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1. Introduction

Let the natural number set, real number set, and integer set be denoted by N, and R,Z, respectively.
Define Z(a, b) := {a, a + 1, · · · , b} with integers a ≤ b. In this paper, the following second-order
nonlinear difference equation with φ-Laplacian is investigated:

− ∆1
[
φ (∆1u (n − 1,m))

]
− ∆2

[
φ (∆2u (n,m − 1))

]
+ q (n,m) φ (u (n, ,m))

= f ((n,m) , u (n,m)) , (n,m) ∈ Z2. (1.1)

Here, the operators ∆1u(n,m) = u(n + 1,m) − u(n,m) and ∆2u(n,m) = u(n,m + 1) − u(n,m) are
defined as forward difference operators. The function f : Z2 × R → R is assumed to be continuous
with respect to its last variable. Given the positive integers T1 and T2, we consider the functions
q(n,m) ≥ 0 and f ((n,m), ·) to be (T1,T2)-periodic, that is, q(n + T1,m) = q(n,m) = q(n,m + T2) and
f ((n + T1,m), ·) = f ((n,m), ·) = f ((n,m + T2), ·) for all (n,m) ∈ Z2. In this context, let u = {u(n,m)} be
a (T1,T2)-periodic solution of (1.1) if u(n + T1,m) = u(n,m) = u(n,m + T2) for all (n,m) ∈ Z2.
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In recent years, the investigation of periodic solutions for second-order partial difference equations
has emerged as one of the prominent research topics in mathematics. In particular, it has extensive
applications in the field of physics. This topic emerges in the context of exploring periodic solutions
in spacetime for the following two-dimensional discrete nonlinear Schrödinger (DNLS) equation:

i
d
dt
ψ((n,m), t) = −∆ψ((n,m), t) + V(n,m)ψ((n,m), t) − g((n,m), ψ((n,m), t)), (1.2)

for any ((n,m), t) ∈ Z2 × [0,∞). Additionally, ∆ is introduced as the forward second-order difference
operator, which is expressed as follows:

∆ψ((n,m), ·) = ∆1(∆1ψ((n − 1,m), ·)) + ∆2(∆2ψ((n,m − 1), ·)).

Let t denote the time variable, i indicate the imaginary unit, and ψ be a complex-valued function. The
given real-valued sequence {V(n,m)} and {g((n,m), ·)} are (T1,T2)-periodic. Moreover, assume that the
DNLS equation (1.2) possesses a gauge-invariant nonlinearity defined as:

g((·, ·), eiθz) = eiθg((·, ·), z), θ, z ∈ R,

and a spacetime periodic solution of the form:

ψ((n,m), t) = u(n,m)e−iωt,

accompanied by the spatial periodicity condition:

ψ((n + T1,m), t) = ψ((n,m), t) = ψ((n,m + T2), t),

where {u(n,m)} represents a real-valued sequence, and ω denotes the temporal frequency. Then, (1.2)
becomes the following:

∆u(n,m) − V(n,m)u(n,m) + ωu(n,m) + g((n,m), u(n,m)) = 0. (1.3)

It is clear that (1.3) is a special case of (1.1), and when searching for spacetime periodic solutions to
the DNLS equation (1.2), it suffices to seek periodic solutions of (1.3).

The DNLS equation describes a nonlinear lattice system commonly found in various fields of
physics, such as nonlinear optics [1], biomolecular chains [2–4], and Bose-Einstein condensates [5–9].
For instance, the dynamical properties of localized excitations in arrays of Bose-Einstein condensates
can be investigated through the DNLS equation (1.2) within the framework of the nonlinear lattice
theory [10].

The fascinating DNLS equation has garnered considerable attention from scholars who seek to
explore the existence and multiplicity of periodic solutions for difference equations that involve the
φ-Laplacian, as well as their associated boundary value problems.

For the case where φ(x) = |x|p−2x, p > 1, Liu [11] developed a relevant variational framework and
utilized the critical point theory to investigate the existence and multiplicity of periodic solutions in
nonlinear difference systems with the p-Laplacian. In [12], the author mainly studied the existence of
periodic solutions for order nonlinear p-Laplacian difference equations with advanced and retardation.
Gao [13] investigated the existence of three nontrivial solutions for a discrete nonlinear multiparameter
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periodic problem that involves the p-Laplacian. In [14], a nonlinear difference equation of order 2n
with a p-Laplacian operator and multiple advanced and delayed terms was examined. Explicit sufficient
conditions for the existence and multiplicity of periodic and subharmonic solutions were established.
Recently, Long and Li [15] studied the existence and multiplicity of periodic solutions for a class of
second-order difference equations using the Mountain Pass Lemma and the Linking Theorem.

