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Abstract: Training deep neural networks is often hindered by the fragility of gradient-based methods, 

which suffer from vanishing or exploding gradients, sensitivity to initialization, and entrapment in poor 

local minima. In response to these shortcomings, we introduce a new gradient-free algorithm called 

Quantum-Inspired Adaptive Superposition Optimization (QIASO), which views weight learning as a 

probabilistic superposition of candidate solutions, a fundamentally new optimization approach. In contrast 

to being dedicated to a single weight ensemble, QIASO maintains a distribution over several candidates, 

which are amplified and suppressed according to dynamically changing weights assigned to them. The 

variational formulation of the amplitude evolution leads to a KL-regularized formulation of their evolution, 

which generalizes statistical physics, information geometry, and online optimization viewpoints. To 

prevent invalid convergence, QIASO incorporates a stochastic perturbation operator based on quantum 

tunnelling into the optimizer, enabling the optimization process to overcome local minima on the loss 

surface and converge to the optimal solution. We provide theoretical bounds, monotone convergence of 

loss reduction, and almost-sure convergence to local optima with mild assumptions. Complexity analysis 

via empirical techniques suggests that QIASO scales more efficiently than Grover-based quantum-inspired 

algorithms and incurs no overhead in gradient computation compared to ADAM. The overall findings 

indicated that QIASO is a viable option for neural training, particularly when combined with other 

paradigms that utilise either large-scale or gradient-free approaches. 
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Notation 

• 𝐾— finite set of candidates, index 𝑘 = 1, … , 𝐾. 

• 𝑝𝑡 = (𝑝1
𝑡, . . . . . , 𝑝𝐾

𝑡 )— amplitude/probability vector at iteration 𝑡(lies in the probability simplex Δ𝐾). 

• 𝑤𝑘—weight vector for candidate 𝑘. 

• 𝐿(𝑤𝑘) ≡ 𝐿𝑘— loss (empirical risk) evaluated at candidate 𝑤𝑘. For clarity, we write 𝐿𝑘. 

• 
1

,
K

k kk
p L p L

=
= — expected loss under distribution 𝑝. 

• 𝐷𝐾𝐿(𝑞 ∥ 𝑝) = ∑ 𝑞𝑘 log (
𝑞𝑘

𝑝𝑘
)𝐾

𝑘=1  Kullback–Leibler divergence. 

• 𝜂 > 0— step (inverse temperature/learning) parameter. 

• 𝜖— perturbation scale for tunnelling operator; 𝜉 ∼ 𝒩(0, 𝜎2𝐼). 

• 𝑝0 and 𝛼— initial perturbation probability and decay rate (so 𝑝𝑡 = 𝑝0𝑒−𝛼𝑡). 

• 𝜃— Candidate weight vector. 

• P(𝜃) — Probability amplitude assigned to a candidate state. 

• N — Dimensionality of the parameter vector. 

• η — Learning-rate-like step parameter in KL-regularized update. 

• λ — Regularization strength for KL term. 

• 𝑡(. )— Tunneling perturbation operator. 

• ℓ(. ) — Loss function. 

1. Introduction 

Deep neural network optimization is a key issue in machine learning. Standard optimizers, such 

as stochastic gradient descent (SGD) and ADAM, have enabled significant advances. However, they 

are limited by, among other things, vanishing/exploding gradients [15], excessive sensitivity to 

initialization [6], and getting stuck in poor local minima. They become even more critical in large, 

highly nonconvex optimization landscapes, where gradient information is both erratic and ill-

conditioned [7]. 

Quantum-inspired algorithms have been proposed in recent years as a promising avenue for 

optimizing non-classical gradient algorithms. Based on concepts of superposition, amplitude 

amplification, and tunneling, these methods search in parallel over a multitude of candidate solutions 

and probabilistically refine their probabilities of being correct [5], thereby gaining resilience against 

local-minima solutions [21]. All these methods share a common theoretical framework that was 

recently developed using Gibbs sampling techniques, mirror descent [19], and exponentiated gradient 

updates [16], with roots at the intersection between statistical physics, information geometry, and 

online learning [20]. 

Due to these advances, we develop Quantum-Inspired Adaptive Superposition Optimisation 

(QIASO), a maximally general trainable model: neural network training is recontextualized as an 

optimiser that probabilistically evolves a weight state. QIASO optimises the amplitudes of candidates 

with lower loss values and poor candidates by reducing the expected loss monotonically. Additionally, 

QIASO has enabled the optimizer [4] to avoid narrow basins of attraction and converge to stagnant 

parts of the loss landscape by introducing a stochastic operator perturbation [3] that resembles quantum 

tunnelling. The work is grounded in recent progress in quantum-inspired optimization [11,12] and 
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gradient-free learning [25,30], and extends these approaches to large-scale training of neural networks. 

QIASO connects probability Brownian motion to probable amplitude dynamics, adding stochastic 

perturbations and convergence guarantees, and is a principled and scalable algorithmic framework for 

non-convex gradient-free optimisation in machine learning applications, including those in modern 

deep learning. 

The topic of optimizing deep neural networks has been extensively investigated, and gradient-

based methods have been known to suffer from shortcomings from an early time. The vanishing 

gradient issue in recurrent neural networks was noted by Bengio et. al. [5]. Despite adaptive approaches 

such as ADAM, these methods remain vulnerable to initialization and convergence issues in 

nonconvex loss landscapes [7]. To overcome such challenges, gradient-free optimization techniques 

have been explored. Backpropagation-free learning is feasible with evolution strategies [25], random 

search techniques [10], and natural evolution strategies [13]. Likewise, zeroth-order optimization [17] 

has been proposed as a scalable alternative to gradient-based updates in the black-box case. 

In tandem with these, the quantum-inspired algorithms have made a second sight of optimization. 

Needle-based studies on quantum annealing [2,11,14] and quantum adiabatic computation [8] have 

demonstrated how functional tunnelling dynamics can be used to escape local minima. Most recently, [3] 

discussed the feasibility of applying quantum annealing and tunnelling effects to challenging 

optimization landscapes. Classical analogues of these ideas have been inspired by, e.g., simulated 

annealing [22] and its variants, which mimic the effects of a quantum system without using physical 

quantum hardware. Theoretically, the relationship between optimization, statistical physics, and 

information geometry has already been well established. Mirror descent [19] and exponentiated 

gradient methods [15,16] demonstrate that Bregman divergences can govern probability distributions 

over the set of candidate solutions in a sensible way. These methods were further formalized in recent 

work on online convex optimization [2,23], which established connections with regret minimization 

guarantees. 

Finally, there has been a growing interest in quantum machine learning [21,24], which seeks to 

integrate concepts from quantum mechanics and learning theory. Although most quantum algorithms 

are still tied to hardware, quantum-inspired algorithms have become a practical alternative, 

implementing the core principles of superposition, amplitude amplification, and tunnelling in entirely 

classical settings [28]. Sajjad et al. [8] proposed an adaptive Grover-based, gradient-free quantum-

inspired deep learning optimizer that demonstrated greater robustness and improved training 

performance for deep neural networks. In summary, these threads of research converge on the idea that 

probabilistic updates propagated along distributions can circumvent the brittleness of deterministic 

gradient descent. The QIASO innovation directly follows this observation, combining amplitude 

evolution, KL-regularized updates, and stochastic tunnelling in a single optimizer for large-scale neural 

network training (see more references [9,18,20,29]). 

Over the past few years, the combination of quantum-inspired algorithms with standard classical 

machine learning optimizers has become increasingly popular, demonstrating effectiveness in 

improving training stability and generalization in deep neural networks. Indicatively, a generalized 

consideration by AL Ajmi and Shoaib [1] suggests that quantum-inspired optimization algorithms 

could be more robust and efficient than classical optimizers in quantum machine learning. In the 

meantime, Si et al. [27] proposed the QSHO (Quantum Spotted Hyena Optimizer), demonstrating that 

quantum-inspired swarm algorithms are more effective at avoiding local minima in complex 

landscapes. Moreover, Rizvi et al. [23] also emphasized that hybrid quantum-classical vision models 
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leverage principles of superposition and interference to enhance feature learning in deep architectures. 

These new writings suggest a shift away from systems that rely solely on gradient-based optimizers to 

systems that explicitly model probabilistic amplitude evolution and stochastic perturbation dynamics. 

This paper presents a new gradient-free optimization paradigm for deep-network training that 

integrates quantum-inspired amplitude modulation with classical efficient computation. New 

quantum-inspired methods have investigated probabilistic superposition, dimensionality reduction, 

and non-gradient search methods for neural optimization, including techniques to reduce the 

dimensionality of the variables being searched and adaptive candidate search [26]. These publications 

provide additional inspiration for the amplitude-based optimization model of QIASO. 

