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Abstract: In this paper, we investigated the traveling wave solutions to a one prey-two competing
predators model with nonlocal delay. First, we analyzed the stability of the positive equilibrium by
using a Lyapunov function. Then, by examining the distribution of the roots of the characteristic
equation, we ascertained the critical wave speed c*. Finally, employing the cross iteration method and
Schauder’s fixed point theorem, we proved the existence of traveling wave solutions connecting the
trivial equilibrium (0, 0,0) with the positive equilibrium (u*, v*, w*) for wave speeds ¢ > c¢*. The
incorporation of nonlocal delay into models featuring intra-specific and inter-specific competition
significantly elevates computational complexity, thereby necessitating precise analytical estimates.
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1. Introduction

Prey-predator interaction is one of the dominant themes in both ecology and mathematical ecology
due to its universal existence and importance [1,2]. In particular, the dynamics of these interactions
can be affected by inter-specific or intra-specific competition among species, and these competitive
pressures can affect the population dynamics and stability of prey-predator systems [3-5]. In [3],
Long, Wang, and Li considered the following prey-predator model with inter-specific and intra-specific
competition:

dx _ _ _ o _xz

dr — x(1 = x) bi+x  by+x’

dy _ aixy 2

I =~ kiy —miyz =y, (1.1)
dz _ amxz _ _ 2
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where x(¢), y(t), and z(¢) denote the population densities of a prey species and two competing predator
species at time ¢, respectively. The constants ay, a,, by, by, ki, kp, my, my, hy, h, are positive. For more
details on the background of this system, see [3].

The fact that the spatial distribution of the population is heterogeneous and given that the trend of
things at a given moment in time depends not only on the present but may also depend on the past, some
researchers have added diffusion and time delay to the model [6—8]. But the population individuals are
mobile and their spatial positions change over time. To address this, Britton [9, 10] proposed that the
time delay term should be combined with a spatially weighted average, which is called the time-space
time delay or the nonlocal delay. It is usually expressed in convolution form.

Given that the introduction of nonlocal delay can enhance the precision of models, many researchers
have investigated the impact of nonlocal delay on the dynamics of ecological models [11-13].

As a class of solutions with spatial translation invariance, traveling wave solutions can account
for the oscillations of solutions and the finite-speed propagation of disturbances caused by nonlocal
delay. Li et al. [14] employed Schauder’s fixed point theorem and an iteration scheme to demonstrate
the existence of traveling wave solutions for the following reaction-diffusion competition-cooperation
model with nonlocal delay and stage-structure:

e — g G0 4 oy (x, 1) = i3, 1) — @ (g1 @ 1), 1),
uxn) — py, Flen "1“‘” +ai(g1 ® u))(x, 1) — a3 (x, 1) — by (x, Hua(x, 1),
0 . o2

e = dy Zfzx 2 + @ (x, 1) = yava(x, 1) — @a(g2 @ u2)(x, 1),

daled) - p, 10D 1 (g, ® r)(x, 1) + batty (X, Dita(x, 1) — aou(x, 1),

fort > 0, x € R, and (g; ® u;)(x, ) is the nonlocal delay specially defined by

+00 +
(g ®u)(x,1) = f f e gy, Hui(x =y, t — s)dyds, i = 1,2,
0 —o0

where the specific forms of the kernels g(x, f) and g»(x, ¢) are found in [14]. v;(x, 1), u;(x,t) represent
the densities of the immature and mature populations of two species at location x and time ¢,
respectively. d; and D;(i = 1, 2) are the diffusion of the immature and mature members of two species,
a; and a, represent the birth rates, y; and 7y, are immature death rates, and a; and a, are the rate
of inter-specific competition among two mature species. b; and b, are the rate of competition and
cooperation between the two mature species, respectively. All the parameters are positive constants.

In [15], Li and Huang considered the following reaction-diffusion prey-predator system with
nonlocal delay:

%—dlAul +u1(r1 —aluz—blul) (X,I)EQX(O, +Oo)>

92 — dy Ay +us (r2 bous—asus +a3fQ f Ki(t—s, x, y)u(y, s)dsdy) (x,1) € QX (0, +00),

or

6”’ 2 =d3Aus + u3( a — byus +ay fgf Kyt — s, x, y)us(y, s)dsdy) (x,1) e QA% (0,+0), (1.2)

%=%—‘%—0, (x,1) € IQ X (0, +00),
io(x, )= i(x, 0) > 0( = 1,2,3), (x.1) € QU x (—00, 0],

where Q is the bounded domain in RV (N > 1 is an integer) with a smooth boundary dQ. u, represents
the density of the prey; u, is for the density of the prey, and the same for the predator; u; represents the

AIMS Mathematics Volume 10, Issue 9, 21693-21720.



21695

density of the predator. The initial functions u;y(x, 8)(i = 1,2, 3) are nonnegative bounded and Holder
. 1 . .

continuous. fQ f_ . Ki(t = s, x, y)ui(y, s)dsdy represents a time delay due to gestation. All parameters

are positive constants. Li and Huang employed the method of Lyapunov functions to study the stability

of positive equilibrium of system (1.2), and the existence of traveling wave solutions was proved by

constructing upper-lower solutions. For more details on the background of this system, see [15].
Motivated by [3, 14, 15], in this paper, we consider the following one prey-two competing predators

model with nonlocal delay:

W= dyAu+u(l —u) - “80) ), (x,1) € Q% (0, +0),

& = dhAv + (g3 *v) + —“'ZE‘T:V) —mpvw —hpv?, (x, 1) € QX (0, +00),

% = d3Aw + ar(gs x W) + % —myvw — how?,  (x,1) € Q % (0, +00), (1.3)
%:%:%:O, (x,1) € 0Q x (0, +0),

(u, v, w)(x,1) = (¢, o, Y)(x,1) > 0, (x,1) € QX (0,01,

where u(x, 1), v(x, t), and w(x, t) denote the population densities of a prey species and two competing
predator species at location x and time ¢, respectively. Q is a bounded domain in RY (N > 1 is an
integer) with a smooth boundary dQ. The boundary conditions indicate that the populations do not
move across the boundary 0Q. The initial conditions reflect the historical state of the populations,
ensuring continuity from past to present. A is a Laplace operator, d;, d,, d3 > 0 are the diffusion
coeflicients. Both predator species prey on the same resource, with their consumption rates following
Holling type II functional responses. Here, a; and a, denote the searching efficiencies, while b, and
b, represent the half-saturation constants. The birth rates of two predator species are a; and a,. The
strengths of inter-specific competition between the two predator species are quantified by m; and ms,
and the intra-specific competition within each predator species is measured by 4, and h,. 7 is the unit
outer normal vector on the boundary. All the above coefficients have been normalized.
In system (1.3), (g; * v)(x, 1) (i = 1, 3), (g; * w)(x, 1) (j = 2,4) are the nonlocal delay defined by

