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Abstract: In this paper, we investigated the traveling wave solutions to a one prey-two competing
predators model with nonlocal delay. First, we analyzed the stability of the positive equilibrium by
using a Lyapunov function. Then, by examining the distribution of the roots of the characteristic
equation, we ascertained the critical wave speed c∗. Finally, employing the cross iteration method and
Schauder’s fixed point theorem, we proved the existence of traveling wave solutions connecting the
trivial equilibrium (0, 0, 0) with the positive equilibrium (u∗, v∗,w∗) for wave speeds c > c∗. The
incorporation of nonlocal delay into models featuring intra-specific and inter-specific competition
significantly elevates computational complexity, thereby necessitating precise analytical estimates.

Keywords: one prey-two competing predators model; nonlocal delay; traveling wave solutions;
Lyapunov function; cross-iteration
Mathematics Subject Classification: 34C37, 35C07

1. Introduction

Prey-predator interaction is one of the dominant themes in both ecology and mathematical ecology
due to its universal existence and importance [1, 2]. In particular, the dynamics of these interactions
can be affected by inter-specific or intra-specific competition among species, and these competitive
pressures can affect the population dynamics and stability of prey-predator systems [3–5]. In [3],
Long, Wang, and Li considered the following prey-predator model with inter-specific and intra-specific
competition: 

dx
dt = x(1 − x) − xy

b1+x −
xz

b2+x ,
dy
dt =

a1 xy
b1+x − k1y − m1yz − h1y2,

dz
dt = a2 xz

b2+x − k2z − m2yz − h2z2,

(1.1)
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where x(t), y(t), and z(t) denote the population densities of a prey species and two competing predator
species at time t, respectively. The constants a1, a2, b1, b2, k1, k2,m1,m2, h1, h2 are positive. For more
details on the background of this system, see [3].

The fact that the spatial distribution of the population is heterogeneous and given that the trend of
things at a given moment in time depends not only on the present but may also depend on the past, some
researchers have added diffusion and time delay to the model [6–8]. But the population individuals are
mobile and their spatial positions change over time. To address this, Britton [9, 10] proposed that the
time delay term should be combined with a spatially weighted average, which is called the time-space
time delay or the nonlocal delay. It is usually expressed in convolution form.

Given that the introduction of nonlocal delay can enhance the precision of models, many researchers
have investigated the impact of nonlocal delay on the dynamics of ecological models [11–13].

As a class of solutions with spatial translation invariance, traveling wave solutions can account
for the oscillations of solutions and the finite-speed propagation of disturbances caused by nonlocal
delay. Li et al. [14] employed Schauder’s fixed point theorem and an iteration scheme to demonstrate
the existence of traveling wave solutions for the following reaction-diffusion competition-cooperation
model with nonlocal delay and stage-structure:

∂v1(x,t)
∂t = d1

∂2v1(x,t)
∂x2 + α1u1(x, t) − γ1v1(x, t) − α1(g1 ~ u1)(x, t),

∂u1(x,t)
∂t = D1

∂2u1(x,t)
∂x2 + α1(g1 ~ u1)(x, t) − a1u2

1(x, t) − b1u1(x, t)u2(x, t),
∂v2(x,t)
∂t = d2

∂2v2(x,t)
∂x2 + α2u2(x, t) − γ2v2(x, t) − α2(g2 ~ u2)(x, t),

∂u2(x,t)
∂t = D2

∂2u2(x,t)
∂x2 + α2(g2 ~ u2)(x, t) + b2u1(x, t)u2(x, t) − a2u2

2(x, t),

for t > 0, x ∈ R, and (gi ~ ui)(x, t) is the nonlocal delay specially defined by

(gi ~ ui)(x, t) =

∫ +∞

0

∫ +∞

−∞

e−γi sgi(y, s)ui(x − y, t − s)dyds, i = 1, 2,

where the specific forms of the kernels g1(x, t) and g2(x, t) are found in [14]. vi(x, t), ui(x, t) represent
the densities of the immature and mature populations of two species at location x and time t,
respectively. di and Di(i = 1, 2) are the diffusion of the immature and mature members of two species,
α1 and α2 represent the birth rates, γ1 and γ2 are immature death rates, and a1 and a2 are the rate
of inter-specific competition among two mature species. b1 and b2 are the rate of competition and
cooperation between the two mature species, respectively. All the parameters are positive constants.

In [15], Li and Huang considered the following reaction-diffusion prey-predator system with
nonlocal delay:

∂u1
∂t =d1∆u1 + u1(r1 − a1u2 − b1u1), (x, t) ∈ Ω × (0,+∞),
∂u2
∂t =d2∆u2+u2

(
r2−b2u2−a2u3+a3

∫
Ω

∫ t

−∞
K1(t−s, x, y)u1(y, s)dsdy

)
, (x, t) ∈ Ω × (0,+∞),

∂u3
∂t =d3∆u3 + u3

(
−α − b3u3 + a4

∫
Ω

∫ t

−∞
K2(t − s, x, y)u2(y, s)dsdy

)
, (x, t) ∈ Ω × (0,+∞),

∂u1
∂ν

= ∂u2
∂ν

= ∂u3
∂ν

=0, (x, t) ∈ ∂Ω × (0,+∞),
ui0(x, θ)=φi(x, θ) ≥ 0(i = 1, 2, 3), (x, t) ∈ Ω × (−∞, 0],

(1.2)

where Ω is the bounded domain in RN (N ≥ 1 is an integer) with a smooth boundary ∂Ω. u1 represents
the density of the prey; u2 is for the density of the prey, and the same for the predator; u3 represents the
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density of the predator. The initial functions ui0(x, θ)(i = 1, 2, 3) are nonnegative bounded and Hölder
continuous.

∫
Ω

∫ t

−∞
K1(t − s, x, y)u1(y, s)dsdy represents a time delay due to gestation. All parameters

are positive constants. Li and Huang employed the method of Lyapunov functions to study the stability
of positive equilibrium of system (1.2), and the existence of traveling wave solutions was proved by
constructing upper-lower solutions. For more details on the background of this system, see [15].

Motivated by [3,14,15], in this paper, we consider the following one prey-two competing predators
model with nonlocal delay:

∂u
∂t = d1∆u + u(1 − u) − u(g1∗v)

b1+u −
u(g2∗w)

b2+u , (x, t) ∈ Ω × (0,+∞),
∂v
∂t = d2∆v + α1(g3 ∗ v) +

a1u(g1∗v)
b1+u − m1vw − h1v2, (x, t) ∈ Ω × (0,+∞),

∂w
∂t = d3∆w + α2(g4 ∗ w) +

a2u(g2∗w)
b2+u − m2vw − h2w2, (x, t) ∈ Ω × (0,+∞),

∂u
∂η

= ∂v
∂η

= ∂w
∂η

= 0, (x, t) ∈ ∂Ω × (0,+∞),
(u, v,w)(x, t) = (φ, ϕ, ψ)(x, t) ≥ 0, (x, t) ∈ Ω × (−∞, 0],

(1.3)

where u(x, t), v(x, t), and w(x, t) denote the population densities of a prey species and two competing
predator species at location x and time t, respectively. Ω is a bounded domain in RN (N ≥ 1 is an
integer) with a smooth boundary ∂Ω. The boundary conditions indicate that the populations do not
move across the boundary ∂Ω. The initial conditions reflect the historical state of the populations,
ensuring continuity from past to present. ∆ is a Laplace operator, d1, d2, d3 > 0 are the diffusion
coefficients. Both predator species prey on the same resource, with their consumption rates following
Holling type II functional responses. Here, a1 and a2 denote the searching efficiencies, while b1 and
b2 represent the half-saturation constants. The birth rates of two predator species are α1 and α2. The
strengths of inter-specific competition between the two predator species are quantified by m1 and m2,
and the intra-specific competition within each predator species is measured by h1 and h2. η is the unit
outer normal vector on the boundary. All the above coefficients have been normalized.

In system (1.3), (gi ∗ v)(x, t) (i = 1, 3), (g j ∗ w)(x, t) ( j = 2, 4) are the nonlocal delay defined by

(gi ∗ v)(x, t) =

∫ t

−∞

∫
Ω

gi(x − y, t − s)v(y, s)dyds =

∫ +∞

0

∫
Ω

gi(y, s)v(x − y, t − s)dyds,

(g j ∗ w)(x, t) =

∫ t

−∞

∫
Ω

g j(x − y, t − s)w(y, s)dyds =

∫ +∞

0

∫
Ω

g j(y, s)w(x − y, t − s)dyds,

where the kernel gn(x, t) (n = 1, 2, 3, 4) satisfies

gn(x, t) = ĝn(x, t)kn(t), x ∈ Ω, kn(t) ≥ 0,

gn(x, t) = gn(−x, t),
∫

Ω

ĝn(y, t)dy = 1 f or t ≥ 0,∫ ∞

0
kn(t)dt = 1, tkn(t) ∈ L1((0,∞); R),

and ∀c ≥ 0, λ ≥ 0, ∫ +∞

0

∫
Ω

gn(y, s)e−λ(y+cs)dyds < +∞, y ∈ Ω ⊂ RN

holds. ĝn(x, t) are nonnegative functions which are continuous in x ∈ Ω for each t ∈ [0,+∞) and
measurable in t ∈ [0,+∞) for each pair x ∈ Ω. In this paper, g1 ∗ v and g2 ∗w denote effective predation
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pressures, and g3 ∗ v and g4 ∗ w denote the number born at location y and time t − s that are still alive
now at location x and time t, respectively.

The analysis of system (1.3) is nontrivial. The interplay of nonlocal time delay with intra-specific
and inter-specific competition not only increases computational complexity but also requires more
precise estimates.

System (1.3) has a unique positive equilibrium E∗ = (u∗, v∗,w∗) if and only if the following
conditions (H1) or (H2) hold.
(H1) m1m2

h1h2
= 1. If

(a) [m2α1(R1 + 1) − h1α2(R2 + 1)][m2α1(R̃1 + 1) − h1α2(R̃2 + 1)] < 0, where Rk = ak
αk(1+2bk) , R̃k =

ak
αk(1+bk) (k = 1, 2),

(b) Θ = m1
b1+u∗ −

h1
b2+u∗ , 0,

(c) m1(1 − u∗) − θi(u∗)
b2+u∗ > 0, θi(u∗)

b1+u∗ − h1(1 − u∗) > 0, where θi(u∗) = aiu∗

bi+u∗ + αi (i = 1, 2)
hold, then system (1.3) has a unique solution u∗ ∈ (1

2 , 1), and

v∗ =
m1(1 − u∗) − θi(u∗)

b2+u∗

Θ
, w∗ =

θi(u∗)
b1+u∗ − h1(1 − u∗)

Θ
.

(H2) m1m2
h1h2
, 1. If

(a) Φ( 1
2 )Φ(1) < 0, where Φ(x) = (m1m2 − h1h2)G3(x) −G4(x),

(b) m1m2 − h1h2 > 0, 2(b1 + b2) ≥ 1, P̂3 ≤ 0, P̂2 ≤ 0, P̂1 ≤ 0, or
m1m2 − h1h2 < 0, 2(b1 + b2) ≤ 1, P̂3 ≥ 0, P̂2 ≥ 0, P̂1 ≥ 0

hold, then system (1.3) has a unique solution u∗ ∈ ( 1
2 , 1), and

v∗ =
P̄2u∗2 + P̄1u∗ + P̄0

(m1m2 − h1h2)(b1 + u∗)(b2 + u∗)
, w∗ =

P2u∗2 + P1u∗ + P0

(m1m2 − h1h2)(b1 + u∗)(b2 + u∗)
.