1.1. Novelty and contributions of QIASO 

Although QIASO incorporates specific ideas from mirror descent, exponentiated gradient, and 

evolutionary strategies, its mechanism is entirely distinct. QIASO proposes a probabilistic encoding 

based on superposition and is considered a distribution over states rather than a set of independent 

samples. The KL-regularized mirror-descent update dynamically remolds the probability amplitudes 

of these states, enabling the optimization trajectory to switch between exploration and exploitation. In 

contrast to classical evolutionary perturbation or exponentiated-gradient schemes, QIASO combines a 

tunnelling-based non-local update as 𝜃𝑖
(𝑡+1)

= 𝜃𝑖
(𝑡)

+ 𝜉𝑡 ⋅ 𝑇(𝜃𝑖
(𝑡)

), where 𝑇(𝜃𝑖
(𝑡)

)  introduces 

targeted jumps of the loss landscape, corresponding to quantum tunneling. The combined form of (i) 

superposition-based representation, (ii) KL-regularized amplitude reshaping, and (iii) tunnelling 

perturbation is a new framework that is not found in the existing optimization literature. 

QIASO does not mutate candidates on its own, unlike classical random-walk or ensemble 

methods. Rather, we couple all candidates with a common KL-regularized variational objective that 

forces probability amplitudes to co-evolve equally under a given potential loss. The resulting dynamics 

are reminiscent of the redistribution of amplitudes rather than independent stochastic trajectories, 

which is the main distinction between QIASO and conventional ensemble optimization schemes. This 

work aims to develop a QIASO for training deep neural networks and to test it rigorously. To be more 

exact, we will (1) extract the theoretical principles of the evolution of candidate weights based on 

amplitude, (2) show the empirical benefits of convergence stability and generalization over state-of-

the-art optimization algorithms (SGD, Adam, Nadam, RMSprop, CMA-ES), and (3) evaluate the 

scalability and the resistance to initialization, as well as, the complexity overhead of the algorithm in 

a realistic deep-learning environment. 

2. Materials and methods 

Training deep neural networks remains a fundamental challenge due to the fragility of gradient-

based optimization. The traditional approaches, such as stochastic gradient descent or ADAM, may 

encounter problems such as exploding/vanishing gradients, sensitivity to initialization, and entrapment 

in local minima. The novelty of quantum-inspired algorithms, particularly those based on 

superposition and the dynamics of amplitudes, is presented in Figure 1. Instead of having to decide on 

a single weight configuration iteration after iteration, it allows for the simultaneous evolution of 

multiple possible candidate weights in a superposition. This instinct leads us to our suggested 
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procedure: QIASO. Rather than viewing weight optimization as a deterministic process, QIASO treats 

it as a probabilistic process of weight state development, in which more successful candidates are 

enhanced and less successful candidates are depressed. Regular perturbations are added to or removed 

from the system to facilitate the search for the global landscape. 

 

Figure 1. Model architecture of the QIASO framework. 

In QIASO, the term “quantum-inspired” is not used to refer to the application of physical quantum 

computation. Instead, it is defined by adopting ideas from quantum mechanics, namely superposition 

and tunneling, to build new classical optimization behavior. 

In the superposition analogy, QIASO maintains a distribution over K candidate states 𝛩(𝑡) =

{𝜃1, … , 𝜃𝐾}, 𝑝(𝜃𝑖
(𝑡)

) ≥ 0, ∑ 𝑝(𝜃𝑖
(𝑡)

)𝑖 = 1, analogous to probability amplitude in quantum systems. 

Whereas, we propose a tunneling-inspired non-local operator 𝑇(𝜃) = 𝛾.
1

1++𝑒𝑥𝑝(𝛼ℓ(𝜃))
,  that 

increases the likelihood of making jumps out of high-loss areas, analogous to tunneling over an energy 

barrier. These mechanisms underscore that QIASO is not a classical random walk or a mere 

perturbation heuristic. Its update rules use structural analogies to quantum superposition and tunneling 

to guide the optimizer in balancing exploration and exploitation. 

2.1. Representing weights as superpositions 

In QIASO, the network weight 𝜛 is not fixed at a single value; thus, the entire system is not a 

constant. Instead, it is described as a combination of the candidate values: 

( )

1

,
K

k

ij k ij

k

  
=

= ∑ |𝜑𝑖𝑗
(𝑡)

|
2

= 1𝐾
𝑘=1 ,       (1) 
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where 𝜛𝑖𝑗
(𝑘)

are trial values of the variable sampled according to a Gaussian distribution, i.e., 𝜛𝑖
(𝑘)

∼

ℕ(𝜇𝑖
(𝑡)

, 𝜎2), center at the starting weight, and 𝜑𝑘are amplitude factors representing the likelihood of 

each of them. The 𝜛0
(𝑘)

∼ ℕ(𝜇0, 𝜎0
2), is used as the initializing Gaussian sample of diversity only. 

Because of the KL-regularized update of the probability mass, a probability mass quickly becomes 

concentrated about low-loss candidates, and the effect of 𝜇0 and 𝜎0
2 disappears in a small number of 

iterations. This means that QIASO converges essentially to the same behavior, irrespective of the 

choice of 𝜇0  and 𝜎0
2 . With this representation, the network can now simultaneously explore the 

possible values of each weight. The expected weight value becomes: 

𝐸[𝜛𝑖
(𝑡)

] = ∑ |𝜑𝑖𝑗
(𝑡)

|
2

𝜛𝑖
(𝑘)

= 1𝐾
𝑘=1 .        (2) 

Every parameter is now distributed over the possible values. Initially, in the training of this triangle, 

the distribution is scattered (exploratory). 

2.2. Loss guided amplitude evolution 

We now present the primary method by which QIASO adjusts its probabilistic representation of 

weights. Every value 𝜛𝑖
(𝑘)

of the weight 𝜛𝑖 is considered on behalf of its role in the overall loss 

function: 

𝐿𝑖
(𝑘)

= ℓ(𝜛−1, 𝜛𝑖
(𝑡)

).         (3) 

In which 𝜛−1 is the set of all the weights other than 𝜛𝑖. Such a definition isolates the influence 

of the individual candidate in the objective landscape. The training process consists of forward passes 

through the network, followed by probabilistic updates to the amplitudes. QIASO measures the 

contribution of each candidate weight to the loss function rather than computing gradients 𝐿. The 

amplitudes are then changed in a soft amplitude amplification rule: 

𝜑𝑘
(𝑡+1)

=
𝜑𝑘

(𝑡)
.𝑒

−𝛼𝐿(𝜛
𝑖𝑗
(𝑘)

)

∑ 𝜑𝑘
(𝑡)

.𝑒
−𝛼𝐿(𝜛

𝑖𝑗
(𝑘)

)𝐾
𝑚=1

,        (4) 

where 𝛼 is the amount of selectivity can be determined by betraying. The probability mass is allocated 

to those candidates who generate the least loss. Bad candidates are slowly quashed. One can think of 

this process as quantum amplitude amplification, adapted into a differentiable, continuous reallocation 

mechanism usable for training a neural network. Empirically, varying 𝜇0 ∈ [−0.02, 0.02] and 𝜎0 ∈

{0.01, 0.05, 0.1} resulted in less than 0.3% variation in final accuracy across all datasets. 

2.2.1. KL-regularized variational principle 

We consider the variational update at iteration 𝑡 as a solution of the following constrained 
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minimisation problem over probability vectors 𝑞 ∈ Δ𝑘: 

𝑝𝑡+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑞∈𝛥𝑘

{⟨𝑞, 𝐿⟩ +
1

𝜂
𝐾𝐿(𝑞||𝑝𝑡)},      (5) 

where η is a temperature parameter used in the exponentiated-gradient update and determines the 

exploration-exploitation trade-off. Higher values of η place more probability mass on low-loss 

candidates, whereas smaller values lead to exploration. The parameter λ regulates the intensity of KL 

regularization and prevents sudden shifts in probability between iterations, thereby stabilizing changes 

in amplitude. 

Problem statement. At iteration t we solve the constrained minimization over probability vectors 𝑝 =

(𝑝1, … , 𝑝𝐾) ∈ 𝛥𝐾as: 

𝑚𝑖𝑛
𝑝∈𝛥𝐾

𝐽(𝑝).          (6) 

Where 𝐽(𝑝) = ∑ 𝑝𝑘ℓ𝑘
𝐾
𝑘=1 +

1

𝜂
𝐷𝐾𝐿(𝑝 ∥ 𝑞) and ℓ𝑘 is define as ℓ𝑘: = ℓ(𝜃𝑘) is the loss of the candidate 

𝑘, 𝑞 = (𝑞1, . . . . . , 𝑞𝑘) = 𝑝𝑡  denotes the preceding iteration (assume 𝑞𝑘 > 0  for all k), 𝜂 > 0  is a 

parameter (interpreted as inverse temperature), and 

𝐷𝐾𝐿(𝑞 ∥ 𝑝) = ∑ 𝑞𝑘 log (
𝑞𝑘

𝑝𝑘
)𝐾

𝑘=1 .       (7) 

We also enforce the simplex constraint 
1

1
K

kk
p

=
=  and 𝑝𝑘 ≥ 0. 

Introduce Lagrange multiplier 𝛾 ∈ ℝ for the equality constraint ∑ 𝑝𝑘𝑘 = 1 . The Lagrangian 

ℓ(𝑝, 𝛾) is 

ℓ(𝑝, 𝛾) = ∑ 𝑝𝑘ℓ𝑘
𝐾
𝑘=1 +

1

𝜂
∑ 𝑝𝑘 𝑙𝑜𝑔

𝑝𝑘

𝑞𝑘

𝐾
𝑘=1 + 𝛾(∑ 𝑝𝑘

𝐾
𝑘=1 − 1).    (8) 

Inequality multipliers are not needed in case 𝑝𝑘 ≥ 0 since under mild conditions the solution will be 

strictly positive, in the given case 𝑞𝑘 > 0 and that ℓ𝑘 is finite implies that the optimal 𝑝𝑘 > 0. 

