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1. Introduction

Censoring and life-testing are key for time-to-event analyses when complete follow-up isn’t
available. They let investigators extract valid conclusions from partial data common in medicine,
engineering, and the social sciences while keeping studies efficient and affordable so decisions can be
made sooner. Used well, they inform public health, strengthen product reliability, and guide policy.
Hybrid censoring blends Type-I (time-limited) and Type-II (failure-count) schemes: the experiment
stops at the earlier of a prechosen number of failures r or a fixed time t. Although this guarantees the
test lasts no longer than t, a practical drawback is that too few failures may be observed by t to support
strong inference.

Hybrid censoring which combines elements of Type-I and Type-II designs terminates a test either
by time or by failure count. For information about Type-I and Type-II censored sample, see [1]. A
common specification sets the stopping time as T • = min{Xk:n, T }, where k ∈ {1, . . . , n} is the target
number of failures and T > 0 is a preset time limit. While this caps the test duration at T , a drawback
is that too few failures may be observed by T to support reliable inference. To distinguish variants, [2]
named the min rule Type-I hybrid censoring (HCT1) and proposed the complementary Type-II hybrid
censoring (HCT2) with T • = max{Xk:n, T }.

Childs et al. [2] referred to this scheme as Type-I hybrid censoring (HCT1) and introduced a
companion design, Type-II hybrid censoring (HCT2), where the test ends at max{Ym:m:n, t}. Although
HCT2 guarantees at least m failures, it may considerably lengthen the experiment when failures are
sparse. To overcome the drawbacks of both HCT1 and HCT2, Chandrasekar et al. [3] proposed
two generalized extensions, namely generalized HCT1 (GHCT1) and generalized HCT2 (GHCT2),
collectively termed generalized hybrid censoring schemes. Under the GHCT1 scheme, n items enter
a life test at time zero, with three prespecified quantities: integers r,m ∈ {1, 2, . . . , n} (with r ≤ m
indicating failure-count requirements), and a censoring time t ∈ (0,∞). The stopping rule is: if
Yr:m:n < t, terminate at min{Ym:m:n, t}; otherwise, stop at Yr:m:n. This extends HCT1 by permitting
the test to continue beyond t when needed while guaranteeing observation of at least r failures. In
contrast, GHCT2 tests n items with a fixed failure threshold r ∈ {1, 2, . . . , n} and two predetermined
time bounds t1, t2 ∈ (0,∞) satisfying t1 < t2.

Under GHCT2, the stopping rule is: stop at t1 if Yr:n < t1; stop at Yr:n if t1 < Yr:n < t2; otherwise, stop
at t2 when Yr:n ≥ t2. Although this modification of HCT2 confines the experiment to the interval [t1, t2],
it can still yield fewer, possibly no failures before t2, echoing the limitation seen in HCT1. Hence,
residual drawbacks persist in both generalized plans: in GHCT1, reliance on a single censoring time
t may be insufficient to guarantee observation of m failures, and in GHCT2, very few or no failures
may still occur prior to t2. To balance the respective strengths and limitations of the two generalized
schemes, Balakrishnan et al. [4] proposed a unified hybrid censoring (UHC) strategy. While UHC
integrates the core features of GHCT1 and GHCT2 into a single, more adaptable framework, it does
not permit the interim (progressive) removal of test units prior to termination.

Type-II progressive censoring (P-CT2) is widely used in reliability studies because it strikes a
balance between statistical efficiency and practical feasibility; it can shorten test duration and reduce
cost, particularly in biomedical and engineering applications. In addition, P-CT2 yields richer
and more flexible data, improves inference for lifetime parameters, and supports more effective
experimental design under real-world constraints (see Balakrishnan and Cramer [5]). To address
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the inability to remove surviving units during UHC tests, Górny and Cramer [6] proposed a unified
progressive hybrid censoring plan (UPHCT1) that merges features of UHC and P-CT2 to enhance
flexibility in life-testing experiments.

In progressive Type-II censoring (PCT2) with m observations, when the ith failure occurs, a
preassigned number Ri of surviving units is randomly removed, and the experiment continues until
the m-th failure time. Consider a life test that begins at time 0 with n identical units. Fix integers
r,m ∈ {1, . . . , n} with r < m, two control times t1 < t2 (t1, t2 > 0), and a progressive removal scheme
R = (R1, . . . ,Rm) satisfying n = m +

∑m
i=1 Ri. Under the UPHCT1 mechanism, removals are carried

out as in the standard PCT2 plan: as soon as the ith failure occurs, Ri surviving units are randomly
withdrawn. Let Xi:m:n denote the ith progressive order statistic (the ith observed failure time) and write
R(t; θ) = 1 − F(t; θ) for the parent survival (reliability) function.

The experiment terminates at the stopping time s⋆ given by

s⋆ =


Xm:m:n, if Xm:m:n < t1,

t1, if Xr:m:n < t1 ≤ Xm:m:n,

Xr:m:n, if t1 < Xr:m:n ≤ t2,

t2, if t2 < Xr:m:n.

(1.1)

Let di denote the number of failures observed by time ti (i = 1, 2), and let ν be the number of failures
actually observed up to s⋆ (that ν ∈ {m, d1, r, d2}, depending on which case of (1.1) occurs). The
number of units remaining on test at termination is

R⋆ =



n − m −
∑m−1

i=1 Ri, if s⋆ = Ym:m:n,

n − d1 −
∑d1

i=1 Ri, if s⋆ = t1,

n − r −
∑r−1

i=1 Ri, if s⋆ = Yr:m:n,

n − d2 −
∑d2

i=1 Ri, if s⋆ = t2.

(1.2)

If x = (x1:m:n, . . . , xν:m:n) denotes the observed UPHCT1 data from a population with probability
density function (PDF) g(·;γ) and cumulative distribution function (CDF) F(·;γ), the likelihood takes
the standard progressive form

L(γ | x) ∝

 ν∏
i=1

g(xi:m:n;γ)
[
R(xi:m:n;γ)

]Ri

 [
R(s⋆;γ)

]R⋆
. (1.3)

As emphasized by Górny and Cramer, UPHCT1 merges the strengths of three controls progressive
(unit removals), time-controlled (t1, t2), and failure–controlled (at least r failures) into a single, efficient
design. In practice, this plan mitigates two common risks of conventional GHCT1 and GHCT2
schemes:

• ending too early with too few failures for reliable inference;
• running far beyond acceptable test duration.

Enforcing both a lower bound on the number of failures and an upper bound on time typically
improves the precision of parameter estimation and the robustness of subsequent analysis. Its ability to
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accommodate constraints on time, cost, and attrition makes UPHCT1 broadly applicable across many
reliability settings.

This work makes several original contributions on both theoretical and applied fronts. A
parsimonious one-parameter unit distribution is proposed and shown to outperform several competing
unit models, including the new unit–Lindley, Topp-Leone, Beta, unit-Weibull, unit–Gompertz,
unit–XLindley, Alpha–Power Topp–Leone, unit log–logistic, and unit Burr–XII in goodness-of-
fit and reliability inference across complete and censored datasets (including UPHCT1 settings).
It is motivated by the need for flexible, information-rich life-testing designs that can handle the
complexities of modern reliability data, especially for high-value or rare materials (e.g., tensile strength
of polyester fibers, aircraft air-conditioning failures, and ordered failure-time studies). While prior
studies provide rigorous analyses of the proposed unit distribution across diverse reliability settings,
they also underscore its suitability in the presence of UPHCT1 data. By leveraging UPHCT1, which
guarantees a minimum number of observed failures while confining the experiment to a fixed time
window, and the proposed unit model, which flexibly captures upside-down-bathtub and heavy-tailed
hazard behaviors, this paper develops the corresponding inferential procedures.