(& *Vv)(x,1) = f f gi(x =y, t = s)v(y, s)dyds = f f gi(y, )v(x — y, t — s)dyds,
—o0 JQ 0 Q

! —+00
(gj *w)(x, 1) = f f gj(x =y, t = s)w(y, s)dyds = f f gy, s)w(x — y,t — s)dyds,
—o0 JQ 0 Q
where the kernel g,(x, 1) (n = 1,2, 3, 4) satisfies

gn(x, 1) = 8u(x, D)k, (1), x € Q, ky(t) >0,
45, 1) = gu(—.1), f 8u.00dy = 1 for1 20,
Q
f ) k,(t)dt = 1, tk,(t) € L'((0, o0); R),
0

and V¢ > 0,4 > 0,
—+00
f fgn(y, $)e 0t dyds < +oo, ye Q c RV
0 Q

holds. g,(x,?) are nonnegative functions which are continuous in x € Q for each 7 € [0, +00) and
measurable in ¢ € [0, +oc0) for each pair x € Q. In this paper, g; * v and g, * w denote effective predation
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pressures, and gz * v and g4 * w denote the number born at location y and time ¢ — s that are still alive
now at location x and time ¢, respectively.

The analysis of system (1.3) is nontrivial. The interplay of nonlocal time delay with intra-specific
and inter-specific competition not only increases computational complexity but also requires more
precise estimates.

System (1.3) has a unique positive equilibrium E* = (u*,v*,w") if and only if the following
conditions (H1) or (H2) hold.

(H1) 552 = 1. If

(a) [m2a/1(R1 + 1) = Ry + DIImaay Ry + 1) = hian(Ry + 1)] < 0, where Ry = —%— R, =
m(1+bk) (k=1,2),
(b) @ = b1+u - b2+u ;t O
(c) my(1 —u*) — j;;‘ul > 0, ,’j(fu (1 = u) > 0, where 6;(u”) = 22 +a; (i = 1,2)
hold, then system (1.3) has a unique solution u* € (%, 1), and
Com—w) - R (- u)
Vv = @ R = @ .

(H2) 552 # 1. If
(a) <I>(2)<D(1) < 0, where ®(x) = (mimy — hihy)G3(x) — Ga(x),
(b) mymy — hihy > 0, 2(b1 +b2) >1, P; < 0, P,<0, Pi<0,0r
mlmz—hlhz <0, 2(b1 +b2) < 1, p3 20, Pz 20, pl >0
hold, then system (1.3) has a unique solution u* € (%, 1), and

qu*2+P1u*+P0 " qu*2+P1u*+P0
= . w = .
(mymy — hihy)(by + u*)(bsy + u*) (mymy — hihy)(by + u*)(by + u*)

Among them, the specific form of G3(x),G4(x),P,»(i =1,2,3),P i, and P;(j = 0,1,2) can be found
in [3].

The article is organized as follows: In Section 2, by employing a Lyapunov function, we investigate
the globally asymptotic stability of the positive equilibrium E* for (1.3). In Section 3, we give an
eigenvalue problem that will be needed in subsequent sections. It is here that we define boundary
conditions and the critical wave speed ¢* of travelling wave solutions. In Section 4, by selecting
appropriate kernel functions, we exploit Schauder’s fixed point theorem to establish the existence
of traveling wave solutions connecting the trivial equilibrium with the positive equilibrium. In the
Appendix, we construct and verify upper-lower solutions.

*

2. Stability analysis

In this section, we study the globally asymptotic stability of the positive equilibrium E* for (1.3) by
using the Lyapunov function method.

Theorem 2.1. Assuming (u,v,w) € [C([0, T] X ﬁ) NCH(0, T1x VP (T >0)isa solutign of system
(1.3) with initial value (¢, ¢, ¥)(x,t) > 0, then (0,0,0) < (u,v,w) < (M, My, M3), (x,t) € QX [0, +00),
where

M, = max {1, llp(x, t)”Lm(Qx[o,wo))} ’
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_ a1by + (a1 + a))M,
M, = max{ o sl t>||Lm(QX[O,m))}, @.1)

_ Clzbz + (a/2 + aZ)Ml
M; = max{ s £ M) s I (x, t)”Loo(Qx[o,m))}'

Proof. According to the maximum principle [16], if (¢, ¢, ¥)(x,1) > O for all x € ﬁ, t < 0, we have
(u,v,w)(x,t) > 0fort > 0. So

ou u(gr *v) u(g*w)
M dAu=u(l —u)— -
g~ Gdu=ull —w) == =

<u(l —u),

and by the comparison principle [16], we deduce that u < max {1, llp(x, 1)]| (@10 m))} = M,.
Again

0
a—‘; —drAv = a;(g3 *v) + %j_zv) — mpvw — hpy? < viag + bfll—fu — hyv),
and by the comparison principle,
a1by + (a; +a))M, N
< — = .
v< maX{ NCESR :llg(x, t)IILw(QX[o,m))} M,
Similarly,
@by + (2 + ax)M, A
< _ 2 M.
w= max{ ]’lz(bz + Ml) s ||'7[’(x7 t)”LDO(Qx[O,+oo))} M3
Hence the solution (u, v, w)(x, t) of system (1.3) is uniformly bounded on Q x [0, +00). O

Further we discuss the globally asymptotic stability of the positive equilibrium E* (u*, v, w*).

Lemma 2.1. [17, 18] Assume a,b > 0, ¢,¢ € C'([a, +0)), ¢(t) > 0, ¢(t) has a lower bound, and if
@' (1) < —by(t) and there exists a constant R > 0 such that ¢'(t) has an upper bound for every t > a,
then lim ¢(t) = 0.

t—00

Theorem 2.2. Assume that (H1) or (H2) are satisfied, and M+ M <1 holds. Then the positive

by +u* by+u*

equilibrium E* (u*,v*,w") for system (1.3) is globally asymptotically stable.

