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Abstract: A unified progressive hybrid censoring scheme is introduced by combining progressive and
hybrid plans, allowing tests to be terminated either after a predetermined number of failures or at a fixed
time. Both likelihood and Bayesian procedures are developed for estimating the parameter, reliability,
and hazard rate of a one-parameter lifetime model when data are generated under this scheme.
Maximum likelihood estimates are obtained via the Newton-Raphson algorithm, and asymptotic
confidence intervals are constructed using the delta method with the Fisher information matrix. In
addition, parametric bootstrap methods are employed for constructing confidence intervals. Within
the Bayesian framework, Markov chain Monte Carlo techniques are employed under non-informative
and informative independent gamma priors, with computational intractability addressed through the
Metropolis-Hastings algorithm. Progressive censoring with binomial random removals has also
been considered within this framework to enhance flexibility in test termination and data collection.
Extensive Monte Carlo simulations are conducted to compare the efficiency of the likelihood and
Bayesian estimators across multiple censoring designs, and the superiority of Bayesian inference with
informative priors is demonstrated. The applicability of the proposed estimators is illustrated using
three real datasets: tensile strength of polyester fibers, aircraft air-conditioning failures, and ordered
failure times. The one-parameter model is further compared with ten standard unit distributions.
The censoring framework is successfully applied to these datasets, confirming its practical value in
modeling reliability and failure behavior.
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1. Introduction

Censoring and life-testing are key for time-to-event analyses when complete follow-up isn’t
available. They let investigators extract valid conclusions from partial data common in medicine,
engineering, and the social sciences while keeping studies efficient and affordable so decisions can be
made sooner. Used well, they inform public health, strengthen product reliability, and guide policy.
Hybrid censoring blends Type-I (time-limited) and Type-II (failure-count) schemes: the experiment
stops at the earlier of a prechosen number of failures r or a fixed time ¢. Although this guarantees the
test lasts no longer than ¢, a practical drawback is that too few failures may be observed by ¢ to support
strong inference.

Hybrid censoring which combines elements of Type-I and Type-II designs terminates a test either
by time or by failure count. For information about Type-I and Type-II censored sample, see [1]. A
common specification sets the stopping time as 7°* = min{X;.,, T}, where k € {1,...,n} is the target
number of failures and 7 > 0 is a preset time limit. While this caps the test duration at 7', a drawback
is that too few failures may be observed by T to support reliable inference. To distinguish variants, [2]
named the min rule Type-I hybrid censoring (HCT1) and proposed the complementary Type-II hybrid
censoring (HCT2) with T°* = max{X;.,, T}.

Childs et al. [2] referred to this scheme as Type-I hybrid censoring (HCT1) and introduced a
companion design, Type-II hybrid censoring (HCT2), where the test ends at max{Y,,.,..., t}. Although
HCT?2 guarantees at least m failures, it may considerably lengthen the experiment when failures are
sparse. To overcome the drawbacks of both HCT1 and HCT2, Chandrasekar et al. [3] proposed
two generalized extensions, namely generalized HCT1 (GHCT1) and generalized HCT2 (GHCT?2),
collectively termed generalized hybrid censoring schemes. Under the GHCT1 scheme, n items enter
a life test at time zero, with three prespecified quantities: integers r,m € {1,2,...,n} (with r < m
indicating failure-count requirements), and a censoring time ¢ € (0,00). The stopping rule is: if
Yy mn < t, terminate at min{Y,,.,.,, t}; otherwise, stop at Y,.,.,. This extends HCT1 by permitting
the test to continue beyond ¢ when needed while guaranteeing observation of at least r failures. In
contrast, GHCT?2 tests n items with a fixed failure threshold r € {1,2,...,n} and two predetermined
time bounds 7,1, € (0, co) satisfying #; < 1,.

Under GHCT?2, the stopping rule is: stop att, if ¥,.,, < t; stop at Y¥,.,, if t; < Y}, < t,; otherwise, stop
att, when Y,., > 1,. Although this modification of HCT2 confines the experiment to the interval [#4, 1, ],
it can still yield fewer, possibly no failures before #,, echoing the limitation seen in HCT1. Hence,
residual drawbacks persist in both generalized plans: in GHCT], reliance on a single censoring time
t may be insufficient to guarantee observation of m failures, and in GHCT?2, very few or no failures
may still occur prior to #,. To balance the respective strengths and limitations of the two generalized
schemes, Balakrishnan et al. [4] proposed a unified hybrid censoring (UHC) strategy. While UHC
integrates the core features of GHCT1 and GHCT?2 into a single, more adaptable framework, it does
not permit the interim (progressive) removal of test units prior to termination.

Type-II progressive censoring (P-CT2) is widely used in reliability studies because it strikes a
balance between statistical efficiency and practical feasibility; it can shorten test duration and reduce
cost, particularly in biomedical and engineering applications. In addition, P-CT2 yields richer
and more flexible data, improves inference for lifetime parameters, and supports more effective
experimental design under real-world constraints (see Balakrishnan and Cramer [5]). To address
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the inability to remove surviving units during UHC tests, Gérny and Cramer [6] proposed a unified
progressive hybrid censoring plan (UPHCT1) that merges features of UHC and P-CT2 to enhance
flexibility in life-testing experiments.

In progressive Type-II censoring (PCT2) with m observations, when the ith failure occurs, a
preassigned number R; of surviving units is randomly removed, and the experiment continues until
the m-th failure time. Consider a life test that begins at time O with n identical units. Fix integers
r,m € {1,...,n} with r < m, two control times t; < t, (t;,t, > 0), and a progressive removal scheme
R = (Ry,...,R,) satisfyingn = m+ )", R;. Under the UPHCT1 mechanism, removals are carried
out as in the standard PCT2 plan: as soon as the ith failure occurs, R; surviving units are randomly
withdrawn. Let X;.,.., denote the ith progressive order statistic (the ith observed failure time) and write
R(t;0) = 1 — F(t; @) for the parent survival (reliability) function.

The experiment terminates at the stopping time s* given by

Xm:m:n’ lf Xm:m:n < tla
S* — I, ?er:m:n <nh < Xm:m:m (11)
Xr:m:n’ lf tl < Xr:m:n < t2,
t2’ lf lZ < Xr:m:n-
Let d; denote the number of failures observed by time #; (i = 1,2), and let v be the number of failures
actually observed up to s* (that v € {m,d,,r,d,}, depending on which case of (1.1) occurs). The
number of units remaining on test at termination is
n—m-— Z’:i_ll Ri» if s* = Ym:m:m
d .
n-—d, _Zl‘:llRi’ if s* =1,
n—r-— Z,r;ll R;, if s* = Y rmns

n—d, - Y% R, ifs* =t

R*

(1.2)

If X = (X105 - - - » Xyumen) denotes the observed UPHCT1 data from a population with probability
density function (PDF) g(-;¥) and cumulative distribution function (CDF) F(:; ), the likelihood takes
the standard progressive form

Ly 1x) o {]—[ (X ¥) [RCGimn y)]R'} [Rs*; )] (1.3)
i=1

As emphasized by Gorny and Cramer, UPHCT1 merges the strengths of three controls progressive
(unit removals), time-controlled (¢, t,), and failure—controlled (at least r failures) into a single, efficient
design. In practice, this plan mitigates two common risks of conventional GHCT1 and GHCT2
schemes:

e ending too early with too few failures for reliable inference;
e running far beyond acceptable test duration.