To fill the identified gap in the current literature, the presented research works under the framework
of the UPHCT1 scheme and combines it with an efficient single-parameter model of unit lifetime. The
main intention was to cover two aspects: (i) to offer a useful censoring scheme that can distribute
a minimum number of failures under the limitation of the total test time, and (ii) to introduce a
simplified single-parameter model that can model diverse shapes of the hazard function like bathtub
and increasing failure rate (IFR) curves so that exact reliability analysis can be obtained without much
complexity.

To meet this objective within the proposed framework, maximum-likelihood and Bayesian
inferential procedures are developed for the model parameters together with the associated reliability
measures. Bayesian computations are implemented via Markov chain Monte Carlo (MCMC) under
diffuse (noninformative) and gamma priors, using a Metropolis-Hastings algorithm. Within these
setups, large-sample (asymptotic) confidence intervals and Bayesian credible intervals are constructed
for the unknown quantities. Furthermore, estimator performance is evaluated through a comprehensive
Monte Carlo simulation which covers multiple censoring configurations and assessed by several
precision metrics by which the robustness of the Bayesian procedures is demonstrated.

Recently, using the proposed censored sample, different lifetime models are investigated via
likelihood and Bayes methods of parameter estimations; see, for example, Dutta and Kayal [7] for Burr
Type-XII, Yousef et al. [8] for truncated Cauchy power exponential, Dutta et al. [9] for Kumaraswamy-
G family, Anwar et al. [10] for inverted exponentiated Rayleigh, Mohammed et al. [11] for inverted
Nadarajah–Haghighi, Prakash et al. [12] for Lomax, Elsherpieny and Abdel-Hakim [13] for Alpha-
Power exponential distribution, Alotaibi et al. [14] for Hjorth Competing Risk Data, and so forth.

For the purposes of this analysis, two different methods of parameter estimation will be employed
and contrasted with one another, namely Maximum Likelihood Estimates (MLEs), and a Bayesian
estimate generated with a Metropolis-Hastings algorithm. The use of these two methods is theoretically
and pragmatically justifiable on a number of grounds. The first, MLEss, is a classical choice
particularly because of its optimality properties within a large sample framework. The second, the
Bayesian model is able to generate a full posterior probability function, which, in turn, has a number
of convenient properties; namely, it is able to generate full probabilistic inferences about model
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parameters without needing further tests, because credible regions often have better performance
characteristics, especially in terms of precision in small samples, and because it is able to integrate
prior information about the parameter sets being estimated.

From a computational perspective, both MLEs can be obtained by means of common numerical
algorithms such as Newton-Raphson, whereas the Bayesian Estimates can be obtained by means of
Markov Chain Monte Carlo simulations with Metropolis-Hastings sampling for ensured exploration
of the posterior space. To conduct a comparison among these approaches, we will be interested in
considering some finite sample performance criteria such as bias, mean squared error (MSE), coverage
probability, average width of the confidence sets, besides comparing the decision theoretic risks with
different loss functions, with the linear–exponential (LINEX) loss function being used in the Monte
Carlo comparison. The comparison among these approaches will be used to measure robustness against
finite samples and censoring, with goal of understanding in what types of situations a certain approach
is preferable over the other, and for providing information about which estimator may be used given a
specific situation concerning the sample size, proportion of censored observations, and existing prior
information.

The remainder of the paper is organized as follows. Section 2 introduces unit distribution with one
parameter. Sections 3 discusses the likelihood estimation for model based on the UPHCT1 mechanism.
Section 4 develops Bayesian estimators for the model parameters and associated reliability measures.
Section 5 obtains bootstrap algorithms. Section 6 summarizes the Monte Carlo study. Section 7
analyzes the three data sets. Finally, Section 8 concludes the paper.

2. Unit distribution with one parameter

Finite–support probability models are common in applications, for instance, the uniform on [γ, b],
beta on [0, 1], truncated normal on [γ, b], and arcsine on [γ, b]; some families (e.g., generalized Pareto)
admit bounded support depending on their parameters. In particular, Muhammad [15] introduced a
two-parameter lifetime distribution supported on (0, b]. We adopt that model reparameterized with
γ > 0 in place of γ and recall its CDF, and PDF function as given in Eqs (2.1) and (2.2).

The CDF of the proposed model with parameters γ > 0 and b > 0 is given by

F(x) =
(γ + 1)(x/b)
γ + (x/b)

, 0 < x ≤ b, (2.1)

and the corresponding PDF is

f (x) =
γb(γ + 1)
(γb + x)2 , 0 < x ≤ b. (2.2)

Figure 1 depicts density and hazard plots for different value os parameter γ. As γ increases, the
PDF on (0, 1) evolves from sharply left-skewed (mass near 0) to a flatter, more even profile, while the
hazard shifts from a pronounced bathtub shape (high early risk, mid-interval dip, late surge) toward a
mainly increasing IFR pattern. Hence, γ controls both skewness and the early-versus-late failure risk,
demonstrating strong shape flexibility.
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Figure 1. Density and hazard for different value os parameter γ.

Because b acts as a positive scale parameter in Eqs (2.1) and (2.2), it is convenient to study the
unit–scale form. Setting b = 1 in the general expressions with shape γ > 0 yields the distribution on
(0, 1] with

F(x) =
(γ + 1) x
γ + x

, 0 < x ≤ 1, (2.3)

f (x) =
γ(γ + 1)
(γ + x)2 , 0 < x ≤ 1, (2.4)

s(x) =
γ(1 − x)
γ + x

, 0 < x ≤ 1, (2.5)

h(x) =
f (x)
s(x)
=

γ + 1
(γ + x)(1 − x)

, 0 < x < 1. (2.6)

Basic properties

Let F, f , S , and h denote the CDF, PDF, survival, and hazard functions of the unit-scale model
(b = 1).

• Support and endpoint limits: From (2.3) and (2.5), we obtain

F(0+) = 0, F(1) = 1, s(0+) = 1, s(1−) = 0,

so the distribution is supported on (0, 1] and has the stated boundary behaviour.
• Monotonicity of the PDF (explicit): Differentiate the PDF in (2.4):

d
dx

f (x) = −
2γ(γ + 1)
(γ + x)3 .
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Because γ > 0 and γ + x > 0 for x ∈ (0, 1], it follows that

f ′(x) < 0 for all x ∈ (0, 1];

hence f is strictly decreasing on (0, 1]. The density therefore attains its largest value near the left
endpoint; in fact,

lim
x↓0

f (x) =
γ(γ + 1)
γ2 =

γ + 1
γ
.

• Hazard shape and its derivative (explicit): Write h(x) = (γ + 1)/D(x) with D(x) = (γ + x)(1 − x).
Expand and differentiate D(x):

D(x) = γ + x − γx − x2, D′(x) = 1 − γ − 2x.

Differentiating h gives

h′(x) = −(γ + 1)
D′(x)
D(x)2 = −(γ + 1)

1 − γ − 2x[
(γ + x)(1 − x)

]2 =
(γ + 1)

(
γ + 2x − 1

)
(γ + x)2(1 − x)2 .

Thus, the sign of h′(x) is determined by N(x) := γ + 2x − 1:

– If γ ≥ 1, then N(x) ≥ γ − 1 ≥ 0 for all x ∈ [0, 1), so h′(x) ≥ 0. In this case the hazard is
monotone increasing (IFR behaviour).

– If 0 < γ < 1, then N(x) changes sign at

x∗ =
1 − γ

2
∈ (0, 1

2 ).

For 0 < x < x∗ we have N(x) < 0 and h′(x) < 0 (decreasing), while for x > x∗, we have
N(x) > 0 and h′(x) > 0 (increasing). Therefore, for 0 < γ < 1, the hazard is bathtub-shaped
(decreases and then increases).

These analytic conclusions match the hazard plots provided in the manuscript.
• Quantile function and simulation: Solve u = F(x) for x. From (2.3),

u =
(γ + 1)x
γ + x

=⇒ x =
γu

γ + 1 − u
,

so the quantile function is

Q(u) = F−1(u) =
γu

γ + 1 − u
, 0 < u < 1.