Proof. System (1.3) can be rewritten as

du o G1x@=V)  gxw-w)  (grEv)u—u)  (gEw)(u—u’)
— =d|A —(u — - - ,
gy ~hdutul=lu =) = T byt (b br + i) by + w)by + )
W _gpy g OVE =V auvigi x V-V i@ x M —v) @ (g x v - v
o’ V* vi(b; + u¥) v vi(b; + u)

arbi(gr *v)(u —u*)
(by + u)(by +u*)
ow awlgs x (W —wH] au'wlg, x (W —-w)] gy *w)(w —w)

— =d;A
ot v wr w*(by + u*) w*

—mpv(w —w*) = hyv(v = v"),
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_ @ (g kW)W = W) aaba(gy * w)u — u')
w*(b, + u*) (by + u)(by + u*)

—muw(v —v*) — how(w — w").
Let (u, v, w) be a positive solution for system (1.3), and define the Lyapunov function
u % w
Vi(t) = f(u—u* —u*ln—*)dx+p2f(v—v* —v*ln—*)dx+p3f(w—w* —w'In —)dx,
Q u Q v Q w

where p;(i = 2, 3) are positive constants to be determined.
Then,

dvi(t) [ ou u* ov V' ow w*
o _fg;at(l )alx+,02j;2 t(l v)dx+p3f98t(l W)dx

- —d f Vuldx — prds f = |VvPdx - psds f 2 \VwPdx
oW

f(u u )[ (u—u )_gl V=) gax(w—w )+ (gr*v)(u—u") . (g2%w)(u—u*)

b, + u* by + u* (b1 +u)(b1+u*)  (by+u)(by+u*)
f v—v [CW[gs « (V=) auvigr v —-v)l  ai(gs = v)(v—v)
+p2 + -
o v* v¥(by + u*) v*

_au (g # Vv = V) aibi(gr #v)(u —u)
v(b, + u*) (b1 + u)(by + u*)

f w—w [azW[g4 *(wW=w)]  auw'wlgx(w—w)]  aygsxw)w—w)
T p3 + -
Q

—mpv(w —w") — hyv(v — v*)] dx

w w* w*(by + u*) w*
(g ¥ W)W —w")  axby(gr x w)(u — u’)
W*(bz + u*) (by + I/l)(bz + u*)

— mow(v —v*) — how(w — w*)] dx

From (1.3) and applying the inequality ab < jka® + 5-b* (k > 0), we obtain

dvi(1) u* P w*
dlt <—d fQ ;IVulzdx — prd> L ;IVvlzdx — p3ds L =
- f L,(u—u)dx —p, f L,(v —v")*dx — ps f L,(w—w")dx
Q Q Q
+ f f f gi(x—y,t—ys) [ﬂ(V(y, $)— v+ L(u(x, 1) — u*)z] dsdydx
fff &(x—y,t— s)[ (w(y, s) —w*)* + L(u(x 1) — )2] dsdydx

+pzalfff gi(x—y,t s)[ v(y, 8) —v) + —(v(x 1 —v) ]dsdydx

2dx

+ pra u’ f f f gi(x—y,t—y5) [—3(\)@, s) — v + —(v(x, 1 — v*)z] dsdydx
oJaJ-w 2 2K;3
+ paaib My f [ﬁ(v(x, )=V + (1) - u*)z] dx
Q 2 2K4

+ (pamy + p3my) f [K—;(V(x, n—v) + ZL(W(x, 1 —w?
Q Ks
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+Psaszf ga(x — y,t—S)[ (w(y, s) —w")’ *3 (W(x 1 - *)z]dsdydx

+pga2ufff g (x — y,t—s)[ w(y, ) — w*)? +—(w(x 1) — w)]dsdydx

1
+ p3a,by M3 f [%(W(x, 1) —w)* + Z—(M(x, 1) — u*)z] dx
Q K7

where
Lu:]— g1 *V g2 * W S 1— M2 _ M3 >0,
(by + u)(by + u*) (by + u)(by + u*) by +u*)  (by+u)
L = @1(g3 * V) N aju’ (g *v) By >0,
V¥ w*(by + u*)
L = ar(gs*w)  aju(gr*w) Iy > 0.
ww* ww*(by + u*)

By the properties of the kernel function, we have

W g, f Z \Vuldx — prds f Z VP - psds f 2 \VwPdx
ol QV aWw

dt

[ 1 1 ppabiM,  p3arbr,M; f )

—-|\L,—— — — — - ,H—u")d
| 2K1 2K2 2K4 2K7 Q(u(x ) " ) o
[ * 4 biM. +

“p(L, - alu +ayp  aibiMrKks)  Palny P3mzK5 f(v(x, 0 - v*)zdx
| 2K3 2 2
[ * byM +

- |p3 (Lw— e 3K7) Pl ’mz] f (W(x, 1) = w')dx
| Ke

+wf f f g1 D0(x =yt = ) = V) dsdydx
2 aJa Jo

+ * -
L ket psdal’Ks f f f 220y, YW(x = y, 1 — 5) — w*Ydsdydx
2 aJaJo

+”—2mk3f f f 830 )(x =yt = ) = V) *dsdydx

2 aJaJo

22 [ [ gyt = 5) - w sy
2 aJaJo

* 00 !
V) =vi(n + RIS f f f f 10, HOx — y. 1) v drdsdydx
QJQ JOo t=s

« 00 !
§ LS f f f f 820, )(w(x = y,1) = w')drdsdydx
2 QJQ JO —s
00 !
+ 2510 f f f f 830, )(W(x =y, r) = v*)’drdsdydx
2 QJQ JO t—s
00 !
4 P302Kg f f f f g4(y, s)w(x —y,r) — w*)zdrdsdydx,
2 QJQ JO t—s
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and then

V) __y, f Y \VuPdx - pd, f Y \VPdx = pads f Y\ vwPdx
d[ Q M2 Q V2 Q \’V2

1 1 M byM
p2a101 VM P3adrDr M3 f(u(x, 1) — u*)’dx
Q

-|L,-— - — -
: 4 bM. +
“|p» (Lv _au +ap a1o 2K4)_sz1 P3m2K5] f(v(x, t)—v*)zdx

21 2K 2Ky 2K7
2kK3 2 2

au” + a azsz3K7) P2y +P3m2]