Enforcing both a lower bound on the number of failures and an upper bound on time typically
improves the precision of parameter estimation and the robustness of subsequent analysis. Its ability to
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accommodate constraints on time, cost, and attrition makes UPHCT1 broadly applicable across many
reliability settings.

This work makes several original contributions on both theoretical and applied fronts. A
parsimonious one-parameter unit distribution is proposed and shown to outperform several competing
unit models, including the new unit-Lindley, Topp-Leone, Beta, unit-Weibull, unit—-Gompertz,
unit—XLindley, Alpha—Power Topp-Leone, unit log-logistic, and unit Burr—XII in goodness-of-
fit and reliability inference across complete and censored datasets (including UPHCT1 settings).
It is motivated by the need for flexible, information-rich life-testing designs that can handle the
complexities of modern reliability data, especially for high-value or rare materials (e.g., tensile strength
of polyester fibers, aircraft air-conditioning failures, and ordered failure-time studies). While prior
studies provide rigorous analyses of the proposed unit distribution across diverse reliability settings,
they also underscore its suitability in the presence of UPHCT]1 data. By leveraging UPHCT1, which
guarantees a minimum number of observed failures while confining the experiment to a fixed time
window, and the proposed unit model, which flexibly captures upside-down-bathtub and heavy-tailed
hazard behaviors, this paper develops the corresponding inferential procedures.

To fill the identified gap in the current literature, the presented research works under the framework
of the UPHCT1 scheme and combines it with an efficient single-parameter model of unit lifetime. The
main intention was to cover two aspects: (i) to offer a useful censoring scheme that can distribute
a minimum number of failures under the limitation of the total test time, and (ii) to introduce a
simplified single-parameter model that can model diverse shapes of the hazard function like bathtub
and increasing failure rate (IFR) curves so that exact reliability analysis can be obtained without much
complexity.

To meet this objective within the proposed framework, maximum-likelihood and Bayesian
inferential procedures are developed for the model parameters together with the associated reliability
measures. Bayesian computations are implemented via Markov chain Monte Carlo (MCMC) under
diffuse (noninformative) and gamma priors, using a Metropolis-Hastings algorithm. Within these
setups, large-sample (asymptotic) confidence intervals and Bayesian credible intervals are constructed
for the unknown quantities. Furthermore, estimator performance is evaluated through a comprehensive
Monte Carlo simulation which covers multiple censoring configurations and assessed by several
precision metrics by which the robustness of the Bayesian procedures is demonstrated.

Recently, using the proposed censored sample, different lifetime models are investigated via
likelihood and Bayes methods of parameter estimations; see, for example, Dutta and Kayal [7] for Burr
Type-XII, Yousef et al. [8] for truncated Cauchy power exponential, Dutta et al. [9] for Kumaraswamy-
G family, Anwar et al. [10] for inverted exponentiated Rayleigh, Mohammed et al. [11] for inverted
Nadarajah—Haghighi, Prakash et al. [12] for Lomax, Elsherpieny and Abdel-Hakim [13] for Alpha-
Power exponential distribution, Alotaibi et al. [14] for Hjorth Competing Risk Data, and so forth.

For the purposes of this analysis, two different methods of parameter estimation will be employed
and contrasted with one another, namely Maximum Likelihood Estimates (MLEs), and a Bayesian
estimate generated with a Metropolis-Hastings algorithm. The use of these two methods is theoretically
and pragmatically justifiable on a number of grounds. The first, MLEss, is a classical choice
particularly because of its optimality properties within a large sample framework. The second, the
Bayesian model is able to generate a full posterior probability function, which, in turn, has a number
of convenient properties; namely, it is able to generate full probabilistic inferences about model
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parameters without needing further tests, because credible regions often have better performance
characteristics, especially in terms of precision in small samples, and because it is able to integrate
prior information about the parameter sets being estimated.

From a computational perspective, both MLEs can be obtained by means of common numerical
algorithms such as Newton-Raphson, whereas the Bayesian Estimates can be obtained by means of
Markov Chain Monte Carlo simulations with Metropolis-Hastings sampling for ensured exploration
of the posterior space. To conduct a comparison among these approaches, we will be interested in
considering some finite sample performance criteria such as bias, mean squared error (MSE), coverage
probability, average width of the confidence sets, besides comparing the decision theoretic risks with
different loss functions, with the linear—exponential (LINEX) loss function being used in the Monte
Carlo comparison. The comparison among these approaches will be used to measure robustness against
finite samples and censoring, with goal of understanding in what types of situations a certain approach
is preferable over the other, and for providing information about which estimator may be used given a
specific situation concerning the sample size, proportion of censored observations, and existing prior
information.

The remainder of the paper is organized as follows. Section 2 introduces unit distribution with one
parameter. Sections 3 discusses the likelihood estimation for model based on the UPHCT1 mechanism.
Section 4 develops Bayesian estimators for the model parameters and associated reliability measures.
Section 5 obtains bootstrap algorithms. Section 6 summarizes the Monte Carlo study. Section 7
analyzes the three data sets. Finally, Section 8 concludes the paper.

2. Unit distribution with one parameter

Finite—support probability models are common in applications, for instance, the uniform on [y, b],
beta on [0, 1], truncated normal on [y, b], and arcsine on [y, b]; some families (e.g., generalized Pareto)
admit bounded support depending on their parameters. In particular, Muhammad [15] introduced a
two-parameter lifetime distribution supported on (0,b]. We adopt that model reparameterized with
v > 0 in place of y and recall its CDF, and PDF function as given in Egs (2.1) and (2.2).

The CDF of the proposed model with parameters y > 0 and b > 0 is given by

_ oy + D(x/b)

F(x , 0<x<b, 2.1
0 Y + (x/b) &b
and the corresponding PDF is
yb(y +1)
= , 0 < b. 2.2
fo = 0<x 22)

Figure 1 depicts density and hazard plots for different value os parameter y. As vy increases, the
PDF on (0, 1) evolves from sharply left-skewed (mass near 0) to a flatter, more even profile, while the
hazard shifts from a pronounced bathtub shape (high early risk, mid-interval dip, late surge) toward a
mainly increasing IFR pattern. Hence, y controls both skewness and the early-versus-late failure risk,
demonstrating strong shape flexibility.
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Figure 1. Density and hazard for different value os parameter 7.

1.0

Because b acts as a positive scale parameter in Eqs (2.1) and (2.2), it is convenient to study the
unit-scale form. Setting » = 1 in the general expressions with shape y > 0 yields the distribution on

(0, 1] with

Py = 2D 0<x<l,

’}/+X

_y(y+ D)
f(X)_(’)/"l'x)z, O<x§1,
s = =0 0<x<l,

)/+x
hoy =290 v+l 0<x<l.

