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1. Introduction

In recent years, networked underactuated Euler-Lagrange systems (NUELSs) have emerged as
critical models in a wide range of advanced engineering applications, including cooperative robotic
systems, spacecraft formation control, flexible manipulators, and underwater operating platforms,
which have important research value and application prospects [1–5]. Since the dimensionality of
the control inputs in the system is smaller than its number of degrees of freedom, and multiple
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subsystems are interactively coupled through the network, the overall system is usually characterized
by strong nonlinearity, complex coupling, and restricted state accessibility. Influenced by this structural
constraint, NUELSs face significant challenges in realizing high-precision trajectory tracking control,
especially when communication uncertainties may damage the closed-loop performance of the system,
inducing system oscillations or even instability phenomena [6–8]. Such non-ideal network effects
not only exacerbate the complexity of controller design, but also significantly affect the accuracy and
convergence performance of the system trajectory tracking, which has become a key bottleneck in the
current research of NUELSs [9–12].

It is well known that passivity-based control has become an important approach to solve the control
problems of multi-agent systems (MASs) due to its ability to effectively preserve the natural energy
structure of mechanical systems and its strong robustness, extensibility, and universality [13–16].
With this control framework, energy-shaping techniques are used to achieve closed-loop stability
and performance tuning of the system by reconfiguring the potential and kinetic energy functions
of the system to steer the system state towards the desired trajectory [17]. Extensive studies have
been conducted on the design of passivity-based controllers using energy-shaping techniques for
complex physical systems, yielding promising control performance in various applications [18–22].
Cruz-Zavala et al. proposed a derivation method for a novel family of distributed controllers, which
can achieve finite-time leaderless and leader–follower consensus in networks of fully actuated Euler-
Lagrange (EL) systems without requiring velocity measurements [18]. Sandoval et al. carried out the
first systematic study on robotic joint position tracking by employing a localized potential shaping
technique, which integrates energy shaping with total damping injection [20]. However, most existing
studies have concentrated on either fully actuated EL systems. The application of passivity-based
control methods to NUELSs remains relatively underexplored, which constitutes one of the primary
motivations for this work.

lternatively, time delays is an inevitable phenomenon of networked control systems, arising from
sensing, communication, computation, and actuation processes. Such delays, induced by packet loss,
bandwidth limitations, and transmission latency, are often unavoidable in practice [23–25]. While
small delays mainly affect transient responses, large or uncertain delays can substantially degrade
coordination and even destabilize the system [26–28]. Considerable progress has been achieved in
delay analysis and compensation for MASs, especially in consensus and synchronization of fully
actuated EL dynamics. In contrast, research on NUELSs remains limited, where nonlinearities and
strong couplings magnify the detrimental effects of communication delays. To bridge this gap, this
paper develops the passivity-based energy-shaping control strategy for NUELSs with communication
delays.

As a summary, this paper is oriented to the fundamental challenges such as nonlinear coupling and
communication delays in the trajectory tracking control of NUELSs, and constructs a set of the energy
shaping within the passivity-based control framework. By deeply reconstructing the energy structure
of the system and combining the nonlinear control theory with the system dynamics characteristics, the
method realizes the precise regulation of the trajectory error while ensuring the closed-loop stability.
Compared with the existing work [8, 29–33], the main contributions include:

(1) A structurally explicit energy-shaping passivity-based control strategy is proposed, in which
the potential and kinetic energy functions of NUELSs and the energy of the adaptive updating law
are reconfigured and appropriate damping injection is introduced. This approach enables closed-loop
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stability control and state regulation with underactuated and coupling constraints, thereby providing a
unified modeling and design framework for trajectory tracking control of NUELSs.

(2) An adaptive regulation mechanism and sliding-mode-based auxiliary variables are incorporated
to enhance the convergence performance of the energy-shaping controller under dynamic nonlinear
conditions. This design significantly improves the system’s regulation capability and robustness, while
strengthening its applicability to practical networked scenarios.

(3) A comprehensive Lyapunov-based analysis is conducted to rigorously prove the uniform
boundedness of all closed-loop state variables and the asymptotic convergence of the tracking errors.
In addition, numerical simulations on the representative NUELSs are performed to demonstrate the
proposed method’s effectiveness in terms of tracking accuracy, response speed, and stability.

The organization of the paper is as follows. Section 2 formulates the dynamical model of
NUELSs together with the essential preliminaries that underpin the subsequent analysis. Section 3
develops the passivity-based energy-shaping control strategy and rigorously addresses its applicability
in the presence and absence of communication delays. Section 4 provides numerical simulations to
demonstrate the effectiveness and robustness of the proposed methods. Finally, Section 5 concludes
the main findings and discusses several promising directions for future research.

2. Preliminaries

2.1. Notation

To facilitate the subsequent analysis and controller design, the following symbols are defined. The
set of real b × b matrices and the b-dimensional Euclidean space are denoted by Rb×b and Rb, the
zero vector and the zero matrix are represented by 0b ∈ R

b and 0b×b ∈ R
b×b, Ib ∈ R

b×b stands for the
b × b identity matrix. The Kronecker product between matrices X and Y is symbolized by X ⊗ Y, the
symbols X−1, XT designate the inverse and transpose of X. The operator diag (·) produces a diagonal
matrix with the given elements along the main diagonal, blockdiag(·) is the block-diagonal operator.
‖·‖ indicates the Euclidean norm when applied to vectors and the matrix-induced 2-norm when applied
to matrices. The function κ : [0,∞) → [0,∞) is said to be of class-K if it is continuous, strictly
increasing, and satisfies κ(0) = 0. For any vector a ∈ Rb, the gradient of a scalar function is defined

as ∇a =

(
∂
∂a1
, · · · , ∂

∂ab

)T
∈ Rb. Unless otherwise specified, all matrices are assumed to have compatible

dimensions for the involved algebraic operations.

