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Abstract: In this paper, we were concerned with the periodic event-triggered asynchronous
stabilization of a class of hybrid stochastic systems driven by continuous-time Markov chain and
Brownian motion, where the measurements of state and mode were available only at sampling instants,
and the control was diffusion-dependent. Static and dynamic periodic event-triggered control (PETC)
strategies were proposed with a guaranteed minimum interevent time for every sample path solution.
Different from the well-known input-to-state stability framework for stability and synthesis of event-
triggered control systems, a comparison system approach was developed to show that if the hybrid
stochastic system under continuous-time feedback control was pth-moment exponentially stable,
then there existed a small sampling period and event-triggering parameters such that the resulting
event-triggered control hybrid stochastic system was almost surely exponentially stable. Particularly,
the proposed PETC strategies could integrate the beneficial impacts of stochastic noises, which
distinguished them from previous results. Two numerical examples were provided to illustrate the
efficiency of the theoretical results.
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1. Introduction

Hybrid systems skillfully incorporate continuous-time evolution and instantaneous changes and
have been used to represent a wide variety of real-world processes, such as actuator failures, packet
dropouts, cyber-physical systems, power systems, and robotics [1]. As an important class in stochastic
modeling, hybrid systems driven by continuous-time Markov chains and Brownian motion have
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attracted significant attention, particularly in the fields of stability and control. Continuous-time
Markov chains capture random switching phenomena arising in networked control, communication,
and manufacturing systems, where abrupt mode changes may occur due to failures, environmental
variations, or network uncertainties, while Brownian motion models continuous fluctuations caused
by environmental noise, measurement errors, or external perturbations. The combination of these
two processes provides a powerful framework for describing hybrid stochastic dynamics with discrete
random events and continuous uncertainties. Many significant results in this respect can be found in a
survey [2].

Sampled-data control is becoming increasingly important and widely employed in modern control
structures such as digital control and networked control. The traditional sampled-data control algorithm
relies on the time-triggered sampling of the control task executions, which may be inefficient from a
computational perspective as the period for sampling and control execution is determined by worst-
case estimates and all scenarios that the systems can attain. Event-triggered control, instead, updates
control actions after the occurrence of an event generated by some state-dependent triggering rules and
has shown the enhanced capability of saving system resources and improving control performance.
One of the difficulties in the synthesis of event-triggered control is to guarantee stability/performance
properties while preventing the Zeno phenomenon (the infinite number of triggers in finite time). Many
works have investigated event-triggered control problems for stochastic systems, e.g., [3–5]. Some
scholars have extended the event-triggered control strategies for non-switching stochastic systems to
linear Markov jump systems [6–8]. The aforementioned study entailed pth-moment stability (p ≥ 2),
which considers stochastic noises unfavorable system stability factors. Interestingly, stochastic noises
can enhance stability, namely, introducing stochastic noise can stabilize unstable systems or make
systems more stable [9, 10]. Notably, Li and Liu [11] studied the event-triggered stabilization of a
class of stochastic systems with control-depend diffusion terms, and their event-triggered strategy is
applicable to stabilization by noise. However, the study in question has a limited scope, concentrating
solely on continuous event-triggered control and non-switching stochastic systems. In addition,
periodic event-triggered control (PETC) evaluates the event-triggering mechanism (ETM) only at given
sampling instants to enable its digital implementation.

In the context of digital control, a mismatch between the system mode and the controller mode
obtained in discrete time may arise, resulting in the phenomenon of asynchronous control. It is worth
noting that asynchronous control may lead to performance degradation and instability. Therefore,
asynchronous control problems of Markov jump systems have attracted extensive attention. Many
important results have been obtained, such as asynchronous control described by hidden Markov
chains [12, 13] and asynchronous control induced by input delay [14]. For the case of asynchronous
control caused by mode sampling, the researchers in [15, 16] solved the optimal sampled-data control
problem of linear Markov jump systems via the impulsive system approach. However, these studies
are applicable only to the mean square stability of linear hybrid systems with periodic sampling.
Moreover, the researchers in [17–19] studied the asynchronous control of stochastic hybrid systems
with discrete-time observations of state and mode by the comparison system approach proposed in [10].
However, all these researchers are concerned with stabilization problems via time-triggered control,
and only the researchers in [17] focus on the almost sure stabilization by noise. Nevertheless, there
is a lack of stochastic event-triggered asynchronous stabilization for hybrid stochastic systems. The
major challenges arise from: (i) The asynchronous nature of control updates induced by discrete-

AIMS Mathematics Volume 10, Issue 9, 21737–21759.



21739

time observations of both state and mode, and (ii) the coexistence of mode switching governed by
a continuous-time Markov chain and stochastic perturbations modeled by Brownian motion, which
make the stability analysis under event-triggered control, especially stabilization by noise, particularly
challenging.

Here, we focus on the event-triggered stabilization of a class of hybrid stochastic systems with
control-dependent diffusion terms and discrete-time observations of both state and mode. The major
contributions are summarized as follows:

• We propose PETC strategies of both static and dynamic types for hybrid stochastic systems,
formulated within a time-regularization framework. Since the triggering conditions are monitored
only at discrete sampling instants, Zeno behavior is naturally avoided.

• To address the challenges of asynchronous switching control induced by mode sampling, we
establish several technical lemmas on the moment properties of the state, sampling error, and
control error between synchronous and asynchronous inputs, leveraging properties of Markov
chains and stochastic differential equations.

• A comparison system approach inspired by the researchers in [10] is developed to show that
almost sure exponential stability of the PETC-based hybrid stochastic system can be guaranteed
under suitable sampling periods and event-triggering parameters. Unlike most works [7, 8, 20]
that treat stochastic noise solely as detrimental to stability, our approach reveals that stochastic
noises may have beneficial effects on stability, thereby reducing conservatism in event-triggered
design.

The remainder of the paper is organized as follows. In Section 2, the problem is formulated, and
some necessary lemmas are given. In Section 3, we present event-triggering design and stability
analysis from static PETC to dynamic ones. Stability verification and numerical examples with
comparisons are provided in Section 5, and conclusions are drawn in Section 6.

2. System description and problem formulation

Notation. Let | · | denote the Euclidean norm of a vector. C1,2(R+ × Rn;R+) denotes the family of
all nonnegative functions V(t, x) on R+ ×Rn that are twice continuously differentiable in x and once in
t. For any real numbers a and b, a ∨ b = max{a, b}. IA denotes the indicator function of a set A, i.e.,
IA(x) = 1 if x ∈ A otherwise 0.

Consider the following hybrid stochastic systemdx(t) = fσ(t)(t, x(t), u(t))dt + gσ(t)(t, x(t), u(t))dw(t), t > t0,

x(t0) = x0, σ(t0) = σ0,
(2.1)

where x(t) ∈ Rn is the state variable and t0 ≥ 0. {σ(t), t ≥ t0} is a right-continuous Markov process
defined on the probability space which takes values in the finite setM = {1, 2, . . . ,N} with generator
Π = (πi j), i, j ∈ M, given by

P{σ(t + ∆t) = j |σ(t) = i} =
 πi j∆t + o(∆t), i , j,

1 + πii∆t + o(∆t), i = j,
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where ∆t > 0, lim
∆t→0

o(∆t)
∆t = 0, and πi j ≥ 0 for i , j, πii ≤ 0 with

∑N
j=1, j,i πi j = −πii. Moreover, transition

probabilities for each pair of states i, j ∈ M are given by P (σ(t + ∆) = j|σ(t) = i) = pi j(∆) for all
t,∆ ≥ 0, where pi j(∆) denotes the (i, j)th element of the matrix eΠ∆. u(t) ∈ Rm is the control input. w(t)
is an one-dimensional Wiener process defined on complete probability space (Ω,F ,P) with a natural
filtration {Ft}t≥0 satisfying the usual conditions. For each i ∈ M, fi, gi ∈ C(R+ × Rn × Rm;Rn) satisfy
the following assumption.