— L. — - g
_p3( " 2ke 2 f (o0 =
|t Py f f f §107 )(v(x = y.1) = v*)dsdydx

2 aJao Jo

+ * °° .
;2R Ko f f f 220y, HW(x — y, 1) — w)2dsdydx
2 QJQ JO

205 f f f g3y, )W(x = y, 1) — v')dsdydx
2 QJQ JO

4 P30Ks f f f 24, YW(x — v, 1) = w'dsdydx.
2 QJQ J0
Since

f f f oog(y, S)((x—y, )—v*)dsdydx= f f f Oog(y, S)((x—y, )—v*)dsdxdy= f (v(x=y, )=v*")*dy,
QJQJ0 QJQJ0 Q

then

dV(t ; ' )
av) <-d, f u—qulzdx - pzdzf v—|VV|2dX — p3ds f z 2dx
dt o U2 oV’ oW

1 1 bM boM
_[Lu_z____pzall 2 Paazz 3] f(u(xt)—u)zdx

K1 2K2 2K4
4 1 b M +
o Lv—alu (03] K+ — D1 MKy | paly P3m2 5__ f(v(x v )de
2 K3 2
*+ 1 boM +
b, Lw_azu @ ot & _ @by Mzky | pamy+psmy Ky _f(w(x, D-wdr. (2.2)
2 Ke 2 2K5 2 le)
For any T > 0, integrating (2.2) over [0, 7], we have
Vul||? Vul|]? vl ||?
dlu* # +p2d2V* % +p3d3W* —l ‘;V|
us i) Ve L2y w= 2@y
+ Lu”u u ||L2(Q ) +p2LV||v v ”LZ(Q ) +p3Lw”W w ||L2(QT)
1 I prab M, P3Clzsz3
<VO) +|[zm—+—+
( ) (2K1 2K2 2K4 2 ” —u ||L2(QT)
au’ + @ 1 arbyMky Pamy + P31 Kq
+ (P2 5 K3 K—3 + 5 + 5 K5+E lv—v ||Lz(QT)

AIMS Mathematics Volume 10, Issue 9, 21693-21720.
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au* + @ 1 azb2M3K7 P2y + P31y Ky )
+ _ — |+ + + =|llw—-w . 2.3
P3( 7 (K6 K6) > 2K5 D) ” ||L2(QT) ( )
Choose
1 +p2a1b1M2 1 +p3a2b2M3 1
KN=Kky=—7F]" Kn=K=—""7FT ", KK=—"—"T"""-,
L, L, p2my + p3my
1 1 1 1
Ki+—=——74H—0 Kg+t—=—"—"8¥-H+,
k3 paau + ay) Ke  p3(au” + )
and it is derived from (2.3) that
Vul Vvl Vwl | > >
|5 B e I o I A LS N AT
(1+voa1b1M>)? . 1 (1+p3a2b2M5)* *
S‘/(O)'i_ I+ 2Lu ”V—V ”iZ(QT) 5 1 Lu +(P2m1 +P3m2)2 ”W_W ||iZ(QT)-

We choose the appropriate p; > 0(i = 2, 3) such that

1+ by M,)? 1 1+ by M5)?
poL, > 1+ 1+ patibn M) , p3L,> =1+ (1 + ps2:brMs) + (pamy + p3my)*
2L, 2 L,
hold.
Therefore, we obtain
\Y \Y
M e, H—' Al <o, (2.4)
Ve llzz@r) w2 @r)
and
v =Vl < Cs W =wll2q < Ca, (2.5)
for some constants C;(i = 1,2, 3,4) independent of 7.
Similarly, choose
L, L, 1
Kl =Ky= —————, K=K = ——, =
TR T L pabi My T T T 1 4 prash, M > pamy + psmy
1 1 1 1
Ky + — = Keg + —

k3 palaut +ay) Ko p3(au’ +as)

and we can obtain
[Vul

u2

. <Cs, |lu-ull2q,) < Ce, (2.6)
L*(Qr)

for some positive constants Cs and C¢ independent of 7 > 0.
Using the conditions of Theorem 2.1 and (2.2), we show that there exists a positive constant ¢ such

that
dv(t)

dt
By integration of (2.7), and from (2.1), (2.4)—(2.6), it is easily seen that

) f [(u—u")? +@—v)+w-w)dx <. (2.7)
Q

4 f [(u—u")? + v —=v)+w—w)ldx
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has an upper bound. Then, using Lemma 2.1 and (2.7), we see that
(-, 1) = ull2) — 0, V(1) = Vi@ — 0, IIw(, ) —wl@ — 0. (2.8)

By Sobolev embedding theorems, there exists a constant C > 0 such that ¥ y € W,(€), we have

1 1
Ibe e, Dl < Cllly g el (29)
It follows from (2.1), (2.4)—(2.6), (2.8), and (2.9) that
(-, 1) =t~y — 0, V(1) = V'llz=@) = 0. |Iw(, 1) = W= — 0.
Namely, (u, v, w) converges uniformly to (u*, v*, w*). Using the fact that V(u, v, w) is decreasing for
t, one can derive that (u*, v*, w") is globally asymptotically stable. O

3. Eigenvalue problem

In this section, we present some preliminary results that will be needed for the subsequent sections.
A traveling wave solution of system (1.3) takes the special form

(u,v,w)(x,t) = (u,v,w)(x - v+ ct),

where v € RY denotes a unit propagation direction vector, with x - v representing the standard inner
product in R". For a wave speed ¢ > 0, define the traveling wave coordinate ¢ = x - v + ct. Then system
(1.3) has a traveling wave solution (u(¢), v(t), w(t)) connecting the trivial equilibrium (0, 0, 0) with the
positive equilibrium (u*, v*, w*) if and only if the following system

d (1) — e (6) + u(d)(1 — u(t)) - ”(ngi :(Vt;(t ) _ ”(t[))(zgjr “;(V:))(’) -0,
A" (1) — ev' () + a1 (g3 * V(1) + al”gl)(f IL;I;)(I) — (W) — (P = 0, (3.1)
dsw' (1) = ew' (1) + an(ga * w)(D) + “Q”Zz(f%”)(” — myy(OW() — how (1) = 0,
has a solution that satisfies the following asymptotic boundary conditions:
Jim (v, w)(1) = 0,0,0),  lim (u, v, w)(1) = (', v", w"), (3.2)
where e
(&i*)(1) = fo fggi(y, St —y-v—cs)dyds (i=1,2,3,4). (3.3)

