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Abstract: The probability-of-being-in-response (PBR) curve is a graphical method that combines two
time-to-event endpoints, namely time from study start to first response and time from first response to
subsequent failure considering all patients of a study. We generalize the logrank-test to a test that
compares PBR curves. We focus on the global null hypothesis of no difference between the multistate
stochastic processes underlying the two curves. The test is designed in such a way that it has high
power when the PBR is consistently higher for one of the two groups at all times. Simulations and
the application to clinical trial data show that the proposed tests are useful additions to the visual
comparison of PBR curves.
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1. Introduction

Consider a randomized clinical trial comparing two treatments of a chronic disease such as cancer.
At the time of randomization all patients are in the same disease state but require further therapy. If the
treatment is successful, the patients’ condition improves, hopefully to a point where they reach a state
called “being in response”. If, however, the treatment is not a cure, subsequently patients might enter a
terminal state (e.g., they might die or their condition might deteriorate to an irreversible state of severe
sickness).

Conceptually, this situation can be described by a discrete-state-continuous-time stochastic process
with initial state 0, a transitory state 1 and a terminal state 2. Figure 1 shows a corresponding graph.
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METHODOLOGY
• PBR is a graphical method which presents simultaneously the time to first response and subsequent failure, i.e. combining

time to first response rates and DOR into one measure. Moreover, the PBR assesses all randomized patients
• PBR can be derived from a multi-state model with three states (Figure 1)

Figure 1. Multistate model for the response status

State 1 = in response

State 2 = absorbing

State 0 = not in response

*Patient cannot achieve a response anymore after entering state 2. Absorbing events were either death, addition of new systemic cGvHD therapy, underlying malignancy
relapse, not having achieved a response up to week 24 (non-responders only) or cGvHD progression (responders only)

Figure 2 presents an illustration of response states over time for seven hypothetical patients
• At baseline, all patients are in State 0
• Upon achieving a response, a patient enters State 1. If the response is maintained at the time of analysis the patient is

censored in state 1 (e.g. Pat-ID 1)
• If response is lost, the patient enters State 2 (e.g. Pat-ID 2, 3 and 6)
• Patients who die, progress, change type of cGVHD treatment or who do not respond within 24 weeks, enter State 2 (e.g. Pat-

ID 4 and 5)
• Any patient who reached neither State 1 nor State 2 (i.e. dropped out before week 24 without response, or any of the events

defined as State 2) are censored in State 0 (e.g. Pat-ID 7)
• The probability that a randomized patient is in response at a timepoint can be obtained by scrolling over the time axis and

assessing the state at that timepoint for each patient (starting at time 0 = day of randomization)
• Thus, the PBR can be calculated as a function of time by applying time-to event methodology, similar to the well-known

Kaplan-Meier plot
• PBR aggregates two time-to-event variables: time to first response and time from first response to subsequent failure4

Figure 2. Illustration of response states over time
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CONCLUSIONS

• In REACH-3 RUX patients had a higher PBR at all time points
compared to BAT as measured by the PBR function

• PBR provides easily interpretable curves presenting
simultaneously the times to first response and subsequent
treatment failure, based on all randomized patients and the
entire study period

• The PBR allows a valid comparison between randomized
treatment arms and depicts long-term benefit, combining
response and its duration, visualizing all patients, not
only responders

• This study demonstrates that PBR is a novel, robust and
clinically interpretable measurement which may be added to
future updates of cGvHD response criteria1
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INTRODUCTION
• REACH-3 is a Phase 3 open-label randomized study comparing ruxolitinib (RUX) versus best available therapy (BAT) for glucocorticoid-refractory or dependent (SR/D) chronic graft-versus-host disease

• Important efficacy endpoints for REACH-3 were:

– Overall response rate (ORR) at week 24: defined as complete response (CR) or partial response (PR) as per 2014 NIH consensus criteria1

– Best overall response (BOR): proportion of patients who achieved overall response (CR or PR) at any timepoint up to week 24

– Duration of response (DOR): time from first documented response until cGVHD progression, death or the date of new systemic cGVHD treatment. For patients without any of these, DOR is censored at the last assessment
date

• RUX demonstrated superior efficacy compared with BAT, with a higher ORR at week 24, higher BOR and longer DOR2

• While ORR and BOR measurements include all randomized patients, a limitation to DOR as an efficacy endpoint is that only responders are measured

• In this post-hoc analysis, we illustrate the application of the probability of being in response (PBR), a graphical method first presented by Temkin et al3, to further assess the “breadth and depth” of clinical benefit in cGvHD3

As shown in Figure 3 RUX was associated with
– An earlier time to first response
– A high probability of being in response

at all timepoints
– A longer duration of response compared

to BAT
• As per the definition of PBR, the peak of the

curves is lower than the reported BOR (76.4%
versus 60.4% for RUX and BAT, respectively)

• However, the cumulative number of patients
with BOR up to week 24 reaches exactly
the BOR rates at week 24 (dashed lines
in Figure 3)

• In contrast to PBR this simple cumulation
ignores that patients may have lost their
response before week 24 (e.g., Pat-ID 6 in
Figure 2). BOR curves (broken lines) are
shown for comparative purpose only

• This post-hoc analysis of PBR in REACH-3
further confirm the superiority of RUX vs
BAT in cGVHD seen in other efficacy
endpoints (Table 1)

Figure 3. PBR function of RUX versus BAT
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RESULTS

Table 1. Efficacy endpoints
Endpoint Population RUX BAT
Overall response rate 
(ORR) at week 24

All patients n (%) 82 
(49.7)

42 
(26.5)

Best overall response 
(BOR)

All patients n (%) 126 
(76.4)

99 
(60.4)

Duration of response (DOR) Responders Probability (95% CI) to
 remain in response until

 –  –

-month 6 from
first response

76.6 
(67.5, 83.2)

52.1 
(41.8, 61.5)

-month 12 from
first response

68.5 
(58.9, 76.3)

40.3 
(30.3, 50.5)

Time to first response 
(TTFR)

Days since 
randomization

 –  –

 Responders -median (range) 20 
(13, 170)

28 
(13, 171)

 All patients -median (95% CI) 29 
(24,31)

50 
(29,57)

All patients: included all randomized patients (N=165 for RUX, N=164 for BAT)
Responders: included all patients with BOR=CR or PR (N=126 for RUX, N=99 for BAT
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Figure 1. Three-state model for responder status.