Assumption 2.1. For each i ∈ M, fi(t, x, u) and gi(t, x, u) are globally Lipschitz continuous with
respect to (x, u), i.e., there exits positive scalar L1 such that for all x1, x2 ∈ R

n, u1, u2 ∈ R
m, t ≥ 0

| fi(t, x1, u1) − fi(t, x2, u2)| ∨ |gi(t, x1, u1) − gi(t, x2, u2)| ≤ L1(|x1 − x2| + |u1 − u2|).

Remark 2.1. Assumption 2.1 is a standard regularity condition in the theory of stochastic differential
equations. It guarantees the existence and uniqueness of strong solutions to system (2.1) under each
mode of the Markov chain. Moreover, the global Lipschitz property with respect to the state and the
control input ensures that the system trajectories depend continuously on the initial data and inputs,
which is fundamental for subsequent stability analysis.

Moreover, in the setup of emulation design framework, it is assumed that system (2.1) is
exponentially stabilizable in the pth moment (p > 0) sense.

Assumption 2.2. There exists a mode-dependent controller u(t) = kσ(t)(x(t)) such that the solution x(t)
of the closed-loop system

dx(t) = fσ(t)(t, x(t), kσ(t)(x(t)))dt + gσ(t)(t, x(t), kσ(t)(x(t)))dw(t), (2.2)

satisfies
E|x(t)|p ≤ M|x0|

pe−γ(t−t0), t ≥ t0,

where M, γ, p are some positive constants, and it is further assumed that for each i ∈ M, ki ∈ C(Rn,Rm)
satisfies the Lipschitz condition, i.e., there exists positive scalar L2 such that for all x1, x2 ∈ R

n, i ∈ M,

|ki(x1) − ki(x2)| ≤ L2|x1 − x2|.

Remark 2.2. Assumption 2.2 postulates the existence of a mode-dependent state-feedback controller
that renders the closed-loop system (2.2) exponentially stable in the pth moment. This ensures that the
state trajectories decay in expectation at an exponential rate, which is a standard notion of stochastic
stability. The additional Lipschitz continuity of each feedback map ki(·) guarantees the well-posedness
of the closed-loop system and provides a technical foundation for the subsequent stability analysis.

In this paper, we assume that the configuration of the hybrid stochastic systems synthesized by
discrete-time feedback controller over networked communication is illustrated in Figure 1. The state
x(t) and the mode σ(t) are observed only at discrete times or say that the outputs of the state x(t) and the
mode σ(t) are measured periodically, i.e., the system output is {(x(sℓ), σ(sℓ))}ℓ∈N0 , where sℓ = t0 + ℓτ,
and τ > 0 is the sampling period. Based on the discrete-time measurements, the control input with
time-triggered mechanism has the following form

u(t) = kσ(sℓ)(x(sℓ)), t ∈ [sℓ, sℓ+1), ℓ ∈ N0.
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To reduce the consumption of communication and energy resources, we consider the event-triggered
diagram for generating the times for controller updates from a triggering condition involving the current
state or output measurement of the plant and the last transmitted data. For this case, the control input
with sample-and-hold measurements, which has the following form

u(t) = kσ̃(t)(x̃(t)), (2.3)

where σ̃(t) = σ(t̂l), t ∈ [t̂l, t̂l+1), and x̃(t) = x(ti), t ∈ [ti, ti+1) in which {t̂l}l∈N0 and {ti}i∈N0 are
subsequences (stopping time sequences) of {sℓ}ℓ∈N0 , will be computed later by the designed ETMs.

Plant

ZOH

Stochastic uncertainties

Network

Network

Event-triggering 

mechanism

Controller

SensorActuator

Figure 1. Diagram of periodic event-triggered control for hybrid stochastic systems.

Remark 2.3. Unlike the existing event-triggered strategies that use sampled state and continuous-
time mode information for feedback, i.e., u(t) = kσ(t)(x̃(t)) [7, 8, 20], the periodic event-triggered
controller (2.3) may not align with the system mode due to mode sampling.

The following lemmas will be used in the proofs of the main theorems.

Lemma 2.1. [21] For all t ≥ 0 and i ∈ M, we have pii(t) ≥ eπiit.

Lemma 2.2. Let z(t) ∈ Rn be a continuous and Ft-adapted stochastic process. If there exist positive
constants c0, c1, h, and κ ∈ (0, 1) such that for any t ≥ t0, p > 0,

E

[
sup

t0≤s≤t
|z(s)|p

]
≤ c0E|z(t0)|pec1(t−t0),

and
E|z(t0 + (ℓ + 1)h)|p ≤ κE|z(t0 + ℓh)|p, ℓ ∈ N0,

then the stochastic process z(t) has the following properties:

E|z(t)|p ≤ c0ec1h+ln( 1
κ )E|z(t0)|pe−

ln( 1
κ )

h t,

lim sup
t→+∞

1
t

ln(|z(t)|) ≤ −
ln(1

κ
)

2ph
, a.s..
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Proof. For any t > t0, there must exist ℓ ∈ N0 such that t − t0 ∈ [ℓh, (ℓ + 1)h). Then,
E

[
supt0+ℓh≤s≤t0+(ℓ+1)h |z(s)|p

]
≤ c0ec1hE|z(t0 + ℓh)|p ≤ c0ec1hκℓE|z(t0)|p ≤ c0ec1he−ℓ ln 1

κE|z(t0)|p. Using

the relation that ℓ ≤ t−t0
h ≤ ℓ + 1, one has E

[
supt0+ℓh≤s≤t0+(ℓ+1)h |z(s)|p

]
≤ c0ec1h+ln 1

κE|z(t0)|pe−
ln 1
κ

h (t−t0). On
the other hand, using Chebyshev’s inequality,

P

(
sup

t0+ℓh≤s≤t0+(ℓ+1)h
|z(s)|p > e−

ℓ
2 ln 1

κ

)
≤ c0ec1hE|z(t0)|pe−

ℓ
2 ln 1

κ .

Since
∑+∞
ℓ=0 e−

ℓ
2 ln 1

κ < +∞, the Borel-Cantelli lemma yields that for almost all ω ∈ Ω, there exists a
positive integer ℓ0(ω) such that

sup
t0+ℓh≤s≤t0+(ℓ+1)h

|z(s, ω)|p ≤ e−
ℓ
2 ln 1

κ , ℓ ≥ ℓ0(ω),

which implies that for t ∈ [t0 + ℓh, t0 + (ℓ + 1)h] and ℓ ≥ ℓ0(ω),

ln(|z(t, ω)|)
t − t0

≤ −
ℓ ln 1

κ

2p(ℓ + 1)h
.

Letting ℓ → +∞, we get

lim sup
t→+∞

1
t

ln(|z(t, ω)|) = lim sup
t→+∞

1
t − t0

ln(|z(t, ω)|) ≤ − lim
ℓ→+∞

ℓ ln 1
κ

2p(ℓ + 1)h
= −

ln 1
κ

2ph
, a.s..

□

3. Event-triggering design and stability analysis

In this section, we propose systematic design procedures for static and dynamic periodic event-
triggered control schemes for stochastic systems (2.1) with the sampled-data controller (2.3).

3.1. Static event-triggered control strategy

The static ETM is designed by the following rule

ti+1 = min
ℓ∈N
{sℓ > ti | |x(sℓ) − x(ti)| > δ|x(sℓ)|} , (3.1)

and

σ̃(t) =
{
σ(sℓ), if σ(sℓ) , σ̃(s−ℓ )
σ̃(s−ℓ ), if σ(sℓ) = σ̃(s−ℓ )

, t ∈ [sℓ, sℓ+1), (3.2)

where δ > 0 denotes the event triggering parameter.

Remark 3.1. Note that the ETM (3.1) is monitored only at the sampling instants {sℓ}ℓ∈N. Consequently,
the event-generator inherently excludes the occurrence of Zeno behavior.