As t — oo, the linearized system (3.1) at (0, 0, 0) yields
diu”" —cu' +u=0, dpy' —cv +a;(gz*v)=0, dyw” —cw +ax(gs*w)=0.
Let the solutions to the above equations all be e¥'. Then
A c)i=diA>—ca+1,
Mo(d,0)i= dad® —cA+ay [ [ 8300, $)e I dyds, (3.4)
A3(A,¢) = dsA> —cd + ay f0+°° I, 84y, )€1 Vdyds,

where y € Q c RV,
We easily obtain the following lemma.
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Lemma 3.1. If there exist c; > 0,47 > 0 (i = 2,3), then the following results:
(i) A, ¢f) = 0, D | . = 0;
(ii) for every 0 < ¢ < ¢}, Ai(4,¢) > 0 for all 1 > 0;

(iii) for every ¢ > c}, Ai(4, c¢) = 0 has two positive real roots A, A satisfying 0 < A; < A} < A, and

>0, YA€ (0,1)U (1 +00),

A, hE
( d{<0,v1emwm

hold.
Proof. For Ye¢ > 0,4 > 0, we have A;(0,¢) = a; > 0, Aj(+00,¢) — +oo(i = 2,3), and for j = 3,4,

OA(

/l, —+00
TC) =0 = 2d;d — ¢ + a'if fgj(y, )= - v+ c8)e O DN dyds |20
0 Q

—+00
=—Cc—q; f fgj(y, $)(y v+ cs)dyds.
0 Q

Due to g;(y, 5) = g;(~y. s), we have [ yg;(y, s)dy = 0, so

OA;(A, +oo
(—C) lx=0= —c — Ca/if f sgi(y, s)dyds < 0,
o1 0 o

0*Ai(4,¢) oo ) —Ay-
? =2d; + a/if(; L(y v+ cs)’gi(y, $)e O dyds > 0.
Therefore, A;(4, ¢) is a convex function.
The strict convexity of A;(4,c) ensures that the derivative % is strictly increasing, so that the
derivative gradually rises from a negative value, eventually tending toward +oo, and it must equal
zero at some point A7 > 0, which is the unique minimum point.

Moreover,
+00
AiA,0) = dA% + oz,-f fgj(y, $)e S dyds > 0,
0 Q

0Ai(4, e .
M =—1- a’i/lf f ng(y, S)e—/l(y-vﬂs)dyds < O,
dc 0 Q
for all A > 0, and the value A;(4], ¢) of Ai(4, c) at A} changes with c. If ¢ increases, A;(4, ¢) decreases,
and then A;(17, ¢) decreases. Therefore, there exists ¢; > 0, A7 > 0 such that

0A(4,¢)
04

For 0 < ¢ < ¢}, minimum value A;(4}, ¢) > 0, so that A;(4, c) > 0 for all 2 > 0; for ¢ > ¢}, according
to the convexity and monotonic decrease of function A;(4, ¢) with respect to ¢ > 0, and A;(4],c*) = 0,
combined with the theorem of existence of zeros, we can see that A;(4, ¢) has two positive real roots
A, F/i,- satisfying 0 < 4; < A7 < E, and

Ai(/l?,c*) = 0’ |(/11’.‘,c;‘): 0.

>0, YA€ (0,1)U 1, +0),

AA 2
K’®{<O,Vﬂeuwm.

O
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Similarly, we easily obtain the following lemma.

Lemma 3.2. There exist c; > 0,47 > 0 satisfying A(47,c]) =0, aA'M 9 |(,1 = 0. Then the following
results:

(1) for every 0 < ¢ < ¢}, Ai(4,¢) = 0 has no real root, and A(4, c) > 0 forall A > 0;

(ii) for every ¢ > cj, Ai(4, ¢) = 0 has two positive real roots A;, A satisfying 0 < 4; < A} < A, and

L0 >0, YA€ (0,1)U(1,+0),
! <0, YA€,

hold.
4. Existence of traveling wave solutions

In this section, we will prove the existence of traveling wave solutions for (1.3) by employing a
combination of the cross iteration method and Schauder’s fixed point theorem. To achieve this, we
choose the following kernel function:

1 _« 1 12

(X, 1) = —e e i (i=1,3), xe QcR",
8 Ti V47Td2
= et =24), xeQcRY
i) =—e i———e " (1=2,4), x ;
8 T Vardst

_r . . . . . .
where %e i denotes the time delay effects of biological processes (predation, reproduction), 7; > 0 is

_ 2

the time-scale parameter, and \/ﬁ 5t (j = 2,3) describes the random diffusion of species in space.
Then
(8 + V(O fOOI [ e )dyds, (i =1,3)
gixv)(1) = —e i e "yt —y-v—cs)dyds, (i=1,3),
o Ti o Vand,s
Tl s 1 bt “.1
(gixw)() = f —e i f \/me syt —y-v—cs)dyds, (i =2,4).
0 i Q 3
Let

u®)(gr *v)(@®)  u®)(g2 * w)(¥)

Ji(u(®), v(1), w(®)) = u()(1 — u(r)) -

by + u(?) by + u(t)
D, (D), () = ar(gs * V(D) + “I”Z)(f IL;;)(’) — WD) — h(0),
S, D, w(D) = s * W) + “2”(;2(?;(;)”)(” — manOW(D) — w0,

Suppose fi, f>, f; satisfy the following hypotheses:

(A1) £:(0,0,0) = fi(u*,v',w")=0, i=1,2,3.

(A2) For O < u (1), up(t) < M,0 < vi(0),v2(t) < M, 0 < wi(t),wo(t) < M;,t € R, there exists L > 0
such that

|fi(ur, vi,wi) = filua, vo, wo)| + | fo(ui, vi, wi) — fo(uz, va, wr)|
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+ 3w, vi, wi) = f3(u2, va, wo)l < L(Juy — ua| + [vi — va| + [wy — wyl).