2.2. Graph theory

The communication topology among NUELSs is commonly described using graph-theoretic
notions, and a brief overview of the relevant concepts is provided below. In general, the information
exchange among P(P ≥ 2) underactuated EL systems is modeled by a weighted directed graph
D = (U, ζ,B), which represents the communication topology. Here, U = {1, 2, · · · , P} denotes the
set of nodes corresponding to the agents, and ζ ⊆ U × U refers to the set of directed edges. The
adjacency matrix B = (ai j) ∈ RP×P quantifies the communication structure, where ai j = 1 if there
exists a directed edge from agent j to agent i, and ai j = 0 otherwise. The Laplacian matrix is defined
as L = (li j) ∈ RP×P, each diagonal element is given by lii =

∑P
j=1 ai j, and each off-diagonal element

is defined as li j = −ai j, i , j. By construction, the row sums of L satisfy
∑P

j=1 li j = 0, ensuring the
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conservation of flow in the network. A directed graph D is said to contain a directed spanning tree
if there exists at least one root node that has a directed path to all other nodes in the network. To
characterize the leader-follower communication topology, a diagonal matrix Lr = diag(β1, · · · βP) is
introduced, where βi > 0, indicates that the i-th follower is directly influenced by the leader, and βi = 0
otherwise. A comprehensive treatment of relevant graph-theoretic notions can be provided in [34].

2.3. Problem formulation

A network of P underactuated EL systems is considered, in which the dynamics of the i-th system
is characterized by [8, 19]:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) + Fi(qi − xi) = 0b;

Ui ẍi + Fi(xi − qi) = τi,
(2.1)

where i = 1, 2, ..., P, qi ∈ R
b and xi ∈ R

b denote the angular positions of the links and the motors
(joints). The inertia matrix Mi(qi) ∈ Rb×b is assumed to be symmetric and positive definite. The term
Ci(qi, q̇i) ∈ Rb×b represents the Coriolis and centrifugal matrix, Gi(qi) ∈ Rb stands for the gravitational
torque vector. The motor inertia and joint stiffness matrices are denoted by Ui, Fi ∈ R

b×b, both of
which are symmetric and positive definite. The control input is given by τi ∈ R

b.
The NUELSs (2.1) are known to exhibit the following three structural properties [34].

Property 1. It is assumed that the matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew-symmetric, i.e., for any vector
n ∈ Rb, the following identity nT

[
Ṁi(qi) − 2Ci(qi, q̇i)

]
n = 0 holds.

Property 2. The system dynamics can be linearly parameterized as Mi(qi)z1 + Ci(qi, q̇i)z2 + Gi(qi) =

Yi(qi, q̇i, z1, z2)ηi, for any given vectors z1, z2 ∈ R
b, where Yi(qi, q̇i, z1, z2) is the regressor matrix and

ηi is the unknown parameter vector.

Property 3. The matrices and vectors associated with the NUELSs satisfy standard boundedness
properties: χd Ib ≤ Mi

(
qi
)
≤ χDIb,

∥∥∥Ci
(
qi, q̇i

)∥∥∥ ≤ χe

∥∥∥q̇i

∥∥∥ and
∥∥∥Gi

(
qi
)∥∥∥ ≤ χ f , where χd, χD, χe

and χ f are positive constants.

The passivity-based energy-shaping control strategy is proposed to address the tracking problems
for NUELSs. The suggested approach ensures that all agents accurately track a common reference
trajectory while reaching consensus in their states. To support the subsequent theoretical development,
the tracking control problem is formally defined as follows:

Definition 1. For the NUELSs (2.1), the tracking control problems are considered to be solved if
there exists the control input τi such that the position trajectory asymptotically converge to a common
time-varying reference trajectory qd(t) ∈ Rb, provided that at least one agent has direct access to the
reference signal. That is, for every agent i ∈ [1, P], the following conditions hold

lim
t→∞

∥∥∥q̂i

∥∥∥ =
∥∥∥qi(t) − qd(t)

∥∥∥ = 0,
∥∥∥ ˙̂qi

∥∥∥ = lim
t→∞

∥∥∥q̇i(t) − q̇d(t)
∥∥∥ = 0. (2.2)

Remark 1. The intrinsic difficulty in controlling NUELSs arises from the structural mismatch between
the number of control inputs and the system’s degrees of freedom. This mismatch implies that some
degrees of freedom cannot be actuated independently, and the controller must therefore rely on the
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nonlinear and configuration-dependent internal couplings of the system dynamics to achieve regulation
or tracking [7–9]. Such couplings restrict the range of admissible control actions and substantially
increase the complexity of Lyapunov-based stability analysis. Moreover, the lack of full actuation
prevents arbitrary assignment of the closed-loop dynamics or direct shaping of the total energy, which
leads to inherent performance limitations that do not occur in fully actuated systems [9–12]. These
challenges fundamentally distinguish NUELSs from their fully actuated counterparts and motivate the
passivity-based design framework developed in this work.

Remark 2. Definition 1 extends the conventional time-invariant formulation to the tracking control
problems of NUELSs (2.1) in the leader–follower network framework. In contrast to prior works [8,
17,31,32] that predominantly address convergence to static equilibria, the present setting necessitates
asymptotic tracking of time-varying consensus trajectories. Moreover, the intrinsic nonlinearities
and strong interconnections among NUELSs significantly increase the complexity of the time-varying
problem compared with its time-invariant counterpart.

3. Main results

3.1. Passivity-based tracking control without communication delays

This section is devoted to formulating the passivity-based control strategy for NUELSs (2.1) by
applying the energy-shaping method without communication delays. For the purpose of theoretical
development, the following assumptions and lemmas are presented.