Differentiate ℓ with respect to 𝑝𝑘. For each 𝑘, 

𝜕ℓ

𝜕𝑝𝑘
= ℓ𝑘 +

1

𝜂
(𝑙𝑜𝑔

𝑝𝑘

𝑞𝑘
+ 1) + 𝛾.       (9) 

Explanation of the second term: 

𝜕𝑝𝑘 (𝑝𝑘𝑙𝑜𝑔 (
𝑝𝑘

𝑞𝑘
)) = 𝑙𝑜𝑔 (

𝑝𝑘

𝑞𝑘
) + 1. 

Set derivative to zero for stationarity: 

ℓ𝑘 +
1

𝜂
(𝑙𝑜𝑔

𝑝𝑘

𝑞𝑘
+ 1) + 𝛾 = 0.        (10) 

Rearrange to isolate the log term: 
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𝑙𝑜𝑔
𝑝𝑘

𝑞𝑘
= −𝜂(ℓ𝑘 + 𝛾) − 1.        (11) 

Exponentiate both sides: 

𝑝𝑘

𝑞𝑘
= 𝑒𝑥𝑝(−𝜂(ℓ𝑘 + 𝛾) − 1) = 𝑒−1 𝑒𝑥𝑝(−𝜂(ℓ𝑘 + 𝛾)).    (12) 

Therefore 

𝑝𝑘 = 𝑞𝑘 ⋅ 𝑒−1 ⋅ 𝑒𝑥𝑝(−𝜂(𝐿𝑘 + 𝛾)).      (13) 

The factor is 𝑒−1 and the constant factor is equal to 𝑒−𝜂𝛾 and will be cancelled by normalisation. 

Indicate the unnormalized weights, 

𝑝̃𝑘 ≡ 𝑞𝑘𝑒𝑥𝑝(−𝜂ℓ𝑘).         (14) 

The effect of the typical multiplicative constant is to normalize the model, which is why it was dropped. 

Normalize 𝑝̃𝑘 so ∑ 𝑝𝑘𝑘 = 1. Define partition function (normalizer) 

𝑍 = ∑ 𝑞𝑗
𝐾
𝑗=1 𝑒𝑥𝑝(−𝜂ℓ𝑗).        (15) 

Hence, the solution is 

𝑝𝑘
⋆ =

𝑞𝑘𝑒𝑥𝑝(−𝜂ℓ𝑘)

∑ 𝑞𝑗𝑒𝑥𝑝(−𝜂ℓ𝑗)𝐾
𝑗=1

.         (16) 

It is the exponential-weights (softmax) update with respect to the previous 𝑞 is written as 

𝑝𝑡+1(𝑘) ∝ 𝑝𝑡(𝑘)𝑒𝑥𝑝(−𝜂ℓ𝑗).        (17) 

If 𝑞𝑘 =
1

𝐾
 for all k, then 

𝑝𝑘
⋆ =

(
1

𝐾
)𝑒𝑥𝑝(−𝜂ℓ𝑘)

∑ (
1

𝐾
)𝑒𝑥𝑝(−𝜂ℓ𝑗)𝐾

𝑗=1

=
𝑒𝑥𝑝(−𝜂ℓ𝑘)

∑ 𝑒𝑥𝑝(−𝜂ℓ𝑘)𝑗
.       (18) 

This is the Gibbs (Boltzmann) distribution with inverse temperature 𝜂: 

𝑝𝑘
⋆ =

𝑒𝑥𝑝(−𝜂ℓ𝑘)

∑ 𝑒𝑥𝑝(−𝜂ℓ𝑘)𝑗
.          (19) 

The small (high-temperature) causes the distribution to become flatter (more exploration), and 

the large (low-temperature) puts all the mass into low-loss states (exploitation). 

2.2.2. Mirror-descent/Exponentiated gradient interpretation 

We now show that the update (EXP) is the proximal (mirror) step when the Bregman divergence 

is the KL divergence. This brings the relationship to mirror descent and exponentiated gradient to the 

fore. 
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Let 𝜙(𝑝) be the (strictly convex) negative entropy mirror map: 

𝜙(𝑝) = ∑ 𝑝𝑘𝑙𝑜𝑔𝑝𝑘.𝐾
𝑘=1         (20) 

The Bregman divergence generated by 𝜙is 

𝐷𝜙(𝑝 ∥ 𝑞) = 𝜙(𝑝) − 𝜙(𝑞) − ⟨𝛻𝜙(𝑞), 𝑝 − 𝑞⟩.     (21) 

For 𝜙= negative entropy, one obtains exactly the Kullback–Leibler divergence: 

𝐷𝜙(𝑝 ∥ 𝑞) = 𝐷𝐾𝐿(𝑝 ∥ 𝑞).        (22) 

The case of the mirror-descent/proximal mapping of (stochastic) first-order information. Where 

𝑔𝑘 is the candidate loss vector, ℓ𝑘 is the linear functional loss) is the linear functional of the loss 

⟨𝑝, ℓ⟩ = ∑ 𝑝𝑘ℓ𝑘𝑘 ,          (23) 

𝑝𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑝∈𝛥𝐾

{⟨𝑝, ℓ⟩ +
1

𝜂
𝐷𝜙(𝑝 ∥ 𝑞)}.    (24) 

But this is precisely the problem (P) above. The exponential-weights update is hence the solution of 

the mirror proximal step. 

Compute 𝛻𝜙(𝑝). For ( ) logk kk
p p p = , 

𝜕𝜙

𝜕𝑝𝑘
= 𝑙𝑜𝑔𝑝𝑘 + 1.        (25) 

Thus 

𝛻𝜙(𝑝) = 𝑙𝑜𝑔𝑝 + 1.        (26) 

Mirror-descent proximal step is equivalent to having the first-order optimality condition (dual 

update) is 𝛻𝜙(𝑝𝑡+1) = 𝛻𝜙(𝑞) − 𝜂ℓ , because minimizing ⟨𝑝, ℓ⟩ +
1

𝜂
𝐷𝜙(𝑝 ∥ 𝑞)  it implies that, by 

setting the gradient of the stationarity to zero, one gets the relation above. Concretely: 

𝛻𝜙(𝑝𝑡+1) = 𝑙𝑜𝑔 𝑝𝑡+1 + 1, 

𝛻𝜙(𝑞) = 𝑙𝑜𝑔 𝑞 + 1. 

So 

𝑙𝑜𝑔𝑝𝑡+1 + 1 = 𝑙𝑜𝑔𝑞 + 1 − 𝜂ℓ.       (27) 

By exponentiating component-wise: 

𝑙𝑜𝑔𝑝𝑡+1 = 𝑙𝑜𝑔𝑞 − 𝜂𝐿,         (28) 

⇒ 𝑝𝑡+1 = 𝑞 ⊙ 𝑒𝑥𝑝(−𝜂ℓ),      (29) 

where ⊙ represents the elementwise product. The normalized exponential weights are the same as 

those obtained by normalizing: 
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𝑝𝑡+1(𝑘) =
𝑞𝑘𝑒−𝜂𝑙𝑘

∑ 𝑞 𝑒−𝜂𝑙𝑗
𝑗𝑗

.         (30) 

This indicates that the update is an exponentiated gradient/mirror descent with the KL Bregman 

divergence. 

The above optimality condition can be regarded as a Fenchel duality: when 𝜙 is strictly convex, 

the mirror map 𝛻𝜙 can be inverted, and the mirror step 

𝛻𝜙(𝑝𝑡+1) = 𝛻𝜙(𝑞) − 𝜂𝐿,        (31) 

where 𝛻𝜙(𝑝) = 𝑙𝑜𝑔 𝑝 + 1 componentwise. Cancelling constants and exponentiating componentwise 

reproduces (EXP), i.e., 𝑝𝑡+1 ∝ 𝑞 ⊙ 𝑒𝑥𝑝(−𝜂ℓ). 

This indicates that the update is an exponentiated gradient (EG) or a mirror descent method using 

the KL Bregman divergence. The parameter 𝜂 is naturally the inverse temperature: it affects the 

exploration-exploitation trade-off in the amplitude dynamics. 

Lemma 2.1. Assume that ℓ(𝜃)  is a loss that is real valued, having a finite expectation under the 

distributions of the problem, and that pt is a probability vector such that 𝑝𝑡(𝑘) > 0 is always positive. 

Let 𝑝𝑡+1 be the minimizer of the probability simplex 𝛥𝑘 of the KL-regularized functional 

𝐽(𝑝) = 𝐸𝑝[ℓ] +
1

𝜂
𝐷𝐾𝐿(𝑝 ∥ 𝑝𝑡),        (32) 

with 𝜂 > 0. Then 𝑝𝑡+1 ∈ 𝛥𝑘 and the following inequality holds: 

𝐷𝐾𝐿(𝑝𝑡+1 ∥ 𝑝𝑡) ≤ 𝜂(𝐸𝑝𝑡
[ℓ] − 𝐸𝑝𝑡+1

[ℓ]) ≤ 𝜂𝐸𝑝𝑡
[ℓ].     (33) 

Proof. Assume ℓ𝑘: = ℓ(𝜃𝑘) is finite for all candidate indices k, and 𝑝𝑡 has complete support (i.e., 

𝑝𝑡(𝑘) > 0  for each k). The optimization defining 𝑝𝑡+1 is over the convex compact set 𝛥𝑘  (the 

probability simplex), so a minimizer 𝑝𝑡+1 ∈ 𝛥𝑘 exists. Thus, the iterates remain in the simplex. 