Among them, the specific form of G3(x),G4(x), P̂i(i = 1, 2, 3), P̄ j, and P j( j = 0, 1, 2) can be found
in [3].

The article is organized as follows: In Section 2, by employing a Lyapunov function, we investigate
the globally asymptotic stability of the positive equilibrium E∗ for (1.3). In Section 3, we give an
eigenvalue problem that will be needed in subsequent sections. It is here that we define boundary
conditions and the critical wave speed c∗ of travelling wave solutions. In Section 4, by selecting
appropriate kernel functions, we exploit Schauder’s fixed point theorem to establish the existence
of traveling wave solutions connecting the trivial equilibrium with the positive equilibrium. In the
Appendix, we construct and verify upper-lower solutions.

2. Stability analysis

In this section, we study the globally asymptotic stability of the positive equilibrium E∗ for (1.3) by
using the Lyapunov function method.

Theorem 2.1. Assuming (u, v,w) ∈ [C([0,T ] × Ω)
⋂

C1,2([0,T ] × Ω)]3 (T > 0) is a solution of system
(1.3) with initial value (φ, ϕ, ψ)(x, t) ≥ 0, then (0, 0, 0) ≤ (u, v,w) ≤ (M1,M2,M3), (x, t) ∈ Ω × [0,+∞),
where

M1 = max
{
1, ‖φ(x, t)‖

L∞
(
Ω×[0,+∞)

)} ,
AIMS Mathematics Volume 10, Issue 9, 21693–21720.
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M2 = max
{
α1b1 + (α1 + a1)M1

h1(b1 + M1)
, ‖ϕ(x, t)‖

L∞
(
Ω×[0,+∞)

)} , (2.1)

M3 = max
{
α2b2 + (α2 + a2)M1

h2(b2 + M1)
, ‖ψ(x, t)‖

L∞
(
Ω×[0,+∞)

)} .
Proof. According to the maximum principle [16], if (φ, ϕ, ψ)(x, t) > 0 for all x ∈ Ω, t ≤ 0, we have
(u, v,w)(x, t) > 0 for t > 0. So

∂u
∂t
− d1∆u = u(1 − u) −

u(g1 ∗ v)
b1 + u

−
u(g2 ∗ w)

b2 + u
≤ u(1 − u),

and by the comparison principle [16], we deduce that u ≤ max
{
1, ‖φ(x, t)‖

L∞
(
Ω×[0,+∞)

)} , M1.
Again

∂v
∂t
− d2∆v = α1(g3 ∗ v) +

a1u(g1 ∗ v)
b1 + u

− m1vw − h1v2 ≤ v(α1 +
a1u

b1 + u
− h1v),

and by the comparison principle,

v ≤ max
{
α1b1 + (α1 + a1)M1

h1(b1 + M1)
, ‖ϕ(x, t)‖

L∞
(
Ω×[0,+∞)

)} , M2.

Similarly,

w ≤ max
{
α2b2 + (α2 + a2)M1

h2(b2 + M1)
, ‖ψ(x, t)‖

L∞
(
Ω×[0,+∞)

)} , M3.

Hence the solution (u, v,w)(x, t) of system (1.3) is uniformly bounded on Ω × [0,+∞). �

Further we discuss the globally asymptotic stability of the positive equilibrium E∗ (u∗, v∗,w∗).

Lemma 2.1. [17, 18] Assume a, b > 0, φ, ϕ ∈ C1([a,+∞)), ϕ(t) ≥ 0, φ(t) has a lower bound, and if
φ′(t) ≤ −bϕ(t) and there exists a constant R > 0 such that ϕ′(t) has an upper bound for every t ≥ a,
then lim

t→∞
ϕ(t) = 0.

Theorem 2.2. Assume that (H1) or (H2) are satisfied, and M2
b1+u∗ + M3

b2+u∗ < 1 holds. Then the positive
equilibrium E∗ (u∗, v∗,w∗) for system (1.3) is globally asymptotically stable.

Proof. System (1.3) can be rewritten as

∂u
∂t

=d1∆u + u
[
−(u − u∗) −

g1 ∗ (v − v∗)
b1 + u∗

−
g2 ∗ (w − w∗)

b2 + u∗
+

(g1 ∗ v)(u − u∗)
(b1 + u)(b1 + u∗)

+
(g2 ∗ w)(u − u∗)
(b2 + u)(b2 + u∗)

]
,

∂v
∂t

=d2∆v +
α1v[g3 ∗ (v − v∗)]

v∗
+

a1u∗v[g1 ∗ (v − v∗)]
v∗(b1 + u∗)

−
α1(g3 ∗ v)(v − v∗)

v∗
−

a1u∗(g1 ∗ v)(v − v∗)
v∗(b1 + u∗)

+
a1b1(g1 ∗ v)(u − u∗)

(b1 + u)(b1 + u∗)
− m1v(w − w∗) − h1v(v − v∗),

∂w
∂t

=d3∆w +
α2w[g4 ∗ (w − w∗)]

w∗
+

a2u∗w[g2 ∗ (w − w∗)]
w∗(b2 + u∗)

−
α2(g4 ∗ w)(w − w∗)

w∗

AIMS Mathematics Volume 10, Issue 9, 21693–21720.
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−
a2u∗(g2 ∗ w)(w − w∗)

w∗(b2 + u∗)
+

a2b2(g2 ∗ w)(u − u∗)
(b2 + u)(b2 + u∗)

− m2w(v − v∗) − h2w(w − w∗).

Let (u, v,w) be a positive solution for system (1.3), and define the Lyapunov function

V1(t) =

∫
Ω

(u − u∗ − u∗ ln
u
u∗

)dx + ρ2

∫
Ω

(v − v∗ − v∗ ln
v
v∗

)dx + ρ3

∫
Ω

(w − w∗ − w∗ ln
w
w∗

)dx,

where ρi(i = 2, 3) are positive constants to be determined.
Then,

dV1(t)
dt

=

∫
Ω

∂u
∂t

(1 −
u∗

u
)dx + ρ2

∫
Ω

∂v
∂t

(1 −
v∗

v
)dx + ρ3

∫
Ω

∂w
∂t

(1 −
w∗

w
)dx

= − d1

∫
Ω

u∗

u2 |∇u|2dx − ρ2d2

∫
Ω

v∗

v2 |∇v|2dx − ρ3d3

∫
Ω

w∗

w2 |∇w|2dx

+

∫
Ω

(u−u∗)
[
−(u−u∗)−

g1∗(v−v∗)
b1 + u∗

−
g2∗(w−w∗)

b2 + u∗
+

(g1∗v)(u−u∗)
(b1+u)(b1+u∗)

+
(g2∗w)(u−u∗)
(b2+u)(b2+u∗)

]
dx

+ ρ2

∫
Ω

v − v∗

v

[
α1v[g3 ∗ (v − v∗)]

v∗
+

a1u∗v[g1 ∗ (v − v∗)]
v∗(b1 + u∗)

−
α1(g3 ∗ v)(v − v∗)

v∗

−
a1u∗(g1 ∗ v)(v − v∗)

v∗(b1 + u∗)
+

a1b1(g1 ∗ v)(u − u∗)
(b1 + u)(b1 + u∗)

− m1v(w − w∗) − h1v(v − v∗)
]

dx

+ ρ3

∫
Ω

w − w∗

w

[
α2w[g4 ∗ (w − w∗)]

w∗
+

a2u∗w[g2 ∗ (w − w∗)]
w∗(b2 + u∗)

−
α2(g4 ∗ w)(w − w∗)

w∗

−
a2u∗(g2 ∗ w)(w − w∗)

w∗(b2 + u∗)
+

a2b2(g2 ∗ w)(u − u∗)
(b2 + u)(b2 + u∗)

− m2w(v − v∗) − h2w(w − w∗)
]

dx.

From (1.3) and applying the inequality ab ≤ 1
2κa

2 + 1
2κb

2 (κ > 0), we obtain

dV1(t)
dt

≤ − d1

∫
Ω

u∗

u2 |∇u|2dx − ρ2d2

∫
Ω

v∗

v2 |∇v|2dx − ρ3d3

∫
Ω

w∗

w2 |∇w|2dx

−

∫
Ω

Lu(u − u∗)2dx − ρ2

∫
Ω

Lv(v − v∗)2dx − ρ3

∫
Ω

Lw(w − w∗)2dx

+

∫
Ω

∫
Ω

∫ t

−∞

g1(x − y, t − s)
[
κ1

2
(v(y, s) − v∗)2 +

1
2κ1

(u(x, t) − u∗)2
]

dsdydx

+

∫
Ω

∫
Ω

∫ t

−∞

g2(x − y, t − s)
[
κ2

2
(w(y, s) − w∗)2 +

1
2κ2

(u(x, t) − u∗)2
]

dsdydx

+ ρ2α1

∫
Ω

∫
Ω

∫ t

−∞

g3(x − y, t − s)
[
κ3

2
(v(y, s) − v∗)2 +

1
2κ3

(v(x, t) − v∗)2
]

dsdydx

+ ρ2a1u∗
∫

Ω

∫
Ω

∫ t

−∞

g1(x − y, t − s)
[
κ3

2
(v(y, s) − v∗)2 +

1
2κ3

(v(x, t) − v∗)2
]

dsdydx

+ ρ2a1b1M2

∫
Ω

[
κ4

2
(v(x, t) − v∗)2 +

1
2κ4

(u(x, t) − u∗)2
]

dx

+ (ρ2m1 + ρ3m2)
∫

Ω

[
κ5

2
(v(x, t) − v∗)2 +

1
2κ5

(w(x, t) − w∗)2
]

dx
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+ ρ3α2

∫
Ω

∫
Ω

∫ t

−∞

g4(x − y, t − s)
[
κ6

2
(w(y, s) − w∗)2 +

1
2κ6

(w(x, t) − w∗)2
]

dsdydx

+ ρ3a2u∗
∫

Ω

∫
Ω

∫ t

−∞

g2(x − y, t − s)
[
κ6

2
(w(y, s) − w∗)2 +

1
2κ6

(w(x, t) − w∗)2
]

dsdydx

+ ρ3a2b2M3

∫
Ω

[
κ7

2
(w(x, t) − w∗)2 +

1
2κ7

(u(x, t) − u∗)2
]

dx,

where

Lu = 1 −
g1 ∗ v

(b1 + u)(b1 + u∗)
−

g2 ∗ w
(b2 + u)(b2 + u∗)

> 1 −
M2

(b1 + u∗)
−

M3

(b2 + u∗)
> 0,

Lv =
α1(g3 ∗ v)

vv∗
+

a1u∗(g1 ∗ v)
vv∗(b1 + u∗)

+ h1 > 0,

Lw =
α2(g4 ∗ w)

ww∗
+

a1u∗(g2 ∗ w)
ww∗(b2 + u∗)

+ h2 > 0.

By the properties of the kernel function, we have

dV1(t)
dt

≤ − d1

∫
Ω

u∗

u2 |∇u|2dx − ρ2d2

∫
Ω

v∗

v2 |∇v|2dx − ρ3d3

∫
Ω

w∗

w2 |∇w|2dx

−

[
Lu −

1
2κ1
−

1
2κ2
−
ρ2a1b1M2

2κ4
−
ρ3a2b2M3

2κ7

] ∫
Ω

(u(x, t) − u∗)2dx

−

[
ρ2

(
Lv −

a1u∗ + α1

2κ3
−

a1b1M2κ4

2

)
−
ρ2m1 + ρ3m2

2
κ5

] ∫
Ω

(v(x, t) − v∗)2dx

−

[
ρ3

(
Lw −

a2u∗ + α2

2κ6
−

a2b2M3κ7

2

)
−
ρ2m1 + ρ3m2

2κ5

] ∫
Ω

(w(x, t) − w∗)2dx

+
κ1 + ρ2a1u∗κ3

2

∫
Ω

∫
Ω

∫ ∞

0
g1(y, s)(v(x − y, t − s) − v∗)2dsdydx

+
κ2 + ρ3a2u∗κ6

2

∫
Ω

∫
Ω

∫ ∞

0
g2(y, s)(w(x − y, t − s) − w∗)2dsdydx

+
ρ2α1κ3

2

∫
Ω

∫
Ω

∫ ∞

0
g3(y, s)(v(x − y, t − s) − v∗)2dsdydx

+
ρ3α2κ6

2

∫
Ω

∫
Ω

∫ ∞

0
g4(y, s)(w(x − y, t − s) − w∗)2dsdydx.