S sy -x)]

Basic properties

(2.3)

(2.4)

(2.5)

(2.6)

Let F, f, S, and h denote the CDF, PDF, survival, and hazard functions of the unit-scale model

(b=1).
e Support and endpoint limits: From (2.3) and (2.5), we obtain
F(0") =0, F(l) =1, s(0%) =1, s(17) =0,

so the distribution is supported on (0, 1] and has the stated boundary behaviour.
e Monotonicity of the PDF (explicit): Differentiate the PDF in (2.4):

2y(y + 1)

d
ax! =T
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Because y > 0 and y + x > 0 for x € (0, 1], it follows that
f'(x) <0 forall x e (0,1];

hence f is strictly decreasing on (0, 1]. The density therefore attains its largest value near the left
endpoint; in fact,

+1 +1
limf(x):)/(yz ) _Y .
x10 Y 4

e Hazard shape and its derivative (explicit): Write h(x) = (y + 1)/D(x) with D(x) = (y + x)(1 — x).
Expand and differentiate D(x):

D(x) =y +x—yx—x%, D(x)y=1-y-2x.
Differentiating / gives

D'(x) l-y-2x  (y+Dy+2x-1)

W(x)=—(y+ 1 =—(y+1 =
O =0 e = O o G-

Thus, the sign of /’(x) is determined by N(x) := y + 2x — 1:
—Ify > 1,then N(x) > y—-1 > 0forall x € [0,1), so #/(x) > 0. In this case the hazard is

monotone increasing (IFR behaviour).
- If 0 <y < 1, then N(x) changes sign at

1=y

T2
For 0 < x < x* we have N(x) < 0 and /'(x) < O (decreasing), while for x > x*, we have
N(x) > 0 and /’(x) > O (increasing). Therefore, for 0 < y < 1, the hazard is bathtub-shaped
(decreases and then increases).

X

€(0,1).

These analytic conclusions match the hazard plots provided in the manuscript.
e Quantile function and simulation: Solve u = F(x) for x. From (2.3),

u = M f—t X = L
Y+ x y+1-u
so the quantile function is
0w =F'w=—2— O<u<l
0% —u

Therefore, sampling is direct: if U ~ Unif(0, 1), then X = Q(U) has distribution F'.
e First moment (closed form): The expected value can be computed in closed form by substitution

r=y+x
1 1 N
= s =yen [ e
y+lt_y . y
=y(y+1) : > dt =y(y + 1){11'1(771)4' m — 1}

Higher moments E[X"] are obtained analogously by direct integration.
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3. Likelihood estimation

Under the UPHCTI1 scheme, with observed progressive failure times X = (X1, ---» Xyumn)s
removals {R;}!_,, terminal time s*, and terminal removals R* (as in (1.1)-(1.2)), the likelihood in (1.3)
specializes to

yiy+ D
i=1 (7 + xi:m:n)z

1 - iim:n &
Loy | %) o Pl x..)]

Y + Xismin

ya—fq”

Y+ s*

3.1

4

ww+waﬁﬂwwkﬂﬂ”@+fY”“Ta_MWW@+MWJWM}
i=1

Equivalently, the log-likelihood is

)« v+ X Ri+R*)Iny + vin(y +1) + X!, RiIn(1 — X)) + R* In(1 — s*)

= > (2 +R)10g(y + Xim) — R*In(y + %), (3.2)
i=1
valid for 0 < x;,,.,, < 1and 0 < s* < 1, withy > 0.
Differentiating the log-likelihood in (3.2) with respect to y and setting the result to zero yields the
likelihood equation for the MLE ¥, i.e., d€(y)/dy = 0;

- (3.3)

dty) _v+ILR+R v Z 2+R, R
dy y y+1 Syt X Y+ s*

From the score equation associated with (3.3), a closed-form solution for the MLE ¥ does not
exist. Hence, ¥ must be obtained numerically, for example, via the Newton—Raphson algorithm,
as implemented in the maxLik package [16] using the available UPHCT1 data. By the invariance
principle, once ¥ is computed, the reliability and hazard functions on 0 < x < 1 admit the plug-in
estimators
y( - x)

A o

_y+l
G+ =)’

(in particular at x = s*). These summaries are central to durability assessment, maintenance planning,
and risk evaluation under operating constraints.

Next, confidence intervals for y follow from the sample normality of the MLE ¥. In the
one—parameter case, the asymptotic variance of ¥ is the reciprocal of the Fisher information,

R(x) = and  h(x) =

(3.4)

d* {(y) . _
mo:—E[dZy var®) ~ I(y)",
Y
typically evaluated at y = % (or using the observed information — d*£(y)/ d72|y:?), where
d*¢ + 37 R +R* . 2+R; R*
0 _ v+3L Y LR . (3.5)
dy? Y Y+ 1) S+ X)) (7 +5*)?
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Accordingly, the (1 — @) X 100% asymptotic maximum likelihood (ML) confidence intervals for y

is
)A/ + a2 \/Var()?),

where z,, is the upper /2 quantile of the standard normal distribution.
To construct ML-based asymptotic confidence intervals for R(x) and A(x), we first approximate their
sampling variances via the delta method, a standard tool for functions of MLEs (see [17]). Let

i = VR )| L, and & = V,h(xy)| .

Then

— [dR| \} — (dh \*
Yr=|—| | '} Y =(—| | I'®).
R (d)/ '7) L ), h (d)/'?) L )

Accordingly, the (1 — @) X 100% ML-based asymptotic confidence intervals for R(¢) and h(¢) are

(k(t) =+ Za//Z \/i) and (ll/\l(t) + Z(I/Z \//‘I‘T}Az)’

respectively.
4. Bayes inference

Bayesian estimators of an arbitrary parametric function m(y) under squared—error loss (SEL) are
obtained. An informative gamma(a, c) prior and, for comparison, a non-informative prior are adopted
for y. Under the gamma specification with @ > 0 and ¢ > 0, the prior density is

n(y) « y“_le_cy. “4.1)

The gamma prior is used for positive one-parameter models due to its flexibility and computational
convenience by adjusting (a,c). It can encode varied prior beliefs and often yields posteriors of
manageable form; see [18] for details.

By combining the likelihood in (3.1) with the prior in (4.1), the posterior density (denoted ;) for y
is obtained as

NZ(ylx) oc (,y + 1)V ,yV+Z;-/=1 R,«+R*+a—1 e—C’)/(y + S*)—R*{ n(y + xi:m:n)—(Zﬂ'Ri)}‘ (4.2)
i=1

From (4.2), the Bayes estimator g; of an arbitrary function g(y) under SEL is its posterior mean:

[y Ly 1x)dy
) Ly 1xdy

The Bayes estimators implied by (4.3) are the ratio of integral that lack closed—form solutions in
general. Accordingly, they are approximated via the Metropolis-Hastings algorithm, and a standard
Markov chain Monte Carlo (MCMC) method by simulating from the posterior distribution and
computing Monte Carlo estimates [19, 20]. From (4.2), the posterior density of y does not reduce

yL=E@gyx)) = 4.3)
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to any standard family under analytic manipulation. Consequently, direct sampling by conventional
closed-form methods is not feasible.

With a normal random-walk proposal on the log—scale, MCMC draws from the posterior 7 (y | X)
are obtained as follows:

Step 1 Initialize /! = ¥ and choose a proposal variance s> > 0 (e.g., s> = I"'($)). Seto = 1.
Step 2 Propose on the log—scale: let ¢! = log y1¢~!!, draw 7* ~ N(5¢~11, s?), and set y* = e > 0.
Step 3 Compute the Metropolis—Hastings acceptance probability
Ty X))y }
(e x) yle 11 [

q= min{l,

where the factor y* /197! accounts for the log—scale proposal (Jacobian).
Step 4 Draw u ~ Unif(0, 1); if u < g, set y!¢! = y*, otherwise, set y!¢! = ylo=1,

Step 5 For any x € (0, 1], record

yd —x)

h[Q](x): y+1
y+x '

F+x) -x)

Step 6 Set o < o + 1 and repeat Steps 2—5 for D iterations (discard a burn—in if desired). Posterior
means (Bayes estimates under SEL) are then approximated by Monte Carlo averages of the
retained draws.