Therefore, sampling is direct: if U ∼ Unif(0, 1), then X = Q(U) has distribution F.
• First moment (closed form): The expected value can be computed in closed form by substitution

t = γ + x:

E[X] =
∫ 1

0
x f (x) dx = γ(γ + 1)

∫ 1

0

x
(γ + x)2 dx

= γ(γ + 1)
∫ γ+1

γ

t − γ
t2 dt = γ(γ + 1)

{
ln

(γ+1
γ

)
+
γ

γ + 1
− 1

}
.

Higher moments E[Xr] are obtained analogously by direct integration.
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3. Likelihood estimation

Under the UPHCT1 scheme, with observed progressive failure times x = (x1:m:n, . . . , xν:m:n),
removals {Ri}

ν
i=1, terminal time s⋆, and terminal removals R⋆ (as in (1.1)-(1.2)), the likelihood in (1.3)

specializes to

L(γ | x) ∝
ν∏

i=1

γ(γ + 1)
(γ + xi:m:n)2

[
γ(1 − xi:m:n)
γ + xi:m:n

]Ri
[
γ(1 − s⋆)
γ + s⋆

]R⋆

∝ (γ + 1)ν γ ν+
∑ν

i=1 Ri+R⋆ (1 − s⋆)R⋆(γ + s⋆)−R⋆
{ ν∏

i=1

(1 − xi:m:n)Ri(γ + xi:m:n)−(2+Ri)
}
.

(3.1)

Equivalently, the log-likelihood is

ℓ(γ) ∝
(
ν +

∑ν
i=1 Ri + R⋆

)
ln γ + ν ln(γ + 1) +

∑ν
i=1 Ri ln(1 − xi:m:n) + R⋆ ln(1 − s⋆)

−

ν∑
i=1

(2 + Ri) log(γ + xi:m:n) − R⋆ ln(γ + s⋆), (3.2)

valid for 0 < xi:m:n ≤ 1 and 0 < s⋆ ≤ 1, with γ > 0.
Differentiating the log-likelihood in (3.2) with respect to γ and setting the result to zero yields the

likelihood equation for the MLE γ̂, i.e., dℓ(γ)/dγ = 0;

dℓ(γ)
dγ
=
ν +

∑ν
i=1 Ri + R⋆

γ
+
ν

γ + 1
−

ν∑
i=1

2 + Ri

γ + xi:m:n
−

R⋆

γ + s⋆
. (3.3)

From the score equation associated with (3.3), a closed-form solution for the MLE γ̂ does not
exist. Hence, γ̂ must be obtained numerically, for example, via the Newton–Raphson algorithm,
as implemented in the maxLik package [16] using the available UPHCT1 data. By the invariance
principle, once γ̂ is computed, the reliability and hazard functions on 0 < x ≤ 1 admit the plug-in
estimators

R̂(x) =
γ̂(1 − x)
γ̂ + x

, and ĥ(x) =
γ̂ + 1

(γ̂ + x)(1 − x)
, (3.4)

(in particular at x = s⋆). These summaries are central to durability assessment, maintenance planning,
and risk evaluation under operating constraints.

Next, confidence intervals for γ follow from the sample normality of the MLE γ̂. In the
one–parameter case, the asymptotic variance of γ̂ is the reciprocal of the Fisher information,

I(γ) = −E
[
d2 ℓ(γ)

dγ2

]
, Var(γ̂) ≈ I(γ)−1,

typically evaluated at γ = γ̂ (or using the observed information − d2ℓ(γ)/dγ2
∣∣∣
γ=γ̂

), where

d2ℓ(γ)
dγ2 = −

ν +
∑ν

i=1 Ri + R⋆

γ2 −
ν

(γ + 1)2 +

ν∑
i=1

2 + Ri

(γ + xi:m:n)2 +
R⋆

(γ + s⋆)2 . (3.5)

AIMS Mathematics Volume 11, Issue 1, 211–242.



219

Accordingly, the (1 − α) × 100% asymptotic maximum likelihood (ML) confidence intervals for γ
is

γ̂ ± zα/2
√

Var(γ̂),

where zα/2 is the upper α/2 quantile of the standard normal distribution.
To construct ML-based asymptotic confidence intervals for R(x) and h(x), we first approximate their

sampling variances via the delta method, a standard tool for functions of MLEs (see [17]). Let

ℵ̂1 = ∇γR(x; γ)
∣∣∣
γ=γ̂
, and ℵ̂2 = ∇γh(x; γ)

∣∣∣
γ=γ̂
.

Then

Υ̂R̂ =

(
dR
dγ

∣∣∣∣
γ̂

)2

I−1
L (γ̂), Υ̂ĥ =

(
dh
dγ

∣∣∣∣
γ̂

)2

I−1
L (γ̂).

Accordingly, the (1 − α) × 100% ML-based asymptotic confidence intervals for R(t) and h(t) are

(
R̂(t) ± zα/2

√
Υ̂R̂

)
and

(
ĥ(t) ± zα/2

√
Υ̂ĥ

)
,

respectively.

4. Bayes inference

Bayesian estimators of an arbitrary parametric function π(γ) under squared–error loss (SEL) are
obtained. An informative gamma(a, c) prior and, for comparison, a non-informative prior are adopted
for γ. Under the gamma specification with a > 0 and c > 0, the prior density is

π(γ) ∝ γ a−1e−cγ. (4.1)

The gamma prior is used for positive one-parameter models due to its flexibility and computational
convenience by adjusting (a, c). It can encode varied prior beliefs and often yields posteriors of
manageable form; see [18] for details.

By combining the likelihood in (3.1) with the prior in (4.1), the posterior density (denoted π∗L) for γ
is obtained as

π∗L(γ|x) ∝ (γ + 1)ν γ ν+
∑ν

i=1 Ri+R⋆+a−1 e−cγ(γ + s⋆)−R⋆
{ ν∏

i=1

(γ + xi:m:n)−(2+Ri)
}
. (4.2)

From (4.2), the Bayes estimator g̃L of an arbitrary function g(γ) under SEL is its posterior mean:

γ̃L = E (g (γ |x )) =

∫ ∞
0
γ π(γ)L(γ | x) dγ∫ ∞

0
π(γ)L(γ | x) dγ

. (4.3)

The Bayes estimators implied by (4.3) are the ratio of integral that lack closed–form solutions in
general. Accordingly, they are approximated via the Metropolis-Hastings algorithm, and a standard
Markov chain Monte Carlo (MCMC) method by simulating from the posterior distribution and
computing Monte Carlo estimates [19, 20]. From (4.2), the posterior density of γ does not reduce
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to any standard family under analytic manipulation. Consequently, direct sampling by conventional
closed-form methods is not feasible.

With a normal random–walk proposal on the log–scale, MCMC draws from the posterior π∗L(γ | x)
are obtained as follows:

Step 1 Initialize γ[0] = γ̂ and choose a proposal variance s2 > 0 (e.g., s2 = Î−1(γ̂)). Set ϱ = 1.

Step 2 Propose on the log–scale: let η[ϱ−1] = log γ[ϱ−1], draw η∗ ∼ N(η[ϱ−1], s2), and set γ∗ = eη
∗

> 0.

Step 3 Compute the Metropolis–Hastings acceptance probability

q = min
{

1,
π∗L(γ∗ | x) γ∗

π∗L(γ[ϱ−1] | x) γ[ϱ−1]

}
,

where the factor γ∗/γ[ϱ−1] accounts for the log–scale proposal (Jacobian).

Step 4 Draw u ∼ Unif(0, 1); if u ≤ q, set γ[ϱ] = γ∗, otherwise, set γ[ϱ] = γ[ϱ−1].

Step 5 For any x ∈ (0, 1], record

R[ϱ](x) =
γ̃(1 − x)
γ̃ + x

, h[ϱ](x) =
γ̃ + 1

(γ̃ + x)(1 − x)
.

Step 6 Set ϱ ← ϱ + 1 and repeat Steps 2–5 for D iterations (discard a burn–in if desired). Posterior
means (Bayes estimates under SEL) are then approximated by Monte Carlo averages of the
retained draws.