A famous example of such a three-state-continuous-time model is the illness-death-model [3]. In
this paper, we consider the probability of being in response (PBR). Several authors [5, 9, 18, 20] have
investigated point and interval estimation of this quantity. A recent application focusing on the
graphical presentation of PBR over time has been described by [10]. We will revisit this application in
section 4.

In spite of this research, inference on the PBR has rarely been applied in practice. This is unfortunate
in our view, because it offers several advantages over more commonly applied analyses strategies,
such as calculating response rates in all patients and, thereafter, the time-to-event endpoint ’duration
of response’ in the subset of patients who responded [8]. Aggregating two time-to-event endpoints,
namely time to first response (i.e., entering state 1) and time from first response to subsequent failure
(i.e., entering state 2 from state 1), PBR combines several endpoints into one clinically meaningful
measure for all patients. Comparison between treatment curves can be based on a visual inspection of
the respective curves or its difference over time. An example is provided in figure 3 of section 4.

We suspect that one of the reasons for the poor uptake of the PBR in practice may be the lack
of a corresponding statistical test. Statistical tests for the comparison of treatment and control have
been suggested. For example, [11–13] have investigated tests for equal restricted mean duration of
response (RMDOR). Additional tests for duration of response are discussed by [6]. Furthermore, tests
for areas under the PBR curve (e.g., via a re-randomization approach), as well as logrank tests of the
time from entering the response state until death or censoring are straightforward to derive. All of these
tests, however, test null hypotheses of the equality of some derived quantity of two PBR curves, not
directly the null hypothesis of equality of the entire curve. We are not aware that a statistical test for
complete equality of two PBR curves, closely mimicking the logrank test, is readily available in the
literature. We aim to fill this gap here.

The paper is structured as follows: In section 2, we briefly review the non-parametric estimation of
PBR, introduce three statistical tests to compare two PBR curves and give some intuition regarding the
derivation of their test statistics’ distributions.

In section 3, the suggestions are investigated by simulations and in section 4, we apply the tests to
data from a clinical phase 3 study in oncology. A discussion concludes the main text. A more formal
derivation of the distributions in section 2 is given in the Appendix.

AIMS Mathematics Volume 11, Issue 1, 66–84.
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2. Proposed tests to compare PBR curves

Assume that S i(t) ∈ {0, 1, 2} denotes the state of patient i at time t of the trial where S i(0) = 0
for all patients. Let Ts1 s2,i be the time of transition of patient i from state s1 into state s2. We assume
that patients are assumed to differ only by their treatment and are mutually stochastically independent,
Hence we have that

(
T ( j)

01,i, T
( j)
02,i, T

( j)
12,i

)
=

(
T ( j)

01 , T
( j)
02 , T

( j)
12

)
are i.i.d. and that S i(t) = S ( j)(t) ∀ t for all

patients in treatment j ∈ {0, 1}. We derive a statistical test for the null hypothesis

H0 : F
(
T (0)

01 , T
(0)
12

)
= F

(
T (1)

01 , T
(1)
12

)
(2.1)

of complete equality of the multivariate distribution F(t0, t1) of the transition times 0 → 1 and 1 → 2.
This hypothesis implies the slightly more general hypothesis

H∗0 : P
(
S (0)(t) = 1

)
= P

(
S (1)(t) = 1

)
for all t. (2.2)

Hypothesis H∗0 can in theory be fulfilled when H0 is false. This would happen if the marginal
distributions of transition times are the same, but the relations between transition times are different
between treatments, e.g., if T01 and T12 − T01 are independent in one treatment arm, but highly
correlated in the other. In practice, it is difficult to conceive how such a case could arise, but for
formal reasons, we must exclude it. Patients can be in one of three states: 0=stable disease, but not in
response, 1=in response, 2=absorbing state (death or loss of response, e.g., disease progression).
Regarding the alternative hypothesis, we will for the moment simply assume that this is “not H0”. We
will return to this subsequently.

2.1. Notation

We will use the following notation which is similar to notation used for the logrank test in textbooks
such as [17]:

• n j, j = 0, 1 patients per treatment group j, n = n0 + n1.
• Observed event times ts1 s2k where s1 = 0, 1 denotes the state out of which patients transition to

state s2 = 1, 2. All patients start in state 0 at time t0 = 0, i.e. for patient i T12i is the total time
elapsed from 0→ 1→ 2, whereas the sojourn time in state 1 is T12i−T01i (if not censored in state
1). For convenience, enumeration k = 1, . . . ,K is consecutive, i.e. the number ds1 s2k of transitions
can be 0 for a given time tk. Each ts1 s2k corresponds to one or several observations of Ts1 s2i from
one or several patients. Only transitions 0 → 1 and 1 → 2 are enumerated; transitions 0 → 2 do
not need to be enumerated, as will become clear below. If different types of transitions occur at
the same time, we will consider them in the order t12k, t01k. We do this so as to avoid a situation
where a patient can have trajectory 0→ 1→ 2 with sojourn time duration 0 in state 1.
• d( j)

s1 s2k the number of patients from group j who transition from state s1 into state s2 at time ts1 s2k,
ds1 s2k = d(0)

s1 s2k + d(1)
s1 s2k.

• r( j)
sk the number of patients at risk in state s = 0, 1 and group j with rsk = r(0)

sk + r(1)
sk . For state 0,

this number decreases as patients transition into state 1 or 2 over time. For state 1, the number
increases when patients enter state 1 and decreases when they leave. If there are no censorings
and no 0→ 2 transitions, updates are r( j)

0(k+1) = r( j)
0k − d( j)

01k and r( j)
1(k+1) = r( j)

1k − d( j)
12k + d( j)

01k.
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Following the common convention in survival analysis, patients who transition out of a state s at
time t or who are censored in state s at time t are assumed to be part of the corresponding risk set at
time t. Likewise, 0→ 2 transitions at time tk decrease r0(k+1), not r0k.

2.2. Estimating the probability of being in response

Before introducing the test, we briefly review non-parametric estimation of the probability of being
in response (PBR). The principles are very similar to those used for constructing the famous Kaplan-
Meier-estimate [14].