Rl (x) =

To reduce dependence on starting values and promote convergence, the first D, iterations are
discarded as burn-in. The remaining draws {¢! : o = Dy + 1,...,D} are then used for Bayesian
inference. Under SEL, the Bayes estimate of any scalar functional ¢ is approximated by the Monte
Carlo average

D
- 1
¥Bs = =7 Z @', D' =D - D,

0=Dp+1
For a 100(1 —a)% highest posterior density (HPD) credible interval for ¢, order the retained samples
asyq) < -+ < Y, set h = [(1 — @)D*], and choose the start index

j = arg ;rli_r;l iem = v}
The HPD interval is then
(Y YGram )
where | -] denotes the floor operator; see [21].

5. Bootstrap

The bootstrap is a resampling-based framework for statistical inference, widely employed to
construct confidence intervals; see, for example, Efron [22]. In what follows, we adopt a parametric
bootstrap to obtain confidence intervals for the one-parameter model, targeting the scalar parameter y
as well as the reliability R(#) and hazard rate h(r). Specifically, we consider two parametric bootstrap
constructions: the percentile bootstrap (B-P) and the bootstrap-¢ (B-t) intervals.
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5.1. Percentile bootstrap confidence interval
(1) Obtain the MLE or Bayesian estimate of the parameter y, as well as the corresponding reliability

R(t) and hazard function A(t).
(2) Generate a bootstrap sample using the fitted model and compute the bootstrap estimates, say ”,

R’(1), and Kb ().
(3) Repeat Step (2) B times to obtain the sets

PO @D APEN, (R D), R D), ..., R"P 1), V@), P @), ..., P @)).

Yy

(4) Arrange each set of bootstrap estimates in ascending order:

LYY R0, R @), R @), (N0, B ), B D).

"y

(5) The two-sided 100(1 — y)% percentile bootstrap confidence intervals are then given by

Y w1 Y Y w1 Y Y P4
[’yblBZJ, ,yblﬁ(l 2)]]’ [Rb[BZJ(t), Rb[B(I Z)J(t)], [/’lb[BZJ([), hb[3(1 Z)J(t)],

5.2. Bootstrap-t confidence intervals
(1) Fit the one-parameter model and obtain the point estimates ¥, ﬁ(t), and /ﬁ(t). Compute their
asymptotic standard errors via the observed Fisher information (or an equivalent variance

estimator): 5&(9), Se(R(1)), and §e(h(1)).
(2) Forb = 1,..., 8B, generate a bootstrap sample from the fitted model (using ¥), and recompute the
estimates ¥*®, R*®)(¢), and h*®(f). Using the Fisher information evaluated at the bootstrap fit,

obtain se(y*®), se(R®)(1)), and sfé(/h\*(b)(t)).
(3) Form the bootstrap ¢-statistics:
O -3 e _RUO-RO) e 0 k)
e TR @RO®)) S S URGIO))

b _—
T)” =

(4) Sort each set {T\"}, (T}, and {T{”"} in ascending order to get T}/ < --- < TP, Tl < ... < TIF),

T < <1
(5) Letg, =T Y[BZ], qf = T,EB 4 and qr = T}EB[] denote the empirical £-quantiles (with £ € (0, 1)). Then

the two-sided 100(1 — @)% bootstrap-¢ intervals are

9= a4 _0p ). =L, °3)|.  [RO) - gF ., ER®), R(t) - g%, SRR (1)),
[70) = i_yp SEH(1)), h(t) - g o SE(R(D)))]

6. Simulation study

This section evaluates the finite—sample performance of the proposed estimators for the model
parameters y as well as the reliability characteristics R(¢#) and h(f) under the UPHCT1 scheme
with binomial removal. Unless otherwise stated, data are generated from the target distribution
under prespecified UPHC schemes (n,m,r, Ty, T,), and all computations are implemented in R. Point
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estimation is carried out via MLE and Bayesian estimation by non-informative and informative prior,
and interval estimation uses asymptotic delta method standard errors for approximate confidence
intervals (ACIs) and MCMC-based highest posterior density (HPD) intervals for the Bayesian
procedures. The simulation settings are as follows:

o A total of 10000 Monte Carlo replications are performed for each design point from three different
populations with different values of actual values of parameter, namely, Pop-1: y = 0.4, Pop-2:
v = 1.6 and Pop-1: v = 3.

e For Bayesian estimation, we run 12000 MCMC iterations with a burn-in of 2000, retaining 10000
post-burn samples for posterior summaries.

e All numerical experiments are conducted in the R environment. Optimization for ML and
Bayesian uses standard routines (e.g., maxLik/Newton—Raphson), and MCMC diagnostics are
checked to confirm mixing and stationarity.

e To assess small-sample variability of the classical estimators and to build nonparametric
percentile intervals, bootstrap resampling with B = 1000 iterations is employed at each Monte
Carlo run.

e At the mission time x = s*, the benchmark reliability R(s*) and hazard rate h(s*) are treated as
known reference values; these serve as the ground truth for evaluating estimator accuracy.

e The sample sizes n € {40, 100}, representing small, and large settings have been considered. For
all populations, the threshold times are #; € {0.55,0.7} and #, € {0.8,0.9}.

e To specify the numbers of recorded failures r and m in each life test, in the designs reported here,
these are instantiated as follows: for n = 40, we take m € {30, 35} and r € {25, 30}; for n = 100,
we take m € {70,90} and r € {60, 80}.

e In this study, progressive removals are generated via a binomial scheme to determine the sequence
{R;}",, using binomial parameter values p € {0.3, 0.8}. In addition, censoring schemes are
considered under binomial random removals. It is assumed that removals occur independently
across units, with each unit being removed with a common probability p. Accordingly, the
number of units withdrawn at each failure time is modeled by a binomial distribution, given
by

n—m

PR, =nr) = ( )p”(l —-p)mn, 0<r <n. (6.1)

r

Moreover,

n_m_zj:lr ri n—m-37_ r
AR; = r;| Rty = 1y Ri = 1) = ( e k)p i(1 = pyria, (6.2)

T
where
j-1
OSern—m—Zrk, j=2,3,....m—1.
k=1
e For each target ¢ € {y, R(?), h(t)}, we report the average relative absolute bias estimate (RAB),
and MSE. Interval estimators are compared via average confidence (or credible) interval (ACI)
and coverage percentage (CP).
e Unless otherwise specified, the confidence level for all confidence intervals is fixed at 95%.
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UPHCTI sample generation

Inputs: n (initial units), m (max recorded failures), r (Type-II target), k (guaranteed minimum),
thresholds 0 < #; < 1,, removals {R;}" |, parameter y > 0.
Outputs: sample {(x;, R;)}"" , survivors r*, stopping time 7.

=1’

Steps

(1) Generate i.i.d. uniforms &1,&,,...,&, ~ U0, 1).
(2) Fori=1,2,...,mdo:

(a) 4‘ = f.l/(i+ZT=m—i+1Rs).