For ease of modeling, we define an auxiliary variable

x̃(t) =
{

x(sℓ), if J(s−ℓ ) > 0
x̃(s−ℓ ), if J(s−ℓ ) ≤ 0

, t ∈ [sℓ, sℓ+1), (3.3)
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with the initial values x̃(s−0 ) = x(s0), where J(t) := |x(t) − x̃(t)| − δ|x(t)|. Under the auxiliary variable,
the periodic ETM (3.1) has become to ti+1 = minℓ∈N

{
sℓ > ti |J(s−ℓ ) > 0

}
. Then, the control input (2.3)

is modified by
u(t) = kσ̃(t)(x̃(t))

which leads to the following closed-loop system

dx(t) = fσ(t)(t, x(t), kσ̃(t)(x̃(t)))dt + gσ(t)(t, x(t), kσ̃(t)(x̃(t)))dw(t). (3.4)

In what follows, the moment properties of the state x(t), sampling error x(t) − x̃(t), and the
control error between synchronous and asynchronous control inputs, i.e., kσ̃(t)(x̃(t))− kσ(t)(x̃(t)), will be
established.

Lemma 3.1. Let x(t) be the solution of closed-loop system (3.4), then there holds that for any t ≥ sℓ,
ℓ ∈ N0,

sup
sℓ≤v≤t

E
[
|x(v)|2|Fsℓ

]
≤ |x(sℓ)|2eαL(t−sℓ), (3.5)

E

[
sup

sℓ≤v≤t
|x(v)|2|Fsℓ

]
≤ 2|x(sℓ)|2e2αL(t−sℓ), (3.6)

E
[
|x(t) − x̃(t)|2|Fsℓ

]
≤ ϱ(τ, δ)|x(sℓ)|2eαL(t−sℓ), (3.7)

where αL = 2L1 + 3L2
1 + 2L2

2(1 + 2L2
1)(δ2 + 1), αL = 2L1 + 131L2

1 + 2L2
2(1 + 130L2

1)(δ2 + 1), and
ϱ(τ, δ) = 3δ2 + 6τ(τ + 1)L2

1(1 + 2L2
2(δ2 + 1)).

Proof. By Itô’s formula [9, Page 36], Assumptions 2.1 and 2.2, one can show that for any t ≥ sℓ,

|x(t)|2 = |x(sℓ)|2 +
∫ t

sℓ
[2xT(s) fσ(s)(s, x(s), kσ̃(s)(x̃(s))) + |gσ(s)(s, x(s), kσ̃(s)(x̃(s)))|2]ds

+

∫ t

sℓ
2xT(s)gσ(s)(s, x(s), kσ̃(s)(x̃(s)))dw(s)

≤ |x(sℓ)|2 +
∫ t

sℓ
[(2L1 + 3L2

1)|x(s)|2 + L2
2(1 + 2L2

1)|x̃(s)|2]ds

+

∫ t

sℓ
2xT(s)gσ(s)(s, x(s), kσ̃(s)(x̃(s)))dw(s). (3.8)

Note that the event-triggering rule (3.1) implies that for any t ∈ [sℓ, sℓ+1), |x̃(t)|2 ≤ 2|x̃(sℓ)− x(sℓ)|2 +
2|x(sℓ)|2 ≤ 2(δ2 + 1)|x(sℓ)|2 which can be rewritten as

|x̃(t)|2 ≤ 2(δ2 + 1)|x(ςt)|2, (3.9)

where ςt = ⌊
t−t0
τ
⌋τ, and ⌊ t

τ
⌋ rounds t

τ
to the nearest integer less than or equal to t

τ
.

For any t ≥ sℓ, Eq (3.8) has the following estimate

E
[
|x(t)|2|Fsℓ

]
≤ |x(sℓ)|2 +

∫ t

sℓ
[(2L1 + 3L2

1)|x(s)|2 + 2L2
2(1 + 2L2

1)(δ2 + 1)|x(ςs)|2]ds

≤ |x(sℓ)|2 + αL

∫ t

sℓ
sup

sℓ≤v≤s
E

[
|x(v)|2|Fsℓ

]
ds,
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which can be further deduced that supsℓ≤v≤t E
[
|x(v)|2|Fsℓ

]
≤ |x(sℓ)|2 + αL

∫ t

sℓ
supsℓ≤v≤s E

[
|x(v)|2|Fsℓ

]
ds.

Hence, the Gronwall inequality yields that (3.5).
On the other hand, for any t ≥ sℓ,

E

[
sup

sℓ≤v≤t
|x(v)|2

∣∣∣∣∣Fsℓ

]
≤ |x(sℓ)|2 +

∫ t

sℓ
E

[
(2L1 + 3L2

1)|x(s)|2 + L2
2(1 + 2L2

1)|x̃(s)|2|Fsℓ

]
ds

+ E

[
sup

sℓ≤v≤t

∣∣∣∣∣ ∫ v

sℓ
2xT(s)gσ(s)(s, x(s), kσ̃(s)(x̃(s)))dw(s)

∣∣∣∣∣Fsℓ

]
. (3.10)

By the Burkholder-Davis-Gundy inequality , we have that

E

[
sup

sℓ≤v≤t

∣∣∣∣∣ ∫ v

sℓ
2xT(s)gσ(s)(s, x(s), kσ̃(s)(x̃(s)))dw(s)

∣∣∣∣∣Fsℓ

]
≤ 4
√

2E
[∫ t

sℓ
|2xT(s)gσ(s)(s, x(s), kσ̃(s)(x̃(s)))|2ds

∣∣∣∣∣Fsℓ

] 1
2

≤ 8
√

2E
[

sup
sℓ≤v≤t

|x(v)|2
∫ t

sℓ
|gσ(s)(s, x(s), kσ̃(s)(x̃(s)))|2ds

∣∣∣∣∣Fsℓ

] 1
2

≤
1
2
E

[
sup

sℓ≤v≤t
|x(v)|2|Fsℓ

]
+ 64

∫ t

sℓ
E

[
|gσ(s)(s, x(s), kσ̃(s)(x̃(s)))|2

∣∣∣Fsℓ

]
ds

≤
1
2
E

[
sup

sℓ≤v≤t
|x(v)|2|Fsℓ

]
+ 128L2

1

∫ t

sℓ
E

[
|x(s)|2 + L2

2|x̃(s)|2
∣∣∣Fsℓ

]
ds.

Substituting this into (3.10) yields

E

[
sup

sℓ≤v≤t
|x(v)|2

∣∣∣∣∣Fsℓ

]
≤ 2|x(sℓ)|2 + 2

∫ t

sℓ
E

[
(2L1 + 131L2

1)|x(v)|2

+L2
2(1 + 130L2

1)|x̃(v)|2|Fsℓ

]
dv. (3.11)

Using (3.9) and the Gronwall inequality gives the required assertion (3.6).
Moreover, ςt ≥ sℓ, ∀t ≥ sℓ. Thus, using Hölder’s inequality and Theorem 7.1 of [9, Page 39] again,

we get that

E
[
|x(t) − x̃(t)|2|Fsℓ

]
= E

[∣∣∣∣∣∣x(ςt) − x̃(t) +
∫ t

ςt

fσ(s)(s, x(s), kσ̃(s)(x̃(s)))ds

+

∫ t

ςt

gσ(s)(s, x(s), kσ̃(s)(x̃(s)))dw(s)

∣∣∣∣∣∣2
∣∣∣∣∣Fsℓ


≤ 3|x(ςt) − x̃(t)|2 + 3τ

∫ t

ςt

E
[∣∣∣ fσ(s)(s, x(s), kσ̃(s)(x̃(s)))

∣∣∣2 ∣∣∣Fsℓ

]
ds

+ 3
∫ t

ςt

E
[∣∣∣gσ(s)(s, x(s), kσ̃(s)(x̃(s)))

∣∣∣2 ∣∣∣Fsℓ

]
ds

≤ 3|x(ςt) − x̃(t)|2 + 3L2
1(τ + 1)

∫ t

ςt

E
[
(|x(s)| + L2|x̃(s)|)2|Fsℓ

]
ds

≤ 3|x(ςt) − x̃(t)|2 + 6L2
1(τ + 1)

∫ t

ςt

E
[
(|x(s)|2 + L2

2|x̃(s)|2)|Fsℓ

]
ds.
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By event-triggering mechanisms (3.1) and (3.5), the above equation can deduce that

E
[
|x(t) − x̃(t)|2|Fsℓ

]
≤ 3δ2|x(ςt)|2 + 6L2

1(τ + 1)
∫ t

ςt

E
[
(|x(s)|2 + 2L2

2(δ2 + 1)|x(ςs)|2)|Fsℓ

]
ds

≤ 3δ2|x(ςt)|2 + 6τ(τ + 1)L2
1(1 + 2L2

2(δ2 + 1)) sup
sℓ≤s≤t

E
[
|x(s)|2|Fsℓ

]
≤ ϱ(τ, δ)|x(sℓ)|2eαL(t−sℓ).