Let t1 ≤ ... ≤ tk−1 ≤ tk ≤ tk+1... ≤ tK denote all time points where at least one transition 0→ 1,1→ 2
or 0 → 2 is observed (for simplicity we use the abridged notation tk instead of ts1 s2k). Then the PBR
P

(
S ( j)(t) = 1

)
for tk−1 ≤ t < tk is recursively estimated by

P̂
(
S ( j)(t) = 1

)
= P̂

(
S ( j)(tk−1) = 1

) 1 − d( j)
12k

r( j)
1k

 + P̂
(
S ( j)(tk−1) = 0

) d( j)
01k

r( j)
0k

(2.3)

with d( j)
s1 s2k and r( j)

sk defined as above. Furthermore we define 0
0 =: 0, at the study start time t0 < t1 no

patient is in state 1 or 2, i.e., P̂
(
S ( j)(t0) = 1

)
= 0, P̂

(
S ( j)(t0) = 2

)
= 0 and P̂

(
S ( j)(t0) = 0

)
= 1. The

probability of being in the initial state S = 0 for tk−1 ≤ t < tk is obtained by

P̂
(
S ( j)(t) = 0

)
= P̂

(
S ( j)(tk−1) = 0

) 1 − d( j)
01k + d( j)

02k

r( j)
0k


Thus, at each time point t, the PBR function P̂

(
S ( j)(t) = 1

)
is obtained by adding the probability that

a patient was in state 0 at the previous time point and enters state 1 (=responder) at time t and the
probability that a patient was in state 1 at the previous time point and is still in state 1 at time t (i.e.,
did not transition to state 2). Transitions from 0 → 2 before tk impacts the PBR curve by reducing the
risk set r( j)

0k only, the steps at which the PBR curves increases or decreases (i.e., the event times) occur
at 0→ 1 or 1→ 2 transitions. An example of the resulting curve is given in Figure 3. The variance of
P̂

(
S ( j)(t) = 1

)
can be approximated in a very similar way as is done for the simple Kaplan-Meier-curve

using Greenwood’s formula [14, 18].
We would like to emphasize here that the PBR could more precisely be called “probability of

being in response conditional on not having reached the absorbing state already”. Suppose we are at
event time t where one 0 → 1 transition and no other transitions are observed. The probability of
instantaneous risk of a 0 → 1 transition is then estimated as 1 divided by the number of patients in
state 0 at time t. Assume the absorbing state is death. Then with this definition, the underlying true
PBR curves of two treatments can be the same, even if the death rates in the two groups are not the
same. This is similar to inference on the cause-specific hazard where events on competing risks are
also indistinguishable from censored observations if we test for equality of the cause-specific hazard
of two survival curves (see e.g., [4]).

In the subsequently derived tests, this behavior is reflected in the fact that 0 → 2-transitions and
observations censored in state 0 are treated identically. This is consistent with the estimated PBR curves
which also converge to the same underlying true PBR curve if the hazards of 0 → 1 and of 1 → 2 are
the same in the two groups, respectively, even if the hazard of death is different.

AIMS Mathematics Volume 11, Issue 1, 66–84.
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2.3. Suggested tests

In analogy to the estimation of PBR with a Kaplan-Meier-style approach, we now derive tests for
the null hypothesis (2.1). These tests can be viewed as generalized versions of the logrank test.

To derive the test statistic, we condition on ts1 s2k, ds1 s2k, r
( j)
s1k (time of event, total number of events and

patients at risk per group). Consequently, d(1)
s1 s2k is a random variable with d(1)

s1 s2k ∼ Hyp(rs1k, ds1 s2k, r
(1)
s1k)

as its null distribution. Thus,

E(d(1)
s1 s2k) = ds1 s2k ·

r(1)
s1k

rs1k
(2.4)

and

var(d(1)
s1 s2k) = d(1)

s1 s2k ·
r(1)

s1k

rs1k

rs1k − r(1)
s1k

rs1k

rs1k − ds1 s2k

rs1k − 1
. (2.5)

(d(1)
s1 s2k

∣∣∣ds1 s2k, r
(0)
s1k, r

(1)
s1k ) and (d(1)

s1 s2k′

∣∣∣ds1 s2k′ , r
(0)
s1k′ , r

(1)
s1k′ ) are stochastically independent if k , k′. For the

transitions 0 → 1, this follows from the fact that (d(1)
01k

∣∣∣∣d(1)
01(k−1), d01k, r

(0)
0k , r

(1)
0k ) has the same distribution

as (d(1)
01k

∣∣∣d01k, r
(0)
0k , r

(1)
0k ) since d(1)

01k depends on d(1)
01(k−1) only via r(0)

0k and r(1)
0k which we already conditioned

on. For the transitions 1 → 2, the same logic can be applied: (d(1)
12k

∣∣∣∣d(1)
12(k−1), d

(1)
01(k−1), d12k, r

(0)
1k , r

(1)
1k ) has

the same hypergeometric distribution Hyp(r1k, d12k, r
(1)
1k ) as (d(1)

12k

∣∣∣d12k, r
(0)
1k , r

(1)
1k ). It is thus stochastically

independent of d(1)
12(k−1) since the influence of d(1)

12(k−1) is only via r(1)
1k = r(1)

1(k−1) − d(1)
12(k−1) + d(1)

01(k−1) (apart
from independent censoring). Note that this only holds under a global null hypothesis where treatment
has no influence on patients trajectories at all, i.e., neither the sojourn time in state 1, nor the time to
reaching state 1 nor the probability of transitioning into state 2 is at any point in time different between
treatment 0 and treatment 1 under H0.

The sojourn time in state 0 is the same for all remaining patients in this state at all event
times (since all patients are in state 0 when recruited), but for patients in state 1, these times are not all
the same. Superficially, this seems to call into question the hypergeometric distribution of d(1)

12k.
However, conditioning resolves this concern: The risk set of patients who are in state 1 contains
patients who are in this state for different durations of time, but under H0, the distribution of the
durations in this state is identical in the two treatment groups. Hence, the distribution
of (d(1)

12k

∣∣∣d12k, r
(0)
1k , r

(1)
1k ) is not conditional on the individual sojourn times in state 1.* Assume that

λ12(t |t01 ) denotes the conditional hazard rate for leaving state 1 to state 2 at time t > t01 where t01 is
the time of entry into state 1. It may well be that this hazard rate depends on t01. The suggested test,
however, does not use this information: d(1)

12k is a random variable which disregards individual risks
that may vary with t01k.