1

(b) uy = 1- l_[ (500 <u; <1).

s=m—i+1

(c) Transform via the quantile Q(u) = yu/(y + 1 — u):

(3) Count threshold crossings:
dy = lism:xi<nl|, d=|lism:x<nl

(4) Let x,, x;, x,, denote the rth, kth, and mth order statistics of {x;}" .
(5) Compute the remaining survivors r* using the appropriate case:

m
o Ifx, <x, <t <t2,thenr* =n—m—ZRl~.

i=1
d

° Ifx,<t1<xm<t20rxr<t1<t2<xm,thenr*:n—d1—ZR,-.

i=1
k

. Ift1<x,<xm<t20rt1<x,<t2<xm,thenr*:n—k—ZR,-.
i=1

dy
o Ift; <t < x, <X, then r* :n—dg—ZR,-.
i=1
(6) Determine the stopping time 77:
o Ifx, <x, <t <t,setT" = x, (stop at the mth failure).
e Ifx, <tj<x,<tborx <t <t <x, setT* =t (first threshold).
e Ifry <x, <x,<tbort; <x <t <x, setT* =x; (after at least k failures).
o Ift; <1, <x, <Xx,,setT" =t (second threshold).

For each quantity of interest ¢ € {y, R(?), h(t)}, we report the Monte Carlo RAB along with its MSE,
length of ACIs (LACI), length of credible confidence interval (LCCI), length of bootstrap-p (LBP),
and length of bootstrap-t (LBT) are defined by
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10000 | A(j i
3 — o
10000 &~ 4

RABQ, = T=1,2,3,

1 2000 ) )
MSE AT = ——— A(J) —¢r] = 15 29 3’
@) = 3500 ;(% o), T

where @9) denotes the MLE or Bayesian estimate from the jth replication, with ¢, =y, ¢, = R(¢), and

@3 = h(1).
To compare the 100(1 — @)% interval estimators, we report the average confidence length (ACL)
and the coverage percentage (CP) at the 95% level:

1 2000
95% _ o _
ACLY" = 2o Z‘(w@g) L), T=123,
j:

2000

1
CP." = 3500 2. 1 WLy <oyl =123
]:

where 1{-} is the indicator function, and (L¢5j>,(bl¢g>) are the lower and upper bounds of the 95%
asymptotic (or credible) interval for ¢, in replication ;.

All computations are carried out in R, using the coda package [23] for MCMC diagnostics and the
maxLik package [16] for likelihood-based optimization.

Comments on simulation results

Tables 1-3 summarize the RAB, MSEs, LACI, LCCI, CP, LBP, and LBT for vy, R(¢), and h(t),
respectively, across representative UPHCT]1 designs.

(1) Across designs, all procedures yield stable RAB with shrinking MSE and LCI as the effective
information increases (larger n, and jointly larger m and r). This is consistent with asymptotic
efficiency under UPHCT1 and mirrors findings in related UPHCT1 studies. (Good concentration
and small bias as sample information grows.)

(2) MCMC-based Bayes estimates generally dominate their classical counterparts in RAB, MSE
and LCI, especially when informative priors are used. In designs akin to those shown, MCMC
with gamma informative prior typically edges MCMC with a non-informative prior, reflecting the
informative prior robustness under censoring.

(3) ACIs built from MLE tend to be shorter for y, R(¢), and h(¢), while HPD from Bayesian with an
informative prior can be slightly tighter for y, R(¢), and h(¢). HPD intervals constructed from the
spacings—based posterior are usually the most efficient (shortest ACL) with near-nominal CP.

(4) Relaxing thresholds (increasing 7'} and/or T,) improves identifiability for y, which translates into
lower RABs and MSEs and narrower intervals for vy, R(¢); h(f) can be more sensitive near early
times, but its precision also improves as effective failures increase.

(5) Across all designs, Bayesian estimators outperform MLE in small-to-moderate effective samples,
yielding lower RABs and MSEs and shorter interval lengths while maintaining near-nominal
coverage. As information grows, the gap narrows, but Bayesian remains slightly preferable.
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(6) Between the two Bayesian implementations, LBT consistently exhibits smaller MSE and tighter
HPD intervals than LBP, particularly under heavier censoring removals.

(7) Increasing the sample size n and the numbers of observed failures (m, r) increases the information
content, leading to monotone improvements: RAB and MSE decrease, interval lengths contract,
and coverage stabilizes around the nominal level for all parameters and for R(¢) and A(t).

(8) Larger removal probability p reduces the effective sample size. Consequently, RABs and MSEs
increase, intervals widen, and mild under-coverage can appear in the most severe settings. The
deterioration is less pronounced for the better-calibrated Bayesian procedure (here, LBT).

(9) When credible prior information exists, a concentrated gamma prior is preferred: it lowers MSE
and shortens HPD intervals without compromising coverage. If prior knowledge is weak or
uncertain, a diffuse (non-informative) prior is safer to avoid prior-driven bias.

(10) Increasing the prior concentration shrinks the prior variance, producing more stable posteriors,
smaller MSE, and shorter HPD intervals. Raising the shape alone pulls the posterior more strongly
toward the prior mean.

(11) Use Bayesian estimation in this UPHCT]1 setting; prefer the better-calibrated variant (LBT) when
available, especially with an informative gamma prior. Performance improves withn T,m T, r T
and degrades as p T; therefore, designs should maximize observed failures and limit removals.
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7. Real-life applications

To demonstrate the relevance and effectiveness of the proposed estimation techniques, three
distinct real-world datasets from the engineering domain are examined. First, the data are validated
using a time—temperature—transformation (TTT) plot and hazard plot, and then further examined
by comparing results with a TTT plot, box plot, and violin plot for each dataset. Second, before
deriving the theoretical results, we verify the proposed distribution of each data set and compare
them with alternative unit models. To this end, we compute the MLEs of the parameters (with
their standard errors, SEs) and evaluate the Kolmogorov—Smirnov (K-S) statistic with its (p)-value,
along with the Aikake information criterion (AIC), the Bayesian information criterion (BIC), the
Anderson—Darling (AD), and the Cramér—von Mises (CvM) goodness-of-fit measures to identify the
best unit model. The proposed distribution has been compared by more alternative unit models as
new unit-Lindley [24], Topp-Leone [25], Beta [26], unit Weibull [27], unit XLindley [28], unit-
Gompertz [29], unit-Lindley [30], Alpha Power Topp-Leone [31], unit log—log [32], and unit Burr-
XII [33].

Third, the estimators with the proposed distribution are presented through three graphical
representations: the empirical versus estimated CDF, the histogram with the estimated PDF, and the
P-P plot. Fourth, it is verified that these estimators possess a unique value, which corresponds to the
maximum of the profile likelihood. Fifth, the parameters of the distribution are estimated using the
different methods under study, based on the UPHCTT.

7.1. Tensile strength of polyester fibers

The first data set consists of 30 observations on the tensile strength of polyester
fibers, originally reported by Mazucheli et al. [29]. The measured values
are as follows: 0.023,0.032,0.081,0.054,0.069,0.094,0.105, 0.169,0.188,0.127,0.148,
0.216,0.255, 0.277,0.311,0.361,0.376,0.395, 0.432,0.463,0.481,0.519,0.529,0.567, 0.642,
0.674,0.752,0.823,0.887,0.926.