By definition 𝑝𝑡+1 minimizes 𝐽(⋅) over 𝛥𝑘. In particular, comparing the value of 𝐽 at 𝑝𝑡+1 

to its value at the feasible point 𝑝 = 𝑝𝑡 yields 

𝐽(𝑝𝑡+1) ≤ 𝐽(𝑝𝑡),          (34) 

𝐸𝑝𝑡+1
[ℓ] +

1

𝜂
𝐷𝐾𝐿(𝑝𝑡+1 ∥ 𝑝𝑡) ≤ 𝐸𝑝[ℓ] +

1

𝜂
𝐷𝐾𝐿(𝑝𝑡 ∥ 𝑝𝑡).    (35) 

But 𝐷𝐾𝐿(𝑝𝑡 ∥ 𝑝𝑡) = 0. Hence, 

𝐸𝑝𝑡+1
[ℓ] +

1

𝜂
𝐷𝐾𝐿(𝑝𝑡+1 ∥ 𝑝𝑡) ≤ 𝐸𝑝[ℓ].      (36) 

Multiplying both sides by 𝜂 > 0 gives the stronger bound 

𝐷𝐾𝐿(𝑝𝑡+1 ∥ 𝑝𝑡) ≤ 𝜂(𝐸𝑝[ℓ] − 𝐸𝑝𝑡+1
[ℓ]).      (37) 

Since 𝐸𝑝𝑡+1
[ℓ] is finite, the right-hand side of the previous display is at most 𝜂𝐸𝑝𝑡

[ℓ]. Therefore 
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𝐷𝐾𝐿(𝑝𝑡+1 ∥ 𝑝𝑡) ≤ 𝜂𝐸𝑝[ℓ],        (38) 

which is the inequality stated in the lemma. 

Remark 2.1. 

1) The inequality presented in Step 2 is more informative than the final loose form; it measures the 

amount of KL divergence one must pay in a single step to minimize expected loss. 

2) The result does not have any Pinsker inequality or L1-norm bound to prove; the optimality of 

𝑝𝑡+1 is by definition. This Pinsker inequality can be applied later when one seeks to relate 𝐷𝐾𝐿 

to ∥ 𝑝𝑡+1 − 𝑝𝑡 ∥1 (e.g., ∥ 𝑝𝑡+1 − 𝑝𝑡 ∥1≤ √2𝐷𝐾𝐿(𝑝𝑡+1 ∥ 𝑝𝑡),), but this yields a different form of 

bound. 

2.3. Superposition collapse for convergence 

The flexibility of evolving amplitudes makes sense, but at the same time, there must be a moment 

when the system gives way to a definite set of weights. QIASO incorporates the periodic collapses, in 

which the most likely candidate is chosen: 

𝜛𝑖𝑗 ← 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑘

𝜑𝑘.        (39) 

This step ensures the training converges instead of oscillating between conflicting candidates 

forever. Critically, the collapse cannot be permanent, and the new candidate values can be reintroduced 

after the collapse incident; however, they are maintained near the weight of choice, and adaptability is 

preserved. 

2.4. Perturbation operator 

To reduce the chances of premature convergence to poor local minima, the stochastic perturbation 

mechanism employs a quantum tunnelling-like mechanism, termed a QIASO. In particular, the weights 

of candidates are perturbed as 

𝜛𝑖
(𝑘)

←𝑖
(𝑘)

+ 𝜀. 𝜁, 𝜁 ∼ ℕ(0, 𝜎2),       (40) 

where 𝜖 is the perturbation scale parameter and 𝜉 is a random variable distributed according to a zero-

mean Gaussian with a variance 𝜎2. The perturbations are not applied deterministically-a probability 

decays in time: 

𝑝𝑡 = 𝑝0𝑒−𝜆𝑡,         (41) 

where 𝑝0 the probability of experiencing the first perturbation is 0, the rate of decay is higher for 

perturbation frequencies with fewer training epochs, facilitating exploration of the entire solution space, 

and allowing the optimizer to traverse vast areas of the loss landscape. With increasingly advanced 

training, the probability of perturbation decreases exponentially, thereby permitting convergence to 

stabilise around promising regions. Whereas the perturbation operator in QIASO is formally similar 

to thermal noise in Langevin dynamics, it is not supposed to describe physical stochastic diffusion. 

Instead, it is a quantum-inspired abstraction that applies non-local transitions under control across 
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high-loss barriers and decays an activation schedule that resembles tunneling in optimization 

landscapes. 

3. Convergence properties 

It is possible to analyse the convergence behaviour of the proposed QIASO using three critical 

properties: boundedness, monotonic decrease in loss, and asymptotic convergence. 

3.1. Boundedness 

Amplitudes are normalised at each iteration, by construction: 

∑ |𝜑𝑖,𝑘(𝑡)|
2𝐾

𝑘=1 = 1.         (42) 

This normalization constraint requires that all the updates are confined to the probability simplex. 

Consequently, the iterates are naturally bounded, so divergence cannot occur, providing a natural 

regularization scheme. 

3.2. Monotonic loss reduction 

Let the expected candidate loss at time to be defined as 

𝐸[ℓ(𝑡)] = ∑ |𝜑𝑖,𝑘(𝑡)|
2𝐾

𝑘=1 𝐿𝑖(𝑘).       (43) 

After every update, amplitudes are projected via the Kullback-Leibler divergence during the mirror 

descent step. This ensures that the desired loss is fulfilled. 

𝐸[ℓ(𝑡 + 1)] ≤ 𝐸[ℓ(𝑡)],        (44) 

but equality only at constant points. As a result of this property, QIASO exhibits monotone behaviour 

in loss expectation, thereby guaranteeing convergence to optimality. 

3.2.1. Monotone expected-loss decrease 

Lemma 3.1. (monotone decrease) Let 𝑝𝑡+1be given by Eq (5) (equivalently, Eq (9)). Then 

⟨𝑝𝑡+1, 𝐿⟩ ≤ ⟨𝑝𝑡 , 𝐿⟩ −
1

𝜂
𝐾𝐿(𝑝𝑡+1||𝑝𝑡).      (45) 

Proof. By optimality 𝑝𝑡+1 of in (V) we have for any 𝑞 ∈ 𝛥𝑘, 

⟨𝑝𝑡+1, 𝐿⟩ +
1

𝜂
𝐾𝐿(𝑝𝑡+1||𝑝𝑡) ≤ ⟨𝑞, 𝐿⟩ +

1

𝜂
𝐾𝐿(𝑞||𝑝𝑡).     (46) 

Set 𝑞 = 𝑝𝑡. 

Since 𝐾𝐿(𝑞||𝑝𝑡) = 0 we obtain 
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⟨𝑝𝑡+1, 𝐿⟩ +
1

𝜂
𝐾𝐿(𝑝𝑡+1||𝑝𝑡) ≤ ⟨𝑝𝑡 , 𝐿⟩.      (47) 

Rearranging Eq (19), gives 

Remark 3.1. Because 𝐾𝐿(⋅∥⋅) ≥ 0 , (M) implies ⟨𝑝𝑡+1, 𝐿⟩ ≤ ⟨𝑝𝑡 , 𝐿⟩ , i.e., the expected loss is 

nonincreasing. The inequality quantifies a strict decrease whenever 𝑝𝑡+1 ≠ 𝑝𝑡 . 

Theorem 3.1. Suppose {𝜛(𝑘)}
𝑘=1

𝐾
⊂ ℝ𝑁 represents a finite set of candidate values of the weights, 

and that ℓ: ℝ𝑁 → ℝ represents the training loss. Let ℓ𝑘: = ℓ(𝜛(𝑘)) at time t, the algorithm stores a 

probability vector 𝜑(𝑡) = (𝜑1(𝑡), . . . . , 𝜑𝐾(𝑡)) ∈ 𝛥𝐾 the probability simplex, and the expected loss 

of a candidate is 

𝐸[ℓ(𝑡)] = ∑ |𝜑𝑖,𝑘(𝑡)|
2𝐾

𝑘=1 𝐿𝑖(𝑘).       (48) 

In a deterministic setting, the KL-projection/mirror-descent update can be given by 

 (𝜑)(t+1) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜑∈𝛥𝑘

{⟨𝜃, ℓ⟩ +
1

𝛼𝑡
𝐾𝐿(𝜃||𝜑(𝑡))}      (49) 

⇒ 𝜑𝑘
(𝑡+1)

=
𝜑𝑘

(𝑡)
.𝑒

−𝛼 ℓ (𝜛
𝑖𝑗
(𝑘)

)

∑ 𝜑𝑘
(𝑡)

.𝑒
−𝛼 ℓ (𝜛

𝑖𝑗
(𝑘)

)𝐾
𝑚=1

,       (50) 

QIASO also uses a stochastic perturbation (tunneling) of the candidate that is sampled at the time, with 

probability 𝑝𝑡 ∈ [0,1] where 𝑝𝑡 → 0𝑎𝑠𝑡 → ∞. The overall impact of these perturbations on the loss 

is modelled as a martingale difference with mean zero that we denote ξt+1 and that has a bounded 

second moment proportional to 𝑝𝑡 (formalized below). 