Assumption 1. The directed graph D associated with the NUELSs (2.1) is assumed to contain a
directed spanning tree.

Assumption 2. It is assumed that the position information of the virtual leader is available to at least
one of the P nonidentical follower systems.

Lemma 1. [30] If Assumption 1 is satisfied, then the matrix L has positive real parts for all
eigenvalues. If exists matrix A is a positive definite, B=AL + LT A is a positive definite matrix.

Lemma 2. [35] For the system
ẏ = f (t, y) (3.1)

with f : [0,∞) × Rb → Rb being piecewise continuous in t and locally Lipschitz in y, let Z : [0,∞) ×
Rb → R be a continuously differentiable function such that

κ1 (‖y‖) ≤ Z (t, y) ≤ κ2 (‖y‖) , (3.2)

∂Z
∂t

+
∂Z
∂y

f (t, y) ≤ −ϑ (y) ,∀ ‖y‖ ≥ α > 0, (3.3)

∀t ≥ 0 and ∀y ∈ Rb, where κ1 and κ2 are class-K functions and ϑ(y) is continuous positive-definite
function. Then there exists T̄ ≥ 0 (dependent on y (0) and α) such that the solution of Eq (3.1) satisfies

‖y (t)‖ ≤ κ−1
1 (κ2 (α)) ,∀t ≥ T̄ . (3.4)
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To facilitate the the design of controller, the reference velocity vector ṡi ∈ R
b is defined as

ṡi= − k
P∑

j=1

ai j

(
q̂i − q̂ j

)
− kβi q̂i + q̇d, (3.5)

where k denotes the coupling strength among the agents. Thus, the sliding mode vector ψ̇i ∈ R
b is

formulated as
ψ̇i = q̇i − ṡi. (3.6)

Next, by defining two intermediate variables ei ∈ R
b and ri ∈ R

b as follows

ei = xi − ri, (3.7)

and
ri = qi + F−1

i Yiη̌i − ψi, (3.8)

where η̌i is the estimate of ηi.
Then the corresponding updating law can be chosen as

˙̌ηi = −δiYT
i
(
qi, q̇i, ṡi, s̈i

)
ψ̇i, (3.9)

where δi represents a symmetric and positive definite matrix.
Therefore, the passivity-based control input for the i-th underactuated EL system is given by

τi = Fi
(
xi − qi

)
− Qi (ei − εi) − Fi

(
ei − ψi

)
+ Ur̈i, (3.10)

where εi ∈ R
b stands for the generalized coordinate of the controller, and the matrix Qi ∈ R

b×b refers
to the springs stiffness coefficients.

The following system result from substituting Eqs (3.6)–(3.8) and (3.10) into system (2.1).

Mi
(
qi
) (
ψ̈i + s̈i

)
+ Ci

(
qi, q̇i

) (
ψ̇i + ṡi

)
+ Gi

(
qi
)
− Yiη̌i + Fi

(
ψi − ei

)
= 0b;

Uiëi + Fi
(
ei − ψi

)
= −Qi (ei − εi) .

(3.11)

From Property 2, it can be derived that

Mi
(
qi
)

s̈i + Ci
(
qi, q̇i

)
ṡi + Gi

(
qi
)

= Yi
(
qi, q̇i, ṡi, s̈i

)
ηi. (3.12)

Finally, the system (2.1) can be further rewritten in the form of the following closed-loop controlled
systems

Mi
(
qi
)
ψ̈i + Ci

(
qi, q̇i

)
ψ̇i + Yiη̂i + Fi

(
ψi − ei

)
= 0b;

Uiëi + Fi
(
ei − ψi

)
= −Qi (ei − εi) ,

(3.13)

where the estimated error η̂i = ηi − η̌i.
To proceed, the following expressions present the controller dynamics and its total energy function,

derived from the equations of motion of the networked EL systems

Maε̈ + Hε̇ + ∇ε
cN (e, ε) = 0Pb, (3.14)
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and
cT (e, ε, ε̇) = cW (ε, ε̇) + cN (e, ε) , (3.15)

where e =
[
eT

1 , · · · , eT
P

]T
∈ RPb, ε =

[
εT

1 , · · · , ε
T
P

]T
∈ RPb is the generalized coordinate, the matrix

Ma ∈ R
Pb×Pb denotes positive semidefinite inertia, H = diag(hiIn) ∈ RPb×Pb represents the damping

matrix with hi > 0. The kinetic energy of the controller is defined as cW (ε, ε̇) = 1
2 ε̇

T Maε̇, and
the corresponding potential energy with respect to the actuated component of NUELSs is given by
cN (e, ε) = 1

2 (e − ε)T Q (e − ε).
Prior works [17, 18] show that the inertia matrix of the controller dynamics has negligible impact

on the stability mechanism. Therefore, by setting Ma = IPb and omitting the gravity terms throughout
the analysis, the controller dynamics of the i-th EL system is given by

ε̈i = −hiε̇i − Qi (εi − ei) . (3.16)

For the closed-loop system described by Eq (3.13), the corresponding energy functions are derived
as

sT
(
ψ, e, ψ̇, ė

)
= sW

(
ψ, e, ψ̇, ė

)
+ sN (ψ, e) , (3.17)

where sW
(
ψ, e, ψ̇, ė

)
=

∑P
i=1

sWi

(
ψi, ei, ψ̇i, ėi

)
, with the kinetic energy function is defined as

sWi

(
ψi, ei, ψ̇i, ėi

)
=

1
2

(
ψ̇

T
i Mi

(
qi
)
ψ̇i + ėT

i Uiėi

)
, (3.18)

and sN (ψ, e) =
∑P

i=1
sNi

(
ψi, ei

)
, with the potential energy function is express as

sNi
(
ψi, ei

)
=

1
2
(
ψi − ei

)T Fi
(
ψi − ei

)
. (3.19)