For the case where φ(x) = φc(x) = x/
√

1 + x2, Mei and Zhou [16] established the existence and
multiplicity of periodic and subharmonic solutions for a 2n-order nonlinear difference equation that
incorporates both numerous advances and retardations with respect to the φc-Laplacian. This was
achieved through the application of the critical point theory under more general conditions pertaining
to the nonlinear term. In [17], sufficient conditions were established for the existence of infinitely many
positive solutions to boundary value problems for second-order φc-Laplacian difference equations
using the critical point theory. Immediately following this, Chen and Zhou [18] investigated the
existence of infinitely many positive solutions for second-order difference equations with boundary
value problems involving a special φc-Laplacian. Xiong [19] studied the existence of infinitely many
small solutions for a partially discrete Dirichlet problem with a perturbation term and the φc-Laplacian
using the critical point theory.

For other cases that involved the φ-Laplacian, Lin and Zhou [20], utilized the critical point theory, to
investigate the existence and multiplicity of periodic solutions and subharmonic solutions for 2n-order
nonlinear difference equations involving both advanced and delayed terms with the φ-Laplacian.

However, the existing research mainly focused on specific φ-Laplacians, such as the p-Laplacian
and the φc-Laplacian. This paper aims to study the more general case of the φ-Laplacian and explore
the influence of the properties of the φ-Laplacian on the existence and structure of solutions.

The rest of the paper is organized as follows: in Section 2, we provide a variational framework
associated with (1.1) and show some auxiliary results; in Section 3, we present the sufficient conditions
for the multiplicity of periodic solutions to (1.1) and give remarks for our main results; in Section 4,
we provide the proofs of the main results; and finally, in Section 5, we share the main conclusions of
the paper.

2. Variational structure and some auxiliary results

First, we will establish the appropriate variational framework for (1.1). Let S be the set of all
bivariate sequences u = {u(n,m)}(n,m)∈Z2 , which are specifically defined as follows:

S =
{
u = {u(n,m)} | u(n,m) ∈ R, (n,m) ∈ Z2

}
.

We can express u ∈ S as follows:

u = (· · · ; · · · , u (0, 0) , u (1, 0) , u (2, 0) , · · · ; · · · , u (0, 1) , u (1, 1) , · · · ; · · · ) .

For any u, v ∈ S , a, b ∈ R, au + bv is defined by the following:

au + bv = {au(n,m) + bv(n,m)}(n,m)∈Z2 ;

then, S is a vector space.
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Write Ω := Z(1,T1) × Z(1,T2). Define the subset E of S as follows:

E = {u = {u(n,m)} ∈ S | u (n + T1,m) = u (n,m) = u (n,m + T2) , (n,m) ∈ Ω} .

Then, E and RT1T2 are isomorphic, and E can equipped with the inner product 〈·, ·〉 and norm ‖·‖ as
follows:

〈u, v〉 =

T1∑
n=1

T2∑
m=1

u(n,m)v(n,m) and ‖u‖ =

 T1∑
n=1

T2∑
m=1

|u(n,m)|2


1
2

, for any u, v ∈ E.

Obviously, (E, 〈·, ·〉) is a T1T2 -dimensional real Hilbert space and a linearly homeomorphism to RT1T2 .
Define another norm || · ||w on E as follows:

‖u‖w =

 T1∑
n=1

T2∑
m=1

|u(n,m)|w


1
w

, u ∈ E, w ≥ 1.

By Hölder’ inequality and Jensen’ inequality, one has the following:

ηw||u|| ≤ ||u||w ≤ τw||u||, u ∈ E, (2.1)

where

ηw =

{
1, 1 ≤ w < 2,

(T1T2)
2−w
2w , 2 ≤ w,

τw =

{
(T1T2)

2−w
2w , 1 ≤ w < 2,

1, 2 ≤ w.

Define the functional I on E as follows:

I(u) =

T1∑
n=1

T2∑
m=1

[Φ(∆1u(n − 1,m)) − Φ(∆2u(n,m − 1)) + q(n,m)Φ(u(n,m))]

−

T1∑
n=1

T2∑
m=1

F((n,m), u(n,m)), u ∈ E,

(2.2)

where Φ(u) =
∫ u

0
φ(s)ds is the primitive of φ(u), and F((n,m), z) =

∫ z

0
f ((n,m), s)ds.

