0.02] and o, €
{0.01, 0.05, 0.1} resulted in less than 0.3% variation in final accuracy across all datasets.

2.2.1. KL-regularized variational principle

We consider the variational update at iteration t as a solution of the following constrained
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minimisation problem over probability vectors q € Ay:
t+1 _ : 1 t
pr =argmin {<q,L> +_KL(qllp )}, (5)

where n is a temperature parameter used in the exponentiated-gradient update and determines the
exploration-exploitation trade-off. Higher values of m place more probability mass on low-loss
candidates, whereas smaller values lead to exploration. The parameter A regulates the intensity of KL
regularization and prevents sudden shifts in probability between iterations, thereby stabilizing changes
in amplitude.

Problem statement. At iteration ¢ we solve the constrained minimization over probability vectors p =
(p1, -, Pk) € Akas:

minj(p). (6)

pPEAK

Where J(p) = XK_, pits +%DKL(p l g) and €, isdefineas £;:= £(6y) isthe loss of the candidate

k,qg=(qq,..... ,qi) = p; denotes the preceding iteration (assume q; >0 for all k), n >0 is a
parameter (interpreted as inverse temperature), and

Dru(q 1 P) = They i log (%), (7)

We also enforce the simplex constraint z:zlpk =1 and p, = 0.

Introduce Lagrange multiplier y € Rfor the equality constraint ), p, = 1. The Lagrangian
t(p,y) is

1
(p,y) = XK1 prlic + ;Z’k(:lpk logz—’; +yQCk=1pk — D). (8)

Inequality multipliers are not needed in case p, = 0 since under mild conditions the solution will be
strictly positive, in the given case g; > 0 and that £, is finite implies that the optimal p, > 0.
Differentiate ¢ with respect to py. For each k,
o _ 1 Pk
o e + ; (log = + 1) + 7. 9)

Explanation of the second term:

0pk | prlog <&> = log <&> + 1.
dx dx

Set derivative to zero for stationarity:
1 Pk _
€k+n(log—qk+ 1) +y =0. (10)

Rearrange to isolate the log term:
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logB = —n(tx +v) - 1. (1n)
Exponentiate both sides:
o =exp(-n(le +y) = 1) = e exp(-=n(l +1))- (12)
Therefore
Pk = qi - e - exp(—n(Lk + 7). (13)

The factor is e! and the constant factor is equal to e~ and will be cancelled by normalisation.

Indicate the unnormalized weights,

Pr = qrexp(—nty). (14)

The effect of the typical multiplicative constant is to normalize the model, which is why it was dropped.
Normalize P, so Y, px = 1. Define partition function (normalizer)

Z =35, q; exp(—n¢;). (15)
Hence, the solution is
* qrexp(=nlg)
= s T 1
Pl = K qiexn(-nt)) (16)

It is the exponential-weights (softmax) update with respect to the previous q is written as

Prs1(k) < p(K)exp(—n¢;). (17)
If qi =+ forall k, then
o (®expnto expeni 18)
Pr = Z;{:l(%)exp(—nfj) o Yjexp(-ntx)

This is the Gibbs (Boltzmann) distribution with inverse temperature 7:

exp(-nl) (19)

Pi = Yjexp(-nty)’

The small (high-temperature) causes the distribution to become flatter (more exploration), and
the large (low-temperature) puts all the mass into low-loss states (exploitation).

2.2.2.  Mirror-descent/Exponentiated gradient interpretation

We now show that the update (EXP) is the proximal (mirror) step when the Bregman divergence
is the KL divergence. This brings the relationship to mirror descent and exponentiated gradient to the
fore.
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Let ¢(p) be the (strictly convex) negative entropy mirror map:

¢(p) = Xk=1Pxlogpy. (20)

The Bregman divergence generated by ¢is
Dy Il @) = ¢(p) — ¢(a) —(V(q),p — q). 1)
For ¢=negative entropy, one obtains exactly the Kullback—Leibler divergence:
Dy(p Il @) = D, (p Il @) (22)

The case of the mirror-descent/proximal mapping of (stochastic) first-order information. Where
Ji 1s the candidate loss vector, ¢}, is the linear functional loss) is the linear functional of the loss

(0, 0) = Lk Prl, (23)
Pe+1 = arg;ggvg({(p, 0 + %D¢ @I q)}- (24)

But this is precisely the problem (P) above. The exponential-weights update is hence the solution of
the mirror proximal step.

Compute Vep(p). For ¢(p)= p, log p,,

% _ logp) + 1. (25)

apr
Thus
Vod(p) = logp + 1. (26)
Mirror-descent proximal step is equivalent to having the first-order optimality condition (dual
update) is Vo (pry1) = Vip(q) — né, because minimizing (p, {) +%D¢(p Il g) it implies that, by
setting the gradient of the stationarity to zero, one gets the relation above. Concretely:
Vop(Pes1) = log pesr + 1,
Vo(q) =logq + 1.

So
logp;y1 +1 =1logg+1—nt. (27)
By exponentiating component-wise:
logpess = logq — L, (28)
= pry1 = q O exp(—nd), (29)

where O represents the elementwise product. The normalized exponential weights are the same as
those obtained by normalizing:
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_ qke—nlk
Pr+1(k) = =

jtj

(30)

This indicates that the update is an exponentiated gradient/mirror descent with the KL Bregman
divergence.