Remark 3. The control input (3.10) within the passivity-based energy-shaping framework admits a
clear physical interpretation and can be decomposed into four distinct components. Specifically, the
first component Fi

(
xi − qi

)
is a linear feedback term with respect to the state of the NUELSs (2.1),

the second component Qi (ei − εi) is a feedback term related to the intermediate variable (3.7) and the
controller dynamics (3.16), the third component Fi

(
ei − ψi

)
combines a linear feedback term based

on the intermediate variable (3.7) and the sliding mode vector (3.6), and the fourth component Ur̈i is
a compensation term incorporating the system structure along with the adaptive updating law (3.9).
Moreover, the design of these four terms is fundamentally grounded in the controller dynamics and the
associated sliding mode vector, and the tracking control strategy is ensured to be realized using the
passivity-based energy-shaping control approach and the adaptive gain technique.

Theorem 1. For the NUELSs (2.1) under Assumptions 1 and 2, the proposed passivity-based control
protocol (3.10) with the updating law (3.9) can solve the tracking problem in the sense of Definition 1.

Proof. The total energy function associated with the closed-loop controlled system can be formulated
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as the following Lyapunov function

V1 =sI + cI + rI

=
1
2

[
ψ̇

T ėT ε̇T
] 

M (q) 0Pb×Pb 0Pb×Pb

0Pb×Pb U 0Pb×Pb

0Pb×Pb 0Pb×Pb Ma



ψ̇
ė
ε̇


+

1
2

[
ψT eT εT

] 
F −F 0Pb×Pb

−F F + Q −Q
0Pb×Pb −Q Q



ψ
e
ε


+

1
2
η̂Tδ−1η̂

=
1
2

ȯT Āȯ +
1
2

oT B̄o +
1
2
η̂Tδ−1η̂,

(3.20)

where ψ =
[
ψT

1 , · · · ,ψ
T
P

]T
, η̂ =

[
η̂T

1 , · · · , η̂
T
P

]T
, M (q) = blockdiag (Mi (qi)), U = blockdiag (Ui),

δ = blockdiag (δi), F = blockdiag (Fi), Q = blockdiag
(
Qi

)
, o = [ ψT eT εT ]T , Ā =

diag (M(q),U, Ma) and

B̄ =


F −F 0Pb×Pb

−F F + Q −Q
0Pb×Pb −Q Q

 .
By applying Properties 1 and 3, and utilizing Eqs (3.13) and (3.16) to Eq (3.20), the time derivative

of Eq (3.20) can be obtained as

V̇1 =ψ̇
T M (q) ψ̈ +

1
2
ψ̇

T Ṁ (q) ψ̇ + ėT Uë + ε̇T ε̈

+
(
ψ̇ − ė

)T
F (ψ − e) + (ė − ε̇)T Q (e − ε) + η̂Tδ−1 ˙̂η

= − ψ̇
T Yη̂ − ėT Q (e − ε) − ε̇T Hε̇ − ε̇T Q (ε − e)

+ (ė − ε̇)T Q (e − ε) − η̂Tδ−1 ˙̌η

= − ψ̇
T Yη̂ − ε̇T Hε̇ + η̂T YT ψ̇

= − ε̇T Hε̇ ≤ 0.

(3.21)

It follows from Eq (3.21) that V1 is a non-increasing and bounded function. Moreover, by employing
the controller dynamics in Eq (3.16), one can deduce that ε̈i is bounded, which implies that V̈1 is also
bounded. Therefore, by invoking Barbalat’s lemma [35], it can be concluded that lim

t→∞
V̇1 = 0, which

further implies that lim
t→∞

ε̇i = 0b.
Thus, the application of the controller dynamics in Eq (3.16) yields:

d
dt
ε̈i = −hiε̈i − Qi (ε̇i − ėi) . (3.22)

Furthermore, it follows that ε̇i, ε̈i, and ėi are all bounded, which implies that d
dt ε̈i is also bounded.

Hence, ε̈i is uniformly continuous. According to Barbalat’s Lemma, it has lim
t→∞

ε̈i = 0b. By applying
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the Barbalat’s Lemma again, it follows that lim
t→∞

d
dt ε̈i = 0b. Moreover, from Eq (3.22), it concludes that

lim
t→∞

ėi = 0b.
Then, applying the closed-loop system (3.13) yields

d
dt

ëi + U−1
i Fi

(
ėi − ψ̇i

)
= −U−1

i Qi (ėi − ε̇i) . (3.23)

By employing the same approach, the boundedness of ėi, ëi, ψ̇i, and ε̇i ensures that d
dt ëi remains

bounded, indicating that ëi is uniformly continuous. As a result, Barbalat’s Lemma yields lim
t→∞

ëi = 0b,

which further leads to lim
t→∞

ψ̇i = 0b by Eq (3.23).
Taking a simple deformation of Eqs (3.5) and (3.6), the resulting expressions can be rewritten in

vector form
˙̂q = − (W ⊗ Ib) q̂ + ψ̇, (3.24)

where
W=k (L + Lr) , q̂ =

[
q̂T

1 , · · · , q̂
T
P

]T
, ψ̇ =

[
ψ̇

T
1 , · · · , ψ̇

T
P

]T
.