It is easy to obtain that system (3.1) satisfies the partial quasi-monotonicity conditions (PQM). Namely,
there exist three positive constants S, 8,53 > 0 such that

Silur, vi,wr) = fi(uo, vi,wr) + Bi(ug — up) 2 0,

Silur, vi,wr) = fi(ug, vz, wa) <0,

Hlur,vi,wi) = foluz, va, wi) + Bo(vi — v2) 2 0, (4.2)
fa(uy,vi, wi) = fa(uy, vi, wp) <0,

B, vi,wy) = f5(uo, va, wa) + Ba(wy —wa) 20

hold.
Let
W = {(u,v,w) € C(R,R*) | (0,0,0) < (u(?), v(r), w(t)) < (M, My, M3),t € R}.

Define the operator H = (H,, H,, H3) : W — C(R, R®) by
Hy(u, v, w)(1) = Bru(t) + fi(u(@), v(1).w(1)),

Hy(u, v, w)(1) = B2v(1) + fo(u(), v(1), w(?)),
Hs(u, v, w)(1) = Bsw(1) + f3(u(®), v(1), w(1)),

where

1 1
Bi1 > 2M, + b—M2 + b—M3 =1, Br22mMy+mMs, f32mM,;+ (2hy + my)Ms, (4.3)
1 2

and then (3.1) can be rewritten as

diu” (t) — cu'(t) — Bru(t) + Hi(u,v,w)(®) =0,
dV' (t) — cv'(t) — Bov(t) + Ha(u, v, w)(t) = 0, “4.4)
dzw" (t) — cw'(t) — Bsw(t) + Hz(u, v, w)(t) = 0.

Define the operator F = (Fy, F», F3) : W — C(R,R?) by

1 ! +00
Fi(u,v,w)(¥) = m f MO (u,v,w)(s)ds + f PREaR) > (u,v,w)(s)ds|,
1(A12 — Apy —oo
1 ! ' ~+00
Fo(u,v,w)(t) = Bl — oD f eI Hy (u, v, w)(s)ds + f e Hy (u, v, w)(s)ds |,
2 A — Az —oo t
1 ! +00
F3(u,v,w)(t) = ———— f e IV Hy (u, v, w)(s)ds + f eI Hy(u, v, w)(s)ds |,
d3(A3 — A31) \J-w t
where
¢ — /2 +4B1d; ¢ — A2 +4B2d, ¢ — /2 +4B5d;
/111 = 2d < 0, /121 = 2d < 0, /131 = 2d < 0,
1 2 3
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c+ \/Cz +4ﬁ3d3 >0

2d;

_ c+ \/Cz +4,81d1 S

2d,

c+ \/Cz + 4ﬂ2d2

2d,

>0, A3 =

0, An =
Then F;(u, v, w) satisfy

d\ F (u, v, w)(t) = cF{(u, v, w)(t) = B1F(u, v, w)(t) + H(u,v,w)(t) = 0,
dr 2 (u, v, w)(1) = cF(u, v, w)(t) — BoFo(u, v, w)(t) + Hy(u, v, w)(t) = 0, 4.5)
A3 F% (u, v, w)(t) — cF(u, v, w)(t) — B3F3(u, v, w)(t) + H3(u,v,w)(t) = 0.

It is obvious that a fixed point of F in W is a solution of (4.4), which is a traveling wave solution of (1.3)
connecting (0, 0,0) and (u*, v*, w*) if it satisfies (3.2). Hence, the next step is to prove the existence of
a fixed point of F in W.

Let u € (0, min{—A4;1, 412, =421, A2, =431, A32}). Define the Banach space

Bu(R, R®) = {(u, v, w)(t) € CR, R) :I| (1, v, w)(2) |, < oo},
and exponentially weighted norm

Il (v, w)(O) |l,= Sup | (v, w)(@) | ™.

It is easy to show that W is a bounded closed convex subset of B, (R, R?).
The operators H; and F;(i = 1,2, 3) have the following properties. For convenience, we let ®(¢)
(ur,vi, w(0), @2(1) = (uz, va, w2)(2).

Lemma 4.1. Assume that (4.3) is satisfied. Then for t € R with (0,0,0) < ®,(r) < D(r)
(M, M, M3), the following:

IA

Hi(ui, vi,wi)(1) > Hi(up, vi,wi)(1), Hi(ui,vi,w)(®) < Hi(ug, v, wa)(1),
Hy(uy, vi, w)(#) 2 Ha(up, v, w)(1), Ha(uy, vi, w)(#) < Ho(uy, vi, wr)(1),
H3(uy, vi, w)(#) = H3(up, v, wo)(1)

hold.

Proof. Let Ki(u) = - = 1,2), K/(u) = b%__ > 0. Then Ki(u) is increasing on [0, +o0). For 0 <

bi+ (bi+u)?
u, < u; < My, by the Lagrange mean value theorem, there exists & > 0 satisfying u, < & < u; such that

b; 1
0 < Ki(u)) = Ki(up) = K[(&)(uy — up) = m(”l —up) < E_(m — Up).

By the definition of H = (H,, H,, H3), we have
Hi(uy, vi,w)(®) = Hi(uz, vi, w)(®) = fi(uy, vi, wi)(@) + Bruy (1) — Hy(up, vi, wi)(t) — Brux(1)

=uy (1) — ua(t) — (5 (1) — u5(1)) — (b1 b:(;?(t) T b_l:(bz(t)) (g1 *v)(D)
uy (1) u (1)

N\by+ w0 by + w0

)(82 * wi)(1) + B1(u (1) — uy(1))
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2u1 (1) — up (1) — (ur(2) + uz(2))(ur (1) — ux(2)) — bll(ul(t) — up(1))(g1 * vi)(1)
1
- b_z(ul(l) — up(1))(g2 * w1 (1)) + B1(u (1) — uy(1))

1
>(1-2M, - b_1M2 — byM3 + B31)(®(1) — ®y(1)) 2 0,

uy (1) uy (1)
bt () [81*(V1—V2)](t)—b2+ul(t)
HZ(ul’ Vi, Wl)(t) - HZ(”Za Vo, Wl)(t) = fz(ul’ Vi, Wl)(t) +ﬁ2V1(t) - HZ(u2’ Vo, Wl)(t) _ﬁ2v2(t)

ur (g1 *v)(@) — ux(1)(g1 * Vz)(t)]

Hi(uy, vi,w)()—Hi(uy, va, wp)(t) =— [g2x (Wi —w»)](1) <O,

=ai[gz * (vi —v2)](0) + a4y by + (1) by + uy (1)

— mwi(DW1(1) = v2() = hi(Vi(1) = v3(0) + Boa(v1(1) = va(D))
>(Br — 2 My — mi M3)(®@ (1) — (1)) > 0,

Hy(uy, vi, wi)(©) — Ha(uy, vi, wo)(8) = —myvi(0)(wi (1) — wa(2)) < 0,

H3(uy, vi, wi)(@) — H3(ua, vo, w2)(1) = f3(u1, vi, wi)(t) + Bswi (1) — H3(ua, vo, wa)(1) — B3wa (1)
ui (g2 * w)(@) — ux(1)(g2 * Wz)(l‘)]

=as[gs * (W) —w)]() + az by + u, (1) by + uy(t)

—my (Vi(Owi (1) — va(O)wo (1)) — hy (W%(f) - W%(t)) + B3 (w1 (1) — wa(2))
>(B3 — moMy — 2hy M3 — myM3)(®(1) — (1)) > 0.