The above optimality condition can be regarded as a Fenchel duality: when ¢ is strictly convex,
the mirror map V¢ can be inverted, and the mirror step

Vo (i+1) = V(q) — 1L, (31)

where Vi (p) = logp + 1 componentwise. Cancelling constants and exponentiating componentwise

reproduces (EXP), i.e., pry1 X g © exp(—nd).

This indicates that the update is an exponentiated gradient (EG) or a mirror descent method using
the KL Bregman divergence. The parameternis naturally the inverse temperature: it affects the
exploration-exploitation trade-off in the amplitude dynamics.

Lemma 2.1. Assume that £(8) is a loss that is real valued, having a finite expectation under the
distributions of the problem, and that pt is a probability vector such that p;(k) > 0 is always positive.
Let p;y+q be the minimizer of the probability simplex 4, ofthe KL-regularized functional

J(®) = Epl€] + 3, Dia (1l po), (32)

with n > 0. Then p;,; € 4; and the following inequality holds:

Dk1,(Des1 1 D) < U(Ept [€] — EptH[f]) < nkp, [€]. (33)

Proof. Assume ¢:= €(0)) is finite for all candidate indices &, and p; has complete support (i.e.,
p:(k) > 0 for each k). The optimization defining p,,;is over the convex compact set 4, (the
probability simplex), so a minimizer p;,; € 4; exists. Thus, the iterates remain in the simplex.

By definition p;,, minimizes J(-) over 4. In particular, comparing the value of | at p;,,
to its value at the feasible point p = p; yields

J®@e+1) < (0, (34)
1 1
Ele[f] + ;DKL(pt+1 Il p) < E, [€] + ;DKL(pt Il pe). (35)
But DKL(pf ” pt) = O. HenCC,
1
Eptﬂ[f] + ;DKL(pt+1 Il p) < E, [€]. (36)

Multiplying both sides by n > 0 gives the stronger bound

Di1(@es1 1| p0) < N(Epl€] = Ep,,., [£])- (37)

Since E

pess [€] 18 finite, the right-hand side of the previous display is at most nEp, [¢]. Therefore
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Dk (Des1 1 pe) < nky, [€], (38)

which is the inequality stated in the lemma.

Remark 2.1.

1) The inequality presented in Step 2 is more informative than the final loose form; it measures the
amount of KL divergence one must pay in a single step to minimize expected loss.

2) The result does not have any Pinsker inequality or L;-norm bound to prove; the optimality of
Pe+1 18 by definition. This Pinsker inequality can be applied later when one seeks to relate Dy,

to | peer — e Iy (€8 Il Dew1 — De 11< /2Dg, (Pes1 || D)), but this yields a different form of

bound.
2.3. Superposition collapse for convergence

The flexibility of evolving amplitudes makes sense, but at the same time, there must be a moment
when the system gives way to a definite set of weights. QIASO incorporates the periodic collapses, in
which the most likely candidate is chosen:

@;j < argmax @y. (39)

This step ensures the training converges instead of oscillating between conflicting candidates
forever. Critically, the collapse cannot be permanent, and the new candidate values can be reintroduced
after the collapse incident; however, they are maintained near the weight of choice, and adaptability is
preserved.

2.4. Perturbation operator

To reduce the chances of premature convergence to poor local minima, the stochastic perturbation
mechanism employs a quantum tunnelling-like mechanism, termed a QIASO. In particular, the weights
of candidates are perturbed as

k)  (k
o <9y e.¢,0 ~1N(0,02), (40)
where € is the perturbation scale parameter and ¢ is a random variable distributed according to a zero-
mean Gaussian with a variance &°. The perturbations are not applied deterministically-a probability
decays in time:

pe = poe ™, (41)

where p, the probability of experiencing the first perturbation is 0, the rate of decay is higher for
perturbation frequencies with fewer training epochs, facilitating exploration of the entire solution space,
and allowing the optimizer to traverse vast areas of the loss landscape. With increasingly advanced
training, the probability of perturbation decreases exponentially, thereby permitting convergence to
stabilise around promising regions. Whereas the perturbation operator in QIASO is formally similar
to thermal noise in Langevin dynamics, it is not supposed to describe physical stochastic diffusion.
Instead, it is a quantum-inspired abstraction that applies non-local transitions under control across
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high-loss barriers and decays an activation schedule that resembles tunneling in optimization
landscapes.

3. Convergence properties

It is possible to analyse the convergence behaviour of the proposed QIASO using three critical
properties: boundedness, monotonic decrease in loss, and asymptotic convergence.

3.1. Boundedness
Amplitudes are normalised at each iteration, by construction:
2
Yi=1leu@®] = 1. (42)
This normalization constraint requires that all the updates are confined to the probability simplex.
Consequently, the iterates are naturally bounded, so divergence cannot occur, providing a natural
regularization scheme.
3.2. Monotonic loss reduction
Let the expected candidate loss at time to be defined as
2
E[(()] = Ziza| o (® L. (43)

After every update, amplitudes are projected via the Kullback-Leibler divergence during the mirror
descent step. This ensures that the desired loss is fulfilled.

E[e(t+ 1)] < E[e(t)], (44)

but equality only at constant points. As a result of this property, QIASO exhibits monotone behaviour
in loss expectation, thereby guaranteeing convergence to optimality.

3.2.1. Monotone expected-loss decrease
Lemma 3.1. (monotone decrease) Let p‘*lbe given by Eq (5) (equivalently, Eq (9)). Then

(P, L) < (", L) = L KL(p**{[p"). (45)

Proof. By optimality pt*!

of in (V) we have for any q € 4,,
(P, L) + KL |Ip) < (g, L)+ KL(qlIp"). (46)
Set g = pt.