The TTT-plot (Figure 2, left) suggests an increasing failure rate, which is consistent with the
estimated hazard rate curve (second) that shows a monotonic upward trend. The box plot (third)
indicates that the data are moderately spread around the median without extreme outliers. The Violin
plot (right) confirms the overall distributional shape and variability, highlighting a relatively symmetric
spread around the center. Together, the four component plots of Figure 2 provide evidence that the
proposed distribution is appropriate for modeling the given Data 1.
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Figure 2. Graphical assessment of the fitted distribution using different diagnostic tools:
Data 1.

In Figure 3, the empirical CDF (left) aligns closely with the estimated CDF, indicating a good fit
of the proposed distribution. The histogram with the estimated PDF (center) shows that the theoretical
curve successfully captures the overall shape of the data. The P-P plot (right) lies nearly along the
diagonal line, further confirming that the fitted distribution provides an adequate representation of the

observed sample.
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Figure 3. Graphical comparison between the empirical data and the fitted model: Data 1.

Across all diagnostics in Table 4, the proposed model provides the best overall fit. It has the
smallest KSD (0.0570), lowest CvM (0.0146) and AD (0.1098), and the most favorable information
criteria (AIC = -4.4408, BIC = -3.0396). The UW model is a close second in KSD (0.0576) but is
clearly inferior in AIC and BIC. Models such as UXL and UL perform poorly, showing very large
Kolmogorov—Smirnov-D values (KSD) values (0.2408 and 0.2722) and highly unfavorable AIC and
BIC. PVKS values are near 1 for most models, but the sharper separation in KSD, CvM, AD, and ICs
confirms that the proposed distribution offers the most adequate description of the data.

The profile likelihood in the Figure 4 curve (left) attains a clear and unique maximum, ensuring the
existence and uniqueness of the MLEs for the parameter y. The normalized profile likelihood (right)
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further supports the stability of the estimation, as the curve crosses the reference line at the identified
estimate. These results confirm that the proposed distribution yields well-defined parameter estimates.

Table 4. MLE and different measures of statistics for unit models: Data 1.

y 0 KSD PVKS CwW AD  AIC _ BIC
Target Esgfges 8:22;2 0.0570 0.9999 0.0146 0.1098 -4.4408 -3.0396
TL Esgfges 8:3222 03314 0.0019 0.1277 0.7879 21.7155 23.1167
NUL EStSif;teS (1):;83; 0.0665 0.9981 0.0189 0.1600 -3.8078 -2.4066
Beta EStSi‘tI;teS ?22282 8:421?(3)3 0.0669 0.9979 0.0184 0.1559 -2.6101 0.1923
UW EStSif;tes ?éé;g 8:;(3)3(7) 0.0576 0.9998 0.0148 0.1100 -3.4345 -0.6321
UXL Esgltlges 81?;% 02408 0.0513 0.1400 0.9397 86.4149 87.8161
UG EStSiiEtes (l):?éﬁ’ gzgi; 0.0733 0.9932 0.0184 0.1161 -3.8976 -1.0952
UL Esg?éites (1):(1)22‘5‘ 02722 0.0187 0.1656 1.0870 20.1704 21.5716
APTL EStSigfes 1(1):52'%11 3(9).12'1820 0.0725 0.9941 0.0360 0.2897 -0.2175 2.5849
ULL Esgiréartes iggg 8:328 0.0846 09704 0.0194 0.1221 -3.9134 -1.1110
UBXII EStSi‘:]lETeS i:gig; 8:?822 0.0993 0.9008 0.0586 04419 19220 4.7244
- o
o | o |
= S ] = Y7
0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6

Figure 4. Profile likelihood plots for the parameter y: Data 1.
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Table 5 compares MLE and Bayesian estimators for Data 1 under the UPHCT1 scheme across
combinations of (m,r, Ty, T,), with reliability measures evaluated at time s*. For each setting, the
table reports the estimate of the parameter v, its standard error SE(y), the reliability R(¢), and the
hazard rate h(z). Two Bayesian strategies are used: Bayesl adopts a non—informative prior, whereas
Bayes2 employs an informative gamma prior whose hyperparameters are selected from the MLE
output (elective hyperparameters method). Posterior summaries are obtained via MCMC with 12000
iterations, discarding the first 2000 as burn—in. Overall, MLE and Bayesian estimates are broadly
consistent; however, the informative—prior scheme (Bayes2) typically yields more stable inference
often reducing SE(y) and producing smoother estimates of R(¢) and h(¢) at s* while Bayesl shows
greater dispersion due to the diffuse prior.

Table 5. MLE and Bayesian estimation based on UPHCT1 for Data 1.

p 03 0.8
m r Tl T2 s* v MLEr bayesl Dbayes2 s* v MLEr bayesl bayes2
v 0.4203 0.9662 0.5276 0.3554 0.8553 0.4335
SE(y) 0.2223 0.7738 0.2087 0.1861 0.7307 0.1722
0.13225 0.336 R 051915 0.2152 0.3129 0.2425 0.567 15 0.1668 0.2604 0.1876
20 15 h 3.1436 2.7523 3.0345 3.3936  3.0126 3.3090
Yy 0.5600 1.5294 0.7351 0.4821 1.2300 0.6277
SE(y) 0.3190 1.2155 0.3065 0.2706 1.0150 0.2586
0436 0.7265 R 0.7265 17 0.1191 0.1854 0.1376 0.7265 17 0.1091 0.1719 0.1268
h 44336 4.0996 4.3405 44837 4.1674 4.3948
Y 0.4158 1.0617 0.4793 0.3071 0.6835 0.3529
SE(y) 0.2034 0.8762 0.1924 0.1394 0.5735 0.1255
0.13225  0.536 R 0.536 20 0.2027 0.3083 0.2190 0.536 20 0.1690 0.2601 0.1842
2% 20 h 3.2058 2.7811 3.1401 3.3412  2.9752 3.2801
0% 0.4158 1.0617 0.4793 0.3096 0.6668 0.3666
SE(y) 0.2034 0.8762 0.1924 0.1407 0.4931 0.1348
0436 0.5265 R 0.529 20 0.2073 0.3144 0.2239 0.567 20 0.1529 0.2340 0.1700
h 3.1816 2.7518 3.1149 3.4503 3.1200 3.3806
Figure 5 displays the trace of 10000 MCMC draws for y using Data 1 with m = 25, r = 20,

T, = 0.436, and T, = 0.5265 (see Table 5). The chain mixes well and exhibits clear convergence.
The histogram in the right panel of Figure 5 indicates that the posterior distribution is approximately

symmetric.
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Figure 5. Trace plot and histograms for MCMC results of y from Data 1 when m = 25,r =
20,7, = 0.436, and T, = 0.5265.

7.2. Aircraft air-conditioning failures

This dataset contains 30 failure times for an airplane’s air-conditioning system, reported in Ref. [34]:
12, 120, 11, 23, 261, 87, 7, 120, 14, 62, 71, 11, 14, 47, 225, 71, 246, 21, 42, 20, 5, 3, 14, 11, 16, 90,
1, 16, 52, 95. For comparability on the unit interval, each value is rescaled by 265, yielding ([35]):
0.018867925, 0.045283019, 0.086792453, 0.026415094, 0.452830189, 0.984905660, 0.328301887,
0.052830189, 0.233962264, 0.196226415, 0.358490566, 0.267924528, 0.928301887, 0.177358491,
0.849056604, 0.079245283, 0.158490566, 0.075471698, 0.452830189, 0.052830189, 0.041509434,
0.052830189, 0.267924528, 0.041509434, 0.060377358, 0.041509434, 0.011320755, 0.339622642,
0.003773585, 0.060377358.