Special attention is required in the situation where both a 0 → 1-transition and a 1 → 2-transition
are observed in the same patient. In this case, a correlation between (d(1)

01k

∣∣∣d01k, r
(0)
00k, r

(1)
0k )

and (d(1)
12k′

∣∣∣d12k′ , r
(0)
1k′ , r

(1)
1k′ ) can be induced. The two quantities are independent if the Markov property

P
(
S i(t) = s1 |{S i(u∗) }u∗∈[0,u) , S i(u) = s0

)
= P (S i(t) = s1 |S i(u) = s0 ) (2.6)

*Exactly the same phenomenon occurs when patients all have different individual probabilities pi of responding, but we are drawing
a simple random sample of size n. The number of responders is then Bin(n, p̄)-distributed where p̄ =

∑
i pi/n. This distribution depends

on pi only via p̄.
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for all 0 ≤ u < t and all s0, s1 holds. This property implies that knowing the state of time u, we do not
need to know the history [0, u) to predict the future. This in turn means that for a patient in state 1 at
time u, it is irrelevant at what earlier time before u the patient moved into state 1.

The Markov assumption is commonly made in the literature [1, chapter A.2]. For completeness, we
would like to mention here that (2.6) should not be confused with the stronger assumption

P(S i(t + u) = s1|S i(u) = s0) = P(S i(t) = s1|S i(0) = s0) for all t, u.

This is sometimes called the time-homogeneous Markov assumption [1] and implies constant hazard
rates for all transitions.

The (time-inhomogeneous) Markov assumption (2.6) is sufficient, but not necessary for
independence of (d(1)

01k

∣∣∣d01k, r
(0)
0k , r

(1)
0k ) and (d(1)

12k′

∣∣∣d12k′ , r
(0)
1k′ , r

(1)
1k′ ) Asymptotic independence

of (d(1)
01k

∣∣∣d01k, r
(0)
0k , r

(1)
0k ) and (d(1)

12k′

∣∣∣d12k′ , r
(0)
1k′ , r

(1)
1k′ ) may still hold as long as the number of events in every

time interval of fixed length approaches infinity for both 0 → 1-transitions and 1 → 2-transitions. In
that case, infinitely many event time observations fall between T01i and T12i from patient i, breaking
the predictability of the d( j)

12k′ at tk′ which T12i belongs to from the observed d( j)
01k at tk < tk′ to which T01i

contributed. This asymptotic independence would, for example, hold for inhomogeneous
Poisson-processes where the hazard rates λs1 s2(t) > 0 for all t. However, this asymptotic may
obviously be extremely slow and hence be a problematic assumption to rely on in practice.
Alternatively, a robust sandwich estimate of covariance [19, chapters 7 and 8] can be used to
approximate the variance of sums of the event counts.

In the following, we investigate three test statistics:

(1) Test relying on independence: If d(1)
01k and d(1)

12k′ are assumed to be independent, then

LRText =

∑K
k=1(d(1)

01k − E(d(1)
01k)) −

∑K
k=1(d(1)

12k − E(d(1)
12k))√∑K

k=1 var(d(1)
01k) +

∑K
k=1 var(d(1)

12k)
(2.7)

is approximately distributed according to N(0, 1) under H0 where E(d(1)
s1 s2k) and var(d(1)

s1 s2k) are
given in formulas (2.4) and (2.5), respectively. H0 is rejected when LRT < Φ−1(α) where Φ−1(α)
denotes the α-quantile from the standard normal distribution N(0, 1).

(2) A conservative test: The two separate test statistics

LRT01 =

∑K
k=1(d(1)

01k − E(d(1)
01k))√∑K

k=1 var(d(1)
01k)

(2.8)

and

LRT12 =

∑K
k=1(d(1)

12k − E(d(1)
12k))√∑K

k=1 var(d(1)
12k)

(2.9)

both are asymptotically N(0, 1)-distributed under H0 since they are sums of independent, centered
and standardized random variables. As their correlation cannot be smaller than −1, a conservative
test statistic for H0 arises from

LRTcons =
(LRT01 − LRT12)

2
, (2.10)
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rejecting H0 when LRTcons < Φ
−1(α).

This is a conservative test, because cov(LRT01, LRT12) ≥ −1 such that var(LRT01 − LRT12) =
var(LRT01)+ var(LRT01)−2cov(LRT01, LRT12) ≤ 4. Since it uses an upper bound of var(LRT01−

LRT12) in the denominator, it keeps the type I error even if the Markov assumption is violated. As
shown in the simulations of section 3, however, its actual type I often remains substantially below
the nominal α .

(3) A test using a robust variance estimate: As is well known, the logrank test is equivalent to the
score test of a Cox-regression model with treatment as the only covariate. This fact can be used
to derive an estimate of the variance of

∑K
k=1(d(1)

01k −E(d(1)
01k))−

∑K
k=1(d(1)

12k −E(d(1)
12k)) by the methods

described in [19], chapter 8. These methods are implemented in statistical software tools such
as the R function coxph or the SAS procedure PHREG. The variance of

∑K
k=1(d(1)

01k − E(d(1)
01k)) −∑K

k=1(d(1)
12k −E(d(1)

12k)) is approximated in this approach in the following way: Using the Cox-model
λs1 s2(x, t) = λ0s1 s2(x, t) exp(β′x) with β = (β01, β02, β12)′ where x = (0, 0, 0)′ for patients in the
control treatment group and x = (1, 1, 1)′ in the experimental treatment group, the variance of∑K

k=1(d(1)
01k − E(d(1)

01k)) −
∑K

k=1(d(1)
12k − E(d(1)

12k)) is

var(β̂) = (1, 0,−1) ·
(
I−1(β)DD′I−1(β)

)−1
· (1, 0,−1)′ (2.11)

where I(β) is the information matrix (second derivative of the partial likelihood of the Cox-
regression model with respect to β in the place of the true β) and D is the matrix of score residuals.
In the Appendix, some further comments are made regarding the derivation of this claim. The

suggested test arises from replacing the denominator of LRText in formula (2.7) with
√

ˆvar(β̂)
from formula (2.11) (with var(β̂) calculated at β = β̂), leading to LRTrob. Again, H0 is rejected
if LRTrob < Φ−1(α). Notice that since we do not know the true β, we have replaced it by its
estimate from the Cox-model. Alternatively, we could have calculated it under H0 at β = 0.
Asymptotically, this leads to identical results if H0 is true. We use this form for convenience: It
can readily be obtained from a fit of a Cox-model using the R function coxph.