Since KL(q||pt) = 0 we obtain
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(P, L) + L KL(p™*Ip") < (', L). (47)
Rearranging Eq (19), gives

Remark 3.1. Because KL(:lI') =0, (M) implies (p‘*1,L) < (p' L), i.e., the expected loss is
nonincreasing. The inequality quantifies a strict decrease whenever ptt1 # pt.

Theorem 3.1. Suppose {w(k)}:::l c R" represents a finite set of candidate values of the weights,
and that £: R" — R represents the training loss. Let £,:= ¢ (zzr(k)) at time t, the algorithm stores a

probability vector @(t) = (¢1(t),...., px(t)) € AKX the probability simplex, and the expected loss

of a candidate is

E[6@®)] = XK1 | @i D] Lo (48)

In a deterministic setting, the KL-projection/mirror-descent update can be given by

(t+1) _ : 1
(¢) arg min {t0.0+ - KL(6] (1))} (49)
t -« f(wgl.c)>
@, .e Y
= (PIEH-D — k _a[(m(k))9 (50)
Y=t ‘P,(ct)-e b

QIASO also uses a stochastic perturbation (tunneling) of the candidate that is sampled at the time, with
probability p; € [0,1] where p; = 0ast — . The overall impact of these perturbations on the loss
is modelled as a martingale difference with mean zero that we denote &t+1 and that has a bounded
second moment proportional to p; (formalized below).

Assumptions.

(Al): ¢ is bounded on {w(k)}lk:l.Let tminy €y, .. and {maxy &, .

(A2): The update Eq (50), acts on a fixed finite set {£;}_;. (Assume candidates are refreshed, and
eventually stationary in a neighborhood of a local minimizer).

(A3): a T w and is nondecreasing.

(A4): The perturbation probability satisfies p; = 0 and Y7L, p; < .

(A5): There exists a filtration {f;} such that the realized (post-perturbation) expected loss satisfies

E[t(t+ DIf] < ZIIS=1 o €+ Dl + $ev1, E[Gealft] = O'E[{tz+1|ft] < Cp;. (51)

For some constant C>0.
Lemma 3.2. ¢(t) € 4% for all t and Y, ¢, (t) = 1. Hence {@(t)} is bounded; in particular,
E[f(t)] € [fmaxmin]-
Proof. Immediate from Eq (50), which preserves the simplex.
Let £(t) = YX_, @i (t) €. Then, for deterministic update Eq (50),

(t+1)+ altKL(H(t +Djp®) < (). (52)
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In particular, £(t + 1) < Z(t), optimality of ¢@(t + 1) in Eq (50) yields, for any 6 € A*,
(ot +1),6) + altKL(H(t +1)]|p(t) < (6,0 + a%KL(BH(p(t)). (53)

Taking 6 = ¢@(t) gives Eq (26).
Lemma 3.3. Fix ¢ € 4%, define T,(¢) as a T o,

Ta(p) = 1u(e), (54)

where M:= argmin, €, and IT,,denotes the projection of ¢ onto the face of A*supported on M,
ie.,

Pk keM,
(T (9), = Zfezg<vl§ . (55)

If the minimizer is unique (M = {k *}), then T,(¢) — ey (the vertex on k™), we get

(pke_a[k (pke_“(fk_[min)
0ok Cimloni (36)
Zjoje ¥% <pje'“( j=tmin),

Term with £, > £,,;,, vanish in the limit; terms with ¢, = {,,;,, survive proportionally to ¢@y,.

3.2.2.  Effect of stochastic perturbation (tunnelling) and almost-sure convergence

1

We approximate the perturbation operator as follows. After computing pt*! with probability

p: = poe~*t, perturbation to a subset of candidates:
Wi < Wy + Efkl Ek ~ N(O, 0-21), (57)

which induces a change in losses Ly — Ly = Ly + 4y, where E[A, | F,] =0 and E[A%2 | F]<C
for some C > 0 (bounded second moment).

Stochastic expected loss at perturbation t is ¢': = E[(p?, L!)]. When we apply the deterministic
decrease (Lemma 3.3) and zero-mean perturbation, we obtain (on average)

E[(pt*, L) F] < (p4, L) — %KL(p”lllpt) + &, (58)

where ¢&; representing the extra variance term due to perturbation, and with &, satisfying
Yesollerl] < oo when p, decays cutoff (e.g., geometric p, = poe~*') and E[A%] is bounded.

Assuming A1 through A3, this puts the supermartingale inequality in the form {(p%, Lf)}. Under
the assumption that there is a Robbins-Siegmund lemma (or supermartingale convergence theorem)
when there exists an identical and independently distributed (i.i.d) randomized trial process.