Similarly, we have

Lemma 4.2. Assume that (4.3) is satisfied. Then for t € R with (0,0,0) < ®,(r) < ®(1) <
(M, M, M3), the following:

Fi(uy, vi,w)(@®) = Fi(uz, vi,w)(®), Fi(uy, vi,w)(@) < Fi(uy, va, wa)(0),
Fy(ui,vi,w)(®) = Fo(up, vo, wi)(1),  Faur,vi,w)(®) < Fo(uy, vi, wo)(1),
F3(ui, vi,wi)(t) = F3(up, v, wo)(1)

hold.
Lemmad4.3. F = (F, F,, F3) : W = C(R, R?) is continuous with respect to the norm | - |, in B,(R, R®).
Proof. Note that fori =1,2,3,4, j=2,3,

+00 +oo 1 = 1 _? ,
gi(s,y)e” " \dyds < f —ei f e " et gy g
~f0 fg o Ti Q +J4nd;s

+oo 1 (vli-2d jspaliviy® +00 | lerrd ey 1
_s 2 — J _ iR T
:f —e i +pes+dp sf e ddjs deS = f —e 7 ‘ds = 7
0o T o +fAnd;s 0o Ti I+ per; +djTip

Therefore

|H\ Gy, vi, wi)(0) — Hy G, va, wa) (O e < | fi(ug, vi, wi)(#) = fi(ua, va, wo)(0)] e + B @) — @,
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(1) (1)

by + uy(1) (82 % wa)lt) = by + uy ()

< {|u1(t) — up (O] + |ur (1) + ua(D)luy (1) — w2 (D] +

(g1 *v(®)

e+ B @) — @,

u(1)
b + I/tz([)

(&2 *w(®)

(81 * [va = vi)(®)

uy(1) uy (1) u (1)
+ g1 * vil(®) birm®  birml byt ug(t)(gz * [y — wi[)(?)
. u (1) _ ui (1) —ule] _
+g2 * wil(?) byt D) by +u1(t)‘}e L+ 11Dy — Dy,

e V+CS 1
<M, + D|®, — ®,|, + M, f f 8105, )" dyds|®, — s, + - M| @ — o,
0 Q 1

e V+CS 1
+ M, f f g2(5, ) dyds|® = Dol + M| @) — Dol + 1| @) — D,
0 Q 2

<Dy — Dy,

|Ha(ur, vi, wi) (@) = Ha(uz, va, wo) (O e < | oy, vi, w)(E) = folttz, va, wa)(0)] e + Bo| @) — @,

u(r) uy(1)
b]+—u](t)(g1 * v1)(1) — b]+—u2(t)(gl * Vz)(l)]

+my (VW (1) = vi(Owi(D) + ki ((0) = vi(@0)| e + Bol @y — By,

+00 +00
<a; f fgg(s, Vel dyds|®, — @, + a; M, f fgl(S, Ve dyds| @y — @,
0 Q 0 Q

+a1b Mp|®) — By, + mi(Ms + M3)|® — @y, + 21 M| D) — Dy, + | P — D,
<h|®; — D).

ai[gz * (vi = v)](0) + ay

Similarly, we have |H3(uy, vi, w)(f) — H3(t2, v2, wy)(1)| e M < 95|, — D,|,, where

1 1 1 1
=2+ + M +—M,+ —Ms+1+p,
! ( 1+ pcty + dop>ty 1+ ucrs +d3,uz‘r2) ! b, 2 b, 3 P
aq a
192 M1 + (albl +my + 2h1)M2 +m1M3 +ﬁ2,

= +
1+ pers + dop®ts 1+ ety + dopty
(0%} ay

193 M1 + (a2b2 +my + 2h2)M2 + I’I12M3 +IB3.

= +
1 + pctry + dapi®>ty 1+ ety + dsp®t,

Then for ¢ > 0, we have
|F1(uy, vi, wi)(0) = Fi(uz, v, wa)(0)] e

1 t A11(t=s)
T4 =) H (u, v1, — Hi(us, v, d
di(Adi2 — A11) [Iwe \Hy(u1, vi, wi)(s) = Hi(ug, v2, wo)(s)lds

—+00
+ f e INH (uy, vi, wi)(8) — Hy(ug, vo, wo)(s)lds | e
t
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016_/1“' [ ! +0oo
f M1 =9) p=tisl g ¢ +f M120=9) p=Hlsl g |®, — (I)2|p
- t

<

di(A12 — A1) | J-oo
_ r 0 t 00

=—ﬂle " f e””te_(’“”")sds+f et tsgg f+ eﬂlzte("‘_ﬂ”)sds] D, — D,|,
di(Ain — An) | J- 0 ,

_ th 2u JeNETIEN A1 — A2
di(Aia = i) | A7, — 12 (1 — 1) (A1 — )

) [ 2 A — A4

< 1 _ M . n 11 21 ]|‘D1—(D2|g-

di(lip — ) (A7, =2 (= A)(dar — )

[

] |(I)1 - (I)Zl,u

For t < 0, a similar inequality holds as above. Thus, we proved that F; : W — C(R, R3) is
continuous with respect to the norm | - |, in B, (R, R?).

Following analogous reasoning, we obtain that (F», F3) : W — C(R, R?) is continuous with respect
to the norm | - |, in B,(R, R?). o

Next, we give the definition of upper and lower solutions.