Let

V(t) =V1(t) +
κ1 + ρ2a1u∗κ3

2

∫
Ω

∫
Ω

∫ ∞

0

∫ t

t−s
g1(y, s)(v(x − y, r) − v∗)2drdsdydx

+
κ2 + ρ3a2u∗κ6

2

∫
Ω

∫
Ω

∫ ∞

0

∫ t

t−s
g2(y, s)(w(x − y, r) − w∗)2drdsdydx

+
ρ2α1κ3

2

∫
Ω

∫
Ω

∫ ∞

0

∫ t

t−s
g3(y, s)(v(x − y, r) − v∗)2drdsdydx

+
ρ3α2κ6

2

∫
Ω

∫
Ω

∫ ∞

0

∫ t

t−s
g4(y, s)(w(x − y, r) − w∗)2drdsdydx,

AIMS Mathematics Volume 10, Issue 9, 21693–21720.



21700

and then

dV(t)
dt
≤ − d1

∫
Ω

u∗

u2 |∇u|2dx − ρ2d2

∫
Ω

v∗

v2 |∇v|2dx − ρ3d3

∫
Ω

w∗

w2 |∇w|2dx

−

[
Lu −

1
2κ1
−

1
2κ2
−
ρ2a1b1M2

2κ4
−
ρ3a2b2M3

2κ7

] ∫
Ω

(u(x, t) − u∗)2dx

−

[
ρ2

(
Lv −

a1u∗ + α1

2κ3
−

a1b1M2κ4

2

)
−
ρ2m1 + ρ3m2

2
κ5

] ∫
Ω

(v(x, t) − v∗)2dx

−

[
ρ3

(
Lw −

a2u∗ + α2

2κ6
−

a2b2M3κ7

2

)
−
ρ2m1 + ρ3m2

2κ5

] ∫
Ω

(w(x, t) − w∗)2dx

+
κ1 + ρ2a1u∗κ3

2

∫
Ω

∫
Ω

∫ ∞

0
g1(y, s)(v(x − y, t) − v∗)2dsdydx

+
κ2 + ρ3a2u∗κ6

2

∫
Ω

∫
Ω

∫ ∞

0
g2(y, s)(w(x − y, t) − w∗)2dsdydx

+
ρ2α1κ3

2

∫
Ω

∫
Ω

∫ ∞

0
g3(y, s)(v(x − y, t) − v∗)2dsdydx

+
ρ3α2κ6

2

∫
Ω

∫
Ω

∫ ∞

0
g4(y, s)(w(x − y, t) − w∗)2dsdydx.

Since∫
Ω

∫
Ω

∫ ∞

0
g(y, s)(v(x−y, t)−v∗)2dsdydx=

∫
Ω

∫
Ω

∫ ∞

0
g(y, s)(v(x−y, t)−v∗)2dsdxdy=

∫
Ω

(v(x−y, t)−v∗)2dy,

then

dV(t)
dt
≤ − d1

∫
Ω

u∗

u2 |∇u|2dx − ρ2d2

∫
Ω

v∗

v2 |∇v|2dx − ρ3d3

∫
Ω

w∗

w2 |∇w|2dx

−

[
Lu −

1
2κ1
−

1
2κ2
−
ρ2a1b1M2

2κ4
−
ρ3a2b2M3

2κ7

]
·

∫
Ω

(u(x, t) − u∗)2dx

−

{
ρ2

[
Lv−

a1u∗+α1

2

(
κ3+

1
κ3

)
−

a1b1M2κ4

2

]
−
ρ2m1+ρ3m2

2
κ5−

κ1

2

}
·

∫
Ω

(v(x, t)−v∗)2dx

−

{
ρ3

[
Lw−

a2u∗+α2

2

(
κ6+

1
κ6

)
−

a2b2M3κ7

2

]
−
ρ2m1+ρ3m2

2κ5
−
κ2

2

}
·

∫
Ω

(w(x, t)−w∗)2dx. (2.2)

For any T > 0, integrating (2.2) over [0,T ], we have

d1u∗
∥∥∥∥∥ |∇u|

u2

∥∥∥∥∥2

L2(ΩT )
+ ρ2d2v∗

∥∥∥∥∥ |∇v|
v2

∥∥∥∥∥2

L2(ΩT )
+ ρ3d3w∗

∥∥∥∥∥ |∇w|
w2

∥∥∥∥∥2

L2(ΩT )

+ Lu‖u − u∗‖2L2(ΩT ) + ρ2Lv‖v − v∗‖2L2(ΩT ) + ρ3Lw‖w − w∗‖2L2(ΩT )

≤V(0) +

(
1

2κ1
+

1
2κ2

+
ρ2a1b1M2

2κ4
+
ρ3a2b2M3

2κ7

)
‖u − u∗‖2L2(ΩT )

+

[
ρ2

(
a1u∗ + α1

2

(
κ3 +

1
κ3

)
+

a1b1M2κ4

2

)
+
ρ2m1 + ρ3m2

2
κ5 +

κ1

2

]
‖v − v∗‖2L2(ΩT )
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+

[
ρ3

(
a2u∗ + α2

2

(
κ6 +

1
κ6

)
+

a2b2M3κ7

2

)
+
ρ2m1 + ρ3m2

2κ5
+
κ2

2

]
‖w − w∗‖2L2(ΩT ). (2.3)

Choose

κ1 = κ4 =
1 + ρ2a1b1M2

Lu
, κ2 = κ7 =

1 + ρ3a2b2M3

Lu
, κ5 =

1
ρ2m1 + ρ3m2

,

κ3 +
1
κ3

=
1

ρ2(a1u∗ + α1)
, κ6 +

1
κ6

=
1

ρ3(a2u∗ + α2)
,

and it is derived from (2.3) that

d1u∗
∥∥∥∥∥ |∇u|

u2

∥∥∥∥∥2

L2(ΩT )
+ρ2d2v∗

∥∥∥∥∥ |∇v|
v2

∥∥∥∥∥2

L2(ΩT )
+ρ3d3w∗

∥∥∥∥∥ |∇w|
w2

∥∥∥∥∥2

L2(ΩT )
+ρ2Lv‖v−v∗‖2L2(ΩT )+ρ3Lw‖w−w∗‖2L2(ΩT )

≤V(0)+
[
1+

(1+v2a1b1M2)2

2Lu

]
‖v−v∗‖2L2(ΩT )+

1
2

[
1+

(1+ρ3a2b2M3)2

Lu
+(ρ2m1+ρ3m2)2

]
‖w−w∗‖2L2(ΩT ).

We choose the appropriate ρi > 0(i = 2, 3) such that

ρ2Lv > 1 +
(1 + ρ2a1b1M2)2

2Lu
, ρ3Lw >

1
2

[
1 +

(1 + ρ3a2b2M3)2

Lu
+ (ρ2m1 + ρ3m2)2

]
hold.

Therefore, we obtain ∥∥∥∥∥ |∇v|
v2

∥∥∥∥∥
L2(ΩT )

≤ C1,

∥∥∥∥∥ |∇w|
w2

∥∥∥∥∥
L2(ΩT )

≤ C2, (2.4)

and
‖v − v∗‖L2(ΩT ) ≤ C3, ‖w − w∗‖L2(ΩT ) ≤ C4, (2.5)

for some constants Ci(i = 1, 2, 3, 4) independent of T .
Similarly, choose

κ1 = κ4 =
Lu

1 + ρ2a1b1M2
, κ2 = κ7 =

Lu

1 + ρ3a2b2M3
, κ5 =

1
ρ2m1 + ρ3m2

,

κ3 +
1
κ3

=
1

ρ2(a1u∗ + α1)
, κ6 +

1
κ6

=
1

ρ3(a2u∗ + α2)
,

and we can obtain ∥∥∥∥∥ |∇u|
u2

∥∥∥∥∥
L2(ΩT )

≤ C5, ‖u − u∗‖L2(ΩT ) ≤ C6, (2.6)

for some positive constants C5 and C6 independent of T > 0.
Using the conditions of Theorem 2.1 and (2.2), we show that there exists a positive constant δ such

that
dV(t)

dt
≤ −δ

∫
Ω

[(u − u∗)2 + (v − v∗)2 + (w − w∗)2]dx ≤ 0. (2.7)

By integration of (2.7), and from (2.1), (2.4)–(2.6), it is easily seen that

d
dt

∫
Ω

[(u − u∗)2 + (v − v∗)2 + (w − w∗)2]dx

AIMS Mathematics Volume 10, Issue 9, 21693–21720.



21702

has an upper bound. Then, using Lemma 2.1 and (2.7), we see that

‖u(·, t) − u∗‖L2(Ω) → 0, ‖v(·, t) − v∗‖L2(Ω) → 0, ‖w(·, t) − w∗‖L2(Ω) → 0. (2.8)

By Sobolev embedding theorems, there exists a constant C > 0 such that ∀ χ ∈ W1
2 (Ω), we have

‖χ(x, t)‖L∞(Ω) ≤ C‖χ‖
1
2

W1
2 (Ω)
‖χ‖

1
2
L2(Ω). (2.9)

It follows from (2.1), (2.4)–(2.6), (2.8), and (2.9) that

‖u(·, t) − u∗‖L∞(Ω) → 0, ‖v(·, t) − v∗‖L∞(Ω) → 0. ‖w(·, t) − w∗‖L∞(Ω) → 0.

Namely, (u, v,w) converges uniformly to (u∗, v∗,w∗). Using the fact that V(u, v,w) is decreasing for
t, one can derive that (u∗, v∗,w∗) is globally asymptotically stable. �

3. Eigenvalue problem

In this section, we present some preliminary results that will be needed for the subsequent sections.
A traveling wave solution of system (1.3) takes the special form

(u, v,w)(x, t) = (u, v,w)(x · ν + ct),

where ν ∈ RN denotes a unit propagation direction vector, with x · ν representing the standard inner
product in RN . For a wave speed c > 0, define the traveling wave coordinate t = x · ν+ ct. Then system
(1.3) has a traveling wave solution (u(t), v(t),w(t)) connecting the trivial equilibrium (0, 0, 0) with the
positive equilibrium (u∗, v∗,w∗) if and only if the following system

d1u′′(t) − cu′(t) + u(t)(1 − u(t)) −
u(t)(g1 ∗ v)(t)

b1 + u(t)
−

u(t)(g2 ∗ w)(t)
b2 + u(t)

= 0,

d2v′′(t) − cv′(t) + α1(g3 ∗ v)(t) +
a1u(t)(g1 ∗ v)(t)

b1 + u(t)
− m1v(t)w(t) − h1v2(t) = 0,

d3w′′(t) − cw′(t) + α2(g4 ∗ w)(t) +
a2u(t)(g2 ∗ w)(t)

b2 + u(t)
− m2v(t)w(t) − h2w2(t) = 0,

(3.1)

has a solution that satisfies the following asymptotic boundary conditions:

lim
t→−∞

(u, v,w)(t) = (0, 0, 0), lim
t→+∞

(u, v,w)(t) = (u∗, v∗,w∗), (3.2)

where

(gi ∗ ϕ)(t) =

∫ +∞

0

∫
Ω

gi(y, s)ϕ(t − y · ν − cs)dyds (i = 1, 2, 3, 4). (3.3)

As t → ∞, the linearized system (3.1) at (0, 0, 0) yields

d1u′′ − cu′ + u = 0, d2v′′ − cv′ + α1(g3 ∗ v) = 0, d3w′′ − cw′ + α2(g4 ∗ w) = 0.