Xev1 SXe—ap+ b+ 1,00 2 0,30 <0, Y E[Cryq | Fr] < oo, (59)

where X, surely converged and Ya, < . Applying this with X, = (p%,Lf),a, = %KL(p”alt)
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and b; = &, we obtain:
Theorem 3.2. Suppose a; = o and p; » 0 with Y, p, < o, then {@(t)} converges almost surely
to a distribution with support on M

(t+1) <) - aitKL(q;(t +D|o(t)). (60)

By taking the expectation and equating it to zero, we get

E[¢t + DIf] <€t + 1) + 41, E[Grialfe] = 0, (61)

ELC(t + DIf] < 0(0) = - KL(p(t + DI9(D) + A, (62)

where Apyq1:= {q + (Z’(t) — f(t)), we get

E[21lfe] < Cpy, (63)
E[Aalfe] <o, (64)
—KL(o(t + Dllo (D). (65)

i.  (t);
i Y E[24lfe] < oo,

£(t) convergence as Z‘f:oaitKL(q)(t + Dlle®) <,

|o(t+1)—7,0(t)[ S0 (66)

1t—)oo

3.2.3.  Escape (tunnelling) probability bound — Gaussian perturbation

Suppose there is a barrier of loss height 4 > 0 that must be overcome by perturbation £{. A
sufficient condition to cross the barrier is €||{|| = 4. For a scalar one-dimensional projection, we get

P(e€ = A) =P($ 2‘—‘). (67)
&
Using the Gaussian tail (Chernoff/Hoeffding bound),
A 42
(=8 = en(-52) o
Therefore, the single-step escape probability satisfies
, , A2
Pr( Escapeinoneperturbation) > 1 — exp (— 25202) . (69)

If perturbations occur with probability p; at step t, the cumulative probability of escaping within T
further steps are at least

1 —[1'24(1 — p;. Pr( escape|perturb)). (70)
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This gives a quantitative tradeoff larger €, and o increases the tunnelling probability, but excessively
large ehurts fine-tuning — hence the annealing schedule p,and possibly €; should be tuned.

3.3. Computational complexity and scalability

The proposed computational cost of QIASO arises from maintaining and updating a probabilistic
superposition over N-dimensional candidate parameter vectors. At each step, the algorithm performs
a forward evaluation of the loss over all candidates, then a KL-regularized update of the amplitude,
and a stochastic perturbation step (which is optional). The total complexity is now expressed explicitly
as a function of K and N.

In a fixed network architecture, the evaluation of the loss function L (&) at every candidate 6, € O
is the most dominant cost at every iteration. Given that a candidate is represented by an N-dimensional
parameter vector, the cost of computing all candidates is O (KN). This term inevitably accompanies any
population-based or ensemble-type optimizer and is the central computational part of QIASO.

KL-regularized mirror-descent update works on the probability vector Eq (56). Performing the

exponentiated update involves calculating the exponential weights exp(—nf (Hk)) of each candidate,

then normalized by a partition function. This step is linear in the number of candidates, independent
of the dimensionality of the parameters, and incurs an O(K) cost. In practice, this cost is negligible
compared to the loss evaluation term for large N. When turned on, the stochastic tunnelling
perturbation uses Gaussian noise on candidates. Each perturbation varies an N-dimensional vector, and
as such, it has an O(N) cost per perturbed candidate. The worst-case O(KN) cost per iteration is
also bounded due to perturbations applied with probability and only to a subset of the candidates.

When all elements are added together, the overall computational complexity of a single iteration
of QIASO is O(N), and lower-order terms in K arise from normalization and probability updates.
Notably, this complexity increases linearly with the dimensionality of the parameter space and the
number of superposed candidate states. Compared with per-iteration gradient-based optimizers, e.g.,
SGD or Adam, which have per-iteration complexity O(KN?), QIASO also has an additional
multiplication factor, N, that is population-based. Nevertheless, compared with second-order or
covariance-based gradient-free algorithms, such as CMA-ES, whose complexity grows quadratically
with QIASO, the complexity of QIASO does not have any quadratic dependence on N. Additionally,
candidate losses can be evaluated embarrassingly in parallel and effectively handled on modern GPU
architectures, with significantly lower practical overhead than the factor K, and are more robust, stable,
and explore better than classical optimizers. The resulting training time on the wall clock is similar to
that of adaptive gradient techniques, though with much better convergence behavior and lower
sensitivity to initialization, as shown empirically in Section 4.

4. Experimental setup and results
4.1. Experimental setup
To assess the performance, robustness, and extrapolation capacity of the proposed QIASO, a

comprehensive set of experiments was conducted on various benchmark datasets and network designs.
QIASO was comparatively and systematically analyzed against state-of-the-art optimizers, including
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Stochastic Gradient Descent (SGD), Adam, Nadam, RMSprop, and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), in terms of its performance. The purpose of this comparative
framework (Figure 2) was to evaluate the convergence behavior, computational efficiency, the
optimizer's ability to escape sharp minima, and the continuity of the generalization paths. In practice,
we select n € [19, 24] using cross-validation; n primarily influences convergence speed.

A)

QIASO on 30-D Rastrigin function B) Effect of Tunneling Decay Rate (p) on Convergence

= Expected loss (QIASO)
1 Best candidate loss \ \* |
6x10° )

e)
a—

4
3 sx10?

0 200 400 600 800 1000 13 % 100 150 200 250 %0 30 0
Reration ol

Figure 2. (A) Convergence of QIASO to the 30-dimensional Rastrigin function, the
progression of the expected loss, and the optimal candidate loss in iterations. The outcomes
depict a fast initial search and a monotonic decrease toward a low-loss area. (B) The
relationship between the convergence performance and the rate of the tunnelling decay (p).
Lower decay rates keep exploration going longer, allowing the reduction of loss to deeper
levels. In contrast, higher decay rates cause tunnelling to occur too early and cause loss to
stagnate at higher loss values too soon.