All three tests are designed to have power against the alternative

A : P
(
S (0)(t) = 1

)
≤ P

(
S (1)(t) = 1

)
for all t with strict inequality somewhere. (2.12)

The tests presented here are in a sense “intrinsically two-sided” since they test a global null hypothesis.
However, by leaving out the contributions from 0 → 2-transitions and taking the difference of “into
response” (0→ 1 transitions) and “out of response” (1→ 2 transitions), they are set up to be sensitive
against deviations from the global null pointing towards the alternative (2.12). In the Appendix, we
elaborate a bit further on this notion.
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3. Simulation study

3.1. Design of the simulation study

To investigate the operating characteristics of the suggested tests, we performed some simulations.
Data was generated in the following way: Individual patient data is generated. For patient i in treatment
group j,

• t01i is randomly generated from the exponential distribution Exp(λ01 j),
• t02i is randomly generated from the exponential distribution Exp(λ02 j),
• tcens,i is randomly generated from the exponential distribution Exp(λcens). This is an independent

censoring time.
• t0obs,i = min(t01i, t02i, tcens,i) is recorded as the observed time in state 0 and is flagged as 0 → 1,

0→ 2 or censored in state 0.
• If t0obs,i = t01i, i.e. if the transition to the response state 1 is observed, t12i is generated from

Exp(λ12 j + ψ12 jt01i). This is the sojourn time in state 1. The rate of leaving state 1 linearily
depends on ψ12 j. If ψ12 j is positive, then patients who reach state 1 earlier have a lower risk of
losing state 1 again. The Markov property (2.6) requires ψ12 j = 0.
• For patients in whom transition to state 1 is observed, t1obs,i = min(t01i + t12i, tcens,i) is recorded as

the total time under observation and is flagged as observed 1 → 2 transition time or as censored
in state 1 if tcens,i < t01i + t12i. If a transition 0 → 2 is observed or the patient is censored in state
0, then t1obs,i is missing in the simulation dataset.

We implemented the three test statistics from section 2. We investigated different null and
alternative scenarios, for each scenario 10000 simulations runs were performed. With N=600 (300
subjects per treatment and control arm, which we refer to as T ( j = 1) and C ( j = 0) below) the
simulated data reflects the size of a typical study in Oncology. We also considered N = 200 (100 per
arm) and N = 400 (200 per arm) to mimic smaller studies. For all simulations, the size of the tests
was fixed as α = 0.025 (= 2.5%). The simulations were performed on a high-performance computing
platform using RStudio with R 4.1.0 [16]. The simulation code is available in the GitHub repository
https://github.com/glimmek2/PBRestimation.

Nine scenarios (see Table 1) were considered to investigate the type-I error. Scenarios N1 to N3
uses the same response, i.e., 0 → 1 transition rate, but differ with respect to the response loss risk.
Scenarios N4 and N5 have a low 0 → 1 transition rate and a high response loss risk. Scenarios N6
to N9 have a high 0 → 1 transition rate, where response loss risk is high for N6 and N7 and low
for N7 and N8. With ψ12 = 0 only scenarios N2, N5, N7 and N9 fulfill the Markov property (2.6)
whereas scenario N3 has the strongest violation of this property. For the sample size N=600 we also
investigated the impact of censoring using λcens = 0.3 (low censoring) and λcens = 1.2 (high censoring),
respectively.
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Table 1. Null scenarios used for the assessment of the type-I error.

No. Treatment λ01 λ02 λ12 ψ12 λcens

N1 T=C 1 0.6 0.5 0.4 0.3* / 1.2**
N2 T=C 1 0.6 0.5 0 0.3* / 1.2**
N3 T=C 1 0.6 0.5 0.8 0.3* / 1.2**
N4 T=C 0.5 0.6 0.8 0.4 0.3* / 1.2**
N5 T=C 0.5 0.6 0.8 0 0.3* / 1.2**
N6 T=C 1.5 0.6 0.8 0.4 0.3* / 1.2**
N7 T=C 1.5 0.6 0.8 0 0.3* / 1.2**
N8 T=C 1.5 0.6 0.2 0.1 0.3* / 1.2**
N9 T=C 1.5 0.6 0.2 0 0.3* / 1.2**

*low censoring, **high censoring (N=600 only).

Power calculations were performed for 4 different alternative scenarios, the respective simulation
parameters are given in Table 2, typical PBR curves are shown in Figure 2. These alternative scenarios
were selected to reflect typical and partly challenging situations that may occur in practice. Scenarios
A1 and A2 have both a higher response probability and a lower risk of response loss for T versus C,
with a moderate difference between PBR curves for A1 and a large difference for A2. In Scenario A3
the 0 → 1 transition rate is lower in T but response, if achieved, is maintained for a long time (i.e.,
loss of response risk is low). In contrast, the response in C is lost very quickly. PBR curves for A3 are
usually crossing between T and C, generating a challenging situation for any statistical test. Scenario
A4 reflects the situation that T has a higher response but a quicker loss of response compared to C,
such that the PBR curves increases quicker for T and then becomes similar to the PBR curve for C
at later time points. Regarding the null scenarios, we investigated the impact of censoring for N=600
using the two different censoring rates.

Table 2. Alternative scenarios used for power calculation.

No. Treatment λ01 λ02 λ12 ψ12 λcens

A1 C 1 0.6 0.5 0.4 0.3* / 1.2**
T 1.2 0.5 0.3 0.2 0.4* / 1.2**

A2 C 1 0.6 0.5 0 0.3* / 1.2**
T 1.5 0.6 0.2 0.1 0.3* / 1.2**

A3 C 1.4 0.6 0.7 0.2 0.3* / 1.2**
T 0.9 0.6 0.15 0.1 0.3* / 1.2**

A4 C 0.8 0.6 0.4 0.3 0.3* / 1.2**
T 1.5 0.6 0.7 0.2 0.3* / 1.2**

*low censoring, **high censoring (N=600 only).
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Figure 2. Typical PBR curves for scenarios A1 to A4 from one simulation run (T=blue,
C=red)

3.2. Simulation results

For the null model the average number of 0 → 1 and 1 → 2 transitions are equal between T and
C (Table 3). The type-I error is maintained in all scenarios fulfilling the Markov property. A slight
inflation for LRText is seen for those scenarios for which the Markov property is violated (high value
of ψ12). The highest inflation is observed for scenario N3. The inflation can partly be corrected by
applying the robust variance estimate used in LRTrob. LRTcons is very conservative in all scenarios.
When a high censoring rate is assumed, the number of events (for both, the 0 → 1 transition and
the 1 → 2 transition) is decreasing. Again, the type-I error is maintained if the Markov property is
fulfilled and slightly inflated otherwise.
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Table 3. Average number of transitions and type 1 error for the scenarios N1–N9 (nominal
α = 2.5%).