Then, I ∈ C1(E,R). By u(n+T1,m) = u(n,m) = u(n,m+T2), for all (n,m) ∈ Ω, the direct calculation
is as follows:

〈I′(u), v〉 = lim
t→∞

I(u + tv) − I(u)
t

=

T1∑
n=1

T2∑
m=1

[∆1[φ (∆1u (n − 1,m))]∆1v(n,m) + ∆2[φ (∆2u (n,m − 1))]∆2v(n,m)

+ q (n,m) φ (u (n, ,m)) v(n,m) − f ((n,m) , u (n,m)) v(n,m)]

=

T1∑
n=1

T2∑
m=1

{−∆1φ (∆1u (n − 1,m)) − ∆2φ (∆2u (n,m − 1))

+ q (n,m) φ (u (n,m)) − f ((n,m) , u (n,m))}v(n,m), n,m ∈ Ω.
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Then, u ∈ E is a critical point of I, ( i.e., I′ (u) = 0,) if and only if

− ∆1
[
φ (∆1u (n − 1,m))

]
− ∆2

[
φ (∆2u (n,m − 1))

]
+ q (n,m) φ (u (n,m)) − f ((n,m) , u (n,m)) = 0, (n,m) ∈ Ω.

This implies that u = {u(n,m)} ∈ E is a (T1,T2)-periodic solution of (1.1). Thus, the problem of finding
(T1,T2)-periodic solutions of (1.1) is equivalent to that of seeking the critical points of I on E. Define
the following matrix:

Qkl =


Pk 0

Pk
. . .

0 Pk


kl×kl

, where Pk =



2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


k×k

.

From the properties of eigenvalues, it is known that Qkl and Pk have the same eigenvalues. Furthermore,
each eigenvalue of Qkl is an l -multiple of the corresponding eigenvalue of Pk. By the matrix theory,
the eigenvalues of the matrix Pk are

vi = 2
(
1 − cos

2iπ
k

)
, i = 0, 1, 2, · · · , k − 1,

which implies v0 = 0 and v1 > 0, · · · , vk−1 > 0. Thus, vmin = min{v1, v2, · · · , vk−1} = 4 sin2 π
k ,

vmax = max{v1, v2, · · · , vk−1} = 4 cos2 (1−(−1)k)π
4k .

Similarly, let λmin and λmax denote the smallest nonzero eigenvalue and the largest eigenvalue of QT1T2 ,
respectively, while µmin and µmax represent the smallest nonzero eigenvalue and the largest eigenvalue
of QT2T1 , respectively. It follows that λmin = 4 sin2 π

T1
,

λmax = 4 cos2 (1−(−1)k)π
4T1

,

 µmin = 4 sin2 π
T2
,

µmax = 4 cos2 (1−(−1)k)π
4T2

.

Write E = E1 ⊕ E2, where E1 = {x ∈ E1 | x = {c}, c ∈ R} and E1 = E⊥2 . Let Br denote the open ball in
E centered at 0 with radius r, and let ∂Br denote its boundary.

Definition 2.1. Let E be a real Banach space and I ∈ C1 (E,R) . If sequence {un} ⊂ E such that {I (un)}
is bounded and

lim
n→∞

I′ (un)→ 0,

possesses a convergent subsequence, then I satisfies the Palais-Smale (P.S. for short) condition.

Lemma 2.1. (Linking theorem [21]) Let E be a real Banach space and E = E1 ⊕ E2, where E1 is
a finite-dimensional subspace of E. Assume that I ∈ C1 (E,R) satisfies the P.S. condition and the
following two conditions:
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(J1) There exist constants ρ > 0 and a > 0 such that I |∂Bρ∩E2≥ a; and
(J2) There exist an e ∈ ∂B1 ∩ E2 and a constant R0 > ρ such that I |∂Q≤ 0, where Q =

(
B̄R0 ∩ E1

)
⊕

{se | 0 < s < R0} .

Then, I possesses a critical value c ≥ a, where

c = inf
h∈Γ

max
t∈Q̄

I (h(t)) , Γ =
{
h ∈ C

(
Q̄, E

)
: h |∂Q= id

}
.

The inequalities presented below are utilized in the proofs of the subsequent theorems. Detailed
proofs can be found in [15].

Lemma 2.2. For any u ∈ E and w ≥ 1, the following holds:

||∆1u||ww ≤ τ
w
wλ

w
2
max||u||w, ||∆2u||ww ≤ τ

w
wµ

w
2
max||u||w, (2.3)

and
||∆1u||ww ≤ 2w||u||ww, ||∆2u||ww ≤ 2w||u||ww. (2.4)

For any u ∈ E2 and w ≥ 1, one has the following:

||∆1u||ww ≥ η
w
wλ

w
2
min||u||

w, ||∆2u||ww ≥ η
w
wµ

w
2
min||u||

w. (2.5)

3. Main results

For convenience, we introduce some notations based on the main results:

q∗ = max
(n,m)∈Z2

{q (n,m)}, q∗ = min
(n,m)∈Z2

{q (n,m)}.

Here, we present several conditions:

(Φ1) There exist constants ε1 > 0, a1 > 0, and γ ≥ 1 such that

Φ (u) ≥ a1 |u|γ , for |u| ≤ ε1.

(Φ2) There exist constants σ1 > 0, b1 > 0, c1 > 0, and ν ≥ 2 such that

Φ (u) ≤ b1 |u|ν + c1, for |u| ≥ σ1.