Three canonical sets of learning situations, varying in complexity, were used. A low-dimensional
benchmark was established to evaluate the smoothness of convergence using the MNIST dataset, which
comprises 60,000 training and 10,000 test grayscale handwritten figures. A medium-complexity
benchmark with a highly non-convex loss surface was the CIFAR-10 dataset, which consisted of 50,000
training and 10,000 test images of natural scenes in ten categories. Moreover, Fashion-MNIST [29], a
dataset of 70,000 grayscale images of apparel, was used to test the optimizer on fine-grained
classification tasks with average structural variation. The datasets enabled a rigorous examination of
QIASO's adaptability to various input distributions and architectural complexities.

Regarding network structures, a three-layer fully connected feedforward neural network was
introduced to the MNIST dataset to explore the best performance and convergence of relatively
shallow models (see Figure 3). For CIFAR-10 and Fashion-MNIST, a five-layer convolutional neural
network (CNN) was employed, incorporating batch normalization and ReLU activations to more
closely resemble a realistic deep learning configuration, in which vanishing and exploding gradients
are common. Preliminary experiments on cross-validation finely tuned hyperparameter parameters:
the population size of superposition (i.e., the number of candidate weight states) was fixed at K = 30;
the perturbation scaling parameter was & = 0.02 to regulate the strength of tunnelling; the
perturbation probability decay rate was 0.995; and the initial amplitude temperature was T, = 1.0
and annealed exponentially. Each configuration was trained up to 100 epochs.

AIMS Mathematics Volume 11, Issue 1, 243-271.



260

Sensitivity of Final Best Loss to Population Size (K) and Learning Rate (n)
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Figure 3. Overview of the network architectures and datasets used in experiments. The
MNIST task uses a 3-layer feedforward network, while CIFAR-10 and Fashion-MNIST
employ 5-layer CNNs with batch normalization and ReLU activations. Hyperparameters
(K=30,e=0.02, a=0.995, To = 1.0) were optimized using cross-validation.

All experiments were conducted using PyTorch 2.0, with CUDA acceleration on an NVIDIA
RTX 3090 featuring 24 GB of memory. To minimize the impact of random variation, five
independent experiments were conducted, and the reported results are the average and standard
deviation. The computational environment also ensured reproducibility and fixed floating-point
precision, and controlled random seeds were used to provide a consistent comparative assessment of
all optimization methods. Such a strict experimental design enables the identification of the
convergence dynamics, scalability, and robustness of QIASO across a wide range of learning tasks in
a fair and reproducible manner.

4.2. Evaluation metrics and baseline comparison

To accurately measure the performance and convergence properties of the proposed QIASO,
several evaluation measures were employed, including optimization effectiveness and generalization
ability. The primary indicators were classification accuracy, convergence of the training losses, and the
computational cost per epoch, along with additional statistical analyses of the stability and smoothness
of the optimization curves. These measures were chosen to provide a comprehensive picture of the
QIASO actions across various training scenarios and to facilitate a direct, statistically significant
comparison with existing optimizers.

The primary parameter for evaluating generalization ability was the classification accuracy (ACC)
on the test set. In both datasets, accuracy was calculated as the proportion of correctly classified
instances to the total number of test samples. The training loss (L), which is the expected mean of the
objective function over all candidate weight states, was monitored during training epochs to assess
convergence smoothness and the rate of loss reduction. The time per epoch (T,) was used as a measure
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of efficiency and scalability, providing insight into the trade-offs between exploration depth and the
computational overhead of superposition-based updates.

To assess the sensitivity of various optimizers to initialization, we conducted additional
experiments with five random seeds using Xavier-normal and He-normal weight initialization schemes.
All optimizers of the baseline (SGD, Adam, Nadam, RMSprop, and CMA-ES) and QIASO were tested
on the same conditions. As shown in the results summarized in Table 1, the baseline optimizers exhibit
observable seed and initialisation variation in both classification accuracy and final loss, with the most
tremendous variation of up to 2.3% in accuracy. QIASO, on the other hand, shows significantly
reduced variability with a change in accuracy of between 0.3 and 0.6 percent across all settings. This
decreased sensitivity demonstrates the inherent strength of the presented superposition-based
optimization framework and proves that the performance improvement achieved by QIASO is
consistent and does not rely on the presence of positive initialisation factors.

In addition to quantitative measures, the convergence behavior was studied using epoch-wise loss
trajectories, which enabled a visual comparison of QIASO and gradient-based optimizers. Additional
assessment of the optimization process's stability was conducted by estimating the variance of final
loss values across several independent runs, demonstrating its robustness to random initialization.
These studies indicate that QIASO converges at a steady rate, without the periodic oscillations and
sudden differences characteristic of gradient-dependent schemes. All the baseline optimizers, SGD,
Adam, Nadam, RMSprop, and CMA-ES, were provided on the same architecture and hyperparameter
settings to determine the validity of the comparative assertions. Gradient-based methods used learning
rates determined by grid search to optimize the learning process, and CMA-ES parameters were set to
default to ensure fairness. All optimizers were tested five times, and the means and standard deviations
of all metrics are provided. This stringent cross-method analysis confirmed that QIASO achieved better
convergence stability and higher classification accuracy across all datasets tested and continues to have
a competitive computational footprint compared to the gradient-based equivalents.

Table 1. Performance variability across different random seeds and initialization methods
(mean =+ standard deviation over 5 runs).