Let the solutions to the above equations all be eλt. Then
∆1(λ, c) := d1λ

2 − cλ + 1,
∆2(λ, c) := d2λ

2 − cλ + α1

∫ +∞

0

∫
Ω

g3(y, s)e−λ(y·ν+cs)dyds,

∆3(λ, c) := d3λ
2 − cλ + α2

∫ +∞

0

∫
Ω

g4(y, s)e−λ(y·ν+cs)dyds,

(3.4)

where y ∈ Ω ⊂ RN .
We easily obtain the following lemma.
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Lemma 3.1. If there exist c∗i > 0, λ∗i > 0 (i = 2, 3), then the following results:
(i) ∆i(λ∗i , c

∗
i ) = 0, ∂∆i(λ,c)

∂λ
|(λ∗i ,c

∗
i )= 0;

(ii) for every 0 < c < c∗i , ∆i(λ, c) > 0 for all λ > 0;
(iii) for every c > c∗i , ∆i(λ, c) = 0 has two positive real roots λi, λ̃i satisfying 0 < λi < λ

∗
i < λ̃i, and

∆i(λ, c)
{
> 0, ∀ λ ∈ (0, λi) ∪ (̃λi,+∞),
< 0, ∀ λ ∈ (λi, λ̃i)

hold.

Proof. For ∀c > 0, λ > 0, we have ∆i(0, c) = αi > 0, ∆i(+∞, c)→ +∞(i = 2, 3), and for j = 3, 4,

∂∆i(λ, c)
∂λ

|λ=0 = 2diλ − c + αi

∫ +∞

0

∫
Ω

g j(y, s)[−(y · ν + cs)e−λ(y·ν+cs)]dyds |λ=0

= −c − αi

∫ +∞

0

∫
Ω

g j(y, s)(y · ν + cs)dyds.

Due to g j(y, s) = g j(−y, s), we have
∫

Ω
yg j(y, s)dy = 0, so

∂∆i(λ, c)
∂λ

|λ=0= −c − cαi

∫ +∞

0

∫
Ω

sg j(y, s)dyds < 0,

∂2∆i(λ, c)
∂λ2 = 2di + αi

∫ +∞

0

∫
Ω

(y · ν + cs)2g j(y, s)e−λ(y·ν+cs)dyds > 0.

Therefore, ∆i(λ, c) is a convex function.
The strict convexity of ∆i(λ, c) ensures that the derivative ∂∆i

∂λ
is strictly increasing, so that the

derivative gradually rises from a negative value, eventually tending toward +∞, and it must equal
zero at some point λ∗i > 0, which is the unique minimum point.

Moreover,

∆i(λ, 0) = diλ
2 + αi

∫ +∞

0

∫
Ω

g j(y, s)e−λ(y·ν+cs)dyds > 0,

∂∆i(λ, c)
∂c

= −λ − αiλ

∫ +∞

0

∫
Ω

sg j(y, s)e−λ(y·ν+cs)dyds < 0,

for all λ > 0, and the value ∆i(λ∗i , c) of ∆i(λ, c) at λ∗i changes with c. If c increases, ∆i(λ, c) decreases,
and then ∆i(λ∗i , c) decreases. Therefore, there exists c∗i > 0, λ∗i > 0 such that

∆i(λ∗i , c
∗) = 0,

∂∆i(λ, c)
∂λ

|(λ∗i ,c
∗
i )= 0.

For 0 < c < c∗i , minimum value ∆i(λ∗i , c) > 0, so that ∆i(λ, c) > 0 for all λ > 0; for c > c∗i , according
to the convexity and monotonic decrease of function ∆i(λ, c) with respect to c > 0, and ∆i(λ∗i , c

∗) = 0,
combined with the theorem of existence of zeros, we can see that ∆i(λ, c) has two positive real roots
λi, λ̃i satisfying 0 < λi < λ

∗
i < λ̃i, and

∆i(λ, c)
{
> 0, ∀ λ ∈ (0, λi) ∪ (̃λi,+∞),
< 0, ∀ λ ∈ (λi, λ̃i).

�
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Similarly, we easily obtain the following lemma.

Lemma 3.2. There exist c∗1 > 0, λ∗1 > 0 satisfying ∆1(λ∗1, c
∗
1) = 0, ∂∆1(λ,c)

∂λ
|(λ∗1,c

∗
1)= 0. Then the following

results:
(i) for every 0 < c < c∗1, ∆1(λ, c) = 0 has no real root, and ∆1(λ, c) > 0 for all λ > 0;
(ii) for every c > c∗1, ∆1(λ, c) = 0 has two positive real roots λ1, λ̃1 satisfying 0 < λ1 < λ

∗
1 < λ̃1, and

∆1(λ, c)
{
> 0, ∀ λ ∈ (0, λ1) ∪ (̃λ1,+∞),
< 0, ∀ λ ∈ (λ1, λ̃1)

hold.

4. Existence of traveling wave solutions

In this section, we will prove the existence of traveling wave solutions for (1.3) by employing a
combination of the cross iteration method and Schauder’s fixed point theorem. To achieve this, we
choose the following kernel function:

gi(x, t) =
1
τi

e−
t
τi

1
√

4πd2t
e−

‖x‖2
4d2t (i = 1, 3), x ∈ Ω ⊂ RN ,

gi(x, t) =
1
τi

e−
t
τi

1
√

4πd3t
e−

‖x‖2
4d3t (i = 2, 4), x ∈ Ω ⊂ RN ,

where 1
τi

e−
t
τi denotes the time delay effects of biological processes (predation, reproduction), τi > 0 is

the time-scale parameter, and 1√
4πd jt

e−
‖x‖2
4d jt ( j = 2, 3) describes the random diffusion of species in space.

Then

(gi ∗ v)(t) =

∫ +∞

0

1
τi

e−
s
τi

∫
Ω

1
√

4πd2s
e−

‖y‖2
4d2 s v(t − y · ν − cs)dyds, (i = 1, 3),

(gi ∗ w)(t) =

∫ +∞

0

1
τi

e−
s
τi

∫
Ω

1
√

4πd3s
e−

‖y‖2
4d3 s w(t − y · ν − cs)dyds, (i = 2, 4).

(4.1)

Let

f1(u(t), v(t),w(t)) = u(t)(1 − u(t)) −
u(t)(g1 ∗ v)(t)

b1 + u(t)
−

u(t)(g2 ∗ w)(t)
b2 + u(t)

,

f2(u(t), v(t),w(t)) = α1(g3 ∗ v)(t) +
a1u(t)(g1 ∗ v)(t)

b1 + u(t)
− m1v(t)w(t) − h1v2(t),

f3(u(t), v(t),w(t)) = α2(g4 ∗ w)(t) +
a2u(t)(g2 ∗ w)(t)

b2 + u(t)
− m2v(t)w(t) − h2w2(t).

Suppose f1, f2, f3 satisfy the following hypotheses:
(A1) fi(0, 0, 0) = fi(u∗, v∗,w∗) = 0, i = 1, 2, 3.
(A2) For 0 ≤ u1(t), u2(t) ≤ M1, 0 ≤ v1(t), v2(t) ≤ M2, 0 ≤ w1(t),w2(t) ≤ M3, t ∈ R, there exists L > 0
such that

| f1(u1, v1,w1) − f1(u2, v2,w2)| + | f2(u1, v1,w1) − f2(u2, v2,w2)|
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+| f3(u1, v1,w1) − f3(u2, v2,w2)| ≤ L(|u1 − u2| + |v1 − v2| + |w1 − w2|).

It is easy to obtain that system (3.1) satisfies the partial quasi-monotonicity conditions (PQM). Namely,
there exist three positive constants β1, β2, β3 > 0 such that

f1(u1, v1,w1) − f1(u2, v1,w1) + β1(u1 − u2) ≥ 0,
f1(u1, v1,w1) − f1(u1, v2,w2) ≤ 0,
f2(u1, v1,w1) − f2(u2, v2,w1) + β2(v1 − v2) ≥ 0,
f2(u1, v1,w1) − f2(u1, v1,w2) ≤ 0,
f3(u1, v1,w1) − f3(u2, v2,w2) + β3(w1 − w2) ≥ 0

(4.2)

hold.
Let

W = {(u, v,w) ∈ C(R,R3) | (0, 0, 0) ≤ (u(t), v(t),w(t)) ≤ (M1,M2,M3), t ∈ R}.

Define the operator H = (H1,H2,H3) : W → C(R,R3) by

H1(u, v,w)(t) = β1u(t) + f1(u(t), v(t).w(t)),
H2(u, v,w)(t) = β2v(t) + f2(u(t), v(t),w(t)),
H3(u, v,w)(t) = β3w(t) + f3(u(t), v(t),w(t)),

where

β1 ≥ 2M1 +
1
b1

M2 +
1
b2

M3 − 1, β2 ≥ 2h1M2 + m1M3, β3 ≥ m2M2 + (2h2 + m2)M3, (4.3)

and then (3.1) can be rewritten as
d1u′′(t) − cu′(t) − β1u(t) + H1(u, v,w)(t) = 0,
d2v′′(t) − cv′(t) − β2v(t) + H2(u, v,w)(t) = 0,
d3w′′(t) − cw′(t) − β3w(t) + H3(u, v,w)(t) = 0.

(4.4)

Define the operator F = (F1, F2, F3) : W → C(R,R3) by

F1(u, v,w)(t) =
1

d1(λ12 − λ11)

(∫ t

−∞

eλ11(t−s)H1(u, v,w)(s)ds +

∫ +∞

t
eλ12(t−s)H1(u, v,w)(s)ds

)
,

F2(u, v,w)(t) =
1

d2(λ22 − λ21)

(∫ t

−∞

eλ21(t−s)H2(u, v,w)(s)ds +

∫ +∞

t
eλ22(t−s)H2(u, v,w)(s)ds

)
,

F3(u, v,w)(t) =
1

d3(λ32 − λ31)

(∫ t

−∞

eλ31(t−s)H3(u, v,w)(s)ds +

∫ +∞

t
eλ32(t−s)H3(u, v,w)(s)ds

)
,

where

λ11 =
c −

√
c2 + 4β1d1

2d1
< 0, λ21 =

c −
√

c2 + 4β2d2

2d2
< 0, λ31 =

c −
√

c2 + 4β3d3

2d3
< 0,
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λ12 =
c +

√
c2 + 4β1d1

2d1
> 0, λ22 =

c +
√

c2 + 4β2d2

2d2
> 0, λ32 =

c +
√

c2 + 4β3d3

2d3
> 0.

Then Fi(u, v,w) satisfy
d1F′′1 (u, v,w)(t) − cF′1(u, v,w)(t) − β1F1(u, v,w)(t) + H1(u, v,w)(t) = 0,
d2F′′2 (u, v,w)(t) − cF′2(u, v,w)(t) − β2F2(u, v,w)(t) + H2(u, v,w)(t) = 0,
d3F′′3 (u, v,w)(t) − cF′3(u, v,w)(t) − β3F3(u, v,w)(t) + H3(u, v,w)(t) = 0.

(4.5)

It is obvious that a fixed point of F in W is a solution of (4.4), which is a traveling wave solution of (1.3)
connecting (0, 0, 0) and (u∗, v∗,w∗) if it satisfies (3.2). Hence, the next step is to prove the existence of
a fixed point of F in W.