The proof is complete. □

Lemma 3.2. Let x(t) be the solution of closed-loop system (3.4), then for any t ≥ sℓ, ℓ ∈ N0, the
following estimates hold

E

[∫ t

sℓ
|kσ(s)(x̃(s)) − kσ̃(s)(x̃(s))|2ds

∣∣∣∣∣∣Fsℓ

]
≤ φ0(τ, δ, t − sℓ)|x(sℓ)|2, (3.12)

E

[∫ t

sℓ
|x(s) − x̃(s)|2ds

∣∣∣∣∣∣Fsℓ

]
≤ φ1(τ, δ, t − sℓ)|x(sℓ)|2, (3.13)

where φ0(τ, δ,∆) = 8L2
2(1 − eπτ)(δ2 + 1) 1

αL

(
eαL∆ − 1

)
, π = mini∈M{πii}, and φ1(τ, δ,∆) = ϱ(τ, δ) 1

αL
×(

eαL∆ − 1
)
.

Proof. Note that for any t ∈ [si, si+1), i ∈ N0, x̃(t) = x̃(si), σ̃(t) = σ(si). Hence, (x̃(t), σ̃(t)) is Fsi-
measurable.

E
[
|kσ(t)(x̃(t)) − kσ̃(t)(x̃(t))|2Fsi

]
= E

[
|kσ(t)(x̃(t)) − kσ(si)(x̃(t))|2I{σ(t),σ(si)}|Fsi

]
≤ 4L2

2|x̃(t)|2E
[
I{σ(t),σ(si)}|Fsi

]
= 4L2

2|x̃(t)|2E

 N∑
j=1

N∑
l=1,l, j

I{σ(si)= j}I{σ(t)=l}

∣∣∣∣∣Fsi


= 4L2

2|x̃(t)|2
N∑

j=1

N∑
l=1,l, j

I{σ(si)= j}P{σ(t) = l|σ(si) = j}

= 4L2
2|x̃(t)|2

N∑
j=1

I{σ(si)= j}(1 − p j j(t − si))

≤ 4L2
2|x̃(t)|2

N∑
j=1

I{σ(si)= j}(1 − eπ j j(t−si))

≤ 4L2
2|x̃(t)|2

N∑
j=1

I{σ(si)= j}(1 − eπ j jτ)

≤ 4L2
2|x̃(t)|2(1 − eπτ),

where Lemma 2.1 is used.
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Denote n̄ = ⌊ t−sℓ
τ
⌋. By the Fubini theorem, we have

E

[∫ t

sℓ
|kσ(s)(x̃(s)) − kσ̃(s)(x̃(s))|2ds

∣∣∣∣∣∣Fsℓ

]
=

n̄−1∑
i=0

∫ sℓ+i+1

sℓ+i

E
[
|kσ(s)(x̃(s)) − kσ̃(s)(x̃(s))|2|Fsℓ

]
ds

+

∫ t

sℓ+n̄

E
[
|kσ(s)(x̃(s)) − kσ̃(s)(x̃(s))|2|Fsℓ

]
ds

≤ 4L2
2(1 − eπτ)

∫ t

sℓ
E

[
|x̃(s)|2|Fsℓ

]
ds. (3.14)

By Lemma 3.1 and using the fact |x̃(t)|2 ≤ 2(δ2 + 1)|x(ςt)|2, we have∫ t

sℓ
E

[
|x̃(s)|2|Fsℓ

]
ds ≤ 2(δ2 + 1)

∫ t

sℓ
E

[
|x(ςs)|2Fsℓ

]
ds

≤ 2(δ2 + 1)
∫ t

sℓ
|x(sℓ)|2eαL(s−sℓ)ds

= 2(δ2 + 1)
1
αL

(
eαL(t−sℓ) − 1

)
|x(sℓ)|2.

Substituting the above inequality into (3.14), we have (3.12).
On the other hand, using Lemma 3.1,

E

[∫ t

sℓ
|x(s)) − x̃(s)|2ds

∣∣∣∣∣∣Fsℓ

]
ds ≤ ϱ(τ, δ)|x(sℓ)|2

∫ t

sℓ
eαL(v−sℓ)dv

=
ϱ(τ, δ)
αL

(eαL(t−sℓ) − 1)|x(sℓ)|2,

which confirms to (3.13). □

Lemma 3.3. Let x(t) be the solution of system (3.4), and y(t) be the solution of system (2.2) with initial
value (x(sℓ), σ(sℓ)). Then, there holds that for any t ≥ sℓ,

E
[
|y(t) − x(t)|2|Fsℓ

]
≤ ϕ(τ, δ, t − sℓ)|x(sℓ)|2, (3.15)

where
ϕ(τ, δ,∆) = 4(∆ + 1)L2

1(φ0(τ, δ,∆) + 2L2
2φ1(τ, δ,∆))e8∆(∆+1)L2

1(1+L2)2
. (3.16)

Proof. By Hölder’s inequality and Theorem 7.1 of [9, Page 39], one can obtain that

E
[
|y(t) − x(t)|2|Fsℓ

]
= E

[∣∣∣∣∣∣
∫ t

sℓ
[ fσ(s)(s, y(s), kσ(s)(y(s))) − fσ(s)(s, x(s), kσ̃(s)(x̃(s)))]ds

+

∫ t

sℓ
[gσ(s)(s, y(s), kσ(s)(y(s))) − gσ(s)(s, x(s), kσ̃(s)(x̃(s)))]dw(s)

∣∣∣∣∣∣2
∣∣∣∣∣Fsℓ


≤ 4(t − sℓ + 1)E

[∫ t

sℓ
[| fσ(s)(s, y(s), kσ(s)(y(s))) − fσ(s)(s, x(s), kσ(s)(x̃(s)))|2
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∨|[gσ(s)(s, y(s), kσ(s)(y(s))) − gσ(s)(s, x(s), kσ(s)(x̃(s)))|2]ds
∣∣∣∣∣Fsℓ

]
+ 4(t − sℓ + 1)E

[∫ t

sℓ
[| fσ(s)(s, x(s), kσ(s)(x̃(s))) − fσ(s)(s, x(s), kσ̃(s)(x̃(s)))|2

∨|gσ(s)(s, x(s), kσ(s)(x̃(s))) − gσ(s)(s, x(s), kσ̃(s)(x̃(s)))|2]ds
∣∣∣∣∣Fsℓ

]
≤ 4(t − sℓ + 1)L2

1E

[∫ t

sℓ
(|y(s) − x(s)| + L2|y(s) − x̃(s)|)2ds

∣∣∣∣∣Fsℓ

]
+ 4(t − sℓ + 1)L2

1E

[∫ t

sℓ
|kσ(s)(x̃(s)) − kσ̃(s)(x̃(s))|2ds

∣∣∣∣∣Fsℓ

]
≤ 8(t − sℓ + 1)L2

1E

[∫ t

sℓ
[(1 + L2)2|y(s) − x(s)|2 + L2

2|x(s) − x̃(s)|2]ds
∣∣∣∣∣Fsℓ

]
+ 4(t − sℓ + 1)L2

1E

[∫ t

sℓ
|kσ(s)(x̃(s)) − kσ̃(s)(x̃(s))|2ds

∣∣∣∣∣Fsℓ

]
. (3.17)

Substituting inequalities (3.12) and (3.13) into (3.17), and using the Gronwall inequality, we
obtain (3.15). □

The main result for the case of static PETC is given as follows.