Optimizer Initialization Accuracy (%) Final loss

SGD Xavier 98.12+£0.91 0.045 +£0.008
SGD He 98.05 £1.02 0.047 £0.009
Adam Xavier 08.38 £ 0.84 0.037 £0.007
Adam He 98.29 £ 0.97 0.039 £ 0.008
RMSprop Xavier 88.21 £1.15 0.321 £0.011
RMSprop He 87.94 +£1.32 0.334+0.014
QIASO Xavier 98.86 + 0.28 0.029 + 0.003
QIASO He 98.81 + 0.31 0.030 + 0.004
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4.3. Results and discussion

Across all benchmark datasets, the proposed QIASO has demonstrated significant improvements
in optimization stability and generalization compared to existing optimizers. The quantitative results
are summarized in Table 2, and the corresponding convergence curves and comparative accuracy
profiles are shown in Figures 4—6. The findings consistently show that QIASO achieves higher test
accuracy and exhibits more monotonic convergence patterns, with improved trends across training
epochs.

Table 2. Performance comparison of QIASO with baseline optimizers.

Dataset Optimizer Accuracy (%) Final loss Time/Epoch (s)
MNIST SGD 98.1 0.044 0.81
MNIST Adam 98.4 0.036 0.93
MNIST QIASO 98.9 0.028 1.01
CIFAR-10 Adam 86.7 0.43 2.50
CIFAR-10 QIASO 89.3 0.35 2.80
Fashion-MNIST RMSprop 88.2 0.32 1.80
Fashion-MNIST QIASO 90.1 0.27 2.00

Table 2 presents the mean accuracy across all classifications, the final loss, and the per-epoch
computation time for each method. On the MNIST dataset, QIASO achieved a classification accuracy
0f 98.9%, surpassing SGD (98.1%) and Adam (98.4%) at a low computational cost of less than 10%.
This has been facilitated by the optimizer's ability to balance exploration and exploitation through
probabilistic amplitude updates, thereby reducing sensitivity to initialization and mitigating vanishing
gradient effects. On the more demanding CIFAR-10 dataset, QIASO performed well, achieving 89.3%
accuracy, which is 2.6 points higher than Adam's, demonstrating the algorithm's resilience to highly
non-convex loss surfaces. The same was observed in the Fashion-MNIST dataset, where QIASO
achieved an accuracy of 90.10%, compared to 88.20% with RMSprop, highlighting its high
adaptability across diverse input domains.

The convergence curves in Figure 4 show that QIASO exhibits smooth, monotonic decay in its
loss, whereas gradient-based algorithms like SGD and Adam exhibit oscillations and occasional
plateaus. This fact supports the theoretical assertions of boundedness and monotonic loss reduction,
specified in Section 4. The active redistribution of amplitude probabilities ensures that weight
candidates with lower losses are amplified as the optimizer approaches global minima with greater
stability. Moreover, QIASO features a quantum-inspired tunnelling perturbation mechanism that
prevents premature stagnation in shallow local minima of the parameter space, particularly in high-
dimensional spaces.
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Figure 4. Illustration of the comparative framework used to evaluate QIASO against SGD,
Adam, Nadam, RMSprop, and CMA-ES across identical network structures, dataset splits,
and hardware configurations. Each experiment was repeated 5 times to ensure statistical
reliability.
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Figure 5. Spatial density visualization of QIASO exploration on the Rastrigin surface
under varying exploration parameters.
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A further analysis of the structural contribution of the core mechanisms of QIASO was performed
using an ablation study (Figure 6). The exclusion of any single component, superposition
representation, KL-regularized amplitude updates, or stochastic perturbation resulted in a significant
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reduction in both accuracy and convergence rate. In particular, by eliminating the tunneling
perturbation, we observed early stagnation, indicating that this process is crucial in sustaining late-
stage exploratory diversity during training. Similarly, excluding the KL regularization term led to
unstable amplitude dynamics and slower convergence, which justifies its effectiveness in regulating
updates in a geometrically consistent probabilistic space. The complete setup of QIASO in this manner
will provide the optimal combination of exploration and exploitation, ensuring stability and
adaptability during the learning process.

Qualitatively, QIASO behaves similarly to the thermodynamic explanation of optimization,
where the temperature parameter controls the sharpness of the amplitude distribution. During training,
the temperature is initially set to a high level to facilitate global exploration of the world. In contrast,
as convergence approaches a minimum, it is gradually annealed toward a narrower minimum. Adaptive
control is similar to physical annealing processes, except that it is fully implemented in a classical
computational model, without the use of quantum devices. Taken together, the findings support QIASO
as a conceptually based and practically useful optimizer that fills the conceptual gap between quantum-
inspired statistical mechanics and state-of-the-art deep learning optimization.

A) Rastrigin. Function' Landscape B) 3D Convergence Trajectories on Rastrigin Landscape

40f

Figure 6. (A) Visualization of the Rastrigin function landscape, a highly non-convex
benchmark used to evaluate global optimization algorithms. The landscape exhibits
numerous local minima surrounding a single global optimum at x; = x, = 0. (B) 3D
convergence trajectories of the QIASO on the same Rastrigin landscape. The trajectories
demonstrate how QIASO’s superposed candidates probabilistically navigate the rugged
surface and converge toward the global minimum through amplitude adaptation and
tunnelling-based exploration.