(F0)
∑T1

m=1

∑T2
n=1 F ((m, n), z) ≥ 0 for any z ∈ R.

(F1) There exist constants ε2 > 0, α1 > 0, and θ ≥ 1 such that

|F ((n,m) , z)| ≤ α1 |z|θ , for (n,m) ∈ Z2 and |z| ≤ ε2.

(F2) There exist constants σ2 > 0, ξ1 > 0, β1 > 0, and p ≥ 2 such that

F ((n,m) , z) ≥ β1 |z|p − ξ1, for (n,m) ∈ Z2 and |z| ≥ σ2.

(H1) p = ν and β1 > max
{
2ν+1b1 + q∗b1 , b1(T1T2)

|ν−2|
2

(
λ

ν
2
min + µ

ν
2
min + q∗

)}
.

(H2) p > ν.
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(H3) θ = γ and α1 <
(
a1λ

γ
2
min + a1µ

γ
2
min + q∗a1

)
(T1T2)

−|2−γ|
2 .

(H4) θ > γ.

Remark 3.1. We shall employ the critical point theory to examine the multiplicity of periodic solutions
of (1.1) based on the hypotheses (H1)–(H4). Intuitively, these hypotheses collectively sculpt the energy
landscape of the corresponding functional of (1.1): (H3) and (H4) ensure the origin is a local minimum,
while (H1) and (H2) guarantee that the functional becomes negative at infinity, thus creating the
mountain-pass geometry essential for the existence of nontrivial critical points.

Remark 3.2. By (Φ2), we can conclude that there exists a positive constant C > 0 such that

Φ((n,m), u) ≤ b1|u|ν + C, ((n,m), u) ∈ Z2 × R. (3.1)

In fact, let
c2 = max

(n,m)∈Z2 |u|≤σ1

{Φ((n,m), u) − b1|u|ν} .

Take C = max{c1, c2}; thus, (3.1) is obtained easily.
Similarly, from (F2), it follows that there exists a constant ξ′ > 0 such that

F((n,m), z) ≥ β1|z|p − ξ′, ((n,m), z) ∈ Z2 × R. (3.2)

Now, we can declare the following as our primary results.

Theorem 3.1. Suppose that (Φ1), (Φ2), and (F0)–(F2) hold. Additionally, assume that one of the
following four cases is satisfied:

(1) (H1) and (H3) hold;
(2) (H1) and (H4) hold;
(3) (H2) and (H3) hold; or
(4) (H2) and (H4) hold.

Then, (1.1) possesses at least two nontrivial (T1,T2)- periodic solutions.

Remark 3.3. We see that the p-Laplacian operator given by φp(u) = |u|p−2u (1 < p < ∞) satisfies
(Φ1) and (Φ2). Theorem 3.1 is the synthesis of Theorems 1 and 2 presented in [15]. Similarly, φ(u) =
|u|p−2u
√

1+|u|p
(1 < p < ∞) can also satisfy functions (Φ1) and (Φ2). Compared with existing results, this

further demonstrates that we have a more generalized form of the φ-Laplacian to satisfy the theorem.

Remark 3.4. We provided examples of f that meet the conditions in Theorem 3.1. Letting

α =
γ

2

(
a1λ

γ
2
min + a1µ

γ
2
min + q∗a1

)
(T1T2)

−|2−γ|
2

and
β = 2ν+2b1ν + q∗b1ν + b1ν(T1T2)

|ν−2|
2

(
λ

ν
2
min + µ

ν
2
min + q∗

)
,

we have the following four examples:
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(1) (F0)–(F2), (H1), and (H3) hold when

f ((·, ·), z) =


α|z|γ−2z, |z| ≤ 1,

−α + (β2ν−1 − α)(z + 1), −2 < z < −1,
α + (β2ν−1 − α)(z − 1), 1 < z < 2,

β|z|ν−2z, |z| ≥ 2;

(2) (F0)–(F2), (H1), and (H4) hold when f ((·, ·), z) = β|z|γ+ν−2z if |z| ≤ 1 and f ((·, ·), z) = β|z|ν−2z if
|z| > 1;

(3) (F0)–(F2), (H2), and (H3) hold when f ((·, ·), z) = |z|γ+ν−2z + α|z|γ−2z for z ∈ R; and
(4) (F0)–(F2), (H2), and (H4) hold when f ((·, ·), z) = |z|γ+ν−2z for z ∈ R.

4. Proof of main results

Before we proceed to prove Theorem 3.1, we will first show some key lemmas. This will establish
a solid foundation for the subsequent discussion of Theorem 3.1.

Lemma 4.1. Assume that (Φ1), (F1), and (H3) are satisfied. Then, there exist constants ρ, a > 0 such
that I |∂Bρ∩E2≥ a.