Scenario No. 0→ 1 transitions No. 1→ 2 transitions Type I error (%)
mean in T mean in C mean in T mean in C LRText LRTrob LRTcons

N=600 with 300 subjects in each arm, low censoring
N1 157.9 158.0 109.4 109.6 3.29 3.08 0.59
N2 157.9 158.0 98.6 98.9 2.59 2.52 0.34
N3 157.9 158.0 115.5 115.8 3.69 3.41 0.72
N4 107.2 107.2 86.3 86.2 3.39 3.55 0.60
N5 107.2 107.2 78.0 77.9 2.28 2.20 0.31
N6 187.5 187.6 140.6 140.9 2.95 2.77 0.47
N7 187.5 187.6 136.3 136.5 2.56 2.53 0.37
N8 187.5 187.6 80.7 80.8 2.51 2.26 0.37
N9 187.5 187.6 75.0 75.1 2.21 2.17 0.34

N=600 with 300 subjects in each arm, high censoring
N1 107.2 107.2 36.9 37.0 2.57 2.50 0.38
N2 107.2 107.2 31.5 31.5 2.43 2.33 0.28
N3 107.2 107.2 41.2 41.3 2.93 2.69 0.43
N4 65.3 65.2 31.3 31.4 2.99 2.96 0.46
N5 65.3 65.2 26.1 26.2 2.59 2.51 0.31
N6 136.3 136.4 57.6 57.7 2.56 2.41 0.38
N7 136.3 136.4 54.5 54.6 2.49 2.44 0.43
N8 136.3 136.4 21.1 21.1 2.37 2.28 0.27
N9 136.3 136.4 19.5 19.5 2.38 2.29 0.29

N=400 with 200 subjects in each arm, low censoring
N1 105.4 105.3 73.1 72.9 3.21 2.96 0.52
N2 105.4 105.3 65.9 65.8 2.46 2.35 0.26
N3 105.4 105.3 77.2 77.1 3.73 3.22 0.66
N4 71.3 71.4 57.3 57.5 3.48 3.68 0.51
N5 71.3 71.4 51.8 51.9 2.36 2.19 0.23
N6 125.1 125.0 93.9 93.8 2.92 2.76 0.40
N7 125.1 125.0 91.0 90.9 2.43 2.32 0.28
N8 125.1 125.0 53.8 53.8 2.77 2.44 0.34
N9 125.1 125.0 50.0 50.1 2.52 2.37 0.23

N=200 with 100 subjects in each arm, low censoring
N1 52.6 52.6 36.5 36.5 3.58 3.16 0.73
N2 52.6 52.6 32.9 32.9 2.80 2.59 0.32
N3 52.6 52.6 38.5 38.5 4.20 3.52 0.83
N4 35.7 35.7 28.7 28.8 3.65 3.46 0.69
N5 35.7 35.7 25.9 26.0 2.71 2.32 0.31
N6 62.5 62.5 46.9 46.9 2.97 2.74 0.43
N5 62.5 62.5 45.5 45.4 2.68 2.50 0.35
N8 62.5 62.5 26.9 26.9 2.84 2.52 0.42
N9 62.5 62.5 25.0 25.1 2.74 2.60 0.31
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Power simulations results are summarized in Table 4. For scenario A2 all 3 tests achieved a high
power in all simulation scenarios, even with a high censoring rate or sample size of N=200. Scenario
A1 had high simulated power for LRText and LRTrob if N=400 and N=600 (low censoring). As
expected, the power is generally lower with smaller sample size or lower number of events.

Table 4. Average number of transitions and power for the scenarios A1–A4.

Scenario No. 0→ 1 transitions No. 1→ 2 transitions Power (%)
mean in T mean in C mean in T mean in C LRText LRTrob LRTcons

N=600 with 300 subjects in each arm, low censoring
A1 171.4 158.0 82.6 109.6 96.3 95.6 90.1
A2 187.5 158.0 80.7 98.9 100 100 100
A3 150.0 182.7 61.0 131.1 39.3 39.4 64.8
A4 187.5 141.2 134.0 93.2 85.2 84.4 41.9

N=600 with 300 subjects in each arm, high censoring
A1 124.1 107.2 28.4 37.0 63.3 62.6 44.5
A2 136.3 107.2 21.1 31.5 98.4 98.4 94.3
A3 100.0 131.3 13.7 50.3 0.3 0.4 3.5
A4 136.3 92.3 52.0 28.4 91.1 91.1 31.6

N=400 with 200 subjects in each arm, low censoring
A1 114.4 105.3 55.1 72.9 86.2 85.1 69.8
A2 125.1 105.3 53.8 65.8 99.9 99.8 99.3
A3 100.1 121.8 40.7 87.3 27.6 27.5 42.0
A4 125.1 94.1 89.5 62.0 68.3 67.0 25.4

N=200 with 100 subjects in each arm, low censoring
A1 57.1 52.6 27.5 36.5 58.7 56.0 34.9
A2 62.5 52.6 26.9 32.9 93.8 93.3 81.3
A3 50.0 60.8 20.3 43.6 15.4 15.2 17.3
A4 62.5 47.0 44.7 31.0 42.4 40.5 11.1

Overall, LRText and LRTrob should be preferred due to higher power versus LRTcons. If PBR clearly
differ between treatment arms over the entire study period LRTcons might be useful to formally confirm
this difference. All tests become difficult to interpret in case of crossing PBR curves with higher PBR
for T versus C for one time period and C better than T for another time period (as in scenario A3).

4. Application to the REACH3 study

REACH3 was an open-label randomized controlled phase 3 study investigating the efficacy and
safety of ruxolitinib (RUX) versus Best Available Therapy (BAT) in 329 patients 12 years or older
with glucocorticoid-refractory or dependent cGvHD. Details on the study design and clinical results
were reported in [22], see also ClinicalTrials.gov number NCT03112603. We illustrated the benefits of
the probability of the being in response (PBR) function focusing mainly on the graphical presentation
in a recent paper [10]. For treatment comparison, we calculated and displayed the difference of PBR
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curves (ruxolitinib minus BAT) with pointwise 95% confidence intervals. In this paper we use the
REACH3 data to illustrate the application of the proposed tests.

Figure 3 shows the PBR curves for RUX and BAT with pointwise 95% confidence intervals and
Table 5 describes the calculation of the items required for the LRT tests for the first few time-points.
For simplicity, we used only LRText and LRTcons. Using the sums displayed in the last row of Table 5
and the respective formulas from section 2, we obtain LRText = 4.5489 (p < 0.0001) and LRTcons =

3.5005 (p = 0.0002), which confirms the clear difference observed in the PBR curves for RUX vs BAT.
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Figure 3. PBR curves with 95%CIs for REACH3.