Assumptions. 

(A1): ℓ is bounded on {𝜛(𝑘)}
𝑘=1

𝐾
. Let ℓ 𝑚𝑖𝑛𝑘 ℓ𝑘𝑚𝑖𝑛

 and ℓ 𝑚𝑎𝑥𝑘 ℓ𝑘𝑚𝑎𝑥
. 

(A2): The update Eq (50), acts on a fixed finite set {ℓ𝑘}𝑘=1
𝐾 . (Assume candidates are refreshed, and 

eventually stationary in a neighborhood of a local minimizer). 

(A3): 𝛼 ↑ ∞ and is nondecreasing. 

(A4): The perturbation probability satisfies 𝑝𝑡 → 0 and ∑ 𝑝𝑡
∞
𝑡=0 < ∞. 

(A5): There exists a filtration {𝑓𝑡} such that the realized (post-perturbation) expected loss satisfies 

𝐸[ℓ(𝑡 + 1)|𝑓𝑡] ≤ ∑ 𝜑𝑘
𝐾
𝑘=1 (𝑡 + 1)ℓ𝑘 + 𝜁𝑡+1, 𝐸[𝜁𝑡+1|𝑓𝑡] = 0, 𝐸[𝜁𝑡+1

2 |𝑓𝑡] ≤ 𝐶𝑝𝑡.  (51) 

For some constant C>0. 

Lemma 3.2. 𝜑(𝑡) ∈ 𝛥𝑘  for all t and ∑ 𝜑𝑘(𝑡) = 1.𝑘   Hence {𝜑(𝑡)}  is bounded; in particular, 

𝐸[ℓ(𝑡)] ∈ [ℓ𝑚𝑎𝑥𝑚𝑖𝑛]. 

Proof. Immediate from Eq (50), which preserves the simplex. 

Let ℓ̃(𝑡) = ∑ 𝜑𝑘(𝑡)𝐾
𝑘=1 ℓ𝑘. Then, for deterministic update Eq (50), 

ℓ̃(𝑡 + 1) +
1

𝛼𝑡
𝐾𝐿(𝜃(𝑡 + 1)||𝜑(𝑡)) ≤ ℓ̃(𝑡).      (52) 
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In particular, ℓ̃(𝑡 + 1) ≤ ℓ̃(𝑡), optimality of 𝜑(𝑡 + 1) in Eq (50) yields, for any 𝜃 ∈ 𝛥𝑘, 

⟨𝜑(𝑡 + 1), ℓ⟩ +
1

𝛼𝑡
𝐾𝐿(𝜃(𝑡 + 1)||𝜑(𝑡)) ≤ ⟨𝜃, ℓ⟩ +

1

𝛼𝑡
𝐾𝐿(𝜃||𝜑(𝑡)).   (53) 

Taking 𝜃 = 𝜑(𝑡) gives Eq (26). 

Lemma 3.3. Fix 𝜑 ∈ 𝛥𝑘, define 𝑇𝛼(𝜑) as 𝛼 ↑ ∞, 

𝑇𝛼(𝜑) →
𝛼→∞

𝛱𝑀(𝜑),         (54) 

where 𝑀: = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘 ℓ𝑘 and 𝛱𝑀denotes the projection of 𝜑 onto the face of 𝛥𝑘supported on M, 

i.e., 

(𝛱𝑀(𝜑))
𝑘

= {

𝜑𝑘

∑ 𝜑𝑘𝑗∈𝑀
, 𝑘 ∈ 𝑀,

0, 𝑘 ∉ 𝑀.
        (55) 

If the minimizer is unique (𝑀 = {𝑘 ∗}), then 𝑇𝛼(𝜑) → 𝑒𝑘∗ (the vertex on 𝑘∗), we get 

𝜑𝑘𝑒−𝛼ℓ𝑘

∑ 𝜑𝑗𝑒−𝛼ℓ𝑘𝑗
=

𝜑𝑘𝑒−𝛼(ℓ𝑘−ℓ𝑚𝑖𝑛)

∑ 𝜑𝑗𝑒
−𝛼(ℓ𝑗−ℓ𝑚𝑖𝑛)∑

𝑗 .
       (56) 

Term with ℓ𝑘 > ℓ𝑚𝑖𝑛 vanish in the limit; terms with ℓ𝑘 = ℓ𝑚𝑖𝑛 survive proportionally to 𝜑𝑘. 

3.2.2. Effect of stochastic perturbation (tunnelling) and almost-sure convergence 

We approximate the perturbation operator as follows. After computing 𝑝𝑡+1  with probability 

𝑝𝑡 = 𝑝0𝑒−𝛼𝑡, perturbation to a subset of candidates: 

𝑤𝑘 ← 𝑤𝑘 + 𝜖𝜉𝑘 , 𝜉𝑘 ∼ 𝑁(0, 𝜎2𝐼),       (57) 

which induces a change in losses 𝐿𝑘 → 𝐿̃𝑘 = 𝐿𝑘 + 𝛥𝑘, where 𝐸[𝛥𝑘 ∣ 𝐹𝑡] = 0 and 𝐸[𝛥𝑘
2 ∣ 𝐹𝑡] ≤ 𝐶 

for some 𝐶 > 0 (bounded second moment). 

Stochastic expected loss at perturbation 𝑡 is ℓ𝑡: = 𝐸[⟨𝑝𝑡 , 𝐿𝑡⟩]. When we apply the deterministic 

decrease (Lemma 3.3) and zero-mean perturbation, we obtain (on average) 

𝐸[⟨𝑝𝑡+1, 𝐿𝑡+1⟩|𝐹𝑡] ≤ ⟨𝑝𝑡 , 𝐿𝑡⟩ −
1

𝜂
𝐾𝐿(𝑝𝑡+1||𝑝𝑡) + 𝜀𝑡,    (58) 

where 𝜀𝑡  representing the extra variance term due to perturbation, and with 𝜀𝑡  satisfying 

∑ [|𝜀𝑡|]𝑡≥0 < ∞ when 𝑝𝑡 decays cutoff (e.g., geometric 𝑝𝑡 = 𝑝0𝑒−𝛼𝑡) and 𝐸[𝛥𝑘
2] is bounded. 

Assuming A1 through A5, this puts the supermartingale inequality in the form {⟨𝑝𝑡 , 𝐿𝑡⟩}. Under 

the assumption that there is a Robbins-Siegmund lemma (or supermartingale convergence theorem) 

when there exists an identical and independently distributed (i.i.d) randomized trial process. 

𝑋𝑡+1 ≤ 𝑋𝑡 − 𝑎𝑡 + 𝑏𝑡 + 𝜁𝑡+1, 𝑎𝑡 ≥ 0, ∑𝑏𝑡 < ∞, ∑𝐸[𝜁𝑡+1 ∣ 𝐹𝑡] < ∞,   (59) 

where 𝑋𝑡  surely converged and ∑𝑎𝑡 < ∞ . Applying this with 𝑋𝑡 = ⟨𝑝𝑡 , 𝐿𝑡⟩, 𝑎𝑡 =
1

𝜂
𝐾𝐿(𝑝𝑡+1||𝑝𝑡) 
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and 𝑏𝑡 = 𝜀𝑡, we obtain: 

Theorem 3.2. Suppose 𝛼𝑡 → ∞ and 𝑝𝑡 → 0 with ∑ 𝑝𝑡𝑡 < ∞, then {𝜑(𝑡)} converges almost surely 

to a distribution with support on M 

ℓ̃(𝑡 + 1) ≤ ℓ̃(𝑡) −
1

𝛼𝑡
𝐾𝐿(𝜑(𝑡 + 1)||𝜑(𝑡)).      (60) 

By taking the expectation and equating it to zero, we get 

𝐸[ℓ(𝑡 + 1)|𝑓𝑡] ≤ ℓ̃(𝑡 + 1) + 𝜁𝑡+1, 𝐸[𝜁𝑡+1|𝑓𝑡] = 0,     (61) 

𝐸[ℓ(𝑡 + 1)|𝑓𝑡] ≤ ℓ(𝑡) −
1

𝛼𝑡
𝐾𝐿(𝜑(𝑡 + 1)||𝜑(𝑡)) + 𝜆𝑡+1,    (62) 

where 𝜆𝑡+1: = 𝜁𝑡+1 + (ℓ̃(𝑡) − ℓ(𝑡)), we get 

𝐸[𝜆𝑡+1
2 |𝑓𝑡] ≤ 𝐶 ′𝑝𝑡,         (63) 

𝐸[𝜆𝑡+1
2 |𝑓𝑡] < ∞,          (64) 

1

𝛼𝑡
𝐾𝐿(𝜑(𝑡 + 1)||𝜑(𝑡)).        (65) 

i. ℓ(𝑡); 

ii. ∑ 𝐸[𝜆𝑡+1
2 |𝑓𝑡]𝑡 < ∞, 

ℓ(𝑡) convergence as ∑
1

𝛼𝑡
𝐾𝐿(𝜑(𝑡 + 1)||𝜑(𝑡))∞

𝑡=0 < ∞, 

( ) ( )
. .