Theorem 3.1. Consider closed-loop system (3.4) satisfying Assumptions 2.1 and 2.2. For given ϵ ∈
(0, 1), if the sampling period τ and the event-triggering parameter δ of ETM (3.1) satisfy that

ϵ + ϕ
p
2 (τ, δ, ln(eγτM/ϵ)/γ) < 1, (3.18)

where ϕ(τ, δ,∆) is defined in (3.16), then the trivial solution of system (3.4) is almost surely
exponentially stable. In other words, there exists a periodic event-triggering controller (2.3) with static
PETM (3.1) such that event-triggered control stochastic system (2.1) is almost surely exponentially
stable.

Proof. It can be seen that for any given ϵ ∈ (0, 1), ϕ(τ, δ, ln(eγτM/ϵ)/γ) is a continuous strictly
increasing function respect to (τ, δ), and lim(τ,δ)→(+∞,+∞) ϕ(τ, δ, ln(eγτM/ϵ)/γ) = +∞, lim(τ,δ)→(0,0) ϕ(τ, δ,
ln(eγτM/ϵ)/γ) = 0. Therefore, there exist small enough positive constants τ∗ and δ∗ such that

ϕ(τ∗, δ∗, ln(eγτ
∗

M/ϵ)/γ) = (1 − ϵ)
2
p .

For notation briefly, set T = ln(eγτM/ϵ)
γ

, ı = ⌊T
τ
⌋, and T̃ = ıτ. Then, for any τ ∈ (0, τ∗) and δ ∈ (0, δ∗),

it can be verified that
ϕ(τ, δ,T ) < (1 − ϵ)

2
p , and Me−γT+γτ = ϵ. (3.19)

By the hölder inequality, inequality (3.15) implies that for any p ∈ (0, 1),

E
[
|y(t) − x(t)|p|Fsℓ

]
≤ ϕ

p
2 (τ, δ, t − sℓ)|x(sℓ)|p.

Using the well-known inequality (a + b)p ≤ ap + bp, p ∈ (0, 1),
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E
[
|x(sℓ + T̃ )|p|Fsℓ

]
≤

[
|y(sℓ + T̃ ) − x(sℓ + T̃ )|p|Fsℓ

]
+ E

[
|y(sℓ + T̃ )|p|Fsℓ

]
≤

(
ϕ

p
2 (τ, δ, T̃ ) + Me−γT̃

)
|x(sℓ)|p

≤
(
ϕ

p
2 (τ, δ,T ) + Me−γT+γτ

)
|x(sℓ)|p.

It follows from (3.18) and (3.19) that E|x(sı+ℓ)|p ≤ (ϕ
p
2 (τ, δ,T ) + ϵ)E|x(sℓ)|p. By Lemma 2.2,

we conclude that the zero solution of the closed-loop systems (2.1)-(2.3)-(3.1) is almost surely
exponentially stable. □

Remark 3.2. The stability conditions established via the comparison system approach are mainly
dependent on the Lipschitz constants of the system dynamics. This inevitably introduces a certain
degree of conservatism, since (i) global Lipschitz constants are used in the analysis, which may
overestimate the actual nonlinear growth, (ii) relaxation steps in constructing the comparison system
further enlarge the bounds, and (iii) the event-triggering mechanism is characterized in terms of worst-
case inter-event intervals. Nevertheless, the comparison system approach offers the advantage of
yielding tractable and verifiable stability criteria without requiring explicit solutions of the original
stochastic system. Therefore, a trade-off exists between conservatism and simplicity: While the
conditions may be conservative, they provide a general framework that facilitates rigorous stability
guarantees under event-triggered control.

3.2. Dynamic event-triggered control strategy

In this subsection, we design a dynamic ETM aimed at further reducing the number of control
updates while preserving system stability. Inspired by the researchers in [5, 22], the ETM is designed
by the following rule:

ti+1 = min
ℓ∈N0
{sℓ > ti | η(sℓ) + θ(δ|x(sℓ)| − |x(sℓ) − x(ti)|) ≤ 0} , (3.20)

and  η̇(t) = − λ1η(t) + λ2 (δ|x(sℓ)| − |x(sℓ) − x(ti)|) , t ∈ [sℓ, sℓ+1),
η(t0) = η0,

(3.21)

where θ > 0, λ1 > 0, λ2 > 0, and η0 > 0.

Lemma 3.4. Under ETM (3.20) with θ ≥ λ2
λ1

(eλ1τ − 1), the solution η(t) of dynamic equation (3.21) has
the properties that η(t) > 0, ∀t > 0, and

η2(t) ≤ e−2λ0(t−sℓ)η2(sℓ) +
λ2

2δ
2

2(λ1 − λ0)

∫ t

sℓ
e2λ0(s−t)|x(ςs)|2|ds, (3.22)

holds for any t ≥ sℓ, ℓ ∈ N0, and λ0 ∈ [0, λ1).

Proof. The positivity of η(t) for all t ≥ t0 was proved in [5]. Moreover, choosing a Lyapunov function
candidate Vη(t) = e2λ0(t−sℓ)η2 for system (3.21) by Itô’s formula, we have

Vη(t) = Vη(sℓ) +
∫ t

sℓ
e2λ0(s−sℓ){2λ0η

2(t) + 2η(t)[−λ1η(t) + λ2 (δ|x(ςs)| − |x(ςs) − x̃(s)|)]}ds
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≤ Vη(sℓ) +
∫ t

sℓ
e2λ0(s−sℓ)[−2(λ1 − λ0)η2(t) + 2λ2δη(t)|x(ςs)|]ds

≤ Vη(sℓ) +
λ2

2δ
2

2(λ1 − λ0)

∫ t

sℓ
e2λ0(s−sℓ)|x(ςs)|2ds,

which gives the required assertion. □

Remark 3.3. Compared with the static ETM (3.1), the dynamic ETM (3.20) introduces the internal
dynamic variable (3.21), which enables adaptive adjustment of the triggering threshold. Specifically,
the event-triggering condition of (3.20) can be expressed as η(sℓ)

θ
+δ|x(sℓ)|− |x(sℓ)− x(ti)| ≤ 0. It is worth

noting that the dynamic ETM (3.20) reduces to the static ETM (3.1) when θ → ∞. Since the solution
of (3.21) remains positive, the adaptive mechanism can enlarge the average inter-event intervals,
thereby reducing unnecessary transmissions or control updates and enhancing resource efficiency while
preserving the desired stability properties. Hence, dynamic ETMs generally provide a more flexible
and less conservative alternative to static ETMs.

For ease of modeling, we define an auxiliary variable as (3.3), where J(t) is replaced by J̄(t) :=
η(t) + θ(δ|x(t)| − |x(t) − x̃(t)|). Under the auxiliary variable, the closed-loop system can be modeled
as (3.4). Furthermore, set ςt = ⌊

t−t0
τ
τ⌋, the dynamic system (3.21) can be rewritten as η̇(t) = −λ1η(t) +

λ2 (δ|ςt)| − |x(ςt) − x̃(t)|).
The main result for the dynamic ETC is given as follows.

Theorem 3.2. Consider closed-loop system (3.4) satisfying Assumptions 2.1 and 2.2. For given ϵ ∈
(0, 1), if the sampling period τ and the event-triggering parameter (δ, θ, λ1, λ2) of ETM (3.20)–(3.21)
satisfy that λ1 >

γ

p , λ1 > λ0 ≥
γ

p
ln(eγτ/ϵ)

ln(eγτM/ϵ) , θ ≥
λ2
λ1

(eλ1τ − 1), and

ϵ + ϕ
p
2

(
τ, δ, θ,

ln(eγτM/ϵ)
γ

)
+ ψ

p
2

(
δ, λ2, λ0,

ln(eγτM/ϵ)
γ

)
< 1, (3.23)

where ϕ(τ, δ, θ,∆) and ψ(δ, λ2, λ0,∆) are defined in (3.32) and (3.36), respectively. Then the trivial
solution of system (3.4) is almost surely exponentially stable. In other words, there exists a periodic
event-triggering controller (2.3) with dynamic ETM (3.20)–(3.21) such that event-triggered control
stochastic system (2.1) is almost surely exponentially stable.

In order to give a strict and explicit proof of Theorem 3.2, several important lemmas are first
introduced.