Table 5. Steps to calculate the LRT test statistic for REACH3.

time RUX arm ( j = 1) All patients calculated for Rux arm ( j = 1)
k d(1)

01k d(1)
12k r(1)

0k r(1)
1k d01k d12k r0k r1k E(d(1)

01k) E(d(1)
12k) Diff01 Diff12 var(d(1)

01k) var(d(1)
12k)

0 0 0 165 0 0 0 329 0 . . . . . .
13 6 0 156 0 12 0 304 0 6.1579 . -.15789 . 2.88909 .
14 25 0 150 6 41 0 292 12 21.0616 .00000 3.93836 .00000 8.83443 .00000
15 17 0 124 31 23 0 249 53 11.4538 .00000 5.54618 .00000 5.23983 .00000
16 8 0 107 48 19 1 226 76 8.9956 .63158 -.99558 -.63158 4.35768 .23269
17 - 6 0 99 56 9 0 206 94 4.3252 .00000 1.67476 .00000 2.15893 .00000
19 1 0 93 62 1 0 197 103 .4721 .00000 .52792 .00000 .24922 .00000
21 1 0 92 63 3 0 195 104 1.4154 .00000 -.41538 .00000 .73991 .00000
22 0 0 91 64 1 1 192 107 .4740 .59813 -.47396 -.59813 .24932 .24037

...continue

Sum over all time points k 17.2589 -22.2552 52.1637 23.2916

Diff01=d(1)
01k − E(d(1)

01k), Diff12=d(1)
12k − E(d(1)

12k).
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5. Discussion

In this paper we propose three test statistics to compare PBR between two treatment arms. The
PBR function aggregates two time to event-variables, time from study start to first response and time
from first response to subsequent treatment failure. All three test statistics can be considered as an
extension of the well known logrank test which is applied to compare right censored survival curves.
Similar to the logrank test the derivation of the distribution of the test statistics is based on conditional
probabilities of entering the response state given the risk sets in the treatment arms at each event time.
In addition, the risks sets for leaving the response state at the event times are also considered. The
type-I error and power are investigated in a simulation study and we illustrate the application using the
data of REACH3, a clinical phase 3 study.

We apply the framework of multistate models to highlight that this application is a special case of a
much more flexible general approach which accommodates more sophisticated model building.
However, we also derive the properties of the suggested test statistics in close analogy with the
logrank test to elucidate the connections of the general theory with simple and intuitively appealing
ideas regarding the statistical inference on important scientific questions. Here, this is the question of
differences between the time profiles of the probability of being in response. We believe that this can
help to bridge a gap between the impressive theoretical work that has been done on stochastic
state-space processes and the concrete application of these ideas in practice.

The multistate model considered in this paper refers to the classical illness-death model and is
in alignment with the efficacy endpoints of the REACH3 study, allowing only one transition from
the initial state 0 to the response state 1, not a return to the “neutral” state 0. The PBR can be easily
extended by allowing both, 0→ 1 and 1→ 0 transitions with several switches over time. At least under
the Markov assumption (2.6), it is straightforward to generalize the suggested tests to this situation.
We did not do this here to keep notation simple and render the approach more accessible to readers.

The suggested tests ignore the probability of reaching the absorbing state (death, say) directly from
the initial state (cf. section 2.2). For a test which is sensitive to differences in this “immediate death
rate”, we could keep the 0 → 2 patients in the risk set of state 0 forever. For an event time t with a
single 0 → 1-transition and no other transitions, the estimate of instantaneous risk would then be 1
divided by the number of patients who either are still in state 0 at time t or who have died without ever
reaching state 1 before time t. This would estimate an “unconditional probability of being in response”.
A PBR curve with more deaths would generally stay lower than one with identical conditional PBRs,
but less deaths. The logic behind this would be that a patient in state 2 is not “in response” at time t
and will never get into the response state 1, but nevertheless should impact the estimate of PBR.

We would like to emphasize that the tests we are suggesting here are certainly not the only useful
tests in this situation. [11–13] present useful tests for the equality of restricted mean duration of
response (RMDOR). These tests do not need the Markov assumption but require the determination of
a truncation time. A direct comparison to our suggestions is difficult as the tests proposed by Huang
and colleagues test a somewhat different hypothesis about the equality of the expected durations of
response. Furthermore, as the setting of this truncation time ultimately is arbitrary, it remains unclear
what specific version of an RMDOR test one should compare to in power simulations.

Furthermore, a logrank test of Kaplan-Meier-curves which start at time of entry into state 1 and
end at entry into state 2 could be applied. Such a test could assign an event time of 0 to patients who
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never reach state 1 (either because they directly enter state 2 from state 0 or because they do not reach
response within a pre-defined period of time). Event time 0 would otherwise be treated as one of the
event times at which contributions to the log-rank test statistic are calculated (also including patients
who are censored in state 0). In this way, all patients affect the test statistic and any bias from selection
of responders would be avoided. Finally, re-randomization tests offer an attractive, easy option for
testing duration of response. They could be applied to the RMDOR as well as to other statistics such
as the Wilcoxon test statistic for censored data. We have not included all these options in an exhaustive
simulation study to keep the focus of this paper on a method which mimics the logrank test as closely
as possible and on the derivation of the corresponding test statistic.

We suspect that the suggested tests also keep the type I error asymptotically in certain situations
where the Markov condition (2.6) does not hold. A precise characterization of these situations requires
clarification of both the kind of asymptotics used as well as the types of deviations from the Markov
assumption. This is a topic for future research.

Our suggestions are motivated by a desire to have high power against the alternative of consistent
inferiority of one treatment over the entire time axis. Again, there is an analogy with the logrank test:

• High power is achieved for event rate ratios (of the event types ”going into state 1 = response”
and ”going out of state 1”) between the treatments that are constant in time (and the test treatment
is the better one).
• The type I error is preserved if the test treatment is consistently no better than the control treatment

over the entire time axis.
• If event rate ratios vary in time, and are above 1 for some periods and below 1 for others, there are

no statistical guarantees of the tests’ properties. They will still tend towards ”correct” decisions
in the sense that the treatment with larger area under the PBR curve will in stochastic tendency
be favored, but this does no longer come with formal guarantees of type I error control or high
power.