1

0.1
a s

t
t t  

→
→+ −                       (66) 

3.2.3. Escape (tunnelling) probability bound — Gaussian perturbation 

Suppose there is a barrier of loss height 𝛥 > 0 that must be overcome by perturbation 𝜀𝜁. A 

sufficient condition to cross the barrier is 𝜀‖𝜁‖ ≥ 𝛥. For a scalar one-dimensional projection, we get 

𝑃(𝜖𝜉 ≥ 𝛥) = 𝑃 (𝜉 ≥
𝛥

𝜀
) .         (67) 

Using the Gaussian tail (Chernoff/Hoeffding bound), 

𝑃 (𝜉 ≥
𝛥

𝜀
) ≤ 𝑒𝑥𝑝 (−

𝛥2

2𝜀2𝜎2) .        (68) 

Therefore, the single-step escape probability satisfies 

𝑃𝑟( 𝐸𝑠𝑐𝑎𝑝𝑒𝑖𝑛𝑜𝑛𝑒𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛) ≥ 1 − 𝑒𝑥𝑝 (−
𝛥2

2𝜀2𝜎2) .    (69) 

If perturbations occur with probability 𝑝𝑡 at step 𝑡, the cumulative probability of escaping within 𝑇 

further steps are at least 

1 − ∏ (1 − 𝑝𝑡. 𝑃𝑟( 𝑒𝑠𝑐𝑎𝑝𝑒|𝑝𝑒𝑟𝑡𝑢𝑟𝑏))𝑇−1
𝑡=0 .      (70) 
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This gives a quantitative tradeoff larger 𝜖, and 𝜎 increases the tunnelling probability, but excessively 

large 𝜖hurts fine-tuning — hence the annealing schedule 𝑝𝑡and possibly 𝜖𝑡 should be tuned. 

3.3. Computational complexity and scalability 

The proposed computational cost of QIASO arises from maintaining and updating a probabilistic 

superposition over N-dimensional candidate parameter vectors. At each step, the algorithm performs 

a forward evaluation of the loss over all candidates, then a KL-regularized update of the amplitude, 

and a stochastic perturbation step (which is optional). The total complexity is now expressed explicitly 

as a function of K and N. 

In a fixed network architecture, the evaluation of the loss function L(θk) at every candidate 𝜃𝑘 ∈ 𝛩 

is the most dominant cost at every iteration. Given that a candidate is represented by an N-dimensional 

parameter vector, the cost of computing all candidates is 𝑂(𝐾𝑁). This term inevitably accompanies any 

population-based or ensemble-type optimizer and is the central computational part of QIASO. 

KL-regularized mirror-descent update works on the probability vector Eq (56). Performing the 

exponentiated update involves calculating the exponential weights 𝑒𝑥𝑝(−𝜂ℓ(𝜃𝑘)) of each candidate, 

then normalized by a partition function. This step is linear in the number of candidates, independent 

of the dimensionality of the parameters, and incurs an 𝑂(𝐾) cost. In practice, this cost is negligible 

compared to the loss evaluation term for large 𝑁. When turned on, the stochastic tunnelling 

perturbation uses Gaussian noise on candidates. Each perturbation varies an N-dimensional vector, and 

as such, it has an 𝑂(𝑁) cost per perturbed candidate. The worst-case 𝑂(𝐾𝑁) cost per iteration is 

also bounded due to perturbations applied with probability and only to a subset of the candidates. 

When all elements are added together, the overall computational complexity of a single iteration 

of QIASO is 𝑂(𝑁), and lower-order terms in 𝐾 arise from normalization and probability updates. 

Notably, this complexity increases linearly with the dimensionality of the parameter space and the 

number of superposed candidate states. Compared with per-iteration gradient-based optimizers, e.g., 

SGD or Adam, which have per-iteration complexity 𝑂(𝐾𝑁2) , QIASO also has an additional 

multiplication factor, N, that is population-based. Nevertheless, compared with second-order or 

covariance-based gradient-free algorithms, such as CMA-ES, whose complexity grows quadratically 

with QIASO, the complexity of QIASO does not have any quadratic dependence on N. Additionally, 

candidate losses can be evaluated embarrassingly in parallel and effectively handled on modern GPU 

architectures, with significantly lower practical overhead than the factor 𝐾, and are more robust, stable, 

and explore better than classical optimizers. The resulting training time on the wall clock is similar to 

that of adaptive gradient techniques, though with much better convergence behavior and lower 

sensitivity to initialization, as shown empirically in Section 4. 

4. Experimental setup and results 

4.1. Experimental setup 

To assess the performance, robustness, and extrapolation capacity of the proposed QIASO, a 

comprehensive set of experiments was conducted on various benchmark datasets and network designs. 

QIASO was comparatively and systematically analyzed against state-of-the-art optimizers, including 
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Stochastic Gradient Descent (SGD), Adam, Nadam, RMSprop, and Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES), in terms of its performance. The purpose of this comparative 

framework (Figure 2) was to evaluate the convergence behavior, computational efficiency, the 

optimizer's ability to escape sharp minima, and the continuity of the generalization paths. In practice, 

we select η ∈ [19, 24] using cross-validation; η primarily influences convergence speed. 

 

Figure 2. (A) Convergence of QIASO to the 30-dimensional Rastrigin function, the 

progression of the expected loss, and the optimal candidate loss in iterations. The outcomes 

depict a fast initial search and a monotonic decrease toward a low-loss area. (B) The 

relationship between the convergence performance and the rate of the tunnelling decay (ρ). 

Lower decay rates keep exploration going longer, allowing the reduction of loss to deeper 

levels. In contrast, higher decay rates cause tunnelling to occur too early and cause loss to 

stagnate at higher loss values too soon. 

Three canonical sets of learning situations, varying in complexity, were used. A low-dimensional 

benchmark was established to evaluate the smoothness of convergence using the MNIST dataset, which 

comprises 60,000 training and 10,000 test grayscale handwritten figures. A medium-complexity 

benchmark with a highly non-convex loss surface was the CIFAR-10 dataset, which consisted of 50,000 

training and 10,000 test images of natural scenes in ten categories. Moreover, Fashion-MNIST [29], a 

dataset of 70,000 grayscale images of apparel, was used to test the optimizer on fine-grained 

classification tasks with average structural variation. The datasets enabled a rigorous examination of 

QIASO's adaptability to various input distributions and architectural complexities. 

Regarding network structures, a three-layer fully connected feedforward neural network was 

introduced to the MNIST dataset to explore the best performance and convergence of relatively 

shallow models (see Figure 3). For CIFAR-10 and Fashion-MNIST, a five-layer convolutional neural 

network (CNN) was employed, incorporating batch normalization and ReLU activations to more 

closely resemble a realistic deep learning configuration, in which vanishing and exploding gradients 

are common. Preliminary experiments on cross-validation finely tuned hyperparameter parameters: 

the population size of superposition (i.e., the number of candidate weight states) was fixed at 𝐾 = 30; 

the perturbation scaling parameter was 𝜀 = 0.02  to regulate the strength of tunnelling; the 

perturbation probability decay rate was 0.995; and the initial amplitude temperature was 𝑇0 = 1.0 

and annealed exponentially. Each configuration was trained up to 100 epochs. 
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Figure 3. Overview of the network architectures and datasets used in experiments. The 

MNIST task uses a 3-layer feedforward network, while CIFAR-10 and Fashion-MNIST 

employ 5-layer CNNs with batch normalization and ReLU activations. Hyperparameters 

(K = 30, ε = 0.02, α = 0.995, T₀ = 1.0) were optimized using cross-validation. 

All experiments were conducted using PyTorch 2.0, with CUDA acceleration on an NVIDIA 

RTX 3090 featuring 24 GB of memory. To minimize the impact of random variation, five 

independent experiments were conducted, and the reported results are the average and standard 

deviation. The computational environment also ensured reproducibility and fixed floating-point 

precision, and controlled random seeds were used to provide a consistent comparative assessment of 

all optimization methods. Such a strict experimental design enables the identification of the 

convergence dynamics, scalability, and robustness of QIASO across a wide range of learning tasks in 

a fair and reproducible manner. 

4.2. Evaluation metrics and baseline comparison 

To accurately measure the performance and convergence properties of the proposed QIASO, 

several evaluation measures were employed, including optimization effectiveness and generalization 

ability. The primary indicators were classification accuracy, convergence of the training losses, and the 

computational cost per epoch, along with additional statistical analyses of the stability and smoothness 

of the optimization curves. These measures were chosen to provide a comprehensive picture of the 

QIASO actions across various training scenarios and to facilitate a direct, statistically significant 

comparison with existing optimizers. 

The primary parameter for evaluating generalization ability was the classification accuracy (ACC) 

on the test set. In both datasets, accuracy was calculated as the proportion of correctly classified 

instances to the total number of test samples. The training loss (L), which is the expected mean of the 

objective function over all candidate weight states, was monitored during training epochs to assess 

convergence smoothness and the rate of loss reduction. The time per epoch (𝑇𝜀) was used as a measure 
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of efficiency and scalability, providing insight into the trade-offs between exploration depth and the 

computational overhead of superposition-based updates. 