Lemma 3.5. Let x(t) be the solution of closed-loop system (3.4), then there holds that for any t ≥ sℓ,
ℓ ∈ N0,

sup
sℓ≤v≤t

E
[
|x(v)|2|Fsℓ

]
+ sup

sℓ≤v≤t
E

[
η2(v)|Fsℓ

]
≤ (|x(sℓ)|2 + η2(sℓ))e

β
L
(t−sℓ), (3.24)

E

[
sup

sℓ≤s≤t
|x(s)|2 + sup

sℓ≤s≤t
η2(s)

∣∣∣∣∣Fsℓ

]
≤ 2(|x(sℓ)|2 + η2(sℓ)e2βL(t−sℓ), (3.25)

E
[
|x(t) − x̃(t)|2|Fsℓ

]
≤ ϱ(τ, δ, θ)(|x(sℓ)|2 + η2(sℓ))e

β
L
(t−sℓ), (3.26)
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where β
L
= (2L1 +3L2

1 +2L2
2(1+2L2

1)(δ+1)2 +
λ2

2δ
2

2λ1
)∨ 2L2

2(1+2L2
1)

θ2 , βL = (2L1 +131L2
1 + L2

2(1+130L2
1)(δ+

1)2 +
λ2

2δ
2

4λ1
) ∨ L2

2(1+130L2
1)

θ2 , and ϱ(τ, δ, θ) = (12τ(τ + 1)L2
1L2

2e6τ(τ+1)L2
1 + 4)/θ2 ∨ (12τ(τ + 1)L2

1(1 + L2(δ +
1))2e6τ(τ+1)L2

1 + 4δ2).

Proof. By dynamic event-triggering mechanism (3.20), and the notations ςt and x̃(t), one can obtain
that for any t ≥ t0,

|x̃(t)| ≤ |x̃(t) − x(ςt)| + |x(ςt)| ≤
η(ςt)
θ
+ (δ + 1)|x(ςt)|. (3.27)

Then, it is easy to show from (3.8) that

E[|x(t)|2|Fsℓ] ≤ |x(sℓ)|2 + E
[∫ t

sℓ
[(2L1 + 3L2

1)|x(s)|2 + 2L2
2(1 + 2L2

1)(δ + 1)2|x(ςs)|2]ds
∣∣∣∣∣Fsℓ

]
+

2L2
2(1 + 2L2

1)
θ2

∫ t

sℓ
E[η2(ςs)|Fsℓ]ds.

Using the fact that supsℓ≤s≤t E[|x(s)|2|Fsℓ] ≥ E[|x(ςt)|2|Fsℓ] ∨ E[|x(t)|2|Fsℓ], the above inequality yields

sup
sℓ≤s≤t

E[|x(s)|2|Fsℓ] ≤ |x(sℓ)|2 + (2L1 + 3L2
1 + 2L2

2(1 + 2L2
1)(δ + 1)2)

∫ t

sℓ
sup

sℓ≤s≤v
E[|x(s)|2|Fsℓ]dv

+
2L2

2(1 + 2L2
1)

θ2

∫ t

sℓ
E[η2(ςs)|Fsℓ]ds. (3.28)

Based on the fact that E[|x(ζs)|2|Fsℓ] ≤ supsℓ≤v≤s E[|x(v)|2|Fsℓ] holds for any s ∈ [sℓ, t]. Letting
λ0 = 0 in (3.22), and taking the conditional mathematical expectation on the two sides of (3.22), one
can obtain

sup
sℓ≤s≤t

E[η2(s)|Fsℓ] ≤ η
2(sℓ) +

λ2
2δ

2

2λ1

∫ t

sℓ
sup

sℓ≤s≤v
E[|x(s)|2|Fsℓ]dv. (3.29)

Combining (3.28) and (3.29), we have

sup
sℓ≤s≤t

E[|x(s)|2|Fsℓ] + sup
sℓ≤s≤t

E[η2(s)|Fsℓ] ≤ |x(sℓ)|2 + η2(sℓ) + βL

∫ t

sℓ
{ sup

sℓ≤s≤v
E[|x(s)|2|Fsℓ]

+ sup
sℓ≤s≤v

E[η2(s)|Fsℓ]}dv.

An application of the Gronwall inequality gives the required assertion (3.24).
Similarly, set λ0 = 0 in (3.22), we have

sup
sℓ≤s≤t

η2(s) ≤ η2(sℓ) +
λ2

2δ
2

2λ1

∫ t

sℓ
sup

sℓ≤s≤v
|x(s)|2dv.

Then, it follows from (3.11) and (3.27) that

E[ sup
sℓ≤s≤t

|x(s)|2 + sup
sℓ≤s≤t

η2(s)|Fsℓ] ≤ 2(|x(sℓ)|2 + η2(sℓ))

+ 2βL

∫ t

sℓ
E[ sup

sℓ≤s≤v
|x(s)|2| + sup

sℓ≤s≤v
η2(s)|Fsℓ]dv
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≤ 2(|x(sℓ)|2 + η2(sℓ))e2βL(t−sℓ).

Finally, let us proceed to prove the assertion (3.26). By Yong’s inequality and (3.27),

E[|x(t) − x̃(t)|2|Fsℓ] ≤ 2E[|x(t) − x(ςt)|2|Fsℓ] + 2E[|x(ςt) − x̃(t)|2|Fsℓ]

≤ 2E[|x(t) − x(ςt)|2|Fsℓ] +
4
θ2E[η2(ςt)|Fsℓ] + 4δ2E[|x(ςt)|2|Fsℓ]. (3.30)

Now, we use Hölder’s inequality and Burkholder-Davis-Gundy inequality to estimate the first term
of (3.30).

E
[
|x(t) − x(ςt)|2|Fsℓ

]
= E

[∫ t

ςt

fσ(s)(s, x(s), kσ̃(s)(x̃(s)))ds

+

∫ t

ςt

gσ(s)(s, x(s), kσ̃(s)(x̃(s)))dw(s)

∣∣∣∣∣∣2
∣∣∣∣∣Fsℓ


≤ 2L2

1(τ + 1)
∫ t

ςt

E
[
(|x(s)| + L2|x̃(s)|)2|Fsℓ

]
ds

≤ 2L2
1(τ + 1)

∫ t

ςt

E
[
(|x(s) − x(ςs)| +

L2

θ
η(ςs) + [1 + L2(δ + 1)]|x(ςs)|)2|Fsℓ

]
ds

≤ 6τL2
1(τ + 1)e6τ(τ+1)L2

1E

[
L2

2

θ2 η
2(ςt) + [1 + L2(δ + 1)]2|x(ςt)|2|Fsℓ

]
.

Substituting the aforementioned inequality into (3.30) gives

E[|x(t) − x̃(t)|2|Fsℓ] ≤ ϱ(τ, δ, θ)E
[
|x(ςt)|2 + η2(ςt)|Fsℓ

]
.

It follows from (3.24) that (3.26) holds for any t ≥ sℓ. □

Lemma 3.6. Let x(t) be the solution of system (3.4), and y(t) be the solution of system (2.2) with initial
value (x(sℓ), σ(sℓ)). Then, there holds that for any t ≥ sℓ,

E
[
|y(t) − x(t)|2|Fsℓ

]
≤ ϕ(τ, δ, θ, t − sℓ)(|x(sℓ)|2 + η2(sℓ)), (3.31)

where

ϕ(τ, δ, θ,∆) =
8(∆ + 1)L2

1L2
2

β
L

[
ϱ(τ, δ, θ) + 4(1 − eπτ)(

1
θ2 ∨ (δ + 1)2)

] (
eβL
∆
− 1

)
e8∆(∆+1)L2

1(1+L2)2
. (3.32)

Proof. With the help of (3.5), (3.14), and (3.17), we see that

E
[
|y(t) − x(t)|2|Fsℓ

]
≤ 8(t − sℓ + 1)L2

1(1 + L2)2
∫ t

sℓ
E[|y(s) − x(s)|2|Fsℓ]ds

+
8(t − sℓ + 1)L2

1L2
2ϱ(τ, δ, θ)

β
L

(
eβL

(t−sℓ) − 1
)

(|x(sℓ)|2 + η2(sℓ))

+ 16(t − sℓ + 1)L2
1L2

2(1 − eπτ)
∫ t

sℓ
E

[
|x̃(s)|2|Fsℓ

]
ds. (3.33)

AIMS Mathematics Volume 10, Issue 9, 21737–21759.