From Assumption 1 and Lemma 1, one can conclude that −W is Hurwitz. Consequently, the
Lyapunov function is constructed as

V̄1 = q̂T (A1 ⊗ Ib) q̂, (3.25)

where A1 is a positive definite matrix. Hence, the following result can be easily established

λmin (A1) ‖q̂‖2 ≤ V̄1 ≤ λmax (A1) ‖q̂‖2, (3.26)

where λmin (A1) and λmax (A1) are the minimum and maximum eigenvalues of matrix A1, the time
derivative of V̄1 is given by

˙̄V1 =q̂T
(
−

(
A1W + WT A1

)
⊗ Ib

)
q̂ + 2q̂T (A1 ⊗ Ib) ψ̇

=q̂T (B1 ⊗ Ib) q̂ + 2q̂T C1

≤ ‖q̂‖ (λmax(B1) ‖q̂‖ + 2 ‖C1‖) ,

(3.27)

where B1 = −A1W −WT A1 and C1 = (A1 ⊗ Ib) ψ̇. From Lemma 1, it follows that B1 is a negative
definite matrix, which implies that λmax (B1) < 0. Moreover, since lim

t→∞
ψ̇ = 0Pb, it gets lim

t→∞
C1 = 0Pb.

This implies that, for any small constant n1 > 0, there exists a finite time T̄1 > 0 such that for all t ≥ T̄1,
it holds that ‖C1‖ < n1. Then, the following inequality holds

˙̄V1 ≤ ‖q̂‖ (λmax(B1) ‖q̂‖ + 2n1) ,∀t ≥ T̄1. (3.28)

By selecting α = o1n1
−λmax(B1) > 0 with a constant o1 > 2, and noting that Eqs (3.26) and (3.28) satisfy

the two conditions required in Lemma 2, it follows that there exists a finite time T̄ ≥ T̄1 > 0 such that
the solution of Eq (3.24) satisfies the following equation:

‖q̂‖ ≤ κ−1
1 (κ2 (α)) =

√
λmax(A1)
λmin(A1)

α =
o1

−λmax(B1)

√
λmax(A1)
λmin(A1)

n1,∀t ≥ T̄ , (3.29)

AIMS Mathematics Volume 11, Issue 1, 1–21.



10

where κ1 (α) = λmin (A1) o2
1 and κ2 (α) = λmax (A1) o2

1. Since n1 is an arbitrarily small constant, it
follows from Eq (3.29) that, for any given ς̄ > 0, there exists a finite time T̄ > 0 such that for all t ≥ T̄ ,
the inequality |q̂| ≤ ς̄ holds. Consequently, it gets lim

t→∞
q̂ = 0Pb, which implies that

lim
t→∞

∥∥∥qi(t) − qd(t)
∥∥∥ = 0, lim

t→∞
‖q̇i(t) − q̇d(t)‖ = 0.

�

Remark 4. Theorem 1 establishes the tracking control strategy for NUELSs by formulating an energy-
shaping design within the passivity-based framework. Distinct from existing consensus approaches
for NUELSs [8, 30–32], the proposed method reconstructs the potential and kinetic energy of the
interconnected system, the energy of the adaptive updating law and incorporates damping injection
to guarantee stability. This formulation not only enhances the analytical tractability but also provides
a new perspective for the control of NUELSs.

3.2. Passivity-based tracking control with communication delays

The previous subsection designed and analyzed a passivity-based tracking controller for the
case without communication delays, verifying its effectiveness in ensuring system stability. The
following subsection extends the study to the controller design and stability analysis in the presence of
communication delays.

To achieve this, the passivity-based control input for NUELSs is presented as

τ̄i = Fi
(
xi − qi

)
+ Ui ¨̄ri − Fi

(
ēi − ψ̄i

)
− Qi (ēi − εi) , (3.30)

here the reference position with communication delays

˙̄si = −k
P∑

j=1

ai j

(
q̂i − q̂ j(t − T )

)
− kβi q̂i + q̇d, (3.31)

where T stands for the communication delay, the sliding vector

˙̄ψi = q̇i − ˙̄si, (3.32)

two intermediate variables
ēi = xi − r̄i, (3.33)

and
r̄i = qi + F−1

i Ȳiχ̌i − ψ̄i, (3.34)

the corresponding updating law
˙̌χi = −δ̄iȲ

T
i
(
qi, q̇i, ˙̄si, ¨̄si

) ˙̄ψi, (3.35)

where χ̌i denotes the estimate of χi, δ̄i stands for a symmetric and positive definite matrix.
To summarize, the closed-loop system is described by the following equation

Mi
(
qi
) ¨̄ψi + Ci

(
qi, q̇i

) ˙̄ψi + Ȳiχ̂i + Fi

(
ψ̄i − ēi

)
= 0b;

Ui ¨̄ei + Fi

(
ēi − ψ̄i

)
= −Qi (ēi − εi) ,

(3.36)

where the estimated error χ̂i = χi − χ̌i.
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Theorem 2. For the NUELSs (2.1) under Assumptions 1 and 2, the proposed passivity-based control
protocol (3.30) in the presence of communication delays, together with the updating law (3.35) can
solve the tracking problem in the sense of Definition 1.

Proof. Consider the total energy of the closed-loop system defined by the Lyapunov function V2 =
s Ī + c Ī + r Ī. Similarly, the derivative of V2 with respect to time is given by V̇2 = −ε̇T Hε̇ ≤ 0.

The proof of Theorem 2 is similar to that of Theorem 1 and thus omitted for brevity, from which it
follows that lim

t→∞
˙̄ψi = 0b.

By applying the Laplace transform to Eqs (3.31) and (3.32), it follows that

lΓi (l) − q̂i(0) = − k
P∑

j=1

ai j[Γi(l) − e−TlΓ j(l)] − kβiΓi(l) +Ψi(l) − ψ̄i(0), (3.37)

where Γi (l) andΨi (l) are the Laplace transforms of q̂i and ψ̄i, respectively. Accordingly, Eq (3.37) can
be reformulated in the vector form

lΓ (l) = −
[(

D̄ − Z̄ + σ̄
)
⊗ Ib

]
Γ (l) + q̂(0) +Ψ(l) − ψ̄(0), (3.38)

where

D̄=diag[
P∑

j=1

kai j], Z̄= diag[kai je−Tl], σ̄ = diag
[
kβ1, · · · kβN

]
,

Γ (l), Ψ (l), q̂ (0) and ψ̄ (0) are the column vectors of Γi (l), Ψi (l), q̂i (0) and ψ̄i (0).
Then Eq (3.38) can be reformulated as

Γ (l) = [Φ (l) ⊗ Ib]
[
q̂(0) +Ψ (l) − ψ̄ (0)

]
, (3.39)

where
Φ (l) = [bIP + D̄ − Z̄ + σ̄]−1.