Figure 6 indicates an increasing failure rate the TTT plot lies above the diagonal, and the estimated
hazard rises monotonically. The box plot shows moderate dispersion around the median without
notable outliers, and the violin plot is roughly symmetric. Collectively, these diagnostics support the
suitability of the proposed distribution for Data 2.
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Figure 6. Graphical assessment of the fitted distribution using different diagnostic tools:
Data 2.
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For Dataset 2, Figure 7 shows strong agreement between the empirical and fitted CDFs. The fitted
PDF traces the histogram well, capturing the sample’s shape, and the P-P plot clusters along the 45°
line. Collectively, these diagnostics indicate that the proposed distribution fits the data adequately.

The proposed model delivers the best overall fit in Table 6. It achieves the lowest KSD (0.1275),
smallest CvM (0.1006) and AD (0.6139), and the most favorable information criteria (AIC = -33.01,
BIC =-31.61). Its K-S p-value (PVKS = 0.7143) is comfortably high, indicating no evidence against
the fit. Two competitors, UG and ULL, are somewhat close (e.g., KSD 0.1291 and 0.1510; AIC -32.19
and -30.98), but remain inferior on most metrics. Models such as UXL, UL, NUL, and APTL show
clear lack of fit (large KSD, CvM, and AD and poor AIC and BIC). Overall, the metrics consistently
favor the proposed distribution for Data 2.

P-P plot
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Figure 7. Graphical comparison between the empirical data and the fitted model: Data 2.

Table 6. MLE and different measures of statistics for unit models: Data 2.

y 9 KSD PVKS CVM _ AD AIC BIC
Proposed Esg‘;‘“ g: (1)2;? 0.1275 0.7143 0.1006 06139 -33.0141 -31.6129
TL Esg‘gf‘“ 81?8;; 0.1938 02097 02380 15103 -21.9604 -20.5592
NUL E“Si‘t‘éar‘es g:gfgg 03690 0.0006 0.1097 07576 18.5980  19.9992
Beta E“Si‘t‘éar‘es ?éﬁé 8:;}3 0.1958 02003 02173 13859 -22.4926 -19.6902
UW Esg?;‘es (1):421;2; 82222 0.1742 03228 0.1593 1.0191 -26.3847 -23.5823
UXL Esg?;‘es g:gggi 0.6821 0.0000 07261 3.9324 1515946  152.9958
UG Esg?;‘es g:jggz 8:?‘3‘?‘; 01291 0.7127 0.1008 06214 -32.1936 -29.3912
UL Esg‘;‘“ g:ggg 0.7201  0.0000 0.7809 4.1849 117.9145 119.3157
APTL EStS“t‘;‘es ! é?éi? 2(1).56 ;5(2)4 0.1814 02771 02924 18351 -16.4148 -13.6124
ULL EStSi‘t‘;‘es }:gg? 8:(1);(3)3 0.1510 0.5006 0.1042 06532 -30.9827 -28.1803
ypxyp  Detimates - 0.6898 01537 000y 00079 04214 25452 78209 -5.0275

StEr 1.679494  0.31171
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Figure 8 shows a unimodal profile likelihood for y, implying a unique MLE. The normalized profile
likelihood intersects the reference level at the same point, indicating stable and identifiable estimation.
Hence, the proposed distribution yields well-defined parameter estimates.
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Figure 8. Profile likelihood plots for the parameter y: Data 2.

Table 7 summarizes the MLE and Bayesian estimation results for Data 2 under the UPHCT1 model
with different censoring thresholds (7, 7,) and sample settings (m, r). Overall, the results show that
Bayesian estimation, particularly Bayes2, produces more stable and precise parameter estimates with
smaller SE(y) compared to both MLE and Bayes1. The reliability and hazard measures obtained from
Bayes2 appear smoother and more consistent across censoring schemes, reflecting the advantage of
incorporating informative prior knowledge. In contrast, Bayesl exhibits slightly wider variation due
to the absence of prior information. These findings highlight the practical benefit of the informative
Bayesian approach for reliability assessment under hybrid censoring.

Table 7. MLE and Bayesian estimation based on UPHCT1 for Data 2.

p 0.3 0.8
m r T1 T2 s* vy MLEr bayesl bayes2 s* v MLEr bayesl bayes2
Y 0.0878 0.1553 0.0936 0.1096 0.2112 0.1234
SE(y) 0.0345 0.1029 0.0326 0.0452 0.1414 0.0429
0.04717 0083019 R 0.267925 15 0.1807 0.2687 0.1895 0.267925 15 0.2125 0.3227 0.2309
20 15 h 4.1770 3.7286 4.1320 4.0151 3.4530 3.9214
v 0.0959 0.1561 0.1062 0.1193 0.2145 0.1348
SE(y) 0.0374 0.1048 0.0340 0.0488 0.1416 0.0453
0.083019 0.313208 R 0.313208 16 0.1610 0.2284 0.1740 0.313208 16 0.1895 0.2792 0.2067
h 3.9005 3.5869 3.8401 3.7681 3.3509 3.6880
v 0.1117 0.1878 0.1222 0.1118 0.1970 0.1230
SE(y) 0.0427 0.1224 0.0404 0.0440 0.1264 0.0425
0.04717 0083019 R 0.358491 20 0.1524 0.2205 0.1630 0.339623 20 0.1636 0.2424 0.1756
25 20 h 3.6856 3.3894 3.6393 3.7293 3.3779 3.6759
v 0.1364 0.2273 0.1484 0.1380 0.2487 0.1528
SE(y) 0.0524 0.1461 0.0504 0.0543 0.1645 0.0507
0483019 0.713208 R 0.713208 22 0.0461 0.0693 0.0494 0.713208 22 0.0465 0.0742 0.0506
h 4.6638 4.5501 4.6475 4.6617 4.5264 4.6416
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Figure 9 presents the trace plot for the 10000 MCMC samples of y obtained from Data 3 with m =
25, r =20, T, = 0.483019, and T, = 0.713208 (see Table 7). The chain shows good mixing and clear
convergence. The associated histograms (Figure 9) suggest that the resulting posterior distributions are
close to symmetric.

N ©
wn
« >
o 8 ©
> g
2 g «
o I
N
Te]
=
o o
T T T T 1
0 4000 8000 0.05 0.15 0.25 0.35
Iteration Y

Figure 9. Trace plot and histograms for MCMC results of y from Data 2 when m = 25,r =
20, T, = 0.483019, and T, = 0.713208.

7.3. Ordered failure times of 20 components

To illustrate the unit distribution, a data set reported by Nigm et al. [36] consisting of 20 ordered
failure times for identical components has been analyzed. The observations are: 0.0009, 0.0040,
0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252, 0.1404, 0.1498, 0.1750, 0.2031,
0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 0.6143.

Figure 10 points to an increasing failure rate: the TTT plot lies above the 45° line, and the estimated
hazard is monotone increasing. The box plot shows moderate variability around the median with no
marked outliers, while the violin plot is approximately symmetric. Taken together, these diagnostics
affirm that the proposed distribution is suitable for Data Set 3.
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Figure 10. Graphical assessment of the fitted distribution using different diagnostic tools:
Data 3.