Proof. It follows from (Φ1), (F1), and (2.4) that |u(n,m)| ≤ ||u|| for any (n,m) ∈ E. Let ρ = min{ε1, ε2}.
Then, for all u ∈ ∂Bρ ∩ E2, we have the following:

I(u) =

T1∑
n=1

T2∑
m=1

[Φ(∆1u(n − 1,m)) + Φ(∆2u(n,m − 1)) + q(n,m)Φ(u(n,m))]

−

T1∑
n=1

T2∑
m=1

F((n,m), u(n,m))

≥

T1∑
n=1

T2∑
m=1

[a1|∆1u(n − 1,m)|γ + a1|∆2u(n,m − 1)|γ + q∗a1|u(n,m)|γ − α1|u(n,m)|θ]

=a1||∆1u||γγ + a1||∆2u||γγ + q∗a1||u||γγ − α1||u||θθ

≥a1η
γ
γλ

γ
2
min||u||

γ + a1η
γ
γµ

γ
2
min||u||

γ + q∗a1η
γ
γ||u||

γ − α1τ
θ
θ||u||

θ

=a1η
γ
γλ

γ
2
minρ

γ + a1η
γ
γµ

γ
2
minρ

γ + q∗a1η
γ
γρ

γ − α1τ
θ
θρ

θ.

Since γ = θ, for all u ∈ ∂Bρ ∩ E2 one has the following:

I(u) ≥
(
a1η

γ
γλ

γ
2
min + a1η

γ
γµ

γ
2
min + q∗a1η

γ
γ − α1τ

γ
γ

)
ργ.

From (2.1), we have the following:

η
γ
γ

τ
γ
γ

= (T1T2)
−|γ−2|

2 =

(T1T2)
γ−2

2 , 1 ≤ γ < 2,
(T1T2)

2−γ
2 , 2 ≤ γ.
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Thus, by (H3), we get that α1 <
(
a1λ

γ
2
min + a1µ

γ
2
min + q∗a1

)
η
γ
γ

τ
γ
γ
.

Take a =

(
a1η

γ
γλ

γ
2
min + a1η

γ
γµ

γ
2
min + q∗a1η

γ
γ − α1τ

γ
γ

)
ργ > 0. Then,

I(u) ≥ a, u ∈ ∂Bρ ∩ E2.

The proof of the lemma is finished. �

Lemma 4.2. Assume that (Φ1), (F1), and (H4) are satisfied. Then, there exist constants ρ, a > 0 such
that I |∂Bρ∩E2≥ a.

Proof. Let ρ = min

ε1, ε2,

(
γa1η

γ
γλ

γ
2
min+γa1η

γ
γµ

γ
2
min+γq∗a1η

γ
γ

θα1τ
θ
θ

) 1
θ−γ

. For any u ∈ ∂Bρ ∩ E2, we get that |u(n,m)| ≤

||u|| = ρ for any (n,m) ∈ Ω. From (Φ1), (F1), and (2.5), we have the following:

I(u) =

T1∑
n=1

T2∑
m=1

[Φ(∆1u(n − 1,m)) + Φ(∆2u(n,m − 1)) + q(n,m)Φ(u(n,m))]

−

T1∑
n=1

T2∑
m=1

F((n,m), u(n,m))

≥

T1∑
n=1

T2∑
m=1

[a1|∆1u(n − 1,m)|γ + a1|∆2u(n,m − 1)|γ + q∗a1|u(n,m)|γ − α1|u(n,m)|θ]

=a1||∆1u||γγ + a1||∆2u||γγ + q∗a1||u||γγ − α1||u||θθ

≥a1η
γ
γλ

γ
2
min||u||

γ + a1η
γ
γµ

γ
2
min||u||

γ + q∗a1η
γ
γ||u||

γ − α1τ
θ
θ||u||

θ

=a1η
γ
γλ

γ
2
minρ

γ + a1η
γ
γµ

γ
2
minρ

γ + q∗a1η
γ
γρ

γ − α1τ
θ
θρ

θ.

Take a = a1η
γ
γλ

γ
2
minρ

γ + a1η
γ
γµ

γ
2
minρ

γ + q∗a1η
γ
γρ

γ − α1τ
θ
θρ

θ. Then,

I(u) ≥ a > 0, u ∈ ∂Bρ ∩ E2.

The proof of the lemma is complete. �

Lemma 4.3. Assume that (Φ2), (F0), (F2), and (H1) are satisfied. Then, there exist e ∈ ∂B1 ∩ E2 and
R0 > ρ such that I |∂Q≤ 0, where Q = (B̄R0 ∩ E1) ⊕ {se | 0 < s < R0}.