Let µ ∈ (0,min{−λ11, λ12,−λ21, λ22,−λ31, λ32}). Define the Banach space

Bµ(R,R3) =
{
(u, v,w)(t) ∈ C(R,R3) :‖ (u, v,w)(t) ‖µ< ∞

}
,

and exponentially weighted norm

‖ (u, v,w)(t) ‖µ= sup
t∈R
| (u, v,w)(t) | e−µt.

It is easy to show that W is a bounded closed convex subset of Bµ(R,R3).
The operators Hi and Fi(i = 1, 2, 3) have the following properties. For convenience, we let Φ1(t) =

(u1, v1,w1)(t), Φ2(t) = (u2, v2,w2)(t).

Lemma 4.1. Assume that (4.3) is satisfied. Then for t ∈ R with (0, 0, 0) ≤ Φ2(t) ≤ Φ1(t) ≤
(M1,M2,M3), the following:

H1(u1, v1,w1)(t) ≥ H1(u2, v1,w1)(t), H1(u1, v1,w1)(t) ≤ H1(u1, v2,w2)(t),
H2(u1, v1,w1)(t) ≥ H2(u2, v2,w1)(t), H2(u1, v1,w1)(t) ≤ H2(u1, v1,w2)(t),
H3(u1, v1,w1)(t) ≥ H3(u2, v2,w2)(t)

hold.

Proof. Let Ki(u) = u
bi+u (i = 1, 2), K′i (u) = bi

(bi+u)2 > 0. Then Ki(u) is increasing on [0,+∞). For 0 ≤
u2 ≤ u1 ≤ M1, by the Lagrange mean value theorem, there exists ξ > 0 satisfying u2 ≤ ξ ≤ u1 such that

0 ≤ Ki(u1) − Ki(u2) = K′i (ξ)(u1 − u2) =
bi

(bi + u)2 (u1 − u2) ≤
1
bi

(u1 − u2).

By the definition of H = (H1,H2,H3), we have

H1(u1, v1,w1)(t) − H1(u2, v1,w1)(t) = f1(u1, v1,w1)(t) + β1u1(t) − H1(u2, v1,w1)(t) − β1u2(t)

=u1(t) − u2(t) − (u2
1(t) − u2

2(t)) −
(

u1(t)
b1 + u1(t)

−
u2(t)

b1 + u2(t)

)
(g1 ∗ v1)(t)

−

(
u1(t)

b2 + u1(t)
−

u2(t)
b2 + u2(t)

)
(g2 ∗ w1)(t) + β1(u1(t) − u2(t))
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≥u1(t) − u2(t) − (u1(t) + u2(t))(u1(t) − u2(t)) −
1
b1

(u1(t) − u2(t))(g1 ∗ v1)(t)

−
1
b2

(u1(t) − u2(t))(g2 ∗ w1(t)) + β1(u1(t) − u2(t))

≥(1 − 2M1 −
1
b1

M2 − b2M3 + β1)(Φ1(t) −Φ2(t)) ≥ 0,

H1(u1, v1,w1)(t)−H1(u1, v2,w2)(t)=−
u1(t)

b1+u1(t)
[g1∗(v1−v2)](t)−

u1(t)
b2+u1(t)

[g2∗(w1−w2)](t)<0,

H2(u1, v1,w1)(t) − H2(u2, v2,w1)(t) = f2(u1, v1,w1)(t) + β2v1(t) − H2(u2, v2,w1)(t) − β2v2(t)

=α1[g3 ∗ (v1 − v2)](t) + a1

[
u1(t)(g1 ∗ v1)(t)

b1 + u1(t)
−

u2(t)(g1 ∗ v2)(t)
b1 + u2(t)

]
− m1w1(t)(v1(t) − v2(t)) − h1(v2

1(t) − v2
2(t)) + β2(v1(t) − v2(t))

≥(β2 − 2h1M2 − m1M3)(Φ1(t) −Φ2(t)) ≥ 0,
H2(u1, v1,w1)(t) − H2(u1, v1,w2)(t) = −m1v1(t)(w1(t) − w2(t)) ≤ 0,
H3(u1, v1,w1)(t) − H3(u2, v2,w2)(t) = f3(u1, v1,w1)(t) + β3w1(t) − H3(u2, v2,w2)(t) − β3w2(t)

=α2[g4 ∗ (w1 − w2)](t) + a2

[
u1(t)(g2 ∗ w1)(t)

b2 + u1(t)
−

u2(t)(g2 ∗ w2)(t)
b2 + u2(t)

]
− m2 (v1(t)w1(t) − v2(t)w2(t)) − h2

(
w2

1(t) − w2
2(t)

)
+ β3(w1(t) − w2(t))

≥(β3 − m2M2 − 2h2M3 − m2M3)(Φ1(t) −Φ2(t)) ≥ 0.

�

Similarly, we have

Lemma 4.2. Assume that (4.3) is satisfied. Then for t ∈ R with (0, 0, 0) ≤ Φ2(t) ≤ Φ1(t) ≤
(M1,M2,M3), the following:

F1(u1, v1,w1)(t) ≥ F1(u2, v1,w1)(t), F1(u1, v1,w1)(t) ≤ F1(u1, v2,w2)(t),
F2(u1, v1,w1)(t) ≥ F2(u2, v2,w1)(t), F2(u1, v1,w1)(t) ≤ F2(u1, v1,w2)(t),
F3(u1, v1,w1)(t) ≥ F3(u2, v2,w2)(t)

hold.

Lemma 4.3. F = (F1, F2, F3) : W → C(R,R3) is continuous with respect to the norm | · |µ in Bµ(R,R3).

Proof. Note that for i = 1, 2, 3, 4, j = 2, 3,∫ +∞

0

∫
Ω

gi(s, y)eµ|y·ν+cs|dyds ≤
∫ +∞

0

1
τi

e
s
τi

∫
Ω

1√
4πd js

e−
‖y‖2
4d j s eµ(|y·ν|+cs)dyds

=

∫ +∞

0

1
τi

e−
s
τi

+µcs+d jµ
2 s

∫
Ω

1√
4πd js

e−
(‖y‖−2d j sµ‖ν‖)2

4d j s dyds =

∫ +∞

0

1
τi

e−
1+µcτi+d jµ

2τi
τi

sds =
1

1 + µcτi + d jτiµ2 .

Therefore

|H1(u1, v1,w1)(t) − H1(u2, v2,w2)(t)| e−µ|t| ≤ | f1(u1, v1,w1)(t) − f1(u2, v2,w2)(t)| e−µ|t| + β1|Φ1 −Φ2|µ
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=

∣∣∣∣∣u1(t) − u2(t) − (u2
1(t) − u2

2(t)) +
u2(t)

b1 + u2(t)
(g1 ∗ v2)(t) −

u1(t)
b1 + u1(t)

(g1 ∗ v1)(t)

+
u2(t)

b2 + u2(t)
(g2 ∗ w2)(t) −

u1(t)
b2 + u1(t)

(g2 ∗ w1)(t)
∣∣∣∣∣ e−µ|t| + β1|Φ1 −Φ2|µ

≤

{
|u1(t) − u2(t)| + |u1(t) + u2(t)||u1(t) − u2(t)| +

u2(t)
b1 + u2(t)

(g1 ∗ |v2 − v1|)(t)

+ |g1 ∗ v1|(t)
∣∣∣∣∣ u2(t)
b1 + u2(t)

−
u1(t)

b1 + u1(t)

∣∣∣∣∣ +
u2(t)

b2 + u2(t)
(g2 ∗ |w2 − w1|)(t)

+|g2 ∗ w1|(t)
∣∣∣∣∣ u2(t)
b2 + u2(t)

−
u1(t)

b2 + u1(t)

∣∣∣∣∣} e−µ|t| + β1|Φ1 −Φ2|µ

≤(2M1 + 1)|Φ1 −Φ2|µ + M1

∫ +∞

0

∫
Ω

g1(s, y)eµ|y·ν+cs|dyds|Φ1 −Φ2|µ +
1
b1

M2|Φ1 −Φ2|µ

+ M1

∫ +∞

0

∫
Ω

g2(s, y)eµ|y·ν+cs|dyds|Φ1 −Φ2|µ +
1
b2

M3|Φ1 −Φ2|µ + β1|Φ1 −Φ2|µ

≤ϑ1|Φ1 −Φ2|µ,

|H2(u1, v1,w1)(t) − H2(u2, v2,w2)(t)| e−µ|t| ≤ | f2(u1, v1,w1)(t) − f2(u2, v2,w2)(t)| e−µ|t| + β2|Φ1 −Φ2|µ

=

∣∣∣∣∣∣α1[g3 ∗ (v1 − v2)](t) + a1

[
u1(t)

b1 + u1(t)
(g1 ∗ v1)(t) −

u2(t)
b1 + u2(t)

(g1 ∗ v2)(t)
]

+m1(v2(t)w2(t) − v1(t)w1(t)) + h1(v2
2(t) − v2

1(t))
∣∣∣ e−µ|t| + β2|Φ1 −Φ2|µ

≤α1

∫ +∞

0

∫
Ω

g3(s, y)eµ|y·ν+cs|dyds|Φ1 −Φ2|µ + a1M1

∫ +∞

0

∫
Ω

g1(s, y)eµ|y·ν+cs|dyds|Φ1 −Φ2|µ

+ a1b1M2|Φ1 −Φ2|µ + m1(M2 + M3)|Φ1 −Φ2|µ + 2h1M2|Φ1 −Φ2|µ + β2|Φ1 −Φ2|µ

≤ϑ2|Φ1 −Φ2|µ.

Similarly, we have |H3(u1, v1,w1)(t) − H3(u2, v2,w2)(t)| e−µ|t| ≤ ϑ3|Φ1 −Φ2|µ, where

ϑ1 =

(
2 +

1
1 + µcτ1 + d2µ2τ1

+
1

1 + µcτ2 + d3µ2τ2

)
M1 +

1
b1

M2 +
1
b2

M3 + 1 + β1,

ϑ2 =
α1

1 + µcτ3 + d2µ2τ3
+

a1

1 + µcτ1 + d2µ2τ1
M1 + (a1b1 + m1 + 2h1)M2 + m1M3 + β2,

ϑ3 =
α2

1 + µcτ4 + d3µ2τ4
+

a2

1 + µcτ2 + d3µ2τ2
M1 + (a2b2 + m2 + 2h2)M2 + m2M3 + β3.

Then for t ≥ 0, we have

|F1(u1, v1,w1)(t) − F1(u2, v2,w2)(t)| e−µ|t|

=
1

d1(λ12 − λ11)

[∫ t

−∞

eλ11(t−s)|H1(u1, v1,w1)(s) − H1(u2, v2,w2)(s)|ds

+

∫ +∞

t
eλ12(t−s)|H1(u1, v1,w1)(s) − H1(u2, v2,w2)(s)|ds

]
e−µ|t|

AIMS Mathematics Volume 10, Issue 9, 21693–21720.
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≤
ϑ1e−µ|t|

d1(λ12 − λ11)

[∫ t

−∞

eλ11(t−s)e−µ|s|ds +

∫ +∞

t
eλ12(t−s)e−µ|s|ds

]
|Φ1 −Φ2|µ

=
ϑ1e−µ|t|

d1(λ12 − λ11)

[∫ 0

−∞

eλ11te−(λ11+µ)sds +

∫ t

0
eλ11te(µ−λ11)sds +

∫ +∞

t
eλ12te(µ−λ12)sds

]
|Φ1 −Φ2|µ

=
ϑ1

d1(λ12 − λ11)

[
2µ

λ2
11 − µ

2
e(λ11−µ)t +

λ11 − λ21

(µ − λ11)(λ21 − µ)

]
|Φ1 −Φ2|µ

≤
ϑ1

d1(λ12 − λ11)

[
2µ

λ2
11 − µ

2
+

λ11 − λ21

(µ − λ11)(λ21 − µ)

]
|Φ1 −Φ2|µ.