To reduce dependence on starting values and promote convergence, the first D0 iterations are
discarded as burn-in. The remaining draws {φ[ϱ] : ϱ = D0 + 1, . . . ,D} are then used for Bayesian
inference. Under SEL, the Bayes estimate of any scalar functional φ is approximated by the Monte
Carlo average

φ̂BS =
1
D⋆

D∑
ϱ=D0+1

φ[ϱ], D
⋆ = D −D0.

For a 100(1−α)% highest posterior density (HPD) credible interval for φ, order the retained samples
as γ(1) ≤ · · · ≤ γ(D⋆), set h =

⌊
(1 − α)D⋆

⌋
, and choose the start index

j∗ = arg min
1≤ j≤D⋆−h

{
γ( j+h) − γ( j)

}
.

The HPD interval is then (
γ( j∗), γ( j∗+h)

)
,

where ⌊·⌋ denotes the floor operator; see [21].

5. Bootstrap

The bootstrap is a resampling-based framework for statistical inference, widely employed to
construct confidence intervals; see, for example, Efron [22]. In what follows, we adopt a parametric
bootstrap to obtain confidence intervals for the one-parameter model, targeting the scalar parameter γ
as well as the reliability R(t) and hazard rate h(t). Specifically, we consider two parametric bootstrap
constructions: the percentile bootstrap (B-P) and the bootstrap-t (B-t) intervals.
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5.1. Percentile bootstrap confidence interval

(1) Obtain the MLE or Bayesian estimate of the parameter γ, as well as the corresponding reliability
R(t) and hazard function h(t).

(2) Generate a bootstrap sample using the fitted model and compute the bootstrap estimates, say γb,
Rb(t), and hb(t).

(3) Repeat Step (2) B times to obtain the sets(
γb(1), γb(2), . . . , γb(B)), (

Rb(1)(t),Rb(2)(t), . . . ,Rb(B)(t)
)
,

(
hb(1)(t), hb(2)(t), . . . , hb(B)(t)

)
.

(4) Arrange each set of bootstrap estimates in ascending order:(
γb[1], γb[2], . . . , γb[B]), (

Rb[1](t),Rb[2](t), . . . ,Rb[B](t)
)
,

(
hb[1](t), hb[2](t), . . . , hb[B](t)

)
.

(5) The two–sided 100(1 − γ)% percentile bootstrap confidence intervals are then given by[
γb [B

γ

2 ], γb [B(1−
γ

2 )]
]
,

[
Rb [B

γ

2 ](t), Rb [B(1−
γ

2 )](t)
]
,

[
hb [B

γ

2 ](t), hb [B(1−
γ

2 )](t)
]
.

5.2. Bootstrap-t confidence intervals

(1) Fit the one-parameter model and obtain the point estimates γ̂, R̂(t), and ĥ(t). Compute their
asymptotic standard errors via the observed Fisher information (or an equivalent variance
estimator): ŝe(γ̂), ŝe(R̂(t)), and ŝe(̂h(t)).

(2) For b = 1, . . . ,B, generate a bootstrap sample from the fitted model (using γ̂), and recompute the
estimates γ̂∗(b), R̂∗(b)(t), and ĥ∗(b)(t). Using the Fisher information evaluated at the bootstrap fit,
obtain ŝe(γ̂∗(b)), ŝe(R̂∗(b)(t)), and ŝe(̂h∗(b)(t)).

(3) Form the bootstrap t-statistics:

T (b)
γ =

γ̂∗(b) − γ̂

ŝe(γ̂∗(b))
, T (b)

R =
R̂∗(b)(t) − R̂(t)

ŝe(R̂∗(b)(t))
, T (b)

h =
ĥ∗(b)(t) − ĥ(t)

ŝe(̂h∗(b)(t))
.

(4) Sort each set {T (b)
γ }, {T

(b)
R }, and {T (b)

h } in ascending order to get T [1]
γ ≤ · · · ≤ T [B]

γ , T [1]
R ≤ · · · ≤ T [B]

R ,
T [1]

h ≤ · · · ≤ T [B]
h .

(5) Let qγℓ = T [Bℓ]
γ , qR

ℓ = T [Bℓ]
R , and qh

ℓ = T [Bℓ]
h denote the empirical ℓ-quantiles (with ℓ ∈ (0, 1)). Then

the two-sided 100(1 − α)% bootstrap-t intervals are[
γ̂ − qγ1−α/2 ŝe(γ̂), γ̂ − qγα/2 ŝe(γ̂)

]
,

[
R̂(t) − qR

1−α/2 ŝe(R̂(t)), R̂(t) − qR
α/2 ŝe(R̂(t))

]
,[̂

h(t) − qh
1−α/2 ŝe(̂h(t)), ĥ(t) − qh

α/2 ŝe(̂h(t))
]
.

6. Simulation study

This section evaluates the finite–sample performance of the proposed estimators for the model
parameters γ as well as the reliability characteristics R(t) and h(t) under the UPHCT1 scheme
with binomial removal. Unless otherwise stated, data are generated from the target distribution
under prespecified UPHC schemes (n,m, r,T1, T2), and all computations are implemented in R. Point
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estimation is carried out via MLE and Bayesian estimation by non-informative and informative prior,
and interval estimation uses asymptotic delta method standard errors for approximate confidence
intervals (ACIs) and MCMC–based highest posterior density (HPD) intervals for the Bayesian
procedures. The simulation settings are as follows:

• A total of 10000 Monte Carlo replications are performed for each design point from three different
populations with different values of actual values of parameter, namely, Pop-1: γ = 0.4, Pop-2:
γ = 1.6 and Pop-1: γ = 3.
• For Bayesian estimation, we run 12000 MCMC iterations with a burn-in of 2000, retaining 10000

post-burn samples for posterior summaries.
• All numerical experiments are conducted in the R environment. Optimization for ML and

Bayesian uses standard routines (e.g., maxLik/Newton–Raphson), and MCMC diagnostics are
checked to confirm mixing and stationarity.
• To assess small–sample variability of the classical estimators and to build nonparametric

percentile intervals, bootstrap resampling with B = 1000 iterations is employed at each Monte
Carlo run.
• At the mission time x = s⋆, the benchmark reliability R(s⋆) and hazard rate h(s⋆) are treated as

known reference values; these serve as the ground truth for evaluating estimator accuracy.
• The sample sizes n ∈ {40, 100}, representing small, and large settings have been considered. For

all populations, the threshold times are t1 ∈ {0.55, 0.7} and t2 ∈ {0.8, 0.9}.
• To specify the numbers of recorded failures r and m in each life test, in the designs reported here,

these are instantiated as follows: for n = 40, we take m ∈ {30, 35} and r ∈ {25, 30}; for n = 100,
we take m ∈ {70, 90} and r ∈ {60, 80}.
• In this study, progressive removals are generated via a binomial scheme to determine the sequence
{Ri}

m
i=1, using binomial parameter values p ∈ {0.3, 0.8}. In addition, censoring schemes are

considered under binomial random removals. It is assumed that removals occur independently
across units, with each unit being removed with a common probability p. Accordingly, the
number of units withdrawn at each failure time is modeled by a binomial distribution, given
by

P(R1 = r1) =
(
n − m

r1

)
p r1(1 − p) n−m−r1 , 0 ≤ r1 ≤ n. (6.1)

Moreover,

P
(
R j = r j

∣∣∣ R( j−1) = r( j−1), . . . ,R1 = r1
)
=

(
n − m −

∑ j−1
k=1 rk

r j

)
p r j(1 − p) n−m−

∑ j
k=1 rk , (6.2)

where

0 ≤ r j ≤ n − m −
j−1∑
k=1

rk, j = 2, 3, . . . ,m − 1.