21752

In view of Lemma 3.4 and (3.27), we see that

E
[
|x̃(s)|2|Fsℓ

]
≤ 2

∫ t

sℓ
E

[
1
θ2 (δ + 1)2η2(ςs) + (δ + 1)2|x(ςs)|2

∣∣∣∣∣Fsℓ

]
ds

≤ 2(
1
θ2 ∨ (δ + 1)2)

∫ t

sℓ
{sup

sℓ s≤v
E

[
η2(s)|Fsℓ

]
+ sup

sℓ s≤v
E

[
|x(s)|2|Fsℓ

]
}dv

≤
2( 1

θ2 ∨ (δ + 1)2)
β

L

(
eβL

(t−sℓ) − 1
)

(|x(sℓ)|2 + η2(sℓ)).

Substituting the above estimation to (3.33) and using the Gronwall inequality, one can obtain the
assertion (3.15). □

Now, we are ready to prove Theorem 3.2.

Proof. By the hölder inequality and the inequality (a + b)p ≤ ap + bp, p ∈ (0, 1), inequality (3.15)
implies that for any p ∈ (0, 1),

E
[
|y(t) − x(t)|p|Fsℓ

]
≤ ϕ

p
2 (τ, δ, θ, t − sℓ)(|x(sℓ)|p + ηp(sℓ)). (3.34)

On the other hand, it follows from Lemma 3.5 that for any t ≥ sℓ,

E
[
η2(t)|Fsℓ

]
≤ [e−2λ0(t−sℓ) + ψ(δ, λ2, λ0, t − sℓ)]η2(sℓ) + ψ(δ, λ2, λ0, t − sℓ)|x(sℓ)|2

which implies that

E
[
ηp(t)|Fsℓ

]
≤ [e−pλ0(t−sℓ) + ψ

p
2 (δ, λ2, λ0, t − sℓ)]ηp(sℓ) + ψ

p
2 (δ, λ2, λ0, t − sℓ)|x(sℓ)|p, (3.35)

where ψ(δ, λ2, λ0,∆) is defined as

ψ(δ, λ2, λ0,∆) =
λ2

2δ
2

2(λ1 − λ0)(2λ0 + βL
)
(eβL

∆
− e−2λ0∆). (3.36)

Let χ(τ, δ, θ, ϵ) denote the left side of (3.23). It can be seen that for any given ϵ ∈ (0, 1) and
θ > 0, χ(τ, δ, θ, ϵ) is a continuous strictly increasing function with respect to (τ, δ), and satisfies that
limθ→+∞ χ(0, 0, θ, ϵ) = ϵ and χ(τ, δ, θ, ϵ) = +∞ as (τ, δ, θ) → (+∞,+∞, 0). Therefore, there exist small
enough positive constants τ, δ, and a sufficient large scalar θ such that χ(τ, δ, θ, ϵ) < 1.

Set T = ln(eγτM/ϵ)
γ

, ı = ⌊T
τ
⌋, T̃ = ıτ, and λ0 =

γ

p
ln(eγτ/ϵ)

ln(eγτM/ϵ) . Note that ϵ ∈ (0, 1) and M ≥ 1. one has
0 < λ0 ≤

γ

p < λ1. Moreover, it can be verified that

Me−γT+γτ = ϵ, and e−pλ0T+γτ = ϵ. (3.37)

Using (3.34)–(3.37), we get

E
[
|x(sℓ + T̃ )|p + ηp(sℓ + T̃ )|Fsℓ

]
≤ E

[
|y(sℓ + T̃ ) − x(sℓ + T̃ )|p|Fsℓ

]
+ E

[
|y(sℓ + T̃ )|p|Fsℓ

]
+ E

[
ηp(sℓ + T̃ )|Fsℓ

]
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≤ ϕ
p
2 (τ, δ, θ, T̃ )(|x(sℓ)|p + ηp(sℓ)) + Me−γT̃ |x(sℓ)|p

+ [e−pλ0T̃ + ψ
p
2 (δ, λ2, λ0, T̃ )]ηp(sℓ) + ψ

p
2 (δ, λ2, λ0, T̃ )|x(sℓ)|p

≤ χ(τ, δ, θ, ϵ)(|x(sℓ)|p + ηp(sℓ))

which means that E[|x(sı+ℓ)|p + ηp(sı+ℓ)] ≤ χ(τ, δ, θ, ϵ)E[|x(sℓ)|p + ηp(sℓ)]. By Lemma 2.2, we conclude
that the zero solution of the event-triggering stochastic systems (2.1)-(2.3)-(3.20)-(3.21) is almost
surely exponentially stable. □

4. Stability verification and emulation control law design

In this section, we present Lyapunov-based conditions for verifying Assumption 2.2 in both the
nonlinear and linear cases, respectively.

For the general nonlinear case, sufficient conditions guaranteeing the exponential moment stability
of the closed-loop system (2.2) are stated as follows.

Proposition 4.1 (Stochastic control Lyapunov function (SCLF) condition). For each mode i ∈ M,
suppose there exists a stochastic control Lyapunov function Vi ∈ C

2(R×Rn;R≥0) and constants c1 > 0,
c2 > 0, µ > 0, p ∈ (0, 1), q > p, and ηi such that c1|x|q ≤ Vi(x) ≤ c2|x|q and, for all x ∈ Rn, t ≥ 0, one
can choose a control u = ki(x) satisfying

LVi(t, x, ki(x)) + 0.5cpqη
2
i Vi(t, x) − cpqηiHVi(t, x, ki(x)) ≤ µVi(t, x), (4.1)

where LVi(t, x, u) = ∂Vi(t,x)
∂t +

∂Vi(t,x)
∂x fi(t, x, u) + 1

2 tr(g⊤i (t, x, u)∂
2V(t,x)
∂x2 gi(t, x, u)) +

∑
j∈M πi jV j(t, x),

HVi(t, x, u) = ∂Vi(t,x)
∂x gi(t, x, u), and cpq = 1 − q

p . Then the closed-loop system (2.2) is exponentially
pth-moment stable, and its solution has the following estimate

E|x(t)|p ≤ (c2/c1)
p
q |x0|

pe−
pµ
q (t−t0). (4.2)

Proof. The proof follows similar arguments as those in Theorem 3 of [23] and is therefore omitted. □

It should be noted that Proposition 4.1 provides a constructive criterion: Any Lipschitz feedback
ki(·) that enforces the inequality (4.1) (e.g., via pointwise optimization or a quadratic program)
guarantees Assumption 2.2. Consequently, the control input u can be systematically designed using the
SCLF approach combined with quadratic programming. Furthermore, if the closed-loop system (2.2)
possesses a strict-feedback structure, the stochastic backstepping technique can be employed as an
alternative for constructing the controller.

For the linear case, the system is described by the Itô stochastic differential equation

dx(t) =
[
Aσ(t)x(t) + Bσ(t)u(t)

]
dt +

[
Cσ(t)x(t) + Dσ(t)u(t)

]
dw(t), (4.3)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rn×n, D ∈ Rn×nu are real matrices, and u(t) is the control input.
We consider the mode-dependent state feedback control u(t) = Kσ(t)x(t), where Ki, i ∈ M are

constant matrices. Then, by applying Proposition 4.1, the almost sure stability criterion of the resulting
closed-loop system can be established as stated below.
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Proposition 4.2 (Stability criterion). If for some prescribed scalars p > 0, µ > 0, and ηi ∈ R, i ∈ M,
there exist n × n positive definite matrices Pi, i ∈ M, such that the following linear matrix inequalities
(LMIs) hold for all i ∈ M:

PiĀi + ĀT
i Pi + C̄T

i PiC̄i +

N∑
j=1

πi jP j +

(cp

2
η2

i + µ
)

Pi − cpηi(PiC̄i + C̄T
i Pi) ≤ 0, (4.4)

where Āi = Ai + BiKi, C̄i = Ci + DiKi, and cp = 1 − p
2 , then system (4.3) is almost surely

exponentially stable, and its solution has the estimate (4.2) with q = 2, c1 = mini∈M λmin(Pi), and
c2 = maxi∈M λmax(Pi).