Equation (3.39) is transformed into the following expression for ˙̂q

Γv (l) = lΓ (l) − q̂ (0) =[Φ(l) ⊗ Ib][lq̂(0) + lΨ(l) − lψ̄(0)] − q̂(0). (3.40)

Applying Gershgorin theorem, it can be concluded that the matrix Φ (l) is free of poles in the open
half-plane, thereby ensuring Φ−1 (0) is non-zero.

Therefore, by applying the final value theorem, the following result is obtained

lim
t→∞

˙̂q = lim
l→0

lΓv (l)

=[Φ(0) ⊗ Ib][lim
l→0

l2 q̂(0) + lim
l→0

l2Ψ(l)

− lim
l→0

l2ψ̄(0)] − lim
l→0

lq̂(0)

=0Pb.

(3.41)
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From Eq (3.41), it has q̇ → q̇d as t → ∞. Meanwhile, since ψ̄ → 0Pb as t → ∞, the following
equation is satisfied

lim
t→∞

q̂ = lim
l→0

lΓ (l)

= [Φ (0) ⊗ Ib] [lim
l→0

lq̂(0) + lim
l→0

lΨ(l) − lim
l→0

lψ̄(0)]

=0Pb.

(3.42)

Eventually, by combining Eqs (3.31), (3.32), (3.41), and (3.42), it follows that

lim
t→∞

q̂i = 0b, lim
t→∞

˙̂qi = 0b.

Consequently, lim
t→∞

(q̂i − q̂ j(t − T )) = 0b, and with q̂ j(t − T ) = q̂ j (t) −
∫ t

t−T
˙̂q j ($ − T )d$, this is

equivalent to q̂i → q̂ j as t → ∞. Therefore,

lim
t→∞
‖qi (t) − qd (t) ‖ = 0, lim

t→∞

∥∥∥q̇i (t) − q̇d (t)
∥∥∥ = 0,

which completes the proof of Theorem 2.
�

Remark 5. The communication delay considered in this work originates from the networked exchange
of information among agents and acts only on the information or control channel. The intrinsic
dynamics of NUELSs are inherently delay free [8, 17, 34]. As a result, the delay affects only the timing
of the control law updates and does not change the mathematical structure of NUELSs.

Remark 6. Building upon Theorem 1, Theorem 2 generalizes the suggested passivity-based framework
to scenarios with communication delays, achieving effective tracking control of NUELSs via the energy-
shaping approach. Unlike conventional energy-shaping strategies [20–22], this method accounts for
underactuated characteristics while incorporating sliding mode variables, adaptive updating law, and
damping injection. The resulting control scheme ensures closed-loop stability and improved tracking
performance, offering practical application value in practical multi-agent engineering systems.

4. Numerical simulations

To further substantiate the theoretical results, this section conducts numerical simulations under
both scenarios with and without communication delays. Specifically, a flexible-joint manipulator
with two links, governed by underactuated EL dynamics and depicted in Figure 1, is employed as
the representative test system. Its dynamics can be formulated in the standard form of system (2.1),
expressed as follows:

Mi
(
qi
)

=

[
θi + 2ςi cos qi2 zi + ςi cos qi2

zi + ςi cos qi2 zi

]
,

Ci
(
qi, q̇i

)
=

[
−ςiq̇i2 sin qi2 −ςi

(
q̇i1 + q̇i2

)
sin qi2

ςiq̇i1 sin qi2 0

]
,
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Gi
(
qi
)

=

[
gϕi1

(
ξi1 + ξi2

)
cos qi1 + gϕi2 cos

(
qi1 + qi2

)
gϕi2 cos

(
qi1 + qi2

) ]
,

θi = ϕ2
i2ξi2 + ϕ2

i1

(
ξi1 + ξi2

)
, ςi = ϕi1ϕi2ξi2 , zi = ϕ2

i2ξi2 , P= 5 and b = 2, where ξi denotes the mass
of each link, ϕi represents the corresponding link length, and g = 9.81m/s2 is the gravitational
acceleration. The detailed parameter values are provided in Table 1, from which the regression matrix
is subsequently formulated as:

Yi =

[
s̈i1 Y12 s̈i2 gcos qi1 gcos

(
qi1 + qi2

)
0 Y21 s̈i1 + s̈i2 0 gcos

(
qi1 + qi2

) ]
,

where the parameter vector
ηi =

[
θi, ςi, zi, ϕi1

(
ξi1 + ξi2

)
, ϕi2ξi2

]T ,

Y12 = 2s̈i1 cos qi2 + s̈i2 cos qi2 − ṡi1 q̇i2 sin qi2 −
(
q̇i1 + q̇i2

)
ṡi2 sin qi2 ,

Y21 = s̈i1 cos qi2 + ṡi1 q̇i1 sin qi2 .

To validate the general applicability of the proposed approach, the initial states of the NUELSs,
including positions and velocities, are initialized arbitrarily. Numerical simulations under these
conditions confirm the robustness and tracking performance of the passivity-based energy-shaping
control framework.

Figure 1. Modeling schematic of the two-link underactuated EL system.

Table 1. Model parameters of NUELSs.