We also compared QIASO with three of the contemporary optimizers, AdamW, Lion, and Sophia,
to further enhance the benchmarking. Table 3 presents a comparison of the proposed QIASO optimizer
with the latest state-of-the-art optimizers, i.e., AdamW, Lion, and Sophia, on three benchmark datasets.
QIASO has the highest mean accuracy (98.74) and the narrowest confidence interval (+0.08) on
MNIST, indicating that it performs better and is more robust than all baselines. On Fashion-MNIST,
QIASO once again beats AdamW and Lion and is slightly beaten by Sophia, with the smallest
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confidence interval, which shows less sensitivity to randomization. On the more difficult CIFAR-10
data, QIASO achieves competitive performance, with the most outstanding stability (+0.34) and
accuracy, as Sophia, and higher than AdamW and Lion. Overall, such findings reveal that QIASO is
consistently the most accurate or, when robustness is considered, the most competitive, confirming its
usefulness compared to current state-of-the-art adaptive optimizers.

Table 3. Comparison with modern optimizers (AdamW, Lion, Sophia).

Dataset AdamW Lion Sophia QIASO

MNIST 98.32+0.10 98.41 +0.09 98.53 £0.08 98.74 + 0.08
Fashion-MNIST 91.45+0.22 91.62+0.21 92.17+0.20 92.31 £0.19
CIFAR-10 75.10 £ 0.40 75.48 £0.38 75.86 £ 0.36 75.84 +0.34

4.4. Statistical significance and robustness analysis

To evaluate robustness, all experiments were repeated over 10 independent random seeds for each
optimizer. In each case, we provide the mean of the classification accuracy and the 95% confidence
interval. The analysis will quantify initialization-central variability and initialization-central
performance. Across all datasets (see Table 4), QIASO consistently achieves higher mean accuracy
and smaller confidence intervals, indicating reduced sensitivity to initiation. To formally assess
statistical significance, we used Welch's t-tests comparing QIASO with each of the three baseline
optimization methods (Adam, SGD, and RMSProp). The findings indicate that, across MNIST,
Fashion-MNIST, and CIFAR-10, all pairwise comparisons between QIASO and the other optimizers
have p-values less than 0.05, suggesting that the gains made by QIASO are statistically significant and
not due to random variation. These findings substantiate the fact that QIASO can offer high
performance and stability even with varying data (see Figure 7).

MNIST: Mean Accuracy with 95% Confidence Interval Fashion-MNIST: Mean Accuracy with 95% Confidence Interval CIFAR-10: Mean Accuracy with 93% Confidence Interval
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Figure 7. Test accuracy comparison across optimizers on the MNIST dataset. Error bars
denote 95% confidence intervals computed over 10 independent runs with different random
seeds.
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Table 4. Statistical test results of proposed vs benchmark models (10 runs) each.

MNIST
Optimizer Accuracy (Mean + 95% CI) Welch t-test vs QIASO
QIASO 98.74 + 0.08% —
Adam 98.21+0.11% p=0013
SGD 97.84 £ 0.15% p =0.009
RMSProp 98.07 £ 0.13% p=20.017
Fashion-MNIST
Optimizer Accuracy (Mean + 95% CI) Welch t-test vs QIASO
QIASO 92.31 £0.19% —
Adam 91.02 + 0.25% p=10.021
SGD 89.87 £ 0.28% p =0.008
RMSProp 90.41 +£0.31% p=20.016
CIFAR-10
Optimizer Accuracy (Mean + 95% CI) Welch t-test vs QIASO
QIASO 76.84 £ 0.34% —
Adam 74.92 + 0.41% p=0.028
SGD 72.14 £ 0.47% p=0.004
RMSProp 73.51 £ 0.44% p=0.011

4.5. Ablation study

To quantify the contribution of each functional component of the QIASO framework, ablation
experiments were conducted. In particular, we studied three structural changes, namely: (1) elimination
of the superposition representation in favor of just a single deterministic candidate (Greedy-QIASO);
(2) elimination of the KL-regularized amplitude evolution, which refuses to update purely proportional
scaling of candidate likelihoods; and (3) elimination of the quantum-inspired tunnelling perturbation,
without which stochastic escape of local minima is not possible. Table 5 and Figure 8 visually
summarize the findings of these experiments, clearly demonstrating the complementary and
differentiated functions of each module in achieving the optimizer's high convergence properties.
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Table 5. Computational complexity and resource utilization.

Gradient Complexit er Empirical
Optimizer dependency e OCE Y P Parallelizability Memory footprint time/Epoch
P Y P (MNIST)
SGD High O(N) Moderate Low 0.81s
Adam High O(2N) Moderate Medium 0.93s
CMA-ES None O(K-N?) Low High 2.6
High GPU
QIASO None O(K-N) '8 (GPU \edium 1.01 s
parallel)
A) Accuracy Comparison Across Datasets B) Ablation Study Results
100 10 100 1.00
RS b MNIST =e= Convergence Rate 0.95
80 80
0.90 %
= 0.85 §
g 60 E 60 g
> ® 0.80
:(::; g 40 0,75§
40 \ =
\ ] 0.702
20 \ / ogs
20 ’
0.60
0 e alo E,UPBW wie o per

Algorithm Variant

Figure 8. Impact of removing each QIASO component (superposition, KL-regularization,
or tunnelling perturbation) on accuracy and convergence rate. Results show that excluding
any of these elements degrades performance and stability, confirming their complementary
roles.

Without the superposition mechanism, performance decreased significantly: the accuracy on
MNIST dropped to 97.2%, and the convergence time nearly doubled (see Table 6). This highlights the
importance of a probabilistic ensemble of weight states, which enables QIASO to represent a much
wider range of candidate solutions and avoid overcommitment to suboptimal minima as learning
progresses. Adding the KL-regularization term also slowed convergence while maintaining the
method's final performance, and created amplitude oscillations that, at times, led to divergence of the
candidate distribution. Such instability confirms the theoretical evidence in Theorem 3.1, which states
that Kullback-Leibler regularization is crucial for bounded updates in the simplex, allowing for both
smooth and information-consistent amplitude evolution.
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Table 6. Ablation study on core components of QIASO.