In Figure 11, the empirical and fitted CDFs nearly coincide, the fitted PDF follows the histogram
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closely, and the P-P points lie close to the 45° line. Taken together, these diagnostics show that the
proposed distribution provides an adequate fit for Data 3.
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Figure 11. Graphical comparison between the empirical data and the fitted model: Data 3.

The proposed model delivers the best overall fit across all diagnostics for Data 3 in Table 8. It has
the lowest KSD (0.1216), smallest CvM (0.0727) and AD (0.4165), the most negative AIC (-29.6330)
and BIC (-28.6372), and the highest K-S p-value (PVKS = 0.8949), all indicating no evidence against
the fit. The UW model is the closest competitor (KSD = 0.1319, PVKS = 0.8334) but remains inferior
on information criteria and distance measures. Models such as TL, UL, UG, APTL, and especially
NUL and UBXII, show noticeably poorer fit (larger KSD, CvM, and AD and less favorable AIC and
BIC). Overall, the metrics consistently favor the proposed distribution for Data 3.

Figure 12 displays a single-peaked profile likelihood for y, confirming a unique maximizer and
thus a unique MLE. The normalized profile likelihood crosses the reference level at the same point,
indicating stable and identifiable estimation. Therefore, the proposed distribution has well-defined
parameter estimates.

Table 9 displays the estimation outcomes for Data 3 under the UPHCT1 setup across different
censoring schemes. It is evident that the estimates of y remain stable under both censoring thresholds,
while the reliability R(#) and hazard rate h(¢) respond sensitively to changes in s*. For p = 0.3 and
p = 0.8, the general trend shows that hazard rates increase with censoring severity, whereas the
reliability values decline accordingly, reflecting the expected behavior of lifetime data. Moreover, the
Bayesian estimates exhibit closer alignment with the likelihood-based results as sample size increases,
suggesting improved efficiency under more informative data settings. This highlights the robustness of
the proposed distribution in capturing the underlying reliability structure of Data 3, even under hybrid
censoring conditions.

Figure 13 shows the trace plot of the 10000 MCMC draws for y based on Data 3 with m = 18,
r =13, Ty = 0.1328, and 7, = 0.211625 (see Table 9). The chain mixes well and displays clear
convergence. The corresponding histograms in Figure 13 indicate that the posterior distributions of the
unknown parameters are approximately symmetric.
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Table 8. MLE and different measures of statistics for unit models: Data 3.

y 0 KSD PVKS CVM AD AIC BIC
Estimates 0.1265
Proposed 0.1216 0.8949 0.0727 04165 -29.6330 -28.6372
StEr 0.0545
Estimates 0.5113
TL 0.1849 0.4480 0.0801 0.4754 -29.2334 -28.2376
StEr 0.1143
Estimates 0.0245
NUL 0.6330 0.0000 0.3693 2.1376 71.4040 72.3997
StEr 0.0039
Estimates 0.1598 0.0710
Uw 0.1319 0.8334 0.0736 0.4330 -289150 -26.9235
StEr 1.7271 0.2875
Estimates 4.0928
UXL 0.1725 0.5348 0.0784 04702 -12.7986 -11.8028
StEr 0.8619
Estimates 0.7743 0.5996
UG 0.1494 0.7093 0.0911 0.5512 -25.5251 -23.5336
StEr 0.2781 0.1204
Estimates 4.6365
UL 0.1768 0.5037 0.0793 04718 -28.1389 -27.1432
StEr 0.9012
Estimates 100.1201 239.9820
APTL 0.1979 0.3651 0.0822 0.5649 -25.0943 -23.1029
StEr 0.1211 0.0718
Estimates 1.1712 0.2079
ULL 0.1545 0.6704 0.0945 0.5743 -26.1665 -24.1751
StEr 1.2003 0.0809
Estimates 0.2783 0.1087
UBXII 0.2274 0.2164 0.1163 0.7519 -24.6902 -22.6987
StEr 4.3787 1.4950
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Figure 12. Profile likelihood plots for the parameter y: Data 3.
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Table 9. MLE and Bayesian estimation based on UPHCT1 for Data 3.

p 0.3 0.8
m r T1 T2 s* v MLEr bayesl bayes2 s v MLEr bayesl bayes2
v 0.0469 0.0985 0.0556 0.0446 0.0855 0.0537
SE(y) 0.0243 0.0748 0.0214 0.0237 0.0667 0.0228
0.037875  0.1328 R 0.1498 10 0.2029 0.3372  0.2300 0.1498 10 0.1951 0.3089 0.2244
15 10 h 6.2589 5.2041 6.0459 6.3196 5.4264 6.0900
v 0.1012 0.1990 0.1092 0.0620 0.1282 0.0706
SE(y) 0.0482 0.1384 0.0471 0.0311 0.0952 0.0293
01328~ 0.211625 R 0211625 13 0.2550 0.3821 0.2684 0211625 12 0.1787 0.2974 0.1973
h 4.4651 3.7038 4.3852 49228 4.2111 4.8113
v 0.0715 0.1350 0.0781 0.0660 0.1282 0.0740
SE(y) 0.0338 0.0948 0.0317 0.0327 0.0928 0.0301
0.04717  0.1328 R 0-175 13 0.2393  0.3592 0.2547 0.2099 13 0.1890 0.2996 0.2060
13 13 h 5.2687 4.4383 5.1625 4.8904 4.2234 4.7875
v 0.0690 0.1376 0.0752 0.0660 0.1282 0.0740
SE(y) 0.0321 0.0981 0.0319 0.0327 0.0928 0.0306
0-1328 0211625 R 0211625 14 0.1939 0.3106 0.2066 0211625 13 0.1874 0.2974 0.2043
h 4.8317 4.1321 4.7552 4.8707 4.2112 4.7690
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Figure 13. Trace plot and histograms for MCMC results of y from Data 3 when m = 18, r =

13,7, =0.1328,and T} = 0.211625.

8. Conclusions

This study has introduced, for the first time, a unified progressive hybrid censoring scheme with
binomial random removals, thereby enhancing the flexibility of life-testing by accommodating random

withdrawals while retaining informative failure observations.

Within this framework, likelihood

and Bayesian inferential procedures were developed for a one-parameter lifetime model, including
estimation of the primary parameter as well as the associated reliability and hazard rate functions.

Comprehensive simulation experiments and real data applications indicate that Bayesian inference
with gamma priors outperforms classical approaches, yielding smaller bias, reduced MSE, and
tighter interval estimates with appropriate coverage. In addition, parametric bootstrap procedures
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were employed to construct interval estimates; across scenarios, the bootstrap- intervals achieved
coverage closer to the nominal level and shorter average lengths than the standard percentile bootstrap,
indicating superior finite-sample performance. Furthermore, when benchmarked against ten competing
unit distributions, including new unit-Lindley, Topp-Leone, Beta, unit-Weibull, unit-XLindley, unit-
Gompertz, unit-Lindley, alpha power Topp-Leone, unit log-log, and unit Burr-XII, the proposed hone-
parameter model provided superior overall fit and inferential accuracy under the proposed censoring
scheme.

In conclusion, integrating binomial random removals into unified progressive hybrid censoring,
together with Bayesian estimation under gamma priors offers a practical and powerful methodology
for reliability analysis with censored lifetime data. Future research directions include extensions to
multi-parameter families, stress-strength models, optimal design under cost and time constraints, and
robustness studies under model misspecification.
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