• For each target φ ∈ {γ,R(t), h(t)}, we report the average relative absolute bias estimate (RAB),
and MSE. Interval estimators are compared via average confidence (or credible) interval (ACI)
and coverage percentage (CP).
• Unless otherwise specified, the confidence level for all confidence intervals is fixed at 95%.
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UPHCT1 sample generation

Inputs: n (initial units), m (max recorded failures), r (Type-II target), k (guaranteed minimum),
thresholds 0 < t1 < t2, removals {Ri}

m
i=1, parameter γ > 0.

Outputs: sample {(xi,Ri)}mi=1, survivors r⋆, stopping time T ∗.

Steps

(1) Generate i.i.d. uniforms ξ1, ξ2, . . . , ξm ∼ U(0, 1).
(2) For i = 1, 2, . . . ,m do:

(a) ζi = ξ
1/(i+

∑m
s=m−i+1 Rs)

i .

(b) ui = 1 −
m∏

s=m−i+1

ζs (so 0 < ui < 1).

(c) Transform via the quantile Q(u) = γu/(γ + 1 − u):

xi = Q(ui) =
γ ui

γ + 1 − ui
.

(3) Count threshold crossings:

d1 =
∣∣∣{ i ≤ m : xi ≤ t1 }

∣∣∣, d2 =
∣∣∣{ i ≤ m : xi ≤ t2 }

∣∣∣.
(4) Let xr, xk, xm denote the rth, kth, and mth order statistics of {xi}

m
i=1.

(5) Compute the remaining survivors r⋆ using the appropriate case:

• If xr < xm < t1 < t2, then r⋆ = n − m −
m∑

i=1

Ri.

• If xr < t1 < xm < t2 or xr < t1 < t2 < xm, then r⋆ = n − d1 −

d1∑
i=1

Ri.

• If t1 < xr < xm < t2 or t1 < xr < t2 < xm, then r⋆ = n − k −
k∑

i=1

Ri.

• If t1 < t2 < xr < xm, then r⋆ = n − d2 −

d2∑
i=1

Ri.

(6) Determine the stopping time T ∗:

• If xr < xm < t1 < t2, set T ∗ = xm (stop at the mth failure).
• If xr < t1 < xm < t2 or xr < t1 < t2 < xm, set T ∗ = t1 (first threshold).
• If t1 < xr < xm < t2 or t1 < xr < t2 < xm, set T ∗ = xk (after at least k failures).
• If t1 < t2 < xr < xm, set T ∗ = t2 (second threshold).

For each quantity of interest φ ∈ {γ,R(t), h(t)}, we report the Monte Carlo RAB along with its MSE,
length of ACIs (LACI), length of credible confidence interval (LCCI), length of bootstrap-p (LBP),
and length of bootstrap-t (LBT) are defined by
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RABφ̂τ =
1

10000

10000∑
j=1

|φ̂
( j)
τ − φ

( j)
τ |

φ
( j)
τ

, τ = 1, 2, 3,

MSE(φ̂τ) =
1

2000

2000∑
j=1

(
φ̂( j)
τ − φτ

)2
, τ = 1, 2, 3,

where φ̂( j)
τ denotes the MLE or Bayesian estimate from the jth replication, with φ1 = γ, φ2 = R(t), and

φ3 = h(t).
To compare the 100(1 − α)% interval estimators, we report the average confidence length (ACL)

and the coverage percentage (CP) at the 95% level:

ACL95%
φτ
=

1
2000

2000∑
j=1

(
Uφ̂( j)

τ
− Lφ̂( j)

τ

)
, τ = 1, 2, 3,

CP95%
φτ
=

1
2000

2000∑
j=1

1
{
Lφ̂( j)

τ
≤ φτ ≤ Uφ̂( j)

τ

}
, τ = 1, 2, 3,

where 1{·} is the indicator function, and (Lφ̂( j)
τ
,Uφ̂( j)

τ
) are the lower and upper bounds of the 95%

asymptotic (or credible) interval for φτ in replication j.
All computations are carried out in R, using the coda package [23] for MCMC diagnostics and the

maxLik package [16] for likelihood-based optimization.

Comments on simulation results

Tables 1–3 summarize the RAB, MSEs, LACI, LCCI, CP, LBP, and LBT for γ, R(t), and h(t),
respectively, across representative UPHCT1 designs.

(1) Across designs, all procedures yield stable RAB with shrinking MSE and LCI as the effective
information increases (larger n, and jointly larger m and r). This is consistent with asymptotic
efficiency under UPHCT1 and mirrors findings in related UPHCT1 studies. (Good concentration
and small bias as sample information grows.)

(2) MCMC–based Bayes estimates generally dominate their classical counterparts in RAB, MSE
and LCI, especially when informative priors are used. In designs akin to those shown, MCMC
with gamma informative prior typically edges MCMC with a non-informative prior, reflecting the
informative prior robustness under censoring.

(3) ACIs built from MLE tend to be shorter for γ, R(t), and h(t), while HPD from Bayesian with an
informative prior can be slightly tighter for γ, R(t), and h(t). HPD intervals constructed from the
spacings–based posterior are usually the most efficient (shortest ACL) with near–nominal CP.

(4) Relaxing thresholds (increasing T1 and/or T2) improves identifiability for γ, which translates into
lower RABs and MSEs and narrower intervals for γ,R(t); h(t) can be more sensitive near early
times, but its precision also improves as effective failures increase.

(5) Across all designs, Bayesian estimators outperform MLE in small-to-moderate effective samples,
yielding lower RABs and MSEs and shorter interval lengths while maintaining near-nominal
coverage. As information grows, the gap narrows, but Bayesian remains slightly preferable.
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(6) Between the two Bayesian implementations, LBT consistently exhibits smaller MSE and tighter
HPD intervals than LBP, particularly under heavier censoring removals.

(7) Increasing the sample size n and the numbers of observed failures (m, r) increases the information
content, leading to monotone improvements: RAB and MSE decrease, interval lengths contract,
and coverage stabilizes around the nominal level for all parameters and for R(t) and h(t).

(8) Larger removal probability p reduces the effective sample size. Consequently, RABs and MSEs
increase, intervals widen, and mild under-coverage can appear in the most severe settings. The
deterioration is less pronounced for the better-calibrated Bayesian procedure (here, LBT).

(9) When credible prior information exists, a concentrated gamma prior is preferred: it lowers MSE
and shortens HPD intervals without compromising coverage. If prior knowledge is weak or
uncertain, a diffuse (non-informative) prior is safer to avoid prior-driven bias.

(10) Increasing the prior concentration shrinks the prior variance, producing more stable posteriors,
smaller MSE, and shorter HPD intervals. Raising the shape alone pulls the posterior more strongly
toward the prior mean.

(11) Use Bayesian estimation in this UPHCT1 setting; prefer the better-calibrated variant (LBT) when
available, especially with an informative gamma prior. Performance improves with n ↑, m ↑, r ↑
and degrades as p ↑; therefore, designs should maximize observed failures and limit removals.
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7. Real-life applications

To demonstrate the relevance and effectiveness of the proposed estimation techniques, three
distinct real-world datasets from the engineering domain are examined. First, the data are validated
using a time–temperature–transformation (TTT) plot and hazard plot, and then further examined
by comparing results with a TTT plot, box plot, and violin plot for each dataset. Second, before
deriving the theoretical results, we verify the proposed distribution of each data set and compare
them with alternative unit models. To this end, we compute the MLEs of the parameters (with
their standard errors, SEs) and evaluate the Kolmogorov–Smirnov (K–S) statistic with its (p)-value,
along with the Aikake information criterion (AIC), the Bayesian information criterion (BIC), the
Anderson–Darling (AD), and the Cramér–von Mises (CvM) goodness-of-fit measures to identify the
best unit model. The proposed distribution has been compared by more alternative unit models as
new unit-Lindley [24], Topp-Leone [25], Beta [26], unit Weibull [27], unit XLindley [28], unit-
Gompertz [29], unit-Lindley [30], Alpha Power Topp-Leone [31], unit log–log [32], and unit Burr-
XII [33].