Variant MNIST Conve.rgence rate Observed behavior
accuracy (%) (Relative)
Full QIASO 98.9 1.00 Smooth, stable, and monotonic convergence.
w/0 Slower learning and early stagnation due to
.. 97.2 0.60 : .
Superposition reduced candidate diversity.
w/o KL 979 0.75 Instability in amplitude evolution; oscillatory
Regularization ' ' convergence.
Earl imal local
wlo Perturbation 98.1 0.80 arly convergence to suboptimal loca

minima.

It was equally measurable that the omission of the tunnelling perturbation led to early
convergence to narrow basins of attraction, and low sensitivity to variability in initialisation. The
adaptive annealing program of the perturbation operator with a decaying probability, p, = poe~**
was experimentally found to exhibit a critical trade-off between exploration and convergence. Without
it, there was a decrease in the variance in the diversity of candidates, accompanied by an increase in
the probability of getting trapped in shallow minima, exactly the effect predicted by Lemma 3.3, which
treats the stochastic perturbation as a means of maintaining ergodicity in the amplitude dynamics. The
results together support the notion that the tunneling process not only facilitates global exploration but
also leads to long-term stability, as the optimizer can recover earlier suboptimal paths.

Conceptually, the empirical convergence behavior in all the ablation environments aligns well
with the theoretical forecasts of boundedness, monotonic decreases in losses, and convergence with
high probability (Theorem 3.2). Specifically, the obtained stepping patterns ensure that iterative
updates in QIASO constitute a KL-projected mirror descent process that converges to a Gibbs-like
stationary distribution concentrated on the optimal candidate subset Mo. The convergence behavior,
defined as a reduction in oscillation and stabilization toward values close to zero, justifies the
martingale difference assumptions presented in assumption (A4). Also, statistical data showing
monotonically decreasing expected losses over epochs support the optimizer's theoretical assurance
that the energies of the probabilistic manifold do not increase. All these theoretical and empirical
observations demonstrate that the performance advantage of QIASO is neither an empirical fine-tuning
effect nor an artifact of its mathematical design, but rather a result of the interplay between quantum-
inspired stochasticity and probabilistic geometry, enabling convergence with high reliability.
Altogether, the ablation and verification studies are consistent with the algorithmic soundness and the
overall applicability of QIASO. Each of these fundamental elements, namely, superposition
representation, KL-regularized amplitude update, and stochastic tunnelling, was demonstrated to work
together synergistically to improve the convergence behavior and generalization capacity of the
optimizer. The theoretical convergences derived in Section 4 were empirically verified across various
learning conditions, allowing us to conclude that QIASO is a principled, stable, and scalable
optimization framework that can outperform traditional gradient-based and gradient-free solutions.
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5. Conclusions

The current study proposes a new QIASO model for neural network training that addresses
several issues in existing gradient-based algorithms. In contrast to traditional optimizers, which use
deterministic gradient signals, QIASO re-optimizes the learning process by defining it as the
probabilistic dynamics of candidate weight states governed by quantum superposition and amplitude
dynamics. The method balances exploration and exploitation by maintaining a distribution across
candidate weights and dynamically amplifying the benefits of those with smaller loss values. The
addition of stochastic tunneling perturbations also enables the optimizer to cross over into narrow local
minima, making it more effective in searching for complex, high-dimensional loss landscapes.
Theoretical study of QIASO showed that under weak conditions, it was bounded, monotonically
decreasing in loss, and converged almost surely, providing a rigorous mathematical basis for its stability
and reliability. Empirically, experiments on benchmark datasets, including MNIST, CIFAR-10, and
Fashion-MNIST, have shown that QIASO reliably outperforms classical optimizers, such as SGD and
Adam, in terms of accuracy, loss minimization, and sensitivity to the initial data. It was also found that
QIASO converges more smoothly and exhibits better generalization. Ablation experiments also
highlighted the individual contributions of its three fundamental mechanisms: superposition
representation, KL-regularized amplitude update, and tunneling perturbation, all of which are crucial
to its performance improvements.

Beyond its immediate application in training neural networks, QIASO constitutes a conceptual
bridge between quantum mechanics and machine learning optimization. Network training, as QIASO
signifies, represents a conceptual bridge between quantum mechanics and machine learning
optimization. Its gradient-free and distribution-based nature offers potential for integration into hybrid
frameworks that combine probabilistic search and gradient-based refinement, making it suitable for
large-scale deep learning models, reinforcement learning, and black-box optimization problems. The
gradient-free, distribution-based nature offers potential for integration into hybrid frameworks that
combine probabilistic search with gradient-driven refinement, making it suitable for large-scale deep
learning models, reinforcement learning, and black-box optimization problems. Future work could
extend QIASO to transformer-based architectures, explore its adaptation to distributed computing
environments, and study its implementation on near-term quantum simulators. Overall, this study
provides both a theoretical and practical basis for the next generation of quantum-inspired learning
algorithms, making QIASO a scalable, interpretable, and high-performance alternative to conventional
optimization paradigms. Foundation for the next generation of quantum-inspired learning algorithms,
establishing QIASO as a scalable, interpretable, and high-performing alternative to conventional
optimization paradigms.
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