For t < 0, a similar inequality holds as above. Thus, we proved that F1 : W → C(R,R3) is
continuous with respect to the norm | · |µ in Bµ(R,R3).

Following analogous reasoning, we obtain that (F2, F3) : W → C(R,R3) is continuous with respect
to the norm | · |µ in Bµ(R,R3). �

Next, we give the definition of upper and lower solutions.

Definition 1. The continuous functions (u, v,w) and (ū, v̄, w̄) on R are called a pair of lower and upper
solutions of system (3.1) if they satisfy the following conditions:
(i) 0 ≤ u(t) ≤ ū(t), 0 ≤ v(t) ≤ v̄(t), 0 ≤ w(t) ≤ w̄(t) for t ∈ R.
(ii) There exists a finite number set D ⊂ R such that

(a) ū, u, v̄, v, w̄, w are in C3(R \ D).
(b) The right and left limits of u′, ū′, v′, v̄′, w′, w̄′ all exist at each t ∈ D and satisfy

ū′(t−) ≥ ū′(t+), v̄′(t−) ≥ v̄′(t+), w̄′(t−) ≥ w̄′(t+),
u′(t−) ≤ u′(t+), v′(t−) ≤ v′(t+), w′(t−) ≤ w′(t+).

(iii) At ±∞, the first and second derivatives of ū, u, v̄, v, w̄, w have at most exponential growth.
(iv) For every continuous function (u, v,w) with u ≤ u ≤ ū, v ≤ v ≤ v̄, w ≤ w ≤ w̄,

d1ū′′(t) − cū′(t) + ū(t)(1 − ū(t)) −
ū(t)(g1 ∗ v)(t)

b1 + ū(t)
−

ū(t)(g2 ∗ w)(t)
b2 + ū(t)

≤ 0,

d2v̄′′(t) − cv̄′(t) + α1(g3 ∗ v̄)(t) +
a1ū(t)(g1 ∗ v̄)(t)

b1 + ū(t)
− m1v̄(t)w(t) − h1v̄2(t) ≤ 0,

d3w̄′′(t) − cw̄′(t) + α2(g4 ∗ w̄)(t) +
a2ū(t)(g2 ∗ w̄)(t)

b2 + ū(t)
− m2v̄(t)w̄(t) − h2w̄2(t) ≤ 0,

d1u′′(t) − cu′(t) + u(t)(1 − u(t)) −
u(t)(g1 ∗ v̄)(t)

b1 + u(t)
−

u(t)(g2 ∗ w̄)(t)
b2 + u(t)

≥ 0,

d2v′′(t) − cv′(t) + α1(g3 ∗ v)(t) +
a1u(t)(g1 ∗ v(t)

b1 + u(t)
− m1v(t)w̄(t) − h1v2(t) ≥ 0,

d3w′′(t) − cw′(t) + α2(g4 ∗ w)(t) +
a2u(t)(g2 ∗ w)(t)

b2 + u(t)
− m2v(t)w(t) − h2w2(t) ≥ 0,

∀ t ∈ R \ D.

Assume that a pair of upper-lower solutions (ū, v̄, w̄) and (u, v,w) is given such that
(P1) (0, 0, 0) ≤ (u(t), v(t),w(t)) ≤ (ū(t), v̄(t), w̄(t)) ≤ (M1,M2,M3), t ∈ R.
(P2) lim

t→−∞
(ū(t), v̄(t), w̄(t)) = (0, 0, 0), lim

t→+∞
(u(t), v(t),w(t)) = lim

t→+∞
(ū, v̄, w̄) = (u∗, v∗,w∗).
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Define a profile set

Γ((u, v,w), (ū, v̄, w̄)) =

{
(i) (u, v,w)(t) ≤ (u, v,w)(t) ≤ (ū, v̄, w̄)(t),
(ii) (u, v,w)(t) is nondecreasing in t ∈ R.

It is obvious that Γ((u, v,w), (ū, v̄, w̄)) is nonempty, closed, convex, and bounded. We have the following
results.

Lemma 4.4. F(Γ) ⊂ Γ.

Lemma 4.5. F : Γ→ Γ is compact with respect to the decay norm | · |µ.

Combining Lemmas 4.4 and 4.5, we obtain that F is compact continuous on Γ, and F has a fixed
point on Γ by applying Schauder’s fixed point theorem. Further, W also has a fixed point on Γ since
Γ ⊂ W. We have the following theorem.

Theorem 4.1. Suppose that there is a pair of upper-lower solutions (ū, v̄, w̄) and (u, v,w) for (3.1)
satisfying (P1) and (P2). Then (3.1) has a traveling wave solution connecting (0, 0, 0) with (u∗, v∗,w∗).

5. Conclusions

This paper investigates the traveling wave solutions of a one prey-two competing predators system
(1.3) with nonlocal delay, where the delays for predators take into account gestation and migration.
First, by constructing a Lyapunov function, we demonstrate the global asymptotic stability of the
positive equilibrium E∗ (see Theorem 2.2). This result indicates that when there is intra-specific and
inter-specific competition between predators and prey, if system (1.3) has a unique positive equilibrium
E∗, this solution is globally asymptotically stable. From a biological perspective, this means that
predators and prey can coexist in the long term, with population densities eventually stabilizing near
the positive equilibrium E∗. Second, by analyzing the distribution of the roots of the characteristic
equation 4i(λ, c)(i = 1, 2, 3), we determine the critical wave speed c∗ = max{c∗1, c

∗
2, c
∗
3}. Then,

employing Schauder’s fixed point theorem and the cross iteration method, we define a compact operator
F = (F1, F2, F3) in a Banach space. By verifying its PQM and compactness (see Lemmas 4.3–4.5),
we transform the existence of traveling wave solutions into a fixed point problem on Γ ⊂ W (see
Theorem 4.1).

In prey-predators competition systems, the introduction of nonlocal delays significantly elevates
computational complexity, requires precise analytical estimates, and can more realistically reflect
the spatial migration and historical dependence of biological populations (such as predation delays
and reproductive cycles), overcoming the limitations of traditional local delay models that neglect
spatial heterogeneity. However, this study relies on specific kernel functions to analyze the effects
of nonlocal delay, which may not fully represent the complex memory and migration patterns in
ecological processes. Future research could explore more general kernel functions to more accurately
characterize the spatial and temporal effects of nonlocal delay.
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Appendix

In this section, we further verify the existence of traveling wave solutions by constructing a pair of
upper-lower solutions. Substituting (4.1) into (3.4) yields the following:

∆1(λ, c) = d1λ
2 − cλ + 1,

∆2(λ, c) = d2λ
2 − cλ + α1

1+cτiλ−d2τiλ2 ,

∆3(λ, c) = d3λ
2 − cλ + α2

1+cτiλ−d3τiλ2 .

(A.1)

First, we have the following lemma.

Lemma A.1. Assume
(2u∗ − 1)2

4
≥

u∗M2

b1 + u∗
+

u∗M3

b2 + u∗
(A.2)

AIMS Mathematics Volume 10, Issue 9, 21693–21720.

https://dx.doi.org/https://doi.org/10.3934/math.2022888
https://dx.doi.org/https://doi.org/10.1016/S0022-5193(89)80189-4
https://dx.doi.org/https://doi.org/10.1137/0150099
https://dx.doi.org/https://doi.org/10.1007/s40840-020-00953-4
https://dx.doi.org/https://doi.org/10.1007/s40840-020-00953-4
https://dx.doi.org/https://doi.org/10.1137/S003614100139991
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2010.07.044
https://dx.doi.org/https://doi.org/10.1007/s13160-017-0276-6
https://dx.doi.org/https://doi.org/10.1007/s13160-017-0276-6
https://dx.doi.org/https://doi.org/10.1186/s13660-016-1264-0
https://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2006.10.003


21713

holds, and there exists ε1 ∈ (0, 2u∗−1
2 ) such that

−ε2
1 + (2u∗ − 1)ε1 +

u∗v∗

b1 + u∗
−

(u∗ − ε1)M2

b1 + u∗ − ε1
+

u∗w∗

b2 + u∗
−

(u∗ − ε1)M3

b2 + u∗ − ε1
> ε0,

where ε0 > 0 is a constant.

Proof. Let

g1(ε1) = −ε2
1 + (2u∗ − 1)ε1,

g2(ε1) = −
u∗v∗

b1 + u∗
+

(u∗ − ε1)M2

b1 + u∗ − ε1
,

g3(ε1) = −
u∗w∗

b2 + u∗
+

(u∗ − ε1)M3

b2 + u∗ − ε1
.

Direct calculation yields

g1(0) = g1(2u∗ − 1) = 0,

max{g1(ε1)} = g1

(
2u∗ − 1

2

)
=

(2u∗ − 1)2

4
,

max{g2(ε1)} ≤ g2(0) ≤
u∗M2

b1 + u∗
,

max{g3(ε1)} ≤ g3(0) ≤
u∗M3

b2 + u∗
.

By (A.2) there exists ε∗1 such that

0 < ε∗1 <
2u∗ − 1

2
,

and
g1(ε1) ≥ g2(ε1) + g3(ε1) f or ε∗1 ≤ ε1 <

2u∗ − 1
2

.

�

Take c > c∗ := max
{
c∗1, c

∗
2, c
∗
3

}
. There exists ε2 > v∗, ε3 > w∗, η ∈

(
1,min

{
2, λ̃i

λ j
, λi+λi

λi

})
(i, j = 1, 2, 3

and i , j) such that ∆i(ηλi, c) < 0 and
h1ε1 − m1w∗ − a1u∗

b1+u∗ > 0, h2ε3 + m2ε2 −
a2u∗

b2+u∗ > 0,
1 + cλ2τ1 − d1τ1λ2

2 > 0, 1 + cηλ2τ1 − d1τ1ηλ2
2 > 0,

1 + cλ3τ2 − d2τ2λ3
2 > 0, 1 + cηλ3τ2 − d2τ2ηλ3

2 > 0

(A.3)

hold, and M1 satisfies

M1 < min
{

2h1 − α1

a1
,

2h2 − α2

a2

}
. (A.4)

We define the non-negative, bounded, continuous functions ū(t), v̄(t), w̄(t) and u(t), v(t),w(t) on R as
follows:

ū(t) =

{
eλ1t, ∀ t ≤ t1,

u∗ + u∗e−λt, ∀ t > t1,
u(t) =

{
eλ1t − qeηλ1t, ∀ t ≤ t4,

u∗ − ε1e−λt, ∀ t > t4,

AIMS Mathematics Volume 10, Issue 9, 21693–21720.
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v̄(t) =

{
eλ2t + qeηλ2t, ∀ t ≤ t2,

v∗ + v∗e−λt, ∀ t > t2,
v(t) =

{
eλ2t − qeηλ2t, ∀ t ≤ t5,

v∗ − ε2e−λt, ∀ t > t5,

w̄(t) =

{
eλ3t + qeηλ3t, ∀ t ≤ t3,

w∗ + w∗e−λt, ∀ t > t3,
w(t) =

{
eλ3t − qeηλ3t, ∀ t ≤ t6,

w∗ − ε3e−λt, ∀ t > t6,

where λ > 0 is small enough, q > 1 is large enough, and

t1 > 0 > max {t2, t3, t4, t5, t6} .