Proof. The proof follows Proposition 4.1 and is therefore omitted. □

The following result shows that the aforementioned stability criterion can be used to determine
almost surely exponentially stabilizing control laws.

Proposition 4.3 (Feedback controller design). If for some prescribed scalars p > 0, µ > 0, and ηi ∈ R,
i ∈ M, there exist n × n positive definite matrices Xi, and nu × n matrices K̄i, i = 1, 2, . . . ,N, such that

Ψi(µ, p) XiCT
i + K̄T

i DT
i Yi

∗ −Xi 0
∗ ∗ −Xi

 ≤ 0, i ∈ M, (4.5)

where Ψi(µ, p) = AiXi +XiAT
i + BiK̄i + K̄T

i BT
i − cpηi(CiXi +XiCT

i +DiK̄i + K̄T
i DT

i )+ (0.5cpη
2
i +µ+ πii)Xi,

Yi =
[√
πi1Xi . . .

√
πi(i−1)Xi

√
πi(i+1)Xi . . .

√
πiN Xi

]
, and Xi = diag{X1, . . . , Xi−1, Xi+1 . . . , XN}.

Then the feedback control u(t) = Kσ(t)x(t) with Ki = K̄iX−1
i is almost surely exponentially stabilized

system (4.3), and the solution x(t) satisfies (4.2) with q = 2, c1 =
1

maxi∈M λmax(Xi)
, and c2 =

1
mini∈M λmin(Xi)

.

Proof. By using P = X−1 and the Schur complement, it can be proven that (4.5) is equivalent to (4.4).
□

Remark 4.1. It should be noted that once the scalar parameters p > 0, µ > 0, and ηi ∈ R are specified,
the matrix inequalities (4.4) and (4.5) become LMIs. In practice, we employ a two-step iterative
procedure: First, the scalar parameters µ, p, and ηi are fixed within reasonable ranges, and then the
resulting conditions reduce to LMIs in the matrix variables Pi or Xi, which can be efficiently solved
using standard LMI solvers. By scanning the scalar parameters, feasible solutions to the coupled
inequalities can be obtained.

5. Numerical examples

Example 5.1 (Stabilization by noise). Consider the Markovian jump system (4.3) with the parameters:

A1 =

[
0.5 1
0 −1.5

]
, A2 =

[
−1.5 0

1 0.5

]
, Π =

[
−1 1
1 −1

]
,

D1 =

[
1
0

]
, D2 =

[
0
1

]
, Bi = Ci = 0, i = 1, 2,
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and the switching signal {σ(t) ∈ M ≜ {1, 2}}t≥0. Figure 2a shows that the sample path trajectory of the
open-loop system is unstable. Moreover, the controller acts only on the diffusion term. The existing
results of the event-triggered control, e.g., [7,8,20], are not applicable to such systems. By solving the
linear matrix inequalities (4.5) with the choice p = 10−5, µ = 0.5, η1 = 1.8, and η2 = −1.9, we have the
gain matrices: K1 =

[
1.1074 0.6873

]
, K2 =

[
−0.7256 −1.0928

]
, and the parameters c1 = 3.42×10−4

and c2 = 2.40 × 10−3. Therefore, Theorem 3.1 (resp. Theorem 3.2) ensures the existence of a periodic
event-triggering controller (2.3) with a static ETM (3.1) (resp. a dynamic ETM (3.20)–(3.21)) that
stabilizes the stochastic hybrid system (2.1) in the almost sure sense. In fact, one can verify that the
conditions of Theorem 3.2 hold with τ = 10−324, δ = 10−162, L1 = 1.8251, L2 = 1.3088, θ = 10155,
λ1 = 0.25, λ2 = 1, and ϵ = 1−10−5. Nevertheless, it should be emphasized that the comparison system
method for designing event-triggering parameters is rather conservative. Indeed, when the parameters
of ETM (3.20)–(3.21) are instead chosen as τ = 0.001, δ = 0.01, θ = 1, λ1 = 0.5, λ2 = 0.1, with
initial conditions x0 = (1,−1.5)⊤ and σ0 = 1, the simulation results in Figure 2 demonstrate that both
the sample-path solution of the closed-loop system and the trajectory of the auxiliary variable η(t) still
converge to the origin.
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Figure 2. Simulation for Example 5.1: (a) State response of the open-loop system; (b) state
response of the closed-loop system; (c) state response of η(t); and (d) inter-event times.

Example 5.2 (Disturbance by noise). Consider a single-link robot arm [24] described by the following
dynamic equation:

Jσ(t)q̈(t) + Mσ(t)gL sin(q(t)) + D(t)q̇(t) = u(t) (5.1)

where q(t) and u(t) are the angle position of the arm and the control input, respectively. Mσ(t) is the mass
of the payload, Jσ(t) is the moment of inertia, g is the acceleration of gravity, L is the length of the arm,
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and D(t) is the coefficient of viscous friction interfered by white noise, satisfying D(t) = D0 + Dwξ(t),
where the nominal value D0 = 2, Dw is the noise intensity, and ξ(t) is Gaussian while noise that satisfies∫ t

0
ξ(s)ds = w(t), t ≥ 0. Moreover, the behavior of σ(t) is modeled as Markov chain with three different

states with generator: Π =


−3 0.5 2.5
1 −2 1

0.7 0.3 −1

 . The parameters g = 9.81, L = 0.5, Ji = Mi, i = 1, 2, 3, and

the values of J1, J2, J3 are given by 1, 5, and 10, respectively.
By introducing the variable changes: x1(t) = q(t), x2(t) = q̇(t), system (5.1) can be written

as system (2.1) with fi(t, x, u) =
[

x2

−
MigL

Ji
sin(x1) − D0

Ji
x2 +

1
Ji

u

]
and gi(t, x, u) =

[
0

−
Dw
Ji

x2

]
. Clearly,

Assumption 2.1 holds with L1 = 5.3109. Choose u(t) = Kσ(t)x1(t) in which K1 = −0.13, K2 = −0.54,
and K3 = −0.65, then it can be verified that Assumption 2.2 holds. By applying Theorem 3.2 with the
choices τ = 10−325, δ = 10−165, L1 = 5.3109, L2 = 0.65, θ = 10155, ϵ = 1 − 10−6, λ1 = 2.5 × 105,
and λ2 = 1, it can be verified that inequality (3.23) holds. Therefore, there exists a periodic event-
triggered control law designed in (2.3) with the dynamic ETM (3.20)–(3.21) such that system (5.1) can
be almost surely stabilized. On the other hand, when the parameters are chosen as τ = 0.01, δ = 0.2,
θ = 1, λ1 = 0.1, and λ2 = 1, the simulation results are shown in Figure 3, indicating that the trajectories
of system (5.1) still converge to the origin. This demonstrates that the theoretical conditions derived in
Theorem 3.2 are conservative, and in practice, much less restrictive parameter choices are sufficient to
guarantee stabilization.
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Figure 3. Simulation for Example 5.2: (a) state response of x(t); (b) switching signals; (c)
state response of η(t); (d) inter-event times.
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6. Conclusions

This paper has shown that there exist static and dynamic periodic event-triggered asynchronous
controllers such that the hybrid stochastic system driven by the continuous-time Markov chain and
Brownian motion is almost surely exponentially stable as long as the corresponding continuous-time
feedback control system is almost surely exponentially stable, and the sampling period and event-
triggering parameters are small enough. Furthermore, the proposed PETC strategies can incorporate
the positive effects of stochastic noises and can be used to solve stochastic stabilization problems in
the presence of sampled measurements. Several promising directions for future research are worth
pursuing, including (i) extending the proposed framework to broader classes of stochastic systems,
such as impulsive systems [25], (ii) developing approaches to reduce conservatism by exploiting
local Lipschitz properties, and (iii) integrating event-triggered strategies with learning-based control
methods.
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