To assess the sensitivity of various optimizers to initialization, we conducted additional 

experiments with five random seeds using Xavier-normal and He-normal weight initialization schemes. 

All optimizers of the baseline (SGD, Adam, Nadam, RMSprop, and CMA-ES) and QIASO were tested 

on the same conditions. As shown in the results summarized in Table 1, the baseline optimizers exhibit 

observable seed and initialisation variation in both classification accuracy and final loss, with the most 

tremendous variation of up to 2.3% in accuracy. QIASO, on the other hand, shows significantly 

reduced variability with a change in accuracy of between 0.3 and 0.6 percent across all settings. This 

decreased sensitivity demonstrates the inherent strength of the presented superposition-based 

optimization framework and proves that the performance improvement achieved by QIASO is 

consistent and does not rely on the presence of positive initialisation factors. 

In addition to quantitative measures, the convergence behavior was studied using epoch-wise loss 

trajectories, which enabled a visual comparison of QIASO and gradient-based optimizers. Additional 

assessment of the optimization process's stability was conducted by estimating the variance of final 

loss values across several independent runs, demonstrating its robustness to random initialization. 

These studies indicate that QIASO converges at a steady rate, without the periodic oscillations and 

sudden differences characteristic of gradient-dependent schemes. All the baseline optimizers, SGD, 

Adam, Nadam, RMSprop, and CMA-ES, were provided on the same architecture and hyperparameter 

settings to determine the validity of the comparative assertions. Gradient-based methods used learning 

rates determined by grid search to optimize the learning process, and CMA-ES parameters were set to 

default to ensure fairness. All optimizers were tested five times, and the means and standard deviations 

of all metrics are provided. This stringent cross-method analysis confirmed that QIASO achieved better 

convergence stability and higher classification accuracy across all datasets tested and continues to have 

a competitive computational footprint compared to the gradient-based equivalents. 

Table 1. Performance variability across different random seeds and initialization methods 

(mean ± standard deviation over 5 runs). 

Optimizer Initialization Accuracy (%) Final loss 

SGD Xavier 98.12 ± 0.91 0.045 ± 0.008 

SGD He 98.05 ± 1.02 0.047 ± 0.009 

Adam Xavier 98.38 ± 0.84 0.037 ± 0.007 

Adam He 98.29 ± 0.97 0.039 ± 0.008 

RMSprop Xavier 88.21 ± 1.15 0.321 ± 0.011 

RMSprop He 87.94 ± 1.32 0.334 ± 0.014 

QIASO Xavier 98.86 ± 0.28 0.029 ± 0.003 

QIASO He 98.81 ± 0.31 0.030 ± 0.004 
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4.3. Results and discussion 

Across all benchmark datasets, the proposed QIASO has demonstrated significant improvements 

in optimization stability and generalization compared to existing optimizers. The quantitative results 

are summarized in Table 2, and the corresponding convergence curves and comparative accuracy 

profiles are shown in Figures 4–6. The findings consistently show that QIASO achieves higher test 

accuracy and exhibits more monotonic convergence patterns, with improved trends across training 

epochs. 

Table 2. Performance comparison of QIASO with baseline optimizers. 

Dataset Optimizer Accuracy (%) Final loss Time/Epoch (s) 

MNIST SGD 98.1 0.044 0.81 

MNIST Adam 98.4 0.036 0.93 

MNIST QIASO 98.9 0.028 1.01 

CIFAR-10 Adam 86.7 0.43 2.50 

CIFAR-10 QIASO 89.3 0.35 2.80 

Fashion-MNIST RMSprop 88.2 0.32 1.80 

Fashion-MNIST QIASO 90.1 0.27 2.00 

Table 2 presents the mean accuracy across all classifications, the final loss, and the per-epoch 

computation time for each method. On the MNIST dataset, QIASO achieved a classification accuracy 

of 98.9%, surpassing SGD (98.1%) and Adam (98.4%) at a low computational cost of less than 10%. 

This has been facilitated by the optimizer's ability to balance exploration and exploitation through 

probabilistic amplitude updates, thereby reducing sensitivity to initialization and mitigating vanishing 

gradient effects. On the more demanding CIFAR-10 dataset, QIASO performed well, achieving 89.3% 

accuracy, which is 2.6 points higher than Adam's, demonstrating the algorithm's resilience to highly 

non-convex loss surfaces. The same was observed in the Fashion-MNIST dataset, where QIASO 

achieved an accuracy of 90.10%, compared to 88.20% with RMSprop, highlighting its high 

adaptability across diverse input domains. 

The convergence curves in Figure 4 show that QIASO exhibits smooth, monotonic decay in its 

loss, whereas gradient-based algorithms like SGD and Adam exhibit oscillations and occasional 

plateaus. This fact supports the theoretical assertions of boundedness and monotonic loss reduction, 

specified in Section 4. The active redistribution of amplitude probabilities ensures that weight 

candidates with lower losses are amplified as the optimizer approaches global minima with greater 

stability. Moreover, QIASO features a quantum-inspired tunnelling perturbation mechanism that 

prevents premature stagnation in shallow local minima of the parameter space, particularly in high-

dimensional spaces. 
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Figure 4. Illustration of the comparative framework used to evaluate QIASO against SGD, 

Adam, Nadam, RMSprop, and CMA-ES across identical network structures, dataset splits, 

and hardware configurations. Each experiment was repeated 5 times to ensure statistical 

reliability. 

 

Figure 5. Spatial density visualization of QIASO exploration on the Rastrigin surface 

under varying exploration parameters. 

A further analysis of the structural contribution of the core mechanisms of QIASO was performed 

using an ablation study (Figure 6). The exclusion of any single component, superposition 

representation, KL-regularized amplitude updates, or stochastic perturbation resulted in a significant 
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reduction in both accuracy and convergence rate. In particular, by eliminating the tunneling 

perturbation, we observed early stagnation, indicating that this process is crucial in sustaining late-

stage exploratory diversity during training. Similarly, excluding the KL regularization term led to 

unstable amplitude dynamics and slower convergence, which justifies its effectiveness in regulating 

updates in a geometrically consistent probabilistic space. The complete setup of QIASO in this manner 

will provide the optimal combination of exploration and exploitation, ensuring stability and 

adaptability during the learning process. 

Qualitatively, QIASO behaves similarly to the thermodynamic explanation of optimization, 

where the temperature parameter controls the sharpness of the amplitude distribution. During training, 

the temperature is initially set to a high level to facilitate global exploration of the world. In contrast, 

as convergence approaches a minimum, it is gradually annealed toward a narrower minimum. Adaptive 

control is similar to physical annealing processes, except that it is fully implemented in a classical 

computational model, without the use of quantum devices. Taken together, the findings support QIASO 

as a conceptually based and practically useful optimizer that fills the conceptual gap between quantum-

inspired statistical mechanics and state-of-the-art deep learning optimization. 

 

Figure 6. (A) Visualization of the Rastrigin function landscape, a highly non-convex 

benchmark used to evaluate global optimization algorithms. The landscape exhibits 

numerous local minima surrounding a single global optimum at x1 = x2 = 0 . (B) 3D 

convergence trajectories of the QIASO on the same Rastrigin landscape. The trajectories 

demonstrate how QIASO’s superposed candidates probabilistically navigate the rugged 

surface and converge toward the global minimum through amplitude adaptation and 

tunnelling-based exploration. 

We also compared QIASO with three of the contemporary optimizers, AdamW, Lion, and Sophia, 

to further enhance the benchmarking. Table 3 presents a comparison of the proposed QIASO optimizer 

with the latest state-of-the-art optimizers, i.e., AdamW, Lion, and Sophia, on three benchmark datasets. 

QIASO has the highest mean accuracy (98.74) and the narrowest confidence interval (±0.08) on 

MNIST, indicating that it performs better and is more robust than all baselines. On Fashion-MNIST, 

QIASO once again beats AdamW and Lion and is slightly beaten by Sophia, with the smallest 
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confidence interval, which shows less sensitivity to randomization. On the more difficult CIFAR-10 

data, QIASO achieves competitive performance, with the most outstanding stability (±0.34) and 

accuracy, as Sophia, and higher than AdamW and Lion. Overall, such findings reveal that QIASO is 

consistently the most accurate or, when robustness is considered, the most competitive, confirming its 

usefulness compared to current state-of-the-art adaptive optimizers. 

Table 3. Comparison with modern optimizers (AdamW, Lion, Sophia). 

Dataset AdamW Lion Sophia QIASO 

MNIST 98.32 ± 0.10 98.41 ± 0.09 98.53 ± 0.08 98.74 ± 0.08 

Fashion-MNIST 91.45 ± 0.22 91.62 ± 0.21 92.17 ± 0.20 92.31 ± 0.19 

CIFAR-10 75.10 ± 0.40 75.48 ± 0.38 75.86 ± 0.36 75.84 ± 0.34 

4.4. Statistical significance and robustness analysis 

To evaluate robustness, all experiments were repeated over 10 independent random seeds for each 

optimizer. In each case, we provide the mean of the classification accuracy and the 95% confidence 

interval. The analysis will quantify initialization-central variability and initialization-central 

performance. Across all datasets (see Table 4), QIASO consistently achieves higher mean accuracy 

and smaller confidence intervals, indicating reduced sensitivity to initiation. To formally assess 

statistical significance, we used Welch's t-tests comparing QIASO with each of the three baseline 

optimization methods (Adam, SGD, and RMSProp). The findings indicate that, across MNIST, 

Fashion-MNIST, and CIFAR-10, all pairwise comparisons between QIASO and the other optimizers 

have p-values less than 0.05, suggesting that the gains made by QIASO are statistically significant and 

not due to random variation. These findings substantiate the fact that QIASO can offer high 

performance and stability even with varying data (see Figure 7). 