Proof. Define u = se + x, where e ∈ ∂B1 ∩ E2, x ∈ E1, and s ≥ 0. From (Φ2), (F2), and (2.5), we can
obtain the following:

I(u) =

T1∑
n=1

T2∑
m=1

[Φ(∆1(se(n − 1,m) + x(n − 1,m))) + Φ(∆2(se(n,m − 1) + x(n,m − 1)))

+ q(n,m)Φ(se(n,m) + x(n,m)) − F((n,m), se(n,m) + x(n,m))]

≤

T1∑
n=1

T2∑
m=1

[b1|∆1(se(n − 1,m))|ν + b1|∆2(se(n,m − 1))|ν
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+ q∗b1|se(n,m) + x(n,m)|ν − β1|se(n,m) + x(n,m)|p + ξ′ + 2C + q∗C]
=b1||∆1(se)||νν + b1||∆2(se)||νν + q∗b1||se + x||νν − β1||se + x||pp

+ (q∗C + 2C + ξ′)T1T2

≤b1τ
ν
νλ

ν
2
maxsν + b1τ

ν
νµ

ν
2
maxsν + q∗b1τ

ν
ν||se + x||ν − β1η

p
p||se + x||p

+ (q∗C + 2C + ξ′)T1T2.

Since p = ν ≥ 2, we have the following:

I(u) ≤
(
b1τ

ν
νλ

ν
2
max + b1τ

ν
νµ

ν
2
max + q∗b1τ

ν
ν − β1η

ν
ν

)
sν

+ (q∗b1τ
ν
ν − β1η

ν
ν)||x||

ν + (q∗C + 2C + ξ′)T1T2.

From (2.1), we have the following:

τνν
ηνν

= (T1T2)
|ν−2|

2 =

{
(T1T2)

2−ν
2 , 1 ≤ ν < 2,

(T1T2)
ν−2

2 , 2 ≤ ν.

Then, with (H1), we obtain that β1η
ν
ν > b1τ

ν
νλ

ν
2
max + b1τ

ν
νµ

ν
2
max + q∗b1τ

ν
ν. Notice that, for any x ∈ E1, by

(F0) there is

I(x) = −

T1∑
n=1

T2∑
m=1

F((n,m), x(n,m)) ≤ 0.

Thus, there exists a constant R0 > ρ such that I |∂Q≤ 0, where Q = (B̄R0 ∩ E1) ⊕ {se | 0 < s < R0}. �

Lemma 4.4. Assume that (Φ2), (F0), (F2), and (H2) are satisfied. Then, there exist e ∈ ∂B1 ∩ E2 and
R0 > ρ such that I |∂Q≤ 0, where Q = (B̄R0 ∩ E1) ⊕ {se | 0 < s < R0}.

Proof. Let e ∈ ∂B1 ∩ E2, such that u = se + x, where s ≥ 0, and x ∈ E1.
When (Φ2) and (F2) are satisfied, by (2.4), we can get that

I(u) ≤b1τ
ν
νλ

ν
2
maxsν + b1τ

ν
νµ

ν
2
maxsν + q∗b1τ

ν
ν||se + x||ν − β1η

p
p||se + x||p

+ (q∗C + 2C + ξ′)T1T2

≤

(
b1τ

ν
νλ

ν
2
max + b1τ

ν
νµ

ν
2
max + q∗b1τ

ν
ν2

ν−2
2

)
sν − β1η

p
psp + 2

ν−2
2 b1q∗τνν||x||

ν

− β1η
p
p||x||

p + (q∗C + 2C + ξ′)T1T2.

Let

g1(t) =

(
b1τ

ν
νλ

ν
2
max + b1τ

ν
νµ

ν
2
max + q∗b1τ

ν
ν2

ν−2
2

)
tν − β1η

p
ptp,

g2(t) = 2
ν−2

2 b1τ
ν
νq
∗tν − β1η

p
ptp + (q∗C + 2C + ξ′)T1T2.

With p > ν, we have that
lim
t→∞

g1(t) = −∞, lim
t→∞

g2(t) = −∞,
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since t ≥ 0, g1(t), and g2(t) are bounded from above. Notice from (F0) that

I(x) = −

T1∑
n=1

T2∑
m=1

F((n,m), x(n,m)) ≤ 0, x ∈ E1.

Thus, there exists a constant R0 > ρ such that I |∂Q≤ 0, where Q = (B̄R0 ∩ E1) ⊕ {se | 0 < s < R0}. �

Lemma 4.5. Assume that (Φ2), (F2), and (H1) are satisfied. Then, I satisfies the P.S. condition in E.

Proof. Let {uk} ⊂ E, for all k ∈ N, be such that {I(uk)} is bounded. Then, there exists a positive constant
M1 such that

|I(uk)| ≤ M1, k ∈ N.