Lemma A.2. Assume that (A.3) and (A.4) hold. Then (ū(t), v̄(t), w̄(t)) is an upper solution of (3.1).

Proof. For ū(t), by the definitions of λ1 and ū(t), we have

ū′(t1−) = λ1eλ1t > −λu∗e−λt = ū′(t1+).

(i) If t ≤ t1, ū(t) = eλ1t, then

d1ū′′(t) − cū′(t) + ū(t)(1 − ū(t)) −
ū(t)(g1 ∗ v)(t)

b1 + ū(t)
−

ū(t)(g2 ∗ w)(t)
b2 + ū(t)

≤d1ū′′(t) − cū′(t) + ū(t) = eλ1t∆1(λ1, c) = 0.

(ii) If t > t1, ū(t) = u∗ + u∗e−λt, then

d1ū′′(t) − cū′(t) + ū(t)(1 − ū(t)) −
ū(t)(g1 ∗ v)(t)

b1 + ū(t)
−

ū(t)(g2 ∗ w)(t)
b2 + ū(t)

≤d1λ
2u∗e−λt + cλu∗e−λt − (u∗ + u∗e−λt)2

≤P1(λ) − u∗2 := Q1(λ),

where P1(λ) := d1λ
2u∗e−λt +cλu∗e−λt, and then P1(0) = 0 implies that Q1(0) = −u∗2 < 0. Consequently,

for sufficiently small λ, it follows that Q1(λ) < 0.
For v̄(t), from the assumptions on q, η, λ and the definitions of λ2, v̄(t), it follows that

v̄′(t2−) = λ2eλ2t + qηλ2eηλ2t > −λv∗e−λt = v̄′(t2+).

(i) If t ≤ t2 < 0, since v̄(t) = eλ2t + qeηλ2t, then for i = 1, 3,

gi ∗ v̄ =

∫ +∞

0

1
τi

e−
s
τi

∫
Ω

1
√

4πd2s
e−

‖y‖2
4d2 s (eλ2(t−y·ν−cs) + qeηλ2(t−y·ν−cs))dyds

=

∫ +∞

0

1
τi

eλ2te−
s
τi
−cλ2 s+d2 sλ2

2
∫

Ω

1
√

4πd2s
e−

(‖y‖+2d2 sλ2‖ν‖)
2

4d2 s dyds

+

∫ +∞

0

q
τi

eηλ2te−
s
τi
−cηλ2 s+d2 sη2λ2

2
∫

Ω

1
√

4πd2s
e−

(‖y‖+2d2 sηλ2‖ν‖)
2

4d2 s dyds

=eλ2t
∫ +∞

0

1
τi

e−
1+cλ2τi−d2τiλ2

2

τi
sds + qeηλ2t

∫ +∞

0

1
τi

e−
1+cηλ2τi−d2η

2λ2
2τi

τi
sds

=
eλ2t

1 + cτiλ2 − d2τiλ2
2 +

qeηλ2t

1 + cτiηλ2 − d2τiη2λ2
2 , (A.5)
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thus

d2v̄′′(t) − cv̄′(t) + α1(g3 ∗ v̄)(t) +
a1ū(t)(g1 ∗ v̄)(t)

b1 + ū(t)
− m1v̄(t)w(t) − h1v̄2(t)

≤d2λ
2
2eλ2t + d2qη2λ2

2eηλ2t − cλ2eλ2t − cqηλ2eηλ2t +
α1eλ2t

1 + cτ3λ2 − d2τ3λ2
2

+
α1qeηλ2t

1 + cτ3ηλ2 − d2τ3η2λ2
2 + a1eλ1t

(
eλ2t

1 + cτ1λ2 − d2τ1λ2
2 +

qeηλ2t

1 + cτ1ηλ2 − d2τ1η2λ2
2

)
≤eηλ2t

[
q∆2(ηλ2, c) + a1e( λ1+λ2

λ2
−η)λ2t

+ a1qeλ1t
]

≤eηλ2t
[
q(∆2(ηλ2, c) + a1eλ1t) + a1

]
,

given ∆2(ηλ2, c) < 0, since t2 < 0 and q > 1 is large enough such that

q(∆2(ηλ2, c) + a1eλ1t) + a1 < 0.

(ii) If t > t2, since v̄(t) = v∗ + v∗e−λt, then for i = 1, 3,

gi ∗ v̄ =

∫ +∞

0

1
τi

e−
s
τi

∫
Ω

1
√

4πd2s
e−

‖y‖2
4d2 s (v∗ + v∗e−λ(t−y·ν−cs))dyds

=v∗ +

∫ +∞

0

v∗

τi
e−λte−

s
τi

+λcs+d2 sλ2
∫

Ω

1
√

4πd2s
e−

(‖y‖−2d2 sλ‖ν‖)2

4d2 s dyds

=v∗ + v∗e−λt
∫ +∞

0

1
τi

e−
1−cτiλ−d2τiλ

2

τi
sds

=v∗ +
v∗e−λt

1 − cτiλ − d2τiλ2 . (A.6)

The discussion will be divided into the following two parts:
(1) t > t1 > t2, ū(t) = u∗ + u∗e−λt, and then

d2v̄′′(t) − cv̄′(t) + α1(g3 ∗ v̄)(t) +
a1ū(t)(g1 ∗ v̄)(t)

b1 + ū(t)
− m1v̄(t)w(t) − h1v̄2(t)

≤d2λ
2v∗e−λt+cλv∗e−λt+α1v∗

(
1+

e−λt

1−cτ3λ−d2τ3λ2

)
+a1M1v∗

(
1+

e−λt

1−cτ1λ−d2τ1λ2

)
−h1(v∗+v∗e−λt)2

≤v∗(P2(λ) + α1 + a1M1 − 4h1e−λt) := Q2(λ),

where P2(λ) = e−λt
(
d2λ

2 + cλ + α1
1−cτ3λ−d2τ3λ2 + a1 M1

1−cτ1λ−d2τ1λ2

)
. Then P2(0) = α1 + a1M1 implies that

Q2(0) = 2v∗(α1 + a1M1 − 2h1) < 0 by (A.4). Consequently, for sufficiently small λ, it follows that
Q2(λ) < 0.

(2) t1 > t > t2, ū(t) = eλ1t, and similar to (1), we get

d2v̄′′(t) − cv̄′(t) + α1(g3 ∗ v̄)(t) +
a1ū(t)(g1 ∗ v̄)(t)

b1 + ū(t)
− m1v̄(t)w(t) − h1v̄2(t) ≤ 0.

For w̄(t), from the assumptions on q, η, λ and the definitions of λ3, w̄(t), it follows that

w̄′(t3−) = λ3eλ3t + qηλ3eηλ3t > −λw∗e−λt = w̄′(t3+).

AIMS Mathematics Volume 10, Issue 9, 21693–21720.
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(i) If t ≤ t3 < 0, w̄(t) = eλ3t + qeηλ3t, and similar to (A.5), for i = 2, 4,

gi ∗ w̄ =
eλ3t

1 + cτiλ3 − d3τiλ3
2 +

qeηλ3t

1 + cτiηλ3 − d3τiη2λ3
2 ,

thus

d3w̄′′(t) − cw̄′(t) + α2(g4 ∗ w̄)(t) +
a2ū(t)(g2 ∗ w̄)(t)

b2 + ū(t)
− m2v̄(t)w̄(t) − h2w̄2(t)

≤d3λ
2
3eλ3t + d3qη2λ2

3eηλ3t − cλ3eλ3t − cqηλ3eηλ3t +
α2eλ3t

1 + cτ4λ3 − d3τ4λ3
2

+
α2qeηλ3t

1 + cτ4ηλ3 − d3τ4η2λ3
2 + a2eλ1t

(
eλ3t

1 + cτ2λ3 − d3τ2λ3
2 +

qeηλ3t

1 + cτ2ηλ3 − d3τ2η2λ3
2

)
≤eηλ3t

[
q∆3(ηλ3, c) + a2e( λ1+λ3

λ3
−η)λ3t

+ a2qeλ3t
]

≤eηλ3t
[
q(∆3(ηλ3, c) + a2eλ3t) + a2

]
,

given ∆3(ηλ3, c) < 0, since t3 < 0 and q > 1 is large enough such that

q(∆3(ηλ3, c) + a2eλ3t) + a2 < 0.

(ii) If t > t3, w̄(t) = w∗ + w∗e−λt, and similar to (A.6), for i = 2, 4,

gi ∗ w̄ = w∗ +
w∗e−λt

1 − cτiλ − d3τiλ2 .

The discussion will be divided into the following two parts:
(1) t > t1 > t3, ū(t) = u∗ + u∗e−λt, and then

d3w̄′′(t) − cw̄′(t) + α2(g4 ∗ w̄)(t) +
a2ū(t)(g2 ∗ w̄)(t)

b2 + ū(t)
− m2v̄(t)w̄(t) − h2w̄2(t)

≤d3λ
2w∗e−λt + cλw∗e−λt + α2w∗

(
1 +

e−λt

1 − cτ4λ − d3τ4λ2

)
+

a2w∗

b2 + u∗
(u∗ + u∗e−λt)

(
1 +

e−λt

1 − cτ2λ − d3τ2λ2

)
− (m2w∗v∗ + h2w∗2)(1 + e−λt)2

≤P3(λ) +

[
a2u∗w∗

b2 + u∗

(
e−λt

1 − cτ2λ − d3τ2λ2 − 1
)
− α2w∗

]
(1 + e−λt) := Q3(λ),

where P3(λ) := w∗e−λt
(
d3λ

2 + cλ + α2
1−cτ4λ−d3τ4λ2 − α2

)
. Then P3(0) = 0 implies that Q3(0)=−2α2w∗<0.

Consequently, for sufficiently small λ, it follows that Q3(λ) < 0.
(2) t1 > t > t3, ū(t) = eλ1t, and then

d3w̄′′(t) − cw̄′(t) + α2(g4 ∗ w̄)(t) +
a2ū(t)(g2 ∗ w̄)(t)

b2 + ū(t)
− m2v̄(t)w̄(t) − h2w̄2(t)

≤d3λ
2w∗e−λt+cλw∗e−λt+α2w∗

(
1+

e−λt

1−cτ4λ−d3τ4λ2

)
+a2M1w∗

(
1+

e−λt

1−cτ2λ−d3τ2λ2

)
−h2(w∗+w∗e−λt)2
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≤v∗
(
P4(λ) + α1 + a2M1 − 4h2e−λt

)
:= Q4(λ),

where P4(λ) = e−λt
(
d3λ

2 + cλ + α2
1−cτ4λ−d3τ4λ2 + a2 M1

1−cτ2λ−d3τ2λ2

)
. Then P4(0) = α1 + a2M1 implies that

Q4(0) = 2w∗(α2 + a2M1 − 2h2) < 0 for (A.4). Consequently, for sufficiently small λ, it follows that
Q4(λ) < 0.

To summarize, (ū(t), v̄(t), w̄(t)) is an upper solution of (3.1). �

Lemma A.3. Assume that (A.2) and (A.3) hold. Then (u(t), v(t),w(t)) is a lower solution of (3.1).

Proof. For u(t), from the assumptions on q, η, λ and the definitions of λ1, u(t), it follows that

u′(t4−) = λ1eλ1t − qηλ1eηλ1t < ε1λe−λt = u′(t4+).