Parameters System 1 System 2 System 3 System 4 System 5

ξ1(kg) 3.5 4.3 5.6 4.1 3.6
ξ2(kg) 4.1 5.8 3.2 5.4 4.2
ϕ1(m) 0.8 1.2 0.5 1.7 1.2
ϕ2(m) 1.8 1.7 0.4 1.0 0.8
Fi 43I2 43I2 43I2 43I2 43I2

Ui diag(0.8, 1.1) diag(1.4, 1.3) diag(1.2, 1.8) diag(0.5, 1.0) diag(0.6, 0.9)
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4.1. NUELSs without communication delays

For validation purposes, the communication topology presented in Figure 2 is considered to evaluate
the numerical performance of the passivity-based energy-shaping tracking control framework for
NUELSs. Specifically, nodes 1–5 represent five underactuated systems, whereas node 0 as a virtual
leader transmitting reference signals to systems 1 and 5. The initial value of η̌i is selected to be zero,
qd (t) = [0.5 cos t, 0.5 sin t]T , δi = I5, k = 1, hi = 27, and Qi = 13I2, which is in accordance with the
conditions specified in Theorem 1. Based on the aforementioned conditions, numerical simulations
yield the results summarized in Figure 3. As shown in Figure 3(a), the angular position of the link
evolves over 0–10 s, while Figure 3(b) depicts the associated tracking error relative to the desired
reference. The velocity of link angular is reported in Figure 3(c), and its deviation from the desired
velocity is presented in Figure 3(d). The results clearly demonstrate that, without communication
delays, the NUELSs converge asymptotically to the desired trajectory qd. This verifies the effectiveness
of the proposed passivity-based energy-shaping strategy, where the integration of control input (3.10)
and adaptive updating law (3.9) ensures successful realization of the tracking control objective.

Figure 2. Communication topologyD.

4.2. NUELSs with communication delays

This subsection also employs Figure 2 as the communication topology. With the initial value of χ̌i is
chosen to zero and the parameters specified as δ̄i = I5 and T = 0.02, the setup is in full compliance with
the conditions of Theorem 2. The remaining parameters follow the same selections as in the scenario
without communication delays. Based on these settings, numerical simulations are performed, and the
corresponding results are shown in Figure 4. The link angular position trajectory and its tracking error
with respect to the desired reference are presented in Figure 4(a),4(b). Likewise, Figure 4(c),4(d) shows
the velocity of link angular and the corresponding tracking error. To better illustrate how variations
in communication delay affect the closed-loop cooperative tracking performance, Figure 5(a),5(b)
depicts the position and velocity responses of the first link under communication delays of T = 0.1
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and T = 1, respectively. As observed from Figures 3–5, increasing the communication delay leads
to a longer convergence time of the NUELSs, while the cooperative tracking objective remains
achieved. Accordingly, by employing the control protocol (3.30) in conjunction with the adaptive
updating law (3.35), the passivity-based energy-shaping tracking control strategy in the presence of
communication delays for NUELSs is effectively established.
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(c) The velocity of link angular position q̇i.
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(d) The velocity error of link angular position.

Figure 3. NUELSs without communication delays.
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(c) The velocity of link angular position q̇i.
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(d) The velocity error of link angular position.

Figure 4. Communication delays T = 0.02.
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Figure 5. The angular position and velocity of the first link.
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Figure 6. Evolution of W̄ and ˙̄W.

4.3. Comparative performance analysis

As noted earlier, the proposed tracking control approach for NUELSs leverages energy-shaping
within a passivity-based control framework, providing stronger robustness and adaptability to
underactuated constraints than conventional methods [6–8, 29–33]. To more intuitively illustrate the
performance advantages of the proposed strategy over existing controllers, two indices are introduced
to evaluate the overall cooperative tracking performance under different control algorithms, as shown
below:

W̄ =

5∑
i=1

∥∥∥qi − qd

∥∥∥ =

5∑
i=1

√(
qi1 − qd1

)2
+

(
qi2 − qd2

)2, (4.1)

and

˙̄W =

5∑
i=1

∥∥∥q̇i − q̇d

∥∥∥ =

5∑
i=1

√(
q̇i1 − q̇d1

)2
+

(
q̇i2 − q̇d2

)2. (4.2)

Comparison with the twofold controller (3) reported in [8] is carried out to further examine the
performance of the proposed control strategy. In order to reduce the influence of additional variables,
both controllers are tested under identical initial conditions, communication topology, and system
parameters, the desired position is specified as qd = [−3, 2]T , and the communication delay is fixed at
T = 0.02 in the numerical simulations. Results presented in Figure 6 indicate that the passivity-based
energy-shaping controller exhibits smoother transient behavior and faster convergence with respect
to both performance metrics when compared with the twofold controller. Moreover, the proposed
approach is capable of tracking time-varying reference trajectories, thereby extending its applicability
beyond fixed point tracking.

5. Conclusions

This paper has presented two passivity-based energy-shaping tracking control schemes for
NUELSs. By integrating adaptive control techniques and sliding mode variables into the passivity-
based control framework, the proposed strategies ensure closed-loop stability, asymptotic tracking,
and robustness against communication delays. Comprehensive numerical simulations on NUELSs
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confirmed the theoretical findings, showing that the suggested passivity-based controllers achieve
reliable tracking performance in the presence and absence of communication delays. The results further
reveal that communication delays mainly influence the transient response, while the overall stability
and convergence properties remain preserved.