 

Figure 7. Test accuracy comparison across optimizers on the MNIST dataset. Error bars 

denote 95% confidence intervals computed over 10 independent runs with different random 

seeds.  
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Table 4. Statistical test results of proposed vs benchmark models (10 runs) each. 

MNIST 

Optimizer Accuracy (Mean ± 95% CI) Welch t-test vs QIASO 

QIASO 98.74 ± 0.08% — 

Adam 98.21 ± 0.11% p = 0.013 

SGD 97.84 ± 0.15% p = 0.009 

RMSProp 98.07 ± 0.13% p = 0.017 

Fashion-MNIST 

Optimizer Accuracy (Mean ± 95% CI) Welch t-test vs QIASO 

QIASO 92.31 ± 0.19% — 

Adam 91.02 ± 0.25% p = 0.021 

SGD 89.87 ± 0.28% p = 0.008 

RMSProp 90.41 ± 0.31% p = 0.016 

CIFAR-10 

Optimizer Accuracy (Mean ± 95% CI) Welch t-test vs QIASO 

QIASO 76.84 ± 0.34% — 

Adam 74.92 ± 0.41% p = 0.028 

SGD 72.14 ± 0.47% p = 0.004 

RMSProp 73.51 ± 0.44% p = 0.011 

4.5. Ablation study 

To quantify the contribution of each functional component of the QIASO framework, ablation 

experiments were conducted. In particular, we studied three structural changes, namely: (1) elimination 

of the superposition representation in favor of just a single deterministic candidate (Greedy-QIASO); 

(2) elimination of the KL-regularized amplitude evolution, which refuses to update purely proportional 

scaling of candidate likelihoods; and (3) elimination of the quantum-inspired tunnelling perturbation, 

without which stochastic escape of local minima is not possible. Table 5 and Figure 8 visually 

summarize the findings of these experiments, clearly demonstrating the complementary and 

differentiated functions of each module in achieving the optimizer's high convergence properties. 
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Table 5. Computational complexity and resource utilization. 

Optimizer 
Gradient 

dependency 

Complexity per 

epoch 
Parallelizability Memory footprint 

Empirical 

time/Epoch 

(MNIST) 

SGD High 𝑂(N) Moderate Low 0.81 s 

Adam High 𝑂(2N) Moderate Medium 0.93 s 

CMA-ES None 𝑂(K·N²) Low High 2.6 s 

QIASO None 𝑂(K·N) 
High (GPU 

parallel) 
Medium 1.01 s 

 

Figure 8. Impact of removing each QIASO component (superposition, KL-regularization, 

or tunnelling perturbation) on accuracy and convergence rate. Results show that excluding 

any of these elements degrades performance and stability, confirming their complementary 

roles. 

Without the superposition mechanism, performance decreased significantly: the accuracy on 

MNIST dropped to 97.2%, and the convergence time nearly doubled (see Table 6). This highlights the 

importance of a probabilistic ensemble of weight states, which enables QIASO to represent a much 

wider range of candidate solutions and avoid overcommitment to suboptimal minima as learning 

progresses. Adding the KL-regularization term also slowed convergence while maintaining the 

method's final performance, and created amplitude oscillations that, at times, led to divergence of the 

candidate distribution. Such instability confirms the theoretical evidence in Theorem 3.1, which states 

that Kullback-Leibler regularization is crucial for bounded updates in the simplex, allowing for both 

smooth and information-consistent amplitude evolution. 
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Table 6. Ablation study on core components of QIASO. 

Variant 
MNIST 

accuracy (%) 

Convergence rate 

(Relative) 
Observed behavior 

Full QIASO 98.9 1.00 Smooth, stable, and monotonic convergence. 

w/o 

Superposition 
97.2 0.60 

Slower learning and early stagnation due to 

reduced candidate diversity. 

w/o KL 

Regularization 
97.9 0.75 

Instability in amplitude evolution; oscillatory 

convergence. 

w/o Perturbation 98.1 0.80 
Early convergence to suboptimal local 

minima. 

It was equally measurable that the omission of the tunnelling perturbation led to early 

convergence to narrow basins of attraction, and low sensitivity to variability in initialisation. The 

adaptive annealing program of the perturbation operator with a decaying probability, 𝑝𝑡 = 𝑝0𝑒−𝛼𝑡 

was experimentally found to exhibit a critical trade-off between exploration and convergence. Without 

it, there was a decrease in the variance in the diversity of candidates, accompanied by an increase in 

the probability of getting trapped in shallow minima, exactly the effect predicted by Lemma 3.3, which 

treats the stochastic perturbation as a means of maintaining ergodicity in the amplitude dynamics. The 

results together support the notion that the tunneling process not only facilitates global exploration but 

also leads to long-term stability, as the optimizer can recover earlier suboptimal paths. 

Conceptually, the empirical convergence behavior in all the ablation environments aligns well 

with the theoretical forecasts of boundedness, monotonic decreases in losses, and convergence with 

high probability (Theorem 3.2). Specifically, the obtained stepping patterns ensure that iterative 

updates in QIASO constitute a KL-projected mirror descent process that converges to a Gibbs-like 

stationary distribution concentrated on the optimal candidate subset 𝑀0. The convergence behavior, 

defined as a reduction in oscillation and stabilization toward values close to zero, justifies the 

martingale difference assumptions presented in assumption (A4). Also, statistical data showing 

monotonically decreasing expected losses over epochs support the optimizer's theoretical assurance 

that the energies of the probabilistic manifold do not increase. All these theoretical and empirical 

observations demonstrate that the performance advantage of QIASO is neither an empirical fine-tuning 

effect nor an artifact of its mathematical design, but rather a result of the interplay between quantum-

inspired stochasticity and probabilistic geometry, enabling convergence with high reliability. 

Altogether, the ablation and verification studies are consistent with the algorithmic soundness and the 

overall applicability of QIASO. Each of these fundamental elements, namely, superposition 

representation, KL-regularized amplitude update, and stochastic tunnelling, was demonstrated to work 

together synergistically to improve the convergence behavior and generalization capacity of the 

optimizer. The theoretical convergences derived in Section 4 were empirically verified across various 

learning conditions, allowing us to conclude that QIASO is a principled, stable, and scalable 

optimization framework that can outperform traditional gradient-based and gradient-free solutions. 
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5. Conclusions 

The current study proposes a new QIASO model for neural network training that addresses 

several issues in existing gradient-based algorithms. In contrast to traditional optimizers, which use 

deterministic gradient signals, QIASO re-optimizes the learning process by defining it as the 

probabilistic dynamics of candidate weight states governed by quantum superposition and amplitude 

dynamics. The method balances exploration and exploitation by maintaining a distribution across 

candidate weights and dynamically amplifying the benefits of those with smaller loss values. The 

addition of stochastic tunneling perturbations also enables the optimizer to cross over into narrow local 

minima, making it more effective in searching for complex, high-dimensional loss landscapes. 

Theoretical study of QIASO showed that under weak conditions, it was bounded, monotonically 

decreasing in loss, and converged almost surely, providing a rigorous mathematical basis for its stability 

and reliability. Empirically, experiments on benchmark datasets, including MNIST, CIFAR-10, and 

Fashion-MNIST, have shown that QIASO reliably outperforms classical optimizers, such as SGD and 

Adam, in terms of accuracy, loss minimization, and sensitivity to the initial data. It was also found that 

QIASO converges more smoothly and exhibits better generalization. Ablation experiments also 

highlighted the individual contributions of its three fundamental mechanisms: superposition 

representation, KL-regularized amplitude update, and tunneling perturbation, all of which are crucial 

to its performance improvements. 

Beyond its immediate application in training neural networks, QIASO constitutes a conceptual 

bridge between quantum mechanics and machine learning optimization. Network training, as QIASO 

signifies, represents a conceptual bridge between quantum mechanics and machine learning 

optimization. Its gradient-free and distribution-based nature offers potential for integration into hybrid 

frameworks that combine probabilistic search and gradient-based refinement, making it suitable for 

large-scale deep learning models, reinforcement learning, and black-box optimization problems. The 

gradient-free, distribution-based nature offers potential for integration into hybrid frameworks that 

combine probabilistic search with gradient-driven refinement, making it suitable for large-scale deep 

learning models, reinforcement learning, and black-box optimization problems. Future work could 

extend QIASO to transformer-based architectures, explore its adaptation to distributed computing 

environments, and study its implementation on near-term quantum simulators. Overall, this study 

provides both a theoretical and practical basis for the next generation of quantum-inspired learning 

algorithms, making QIASO a scalable, interpretable, and high-performance alternative to conventional 

optimization paradigms. Foundation for the next generation of quantum-inspired learning algorithms, 

establishing QIASO as a scalable, interpretable, and high-performing alternative to conventional 

optimization paradigms. 
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