Based on (2.2), (2.4), and (3.1), we have the following:

I(uk) =

T1∑
n=1

T2∑
m=1

[
Φ(∆1uk(n − 1,m)) + Φ(∆2uk(n,m − 1)) + q(n,m)Φ(uk(n,m))

]
−

T1∑
n=1

T2∑
m=1

F((n,m), uk(n,m))

≤

T1∑
n=1

T2∑
m=1

[
b1|∆1uk(n − 1,m)|ν + b1|∆2uk(n,m − 1)|ν + q∗b1|uk(n,m)|ν + 2C + q∗C

]
+

T1∑
n=1

T2∑
m=1

[
ξ′ − β1|uk(n,m)|p

]
=b1||∆1uk||

ν
ν + b1||∆2uk||

ν
ν + q∗b1||uk||

ν
ν − β1||uk||

p
p +

(
2C + q∗C + ξ′

)
T1T2

≤2νb1||uk||
ν
ν + 2νb1||uk||

ν
ν + q∗b1||uk||

ν
ν − β1||uk||

p
p +

(
2C + q∗C + ξ′

)
T1T2

=
(
2ν+1b1 + q∗b1

)
||uk||

ν
ν − β1||uk||

p
p +

(
2C + q∗C + ξ′

)
T1T2. (4.1)

When ν = p,
−M1 ≤ I(uk) ≤

(
2ν+1b1 + q∗b1 − β1

)
||uk||

ν
ν +

(
2C + q∗C + ξ′

)
T1T2.

From β1 > 2ν+1b1 + q∗b1, we conclude that

||uk||
ν
ν ≤

M1 + (2C + q∗C + ξ′) T1T2

β1 − 2ν+1b1 − q∗b1
.

It can be concluded that {uk} ⊂ E is bounded. As a result, {uk} has a convergence subsequence in E and
the proof is complete. �

Lemma 4.6. Assume that (Φ2), (F2), and (H1) are satisfied. Then, I has a critical point ū ∈ E such
that I(ū) = supu∈E I(u) = cmax > 0.

Proof. By (4.1), for any u ∈ E, we have the following:

I(u) ≤ (2ν+1b1 + q∗b1 − β1)||u||νν + (2C + q∗C + ξ′)T1T2.
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According to β1 > 2ν+1b1 + q∗b1, we have

I(u) ≤ (2C + q∗C + ξ′)T1T2

and
lim
||u||→∞

I(u) = −∞.

This indicates that I is bounded above on E. By the continuity of I, there exists ū ∈ E such that

I(ū) = sup
u∈E

I(u) = cmax.

Namely, ū is a critical point of E. By Lemma 4.3, we see cmax > 0. The proof of the lemma is
complete. �

Lemma 4.7. Assume that (Φ2), (F2), and (H2) are satisfied. Then I satisfies the P.S. condition in E.

Proof. Let {uk} be a P.S. sequence; then, there exists a positive constant M2 such that

|I(uk)| ≤ M2, k ∈ N.

From the definition of I(u) and (2.3), we can infer that

I(uk) =

T1∑
n=1

T2∑
m=1

[Φ(∆1uk(n − 1,m)) + Φ(∆2uk(n,m − 1)) + q(n,m)Φ(uk(n,m))]

−

T1∑
n=1

T2∑
m=1

F((n,m), uk(n,m))

≤

T1∑
n=1

T2∑
m=1

[b1|∆1uk(n − 1,m)|ν + b1|∆2uk(n,m − 1)|ν + q∗b1|uk(n,m)|ν + 2C + q∗C]

+

T1∑
n=1

T2∑
m=1

[
ξ′ − β1|uk(n,m)|p

]
=b1||∆1uk||

ν
ν + b1||∆2uk||

ν
ν + q∗b1||uk||

ν
ν − β1||uk||

p
p + (2C + q∗C + ξ′)T1T2

≤τννλ
ν
2
maxb1||uk||

ν + τννµ
ν
2
maxb1||uk||

ν + τννq
∗b1||uk||

ν − ηp
pβ1||uk||

p +
(
2C + q∗C + ξ′

)
T1T2

=

(
τννλ

ν
2
maxb1 + τννµ

ν
2
maxb1 + τννq

∗b1

)
||uk||

ν − ηp
pβ1||uk||

p +
(
2C + q∗C + ξ′

)
T1T2.

Thus,

−M2 ≤ I(uk) ≤
(
τννλ

ν
2
maxb1 + τννµ

ν
2
maxb1 + τννq

∗b1

)
||uk||

ν − ηp
pβ1||uk||

p + (2C + q∗C + ξ′)T1T2.

Then,
ηp

pβ1||uk||
p −

(
τννλ

ν
2
maxb1 + τννµ

ν
2
maxb1 + τννq

∗b1

)
||uk||

ν ≤ M2 + (2C + q∗C + ξ′)T1T2.