Due to these limitations, we recommend to treat the suggested tests as a complement to a visual
display of the PBR curves. This will protect against misinterpretation of significant results. In this
respect, we are adopting the approach that most practitioners of clinical trials follow anyways regarding
the interpretation of logrank test results and the results from fitting Cox regression models to time-to-
event data.

In summary, we believe that the suggested tests support the proper interpretation of PBR graphs
such as Figure 3 by indicating whether these are “truly” separated or not.
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Appendix

Derivation of the distibution of the test statistics

Several authors [2,7,21] give a rigorous derivation of tests for the global null of the equality of two
multistate stochastic processes using martingale theory.

These publications use the Markov property (2.6). We will also assume it here. In the simulations,
we have also investigated cases where this assumption is violated.

The above mentioned papers use formal notation with integrals. We simplify this here to a non-
parametric notation replacing integrals by sums. We use the following notation:
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• Zi ∈ {0, 1} is the treatment indicator of patient i = 1, . . . , n.
• ρsi(t) = 1 if patient i is in state s at time t, 0 otherwise.
• rs(t) =

∑n
i=1 ρsi(t) is the number of patients in state s at time t.

• r(1)
s (t) =

∑n
i=1 Ziρsi(t) is the number of patients in state s at time t in group 1.

• δs1 s2i(t) = 1 if patient i transitions from state s1 to state s2 at time t, 0 otherwise.
• ds1 s2(t) =

∑n
i=1 δs1 s2i(t) number of patients who transition s1 → s2 at time t.

• d(1)
s1 s2(t) =

∑n
i=1 Ziδs1 s2i(t) number of patients who transition s1 → s2 at time t in group 1.

• p(1)
s1 s2(t) =

r(1)
s1 (t)

rs1 (t) = p(1)
s1 (t).

Note that p(1)
s1 s2(t) is the conditional probability that a randomly selected patient from the risk set

corresponding to rs1(t) of patients in state s1 who transitions out of state s1 and into state s2 at time
t is in the treatment group Zi = 1, if we condition on ds1 s2(t), rs1(t) and r(1)

s1 (t) and if a global null of
identical stochastic processes in the two treatments holds. Under the global null, this probability does
not depend on s2.

This setup leads to the following building blocks for generating tests of the global null. We start by
conditioning on the following:

• The event times tl, l = 1, . . . , L ≤ n where at least one transition occurs.
• rs(tl), r

(1)
s (tl) and ds1 s2(tl), the patients at risk (overall and in group 1) immediately before tl and the

total number of transitions s1 → s2 at time tl.

With this conditioning we get the following:

d(1)
s1 s2

(tl) ∼ Hyp
(
rs1(tl), r(1)

s1
(tl), ds1 s2(tl)

)
under H0.

These are all mutually stochastically independent (due to the conditioning) for different tl’s. In
addition,

(
d(1)

02 (t)
)

t=t021,...
are independent of

(
d(1)

01 (t), d(1)
12 (t′)

)
t=t011,t′=t121,...

. As discussed in section 2, d(1)
01 (t)

and d(1)
12 (t′) are independent under the Markov assumption (2.6) [2, theorem IV.1.2.], and are

asymptotically independent in some more general settings too [1, 15]. From the hypergeometric
distribution, we have

E
(
d(1)

s1 s2
(tl)

)
= ds1 s2(tl) · p(1)

s1
(tl)

var
(
d(1)

s1 s2
(tl)

)
= ds1 s2(tl)p(1)

s1
(tl)

(
1 − p(1)

s1
(tl)

)
·

rs1(tl) − ds1 s2(tl)
rs1(tl) − 1

≈

ds1 s2(tl)p(1)
s1

(tl)
(
1 − p(1)

s1
(tl)

)
.

The approximation in the last formula is due to the convergence of the hypergeometric to the binomial
distribution. If all event times are unique, this approximation becomes exact.

The joint null distribution of the centered, unstandardized event counts in group 1 at the event times
tl then becomes:

U(tl) :=


d(1)

01 (tl) − E
(
d(1)

01 (tl)
)

d(1)
02 (tl) − E

(
d(1)

02 (tl)
)

d(1)
12 (tl) − E

(
d(1)

12 (tl)
)

 ∼ Hyp




0
0
0

 ,V(tl)


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where

V(tl) =


var

(
d(1)

01 (tl)
)

0 0
0 var

(
d(1)

02 (tl)
)

0
0 0 var

(
d(1)

12 (tl)
)


and Hyp(0,V) denotes the three hypergeometric distributions, now described by their corresponding
expected values, variances and covariances (with slight abuse of notation, since the hypergeometric
distribution is not uniquely determined by its first two moments). Hence, for any fixed full rank matrix
A, we approximately have

AU(tl) ∼ N
(
0,AV(tl)A′

)
.

If
∑L

l=1 ds1 s2(tl)→ ∞ and if AU(tl) are stochastically independent at different event times tl,

L∑
l=1

(AU(tl))′
(
AV(tl)A′

)−1 (AU(tl))

converges in distribution to a χ2 (rank(A))-distribution.
A “standard” approach would be to use A = I3 for a global, two-sided test. [7] suggest to use

A =
(

1 1 0
0 1 1

)
which produces a bivariate test statistic where the first component can be associated

with transitions 0 → 1 or 0 → 2 (like “PFS” if 1=progression and 2=death) and the second with
transitions 0→ 2 or 1→ 2 (“death” in the example just mentioned).

Here, since our main interest is in PBR, we restrict attention to 0 → 1 and to 1 → 2 transitions.
Large values of the test statistic should arise when patients in group 1 transition into state 1 earlier
and leave it later than patients in group 0. This suggests A = a′ = (1 0 − 1). Since this produces a
one-dimensional score a′U(tl),

∑
l a′U(tl)√∑
l a′V(tl)a

is approximately standard normal N(0, 1). It is easy to see

that this is in fact LRText from formula (2.7). H0 is rejected at level α if LRText < Φ
−1(α) where Φ−1(α)

denotes the α-quantile from the standard normal distribution N(0, 1).
As mentioned in section 2, the assumption of independence of U(tl1) and U(tl2) may be

questionable. To deal with this issue, we notice that
∑

l U(tl) is the score statistic (first derivative of the
partial likelihood) of a Cox-regression model in the point β = 0 and −

∑
l V(tl) is the information

matrix (matrix of second derivatives) at β = 0. This suggests that in cases where we do not know the
correlation between V(tl) at different time points, we might estimate the variance of

∑
l U(tl)

non-parametrically by the well-known sandwich estimation technique [19]. This leads to the form of
the test statistic LRTrob described in section 2.
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