Third, the estimators with the proposed distribution are presented through three graphical
representations: the empirical versus estimated CDF, the histogram with the estimated PDF, and the
P–P plot. Fourth, it is verified that these estimators possess a unique value, which corresponds to the
maximum of the profile likelihood. Fifth, the parameters of the distribution are estimated using the
different methods under study, based on the UPHCT1.

7.1. Tensile strength of polyester fibers

The first data set consists of 30 observations on the tensile strength of polyester
fibers, originally reported by Mazucheli et al. [29]. The measured values
are as follows: 0.023,0.032,0.081,0.054,0.069,0.094,0.105, 0.169,0.188,0.127,0.148,
0.216,0.255, 0.277,0.311,0.361,0.376,0.395, 0.432,0.463,0.481,0.519,0.529,0.567, 0.642,
0.674,0.752,0.823,0.887,0.926.

The TTT-plot (Figure 2, left) suggests an increasing failure rate, which is consistent with the
estimated hazard rate curve (second) that shows a monotonic upward trend. The box plot (third)
indicates that the data are moderately spread around the median without extreme outliers. The Violin
plot (right) confirms the overall distributional shape and variability, highlighting a relatively symmetric
spread around the center. Together, the four component plots of Figure 2 provide evidence that the
proposed distribution is appropriate for modeling the given Data 1.
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Figure 2. Graphical assessment of the fitted distribution using different diagnostic tools:
Data 1.

In Figure 3, the empirical CDF (left) aligns closely with the estimated CDF, indicating a good fit
of the proposed distribution. The histogram with the estimated PDF (center) shows that the theoretical
curve successfully captures the overall shape of the data. The P–P plot (right) lies nearly along the
diagonal line, further confirming that the fitted distribution provides an adequate representation of the
observed sample.
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Figure 3. Graphical comparison between the empirical data and the fitted model: Data 1.

Across all diagnostics in Table 4, the proposed model provides the best overall fit. It has the
smallest KSD (0.0570), lowest CvM (0.0146) and AD (0.1098), and the most favorable information
criteria (AIC = -4.4408, BIC = -3.0396). The UW model is a close second in KSD (0.0576) but is
clearly inferior in AIC and BIC. Models such as UXL and UL perform poorly, showing very large
Kolmogorov–Smirnov-D values (KSD) values (0.2408 and 0.2722) and highly unfavorable AIC and
BIC. PVKS values are near 1 for most models, but the sharper separation in KSD, CvM, AD, and ICs
confirms that the proposed distribution offers the most adequate description of the data.

The profile likelihood in the Figure 4 curve (left) attains a clear and unique maximum, ensuring the
existence and uniqueness of the MLEs for the parameter γ. The normalized profile likelihood (right)
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further supports the stability of the estimation, as the curve crosses the reference line at the identified
estimate. These results confirm that the proposed distribution yields well-defined parameter estimates.

Table 4. MLE and different measures of statistics for unit models: Data 1.

γ θ KSD PVKS CvM AD AIC BIC

Target
Estimates 0.8279

0.0570 0.9999 0.0146 0.1098 -4.4408 -3.0396
StEr 0.4698

TL
Estimates 0.2963

0.3314 0.0019 0.1277 0.7879 21.7155 23.1167
StEr 0.0388

NUL
Estimates 1.1091

0.0665 0.9981 0.0189 0.1600 -3.8078 -2.4066
StEr 0.2025

Beta
Estimates 0.9666 0.2238

0.0669 0.9979 0.0184 0.1559 -2.6101 0.1923
StEr 1.6205 0.4107

UW
Estimates 0.5717 0.1320

0.0576 0.9998 0.0148 0.1100 -3.4345 -0.6321
StEr 1.3690 0.2007

UXL
Estimates 0.9127

0.2408 0.0513 0.1400 0.9397 86.4149 87.8161
StEr 0.1313

UG
Estimates 1.0383 0.7715

0.0733 0.9932 0.0184 0.1161 -3.8976 -1.0952
StEr 0.4211 0.1919

UL
Estimates 1.0504

0.2722 0.0187 0.1656 1.0870 20.1704 21.5716
StEr 0.1455

APTL
Estimates 115.1771 391.7070

0.0725 0.9941 0.0360 0.2897 -0.2175 2.5849
StEr 0.2714 0.2196

ULL
Estimates 1.0213 0.1580

0.0846 0.9704 0.0194 0.1221 -3.9134 -1.1110
StEr 1.5245 0.1230

UBXII
Estimates 1.0331 0.2060

0.0993 0.9008 0.0586 0.4419 1.9220 4.7244
StEr 1.8465 0.3054
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Figure 4. Profile likelihood plots for the parameter γ: Data 1.
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Table 5 compares MLE and Bayesian estimators for Data 1 under the UPHCT1 scheme across
combinations of (m, r, T1, T2), with reliability measures evaluated at time s∗. For each setting, the
table reports the estimate of the parameter γ, its standard error SE(γ), the reliability R(t), and the
hazard rate h(t). Two Bayesian strategies are used: Bayes1 adopts a non–informative prior, whereas
Bayes2 employs an informative gamma prior whose hyperparameters are selected from the MLE
output (elective hyperparameters method). Posterior summaries are obtained via MCMC with 12000
iterations, discarding the first 2000 as burn–in. Overall, MLE and Bayesian estimates are broadly
consistent; however, the informative–prior scheme (Bayes2) typically yields more stable inference
often reducing SE(γ) and producing smoother estimates of R(t) and h(t) at s∗ while Bayes1 shows
greater dispersion due to the diffuse prior.

Table 5. MLE and Bayesian estimation based on UPHCT1 for Data 1.
p 0.3 0.8

m r T1 T2 s∗ ν MLEr bayes1 bayes2 s∗ ν MLEr bayes1 bayes2

20 15

0.13225 0.336

γ

0.519 15

0.4203 0.9662 0.5276

0.567 15

0.3554 0.8553 0.4335
SE(γ) 0.2223 0.7738 0.2087 0.1861 0.7307 0.1722

R 0.2152 0.3129 0.2425 0.1668 0.2604 0.1876
h 3.1436 2.7523 3.0345 3.3936 3.0126 3.3090

0.436 0.7265

γ

0.7265 17

0.5600 1.5294 0.7351

0.7265 17

0.4821 1.2300 0.6277
SE(γ) 0.3190 1.2155 0.3065 0.2706 1.0150 0.2586

R 0.1191 0.1854 0.1376 0.1091 0.1719 0.1268
h 4.4336 4.0996 4.3405 4.4837 4.1674 4.3948

26 20

0.13225 0.536

γ

0.536 20

0.4158 1.0617 0.4793

0.536 20

0.3071 0.6835 0.3529
SE(γ) 0.2034 0.8762 0.1924 0.1394 0.5735 0.1255

R 0.2027 0.3083 0.2190 0.1690 0.2601 0.1842
h 3.2058 2.7811 3.1401 3.3412 2.9752 3.2801

0.436 0.5265

γ

0.529 20

0.4158 1.0617 0.4793

0.567 20

0.3096 0.6668 0.3666
SE(γ) 0.2034 0.8762 0.1924 0.1407 0.4931 0.1348

R 0.2073 0.3144 0.2239 0.1529 0.2340 0.1700
h 3.1816 2.7518 3.1149 3.4503 3.1200 3.3806

Figure 5 displays the trace of 10000 MCMC draws for γ using Data 1 with m = 25, r = 20,
T1 = 0.436, and T2 = 0.5265 (see Table 5). The chain mixes well and exhibits clear convergence.
The histogram in the right panel of Figure 5 indicates that the posterior distribution is approximately
symmetric.

AIMS Mathematics Volume 11, Issue 1, 211–242.



233

0 4000 8000

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

γ

γ

F
re

q
u
e
n
c
y

0.2 0.6 1.0

0
.0

1
.0

2
.0

3
.0

Figure 5. Trace plot and histograms for MCMC results of γ from Data 1 when m = 25, r =
20, T1 = 0.436, and T2 = 0.5265.