(i) If t ≤ t4, then u(t) = eλ1t − qeηλ1t < 1. Therefore, we have

d1u′′(t) − cu′(t) + u(t)(1 − u(t)) −
u(t)(g1 ∗ v̄)(t)

b1 + u(t)
−

u(t)(g2 ∗ w̄)(t)
b2 + u(t)

≥d1λ
2
1eλ1t − d1qη2λ1

2eηλ1t − cλ1eλ1t + cqηλ1eηλ1t + eλ1t − qeηλ1t

− (eλ1t − qeηλ1t)2 − eλ1t(eλ2t + qeηλ2t) − eλ1t(eλ3t + qeηλ3t)

≥ − eηλ1t
[
q(∆1(ηλ1, c) + e(λ1+η(λ2−λ1))t + e(λ1+η(λ3−λ1))t) + e(2−η)λ1t + e( λ2+λ1

λ1
−η)λ1t

+ e( λ3+λ1
λ1
−η)λ1t

]
≥ − eηλ1t[q(∆1(ηλ1, c) + 2eλ1t) + 3eλ1t],

given ∆1(ηλ1, c) < 0, since t4 < 0 and q > 1 is large enough such that

q(∆1(ηλ1, c) + 2eλ1t) + 3eλ1t < 0.

(ii) If t > t4, then

d1u′′(t) − cu′(t) + u(t)(1 − u(t)) −
u(t)(g1 ∗ v̄)(t)

b1 + u(t)
−

u(t)(g2 ∗ w̄)(t)
b2 + u(t)

≥ − d1λ
2ε1e−λt − cλε1e−λt + u∗ − u∗2 − ε1e−λt + 2u∗ε1e−λt − ε2

1e−2λt

−
(u∗ − ε1e−λt)(g1 ∗ v̄)(t)

b1 + u∗ − ε1e−λt −
(u∗ − ε1e−λt)(g2 ∗ w̄)(t)

b2 + u∗ − ε1e−λt

=ε1e−λtP5(λ) + (2u∗ − 1)ε1e−λt − ε2
1e−2λt +

u∗v∗

b1 + u∗
−

(u∗ − ε1e−λt)(g1 ∗ v̄)(t)
b1 + u∗ − ε1e−λt

+
u∗w∗

b2 + u∗
−

(u∗ − ε1e−λt)(g2 ∗ w̄)(t)
b2 + u∗ − ε1e−λt := Q5(λ),

where P5(λ) := −d1λ
2 − cλ. Then P5(0) = 0. On the other hand, let

I(λ, t) :=(2u∗−1)ε1e−λt−ε2
1e−2λt+

u∗v∗

b1+u∗
−

(u∗−ε1e−λt)(g1∗v̄)(t)
b1 + u∗ − ε1e−λt +

u∗w∗

b2+u∗
−

(u∗−ε1e−λt)(g2∗w̄)(t)
b2 + u∗ − ε1e−λt

≥(2u∗ − 1)ε1e−λt − ε2
1e−2λt +

u∗v∗

b1 + u∗
−

(u∗ − ε1e−λt)M2

b1 + u∗ − ε1e−λt +
u∗w∗

b2 + u∗
−

(u∗ − ε1e−λt)M3

b2 + u∗ − ε1e−λt .
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By Lemma A.1

I(λ, 0) ≥ (2u∗ − 1)ε1 − ε
2
1 +

u∗v∗

b1 + u∗
−

(u∗ − ε1)M2

b1 + u∗ − ε1
+

u∗w∗

b2 + u∗
−

(u∗ − ε1)M3

b2 + u∗ − ε1
> ε0 > 0.

We can choose δ1 > 0 such that δ∗ := ε1 + δ1 satisfies

(2u∗ − 1)δ − δ2 +
u∗v∗

b1 + u∗
−

(u∗ − δ)M2

b1 + u∗ − δ
+

u∗w∗

b2 + u∗
−

(u∗ − δ)M3

b2 + u∗ − δ
>
ε0

2
> 0,

for δ ∈ [ε1, δ
∗].

If t ∈ (t4, 0], noting that ε1e−λt is decreasing on (t4, 0], for sufficiently small λ such that ε1 ≤ ε1e−λt <

ε1e−λt4 = ε1 + δ1 = δ∗, then I(λ, t) > 0.
If t > 0, we have

I(λ, t) ≥(2u∗ − 1)ε1e−λt − ε2
1e−2λt +

u∗v∗

b1 + u∗
−

(u∗ − ε1e−λt)
b1 + u∗ − ε1e−λt

(
v∗ +

v∗e−λt

1 − cτ1λ − d2τ1λ2

)
+

u∗w∗

b2 + u∗
−

(u∗ − ε1e−λt)
b2 + u∗ − ε1e−λt

(
w∗ +

w∗e−λt

1 − cτ2λ − d3τ2λ2

)
≥(2u∗ − 1)ε1e−λt − ε2

1e−λt +
u∗v∗

b1 + u∗
−

u∗

b1 + u∗

(
v∗ +

v∗e−λt

1 − cτ1λ − d2τ1λ2

)
+

u∗w∗

b2 + u∗
−

u∗

b2 + u∗

(
w∗ +

w∗e−λt

1 − cτ2λ − d3τ2λ2

)
=e−λt

[
(2u∗ − 1)ε1 − ε

2
1 −

u∗v∗

b1 + u∗
1

1 − cτ1λ − d2τ1λ2 −
u∗w∗

b2 + u∗
1

1 − cτ2λ − d3τ2λ2

]
.

Since

max{(2u∗ − 1)ε1 − ε
2
1} =

(2u∗ − 1)2

4
≥

u∗M2

b1 + u∗
+

u∗M3

b2 + u∗
,

then there exists 0 < ε∗∗1 < 2u∗−1
2 such that

(2u∗ − 1)ε1 − ε
2
1 −

u∗v∗

b1 + u∗
1

1 − cτ1λ − d2τ1λ2 −
u∗w∗

b2 + u∗
1

1 − cτ2λ − d3τ2λ2 > 0,

for ε1 ∈ (ε∗∗1 ,
2u∗−1

2 ).
Therefore, taking ε′1 = max{ε∗1, ε

∗∗
1 }, we have I(λ, t) ≥ 0 for ε1 ∈ (ε′1,

2u∗−1
2 ), that is, for sufficiently

small λ such that Q5(λ) ≥ 0.
For v(t), from the assumptions on q, η, λ and the definitions of λ2, v(t), it follows that

v′(t5−) = λ2eλ2t − qηλ2eηλ2t < ε2e−λt = v′(t5+).

(i) If t ≤ t5, v(t) = eλ2t − qeηλ2t, w̄(t) ≤ eλ3t + qeηλ3t, and similar to (A.5), for i = 1, 3,

gi ∗ v =
eλ2t

1 + cτiλ2 − d2τiλ2
2 −

qeηλ2t

1 + cτiηλ2 − d2τiη2λ2
2 ,
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thus

d2v′′(t) − cv′(t) + α1(g3 ∗ v)(t) +
a1u(t)(g1 ∗ v)(t)

b1 + u(t)
− m1v(t)w̄(t) − h1v2(t)

≥D2λ
2
2eλ2t − d2qη2λ2

2eηλ2t − cλ2eλ2t + cqηλ2eηλ2t +
α1eλ2t

1 + cτ3λ2 − d2τ3λ2
2

−
α1qeηλ2t

1 + cτ3ηλ2 − d2τ3η2λ2
2 − m1(eλ2t − qeηλ2t)(eλ3t + qeηλ3t) − h1(eλ2t − qeηλ2t)2

≥ − eηλ2t
[
q(∆2(ηλ2, c) + m1e(λ2+η(λ3−λ2))t) + m1e( λ2+λ3

λ2
−η)λ2t

+ h1e(2−η)λ2t
]

≥ − eηλ2t [q(∆2(ηλ2, c) + m1) + m1 + h1
]
,

given ∆2(ηλ2, c) < 0, since t5 < 0 and q > 1 is large enough such that

q(∆2(ηλ2, c) + m1) + m1 + h1 < 0.

(ii) If t > t5, v(t) = v∗ − ε2e−λt, w̄(t) ≤ w∗ + we−λt, and similar to (A.6),

g3 ∗ v = v∗ −
ε2e−λt

1 − cτ3λ − d2τ3λ2 ,

thus

d2v′′(t) − cv′(t) + α1(g3 ∗ v)(t) +
a1u(t)(g1 ∗ v)(t)

b1 + u(t)
− m1v(t)w̄(t) − h1v2(t)

≥ − d2λ
2ε2e−λt − cλε2e−λt + α1

(
v∗ −

ε2e−λt

1 − cτ3λ − d2τ3λ2

)
− m1(v∗ − ε2e−λt)(w∗ + we−λt) − h1(v∗ − ε2e−λt)2

=ε2e−λtP6(λ) + (v∗ − ε2e−λt)
[
(h1ε2 − m1w∗)e−λt −

a1u∗

b1 + u∗

]
:= Q6(λ),

where P6(λ) := −d2λ
2 − cλ − α1

1−cτ3λ−d2τ3λ2 + α1. Then P6(0) = 0 implies that Q6(0) > 0 by (A.3).
Consequently, for sufficiently small λ, it follows that Q6(λ) > 0.

For w(t), from the assumptions on q, η, λ and the definitions of λ3, w(t), it follows that

w′(t6−) = λ3eλ3t − qηλ3eηλ3t < ε3e−λt = w′(t6+).

(i) If t ≤ t6, w(t) = eλ3t − qeηλ3t, v(t) = eλ2t − qeηλ2t, and similar to (A.5), for i = 2, 4,

gi ∗ w =
eλ3t

1 + cτiλ3 − d3τiλ3
2 −

qeηλ3t

1 + cτiηλ3 − d3τiη2λ3
2 ,

thus

d3w′′(t) − cw′(t) + α2(g4 ∗ w)(t) +
a2u(t)(g2 ∗ w)(t)

b2 + u(t)
− m2v(t)w(t) − h2w2(t)
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≥d3λ
2
3eλ3t − d3qη2λ2

3eηλ3t − cλ3eλ3t + cqηλ3eηλ3t +
α2eλ3t

1 + cτ4λ3 − d3τ4λ3
2

−
α2qeηλ3t

1 + cτ4ηλ3 − d3τ4η2λ3
2 − m2(eλ2t − qeηλ2t)(eλ3t − qeηλ3t) − h2(eλ3t − qeηλ3t)2

≥ − eηλ3t
[
q∆3(ηλ3, c) + m2e( λ2+λ3

λ3
−η)λ3t

+ h2e(2−η)λ3t
]

≥ − eηλ3t [q∆3(ηλ3, c) + m2 + h2
]
,

given ∆3(ηλ3, c) < 0, since t6 < 0 and q > 1 is large enough such that

q∆3(ηλ3, c) + m2 + h2 < 0.

(ii) If t > t6, w(t) = w∗ − ε3e−λt, v(t) = v∗ − ε2e−λt, and similar to (A.6),

g4 ∗ w = w∗ −
ε3e−λt

1 − cτ4λ − d3τ4λ2 ,

thus

d3w′′(t) − cw′(t) + α2(g4 ∗ w)(t) +
a2u(t)(g2 ∗ w)(t)

b2 + u(t)
− m2v(t)w(t) − h2w2(t)

≥ − d3λ
2ε3e−λt − cλε3e−λt + α2

(
w∗ −

ε3e−λt

1 − cτ4λ − d3τ4λ2

)
− m2(v∗ − ε2e−λt)(w∗ − ε3e−λt) − h2(w∗ − ε3e−λt)2

=ε3e−λtP7(λ) + (w∗ − ε3e−λt)
[
(h2ε3 + m2ε2)e−λt −

a2u∗

b2 + u∗

]
:= Q7(λ),

where P7(λ) := −d3λ
2 − cλ − α2

1−cτ4λ−d3τ4λ2 + α2. Then P7(0) = 0 implies that Q7(0) > 0 by (A.3).
Consequently, for sufficiently small λ, it follows that Q7(λ) > 0.

To summarize, (u(t), v(t),w(t)) is a lower solution of (3.1). �
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