Several extensions of this work will be considered in our future research. Although a common
reference trajectory is adopted to focus on cooperative tracking under network constraints, the proposed
passivity-based energy-shaping framework may be extended to agent specific reference trajectories
through a suitable redefinition of tracking errors. Furthermore, incorporating prescribed performance
constraints into the present framework constitutes a promising research direction, since such results for
NUELSs remain largely unexplored. In addition, extensions to more general network conditions, such
as time-varying communication delays and switching interaction topology, are also of interest.
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energy shaping control of torque-driven robot manipulators in joint space, Int. J. Control Autom.
Syst., 22 (2024), 2230–22419. http://doi.org/10.1007/s12555-022-1196-z

22. B. Salamat, G. Elsbacher, A. Tonello, Energy shaping control in underactuated robot
systems with underactuation degree two, IEEE Robot. Autom. Lett., 10 (2025), 2734–2741.
http://doi.org/10.1109/LRA.2025.3534688

23. J. Sun, Y. Dang, S. Yang, J. Wang, Y. Cai, A grey incidence model with cumulative
time-delay effects and its applications, Appl. Math. Model., 145 (2025), 116144.
http://doi.org/10.1016/j.apm.2025.116144

24. Y. Zhao, H. Wu, Fixed/Prescribed stability criterions of stochastic system with time-delay, AIMS
Math., 9 (2024), 14425–14453. http://doi.org/10.3934/math.2024701

25. H. Zeng, Y. Chen, Y. He, X. Zhang, A delay-derivative-dependent switched system model method
for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025), 112183.
http://doi.org/10.1016/j.automatica.2025.112183

26. J. Wen, F. Wang, Exponential stabilization of stochastic quantum systems based
on time-delay noise-assisted feedback, Chaos Solit. Fract., 186 (2024), 115228.
https://doi.org/10.1016/j.chaos.2024.115228

27. J. Zhang, J. Wang, H. Han, Y. Hou, Coevolution-based robust optimal control for nonlinear system
with time-delay optimal objectives, IEEE Trans. Syst. Man Cybern. Syst., 55 (2025), 1126–1136.
https://doi.org/10.1109/TSMC.2024.3496564

28. D. Li, L. Cao, Y. Pan, W. Xiao, H. Xue, A novel communication time-delay cooperative
control method with switching event-triggered strategy, J. Intell. Robot. Syst., 110 (2024), 43.
https://doi.org/10.1007/s10846-024-02076-5

29. Y. Fan, Z. Jin, B. Guo, X. Luo, X. Guan, Finite-time consensus of networked Euler-Lagrange
systems via STA-based output feedback, Int. J. Control Autom. Syst., 20 (2022), 2993–3005.
https://doi.org/10.1007/s12555-021-0393-5

30. R. Peng, R. Guo, L. Liu, J. Ji, Z. Miao, J. Zhou, Practical consensus tracking control for networked
Euler–Lagrange systems based on UDE integrated with RBF neural network, Neurocomputing,
583 (2024), 127544. http://doi.org/10.1016/j.neucom.2024.127554

AIMS Mathematics Volume 11, Issue 1, 1–21.

https://dx.doi.org/http://doi.org/10.1109/TCST.2017.2661822
https://dx.doi.org/http://doi.org/10.1002/rnc.4704
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2025.109020
https://dx.doi.org/https://doi.org/10.1016/S0005-1098(02)00177-2
https://dx.doi.org/http://doi.org/10.1007/s12555-022-1196-z
https://dx.doi.org/http://doi.org/10.1109/LRA.2025.3534688
https://dx.doi.org/http://doi.org/10.1016/j.apm.2025.116144
https://dx.doi.org/http://doi.org/10.3934/math.2024701
https://dx.doi.org/http://doi.org/10.1016/j.automatica.2025.112183
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2024.115228
https://dx.doi.org/https://doi.org/10.1109/TSMC.2024.3496564
https://dx.doi.org/https://doi.org/10.1007/s10846-024-02076-5
https://dx.doi.org/https://doi.org/10.1007/s12555-021-0393-5
https://dx.doi.org/http://doi.org/10.1016/j.neucom.2024.127554


21

31. T. Wang, W. Zou, X. Wang, J. Guo, Z. Xiang, Event-triggered fully distributed asymptotic
consensus for leaderless multiple Euler-Lagrange systems, J. Franklin Inst., 360 (2023), 8569–
8584. http://doi.org/10.1016/j.jfranklin.2023.06.035

32. S. Wang, H. Zhang, S. Baldi, R. Zhong, Leaderless consensus of heterogeneous multiple Euler-
Lagrange systems with unknown disturbance, IEEE Trans. Autom. Control, 68 (2023), 2399–2406.
http://doi.org/10.1109/TAC.2022.3172594

33. Y. Liu, P. Liu, B. Zhang, Distributed finite-time optimization for networked Euler-
Lagrange systems under a directed graph, Trans. Inst. Meas. Control, 47 (2025), 381–386.
http://doi.org/10.1177/01423312241248250

34. Z. Miao, J. Yu, J. Ji, J. Zhou, Multi-objective region reaching control for a swarm of robots,
Automatica, 103 (2019), 81–87. http://doi.org/10.1016/j.automatica.2019.01.017

35. Y. Liu, Y. Jia, Adaptive consensus control for multiple Euler-Lagrange systems with external
disturbance, Int. J. Control Autom. Syst., 15 (2017), 205–211. http://doi.org/10.1007/s12555-015-
0221-x

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 1–21.

https://dx.doi.org/http://doi.org/10.1016/j.jfranklin.2023.06.035
https://dx.doi.org/http://doi.org/10.1109/TAC.2022.3172594
https://dx.doi.org/http://doi.org/10.1177/01423312241248250
https://dx.doi.org/http://doi.org/10.1016/j.automatica.2019.01.017
https://dx.doi.org/http://doi.org/10.1007/s12555-015-0221-x
https://dx.doi.org/http://doi.org/10.1007/s12555-015-0221-x
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Notation
	Graph theory
	Problem formulation

	Main results
	Passivity-based tracking control without communication delays
	Passivity-based tracking control with communication delays

	Numerical simulations
	NUELSs without communication delays
	NUELSs with communication delays
	Comparative performance analysis

	Conclusions