Since p > ν, it is easily seen that {uk} is a bounded sequence in E. Consequently, {uk} ⊂ E possesses a
convergence subsequence in E and the lemma is proven. �
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Lemma 4.8. Assume that (Φ2), (F2), and (H2) are satisfied. Then, I has a critical point ū ∈ E such
that I(ū) = supu∈E I(u) = cmax > 0.

Proof. By the proof of Lemma 4.7, we have the following:

I(u) ≤
(
τννλ

ν
2
maxb1 + τννµ

ν
2
maxb1 + τννq

∗b1

)
||u||ν − ηp

pβ1||u||p + (2C + q∗C + ξ′)T1T2.

Since p > ν, we get that I is bounded above in E, and

lim
||u||→∞

I(u) = −∞.

Thus, there exists ū ∈ E such that
I(ū) = sup

u∈E
I(u) = cmax.

Namely, ū is a critical point of E. By Lemma 4.4, we have cmax > 0. The proof of the lemma is
complete. �

Proof of Theorem 3.1 . From the aforementioned proven theorems, it is evident that when conditions
(Φ2) and (F2) are simultaneously satisfied, irrespective of whether the relationship between p and ν
adheres to (H1) or (H2), the functional I defined on E can fulfill the P.S. condition and satisfy (J1) of
the Linking Theorem. According to Lemmas 4.3 and 4.4, it can be concluded that if (H3) or (H4) is
satisfied, then (J2) of the Linking Theorem can be proven.

By one of the above four cases and the Linking Theorem, the functional I has a critical value
c ≥ a > 0 expressed by the following:

c = inf
h∈Γ

max
t∈Q̄

I (h(t)) ,

where
Γ =

{
h ∈ C

(
Q̄, E

)
: h |∂Q= id

}
.

In other words, there is a nonzero critical point ũ ∈ E such that I (ũ) ≥ a > 0. Moreover, we claim
that this ũ is nonconstant. In fact, if ũ is constant, then we obtain I (ũ) ≤ 0 by (F0) and (2.2). This is a
contradiction.

From either Lemma 4.6 or Lemma 4.8, it follows that I has a critical point ū ∈ E such that

I(ū) = sup
u∈E

I(u) = cmax > 0.

Similarly, we can show that ū is nonconstant.
If ū , ũ, then the proof of Theorem 3.1 is complete. If ū = ũ, we conclude that c = cmax, which is

equivalent to the following:
sup
u∈E

I (u) = inf
h∈Γ

max
t∈Q̄

I (h(t)) .

Choosing h |∂Q= id ∈ Γ, we can obtain supQ̄ I (u) = cmax = c. The choice of e ∈ ∂B1 ∩ E2

in Lemma 4.3 or Lemma 4.4 is arbitrary; therefore, we can also chose −e ∈ ∂B1 ∩ E2 at this time.
Similarly, it can be deduced that there exists a constant R1 > ρ such that I |∂Q1≤ 0, where Q1 =
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B̄R1 ∩ E1

)
⊕ {−se | 0 < s < R1}. Once again, by applying Lemma 2.1, I has a critical value c′ ≥ a > 0,

where
c′ = inf

h∈Γ1
max
t∈[0,1]

I (h(t)) , Γ1 =
{
h ∈ C

(
Q̄1, E

)
: h |∂Q1= id

}
.

If c′ , c, then the proof of Theorem 3.1 is complete. If c′ = c = cmax, i.e.,

sup
u∈E

I (u) = inf
h∈Γ1

max
t∈Q̄1

I (h(t)) ,

then supu∈E I (u) = supu∈Q̄ I (u) = supu∈Q̄1
I (u). Note that I |∂Q≤ 0, I |∂Q1≤ 0; hence, the value of I

reaches its maximum within the interior of the sets Q and Q1. However, Q̄ ∩ Q̄1 ⊂ E1, and for any
u ∈ E1 = A− ⊕ A0, from (F0), one has the following:

I (u) ≤ −
T1∑

n=1

T2∑
m=1

F ((n,m) , u (n,m)) ≤ 0.

It is shown that I (u) ≤ 0 for any u ∈ Q̄ ∩ Q̄1. Therefore, there exists a critical point û ∈ E such that
û , ũ and I (û) = c = cmax = c′. Additionally, we can show that û is nonconstant.

From the above, we see that (1.1) possesses at least two nontrivial (T1,T2)-periodic solutions. The
proof of the theorem is finished. �

5. Conclusions

In this paper, we utilize the critical point theory to investigate the existence of multiple periodic
solutions for a class of second-order nonlinear partial difference equations involving the φ-Laplacian
operator. This operator not only includes the classical p-Laplacian but also covers a broader class of
operators satisfying (Φ1) or (Φ2). Compared with existing works, this study obtains clearer sufficient
conditions for the multiplicity of periodic solutions. The result can be applied to the existence problem
of spacetime periodic solutions for two-dimensional discrete nonlinear Schrödinger equations.
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