7.2. Aircraft air-conditioning failures

This dataset contains 30 failure times for an airplane’s air-conditioning system, reported in Ref. [34]:
12, 120, 11, 23, 261, 87, 7, 120, 14, 62, 71, 11, 14, 47, 225, 71, 246, 21, 42, 20, 5, 3, 14, 11, 16, 90,
1, 16, 52, 95. For comparability on the unit interval, each value is rescaled by 265, yielding ([35]):
0.018867925, 0.045283019, 0.086792453, 0.026415094, 0.452830189, 0.984905660, 0.328301887,
0.052830189, 0.233962264, 0.196226415, 0.358490566, 0.267924528, 0.928301887, 0.177358491,
0.849056604, 0.079245283, 0.158490566, 0.075471698, 0.452830189, 0.052830189, 0.041509434,
0.052830189, 0.267924528, 0.041509434, 0.060377358, 0.041509434, 0.011320755, 0.339622642,
0.003773585, 0.060377358.

Figure 6 indicates an increasing failure rate the TTT plot lies above the diagonal, and the estimated
hazard rises monotonically. The box plot shows moderate dispersion around the median without
notable outliers, and the violin plot is roughly symmetric. Collectively, these diagnostics support the
suitability of the proposed distribution for Data 2.
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Figure 6. Graphical assessment of the fitted distribution using different diagnostic tools:
Data 2.

AIMS Mathematics Volume 11, Issue 1, 211–242.



234

For Dataset 2, Figure 7 shows strong agreement between the empirical and fitted CDFs. The fitted
PDF traces the histogram well, capturing the sample’s shape, and the P–P plot clusters along the 45°
line. Collectively, these diagnostics indicate that the proposed distribution fits the data adequately.

The proposed model delivers the best overall fit in Table 6. It achieves the lowest KSD (0.1275),
smallest CvM (0.1006) and AD (0.6139), and the most favorable information criteria (AIC = -33.01,
BIC = -31.61). Its K–S p-value (PVKS = 0.7143) is comfortably high, indicating no evidence against
the fit. Two competitors, UG and ULL, are somewhat close (e.g., KSD 0.1291 and 0.1510; AIC -32.19
and -30.98), but remain inferior on most metrics. Models such as UXL, UL, NUL, and APTL show
clear lack of fit (large KSD, CvM, and AD and poor AIC and BIC). Overall, the metrics consistently
favor the proposed distribution for Data 2.
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Figure 7. Graphical comparison between the empirical data and the fitted model: Data 2.

Table 6. MLE and different measures of statistics for unit models: Data 2.
γ θ KSD PVKS CVM AD AIC BIC

Proposed Estimates 0.1616 0.1275 0.7143 0.1006 0.6139 -33.0141 -31.6129StEr 0.0597

TL Estimates 0.6017 0.1938 0.2097 0.2380 1.5103 -21.9604 -20.5592StEr 0.1098

NUL Estimates 0.0847 0.3690 0.0006 0.1097 0.7576 18.5980 19.9992StEr 0.0109

Beta Estimates 0.5141 0.1118 0.1958 0.2003 0.2173 1.3859 -22.4926 -19.6902StEr 1.3430 0.3643

UW Estimates 0.2787 0.0858 0.1742 0.3228 0.1593 1.0191 -26.3847 -23.5823StEr 1.4562 0.2262

UXL Estimates 0.5034 0.6821 0.0000 0.7261 3.9324 151.5946 152.9958StEr 0.0684

UG Estimates 0.4059 0.2491 0.1291 0.7127 0.1008 0.6214 -32.1936 -29.3912StEr 0.4686 0.1345

UL Estimates 0.5512 0.7201 0.0000 0.7809 4.1849 117.9145 119.3157StEr 0.0735

APTL Estimates 119.5303 215.1204 0.1814 0.2771 0.2924 1.8351 -16.4148 -13.6124StEr 0.1349 0.0592

ULL Estimates 1.1266 0.1739 0.1510 0.5006 0.1042 0.6532 -30.9827 -28.1803StEr 1.2791 0.0809

UBXII Estimates 0.6898 0.1537 0.2242 0.0979 0.4214 2.5452 -7.8299 -5.0275StEr 1.679494 0.31171
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Figure 8 shows a unimodal profile likelihood for γ, implying a unique MLE. The normalized profile
likelihood intersects the reference level at the same point, indicating stable and identifiable estimation.
Hence, the proposed distribution yields well-defined parameter estimates.
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Figure 8. Profile likelihood plots for the parameter γ: Data 2.

Table 7 summarizes the MLE and Bayesian estimation results for Data 2 under the UPHCT1 model
with different censoring thresholds (T1, T2) and sample settings (m, r). Overall, the results show that
Bayesian estimation, particularly Bayes2, produces more stable and precise parameter estimates with
smaller SE(γ) compared to both MLE and Bayes1. The reliability and hazard measures obtained from
Bayes2 appear smoother and more consistent across censoring schemes, reflecting the advantage of
incorporating informative prior knowledge. In contrast, Bayes1 exhibits slightly wider variation due
to the absence of prior information. These findings highlight the practical benefit of the informative
Bayesian approach for reliability assessment under hybrid censoring.

Table 7. MLE and Bayesian estimation based on UPHCT1 for Data 2.
p 0.3 0.8

m r T1 T2 s∗ ν MLEr bayes1 bayes2 s∗ ν MLEr bayes1 bayes2

20 15

0.04717 0.083019

γ

0.267925 15

0.0878 0.1553 0.0936

0.267925 15

0.1096 0.2112 0.1234
SE(γ) 0.0345 0.1029 0.0326 0.0452 0.1414 0.0429

R 0.1807 0.2687 0.1895 0.2125 0.3227 0.2309
h 4.1770 3.7286 4.1320 4.0151 3.4530 3.9214

0.083019 0.313208

γ

0.313208 16

0.0959 0.1561 0.1062

0.313208 16

0.1193 0.2145 0.1348
SE(γ) 0.0374 0.1048 0.0340 0.0488 0.1416 0.0453

R 0.1610 0.2284 0.1740 0.1895 0.2792 0.2067
h 3.9005 3.5869 3.8401 3.7681 3.3509 3.6880

25 20

0.04717 0.083019

γ

0.358491 20

0.1117 0.1878 0.1222

0.339623 20

0.1118 0.1970 0.1230
SE(γ) 0.0427 0.1224 0.0404 0.0440 0.1264 0.0425

R 0.1524 0.2205 0.1630 0.1636 0.2424 0.1756
h 3.6856 3.3894 3.6393 3.7293 3.3779 3.6759

0.483019 0.713208

γ

0.713208 22

0.1364 0.2273 0.1484

0.713208 22

0.1380 0.2487 0.1528
SE(γ) 0.0524 0.1461 0.0504 0.0543 0.1645 0.0507

R 0.0461 0.0693 0.0494 0.0465 0.0742 0.0506
h 4.6638 4.5501 4.6475 4.6617 4.5264 4.6416
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Figure 9 presents the trace plot for the 10000 MCMC samples of γ obtained from Data 3 with m =
25, r = 20, T1 = 0.483019, and T2 = 0.713208 (see Table 7). The chain shows good mixing and clear
convergence. The associated histograms (Figure 9) suggest that the resulting posterior distributions are
close to symmetric.
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Figure 9. Trace plot and histograms for MCMC results of γ from Data 2 when m = 25, r =
20, T1 = 0.483019, and T2 = 0.713208.

7.3. Ordered failure times of 20 components

To illustrate the unit distribution, a data set reported by Nigm et al. [36] consisting of 20 ordered
failure times for identical components has been analyzed. The observations are: 0.0009, 0.0040,
0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252, 0.1404, 0.1498, 0.1750, 0.2031,
0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 0.6143.

Figure 10 points to an increasing failure rate: the TTT plot lies above the 45° line, and the estimated
hazard is monotone increasing. The box plot shows moderate variability around the median with no
marked outliers, while the violin plot is approximately symmetric. Taken together, these diagnostics
affirm that the proposed distribution is suitable for Data Set 3.
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Figure 10. Graphical assessment of the fitted distribution using different diagnostic tools:
Data 3.

In Figure 11, the empirical and fitted CDFs nearly coincide, the fitted PDF follows the histogram
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closely, and the P–P points lie close to the 45° line. Taken together, these diagnostics show that the
proposed distribution provides an adequate fit for Data 3.
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Figure 11. Graphical comparison between the empirical data and the fitted model: Data 3.

The proposed model delivers the best overall fit across all diagnostics for Data 3 in Table 8. It has
the lowest KSD (0.1216), smallest CvM (0.0727) and AD (0.4165), the most negative AIC (-29.6330)
and BIC (-28.6372), and the highest K-S p-value (PVKS = 0.8949), all indicating no evidence against
the fit. The UW model is the closest competitor (KSD = 0.1319, PVKS = 0.8334) but remains inferior
on information criteria and distance measures. Models such as TL, UL, UG, APTL, and especially
NUL and UBXII, show noticeably poorer fit (larger KSD, CvM, and AD and less favorable AIC and
BIC). Overall, the metrics consistently favor the proposed distribution for Data 3.

Figure 12 displays a single-peaked profile likelihood for γ, confirming a unique maximizer and
thus a unique MLE. The normalized profile likelihood crosses the reference level at the same point,
indicating stable and identifiable estimation. Therefore, the proposed distribution has well-defined
parameter estimates.

Table 9 displays the estimation outcomes for Data 3 under the UPHCT1 setup across different
censoring schemes. It is evident that the estimates of γ remain stable under both censoring thresholds,
while the reliability R(t) and hazard rate h(t) respond sensitively to changes in s∗. For p = 0.3 and
p = 0.8, the general trend shows that hazard rates increase with censoring severity, whereas the
reliability values decline accordingly, reflecting the expected behavior of lifetime data. Moreover, the
Bayesian estimates exhibit closer alignment with the likelihood-based results as sample size increases,
suggesting improved efficiency under more informative data settings. This highlights the robustness of
the proposed distribution in capturing the underlying reliability structure of Data 3, even under hybrid
censoring conditions.

Figure 13 shows the trace plot of the 10000 MCMC draws for γ based on Data 3 with m = 18,
r = 13, T1 = 0.1328, and T2 = 0.211625 (see Table 9). The chain mixes well and displays clear
convergence. The corresponding histograms in Figure 13 indicate that the posterior distributions of the
unknown parameters are approximately symmetric.
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Table 8. MLE and different measures of statistics for unit models: Data 3.

γ θ KSD PVKS CVM AD AIC BIC

Proposed
Estimates 0.1265

0.1216 0.8949 0.0727 0.4165 -29.6330 -28.6372
StEr 0.0545

TL
Estimates 0.5113

0.1849 0.4480 0.0801 0.4754 -29.2334 -28.2376
StEr 0.1143

NUL
Estimates 0.0245

0.6330 0.0000 0.3693 2.1376 71.4040 72.3997
StEr 0.0039

UW
Estimates 0.1598 0.0710

0.1319 0.8334 0.0736 0.4330 -28.9150 -26.9235
StEr 1.7271 0.2875

UXL
Estimates 4.0928

0.1725 0.5348 0.0784 0.4702 -12.7986 -11.8028
StEr 0.8619

UG
Estimates 0.7743 0.5996

0.1494 0.7093 0.0911 0.5512 -25.5251 -23.5336
StEr 0.2781 0.1204

UL
Estimates 4.6365

0.1768 0.5037 0.0793 0.4718 -28.1389 -27.1432
StEr 0.9012

APTL
Estimates 100.1201 239.9820

0.1979 0.3651 0.0822 0.5649 -25.0943 -23.1029
StEr 0.1211 0.0718

ULL
Estimates 1.1712 0.2079

0.1545 0.6704 0.0945 0.5743 -26.1665 -24.1751
StEr 1.2003 0.0809

UBXII
Estimates 0.2783 0.1087

0.2274 0.2164 0.1163 0.7519 -24.6902 -22.6987
StEr 4.3787 1.4950
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Figure 12. Profile likelihood plots for the parameter γ: Data 3.
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Table 9. MLE and Bayesian estimation based on UPHCT1 for Data 3.
p 0.3 0.8

m r T1 T2 s∗ ν MLEr bayes1 bayes2 s∗ ν MLEr bayes1 bayes2

15 10

0.037875 0.1328

γ

0.1498 10

0.0469 0.0985 0.0556

0.1498 10

0.0446 0.0855 0.0537
SE(γ) 0.0243 0.0748 0.0214 0.0237 0.0667 0.0228

R 0.2029 0.3372 0.2300 0.1951 0.3089 0.2244
h 6.2589 5.2041 6.0459 6.3196 5.4264 6.0900

0.1328 0.211625

γ

0.211625 13

0.1012 0.1990 0.1092

0.211625 12

0.0620 0.1282 0.0706
SE(γ) 0.0482 0.1384 0.0471 0.0311 0.0952 0.0293

R 0.2550 0.3821 0.2684 0.1787 0.2974 0.1973
h 4.4651 3.7038 4.3852 4.9228 4.2111 4.8113

18 13

0.04717 0.1328

γ

0.175 13

0.0715 0.1350 0.0781

0.2099 13

0.0660 0.1282 0.0740
SE(γ) 0.0338 0.0948 0.0317 0.0327 0.0928 0.0301

R 0.2393 0.3592 0.2547 0.1890 0.2996 0.2060
h 5.2687 4.4383 5.1625 4.8904 4.2234 4.7875

0.1328 0.211625

γ

0.211625 14

0.0690 0.1376 0.0752

0.211625 13

0.0660 0.1282 0.0740
SE(γ) 0.0321 0.0981 0.0319 0.0327 0.0928 0.0306

R 0.1939 0.3106 0.2066 0.1874 0.2974 0.2043
h 4.8317 4.1321 4.7552 4.8707 4.2112 4.7690

0 4000 8000

0
.0

5
0
.1

5

Iteration

γ

γ

F
re

q
u
e
n
c
y

0.00 0.10 0.20

0
2

4
6

8
1
0

Figure 13. Trace plot and histograms for MCMC results of γ from Data 3 when m = 18, r =
13, T1 = 0.1328, and T1 = 0.211625.

8. Conclusions

This study has introduced, for the first time, a unified progressive hybrid censoring scheme with
binomial random removals, thereby enhancing the flexibility of life-testing by accommodating random
withdrawals while retaining informative failure observations. Within this framework, likelihood
and Bayesian inferential procedures were developed for a one-parameter lifetime model, including
estimation of the primary parameter as well as the associated reliability and hazard rate functions.

Comprehensive simulation experiments and real data applications indicate that Bayesian inference
with gamma priors outperforms classical approaches, yielding smaller bias, reduced MSE, and
tighter interval estimates with appropriate coverage. In addition, parametric bootstrap procedures
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were employed to construct interval estimates; across scenarios, the bootstrap-t intervals achieved
coverage closer to the nominal level and shorter average lengths than the standard percentile bootstrap,
indicating superior finite-sample performance. Furthermore, when benchmarked against ten competing
unit distributions, including new unit-Lindley, Topp-Leone, Beta, unit-Weibull, unit-XLindley, unit-
Gompertz, unit-Lindley, alpha power Topp-Leone, unit log-log, and unit Burr-XII, the proposed hone-
parameter model provided superior overall fit and inferential accuracy under the proposed censoring
scheme.

In conclusion, integrating binomial random removals into unified progressive hybrid censoring,
together with Bayesian estimation under gamma priors offers a practical and powerful methodology
for reliability analysis with censored lifetime data. Future research directions include extensions to
multi-parameter families, stress-strength models, optimal design under cost and time constraints, and
robustness studies under model misspecification.
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