Definition 1. The continuous functions (u, v, w) and (it, ¥, w) on R are called a pair of lower and upper
solutions of system (3.1) if they satisfy the following conditions:
@0 <u(r) <u(),0 <v() <9(1),0 <w() <w() fort € R.
(i) There exists a finite number set D C R such that
(a) it, u, ¥, v,w, ware in C3(R \ D).
(b) The right and left limits of u’, @', v', V', w’, W’ all exist at each ¢ € D and satisfy

w'(t—) > u'(t+), V(=) =V (t+), w'(t=) > w'(t+),

u'(t=) < u'(t+), V(=) <V (), w(t=) < w'(t+).
(7ii) At +oo, the first and second derivatives of i, u, ¥, v, w, w have at most exponential growth.
(iv) For every continuous function (u,v,w) withu <u <it, vSv<v, w<w<w,

u * t u * t
dyit” (1) - cit (1) + ()1 - a(t)) - ”(2%1 a(zt;( ) _ ”(tl)j(i u(v—:))( ) <o,

a,u(r)(g * V)0 m(Ew(t) — 3 (t) < 0,

V(1) — eV (1) + a1 (g3 * V(1) +

u(t)

Zl -
dsw" (1) = cW' (1) + aa(ga = W)(1) + azu(lz(izﬁ?tht) — my¥(O)W(t) = haw? (1) < 0,
o u(n)(81 * DO _ u)(g2 * )0 VIERAD.
diu’ (1) = cu' (1) + u(t)(1 — u(®)) - bi+ut) byt ult) =0

a u(r)(g * v(1) _ 2
bl-i-—z([) - mly(t)w(t) — ]’lll_/' (t) > 0,

aru(t)(ga * w)(t)
by + u(t)

by (1) = V' (1) + a1(g3 * V(@) +

dsw” () = cw' (1) + @x(ga * W)(D) + — (W) = how* (1) = 0,

Assume that a pair of upper-lower solutions (i, v, w) and (u, v, w) is given such that
(P1) (0,0,0) < (u(D), (1), w(1)) < (u(2), W(1), w(t)) < (My, My, M3), t € R.
(P2) Tim (@(0), 5(2), (1)) = (0,0,0), lim (u(2), u(0), w(0) = lim (@5, ) = (', V", w").
——00 —+00 —+00
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Define a profile set

(@) (u, v, w)(1) < (u, v, w)(2) < (&, v, w)(1),
(ii) (u, v, w)(t) is nondecreasing in t € R.

[((w, v, w), (&1, 9, W)) = {

Itis obvious that I'((u, v, w), (i1, v, w)) is nonempty, closed, convex, and bounded. We have the following
results.

Lemma4.4. F(I') cT.
Lemma 4.5. F : ' — I'is compact with respect to the decay norm | - |,.

Combining Lemmas 4.4 and 4.5, we obtain that F' is compact continuous on I', and F has a fixed
point on I' by applying Schauder’s fixed point theorem. Further, W also has a fixed point on I'" since
I' ¢ W. We have the following theorem.

Theorem 4.1. Suppose that there is a pair of upper-lower solutions (i, v, w) and (u,v,w) for (3.1)
satisfying (P1) and (P2). Then (3.1) has a traveling wave solution connecting (0, 0, 0) with (u*,v*, w*).

5. Conclusions

This paper investigates the traveling wave solutions of a one prey-two competing predators system
(1.3) with nonlocal delay, where the delays for predators take into account gestation and migration.
First, by constructing a Lyapunov function, we demonstrate the global asymptotic stability of the
positive equilibrium E* (see Theorem 2.2). This result indicates that when there is intra-specific and
inter-specific competition between predators and prey, if system (1.3) has a unique positive equilibrium
E*, this solution is globally asymptotically stable. From a biological perspective, this means that
predators and prey can coexist in the long term, with population densities eventually stabilizing near
the positive equilibrium E*. Second, by analyzing the distribution of the roots of the characteristic
equation A(4,c)(i = 1,2,3), we determine the critical wave speed ¢* = max{cj,c;,c;}. Then,
employing Schauder’s fixed point theorem and the cross iteration method, we define a compact operator
F = (Fy, F», F3) in a Banach space. By verifying its PQM and compactness (see Lemmas 4.3-4.5),
we transform the existence of traveling wave solutions into a fixed point problem on I' ¢ W (see
Theorem 4.1).

In prey-predators competition systems, the introduction of nonlocal delays significantly elevates
computational complexity, requires precise analytical estimates, and can more realistically reflect
the spatial migration and historical dependence of biological populations (such as predation delays
and reproductive cycles), overcoming the limitations of traditional local delay models that neglect
spatial heterogeneity. However, this study relies on specific kernel functions to analyze the effects
of nonlocal delay, which may not fully represent the complex memory and migration patterns in
ecological processes. Future research could explore more general kernel functions to more accurately
characterize the spatial and temporal effects of nonlocal delay.
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Appendix

In this section, we further verify the existence of traveling wave solutions by constructing a pair of

upper-lower solutions. Substituting (4.1) into (3.4) yields the following:

A4, c) = d]/l2 —cd+1,
A, ¢) =do? —cA+ —8 (A.1)

l+ctid=dr1i A2

As(A,c) = d3/12 —cAd+ =2

l+ctid—dsTiA%"

First, we have the following lemma.

Lemma A.1. Assume

Qu* - 1)? S u'M, u*M;
4 T b +ut by + u*

(A.2)
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holds, and there exists &, € (0, 2”*2_1) such that

uv* (u* — e1)M, uw’ (u* — 1) Mj;

b1+l/t* b1+u*—81 b2+u* b2+l/t*—81

—8% +Qu* - 1) + > &,

where g9 > 0 is a constant.

Proof. Let

gi(e) = —&1 + Qu" - Degy,
uv* (u* — )M,
b, + u* b1+l/£*—81’
uw* (u* — e1)M;

by + u* b2+1/t*—81'

&) = —

gs(e1) = —

Direct calculation yields

21(0) =g12u" - 1) =0,
-1\ Qu - 1)
2 ) 4

max{gi(e1)} = g (

u'M
max(ga(e1) < 82(0) < .
1t+u

M*M3
b2 +ur

max{gs(g;)} < g3(0) <

By (A.2) there exists &} such that
2u* — 1

2 b

0<egl<

and
2u* —1

gi(e1) > ga(e1) + g3(&1) for g/ <& <

O
Take ¢ > ¢* := max {c’{czcg} There exists &, > V*, &3 > w*, n € (l,min {2, % }’;’1"}) i,j=12,3
and i # j) such that A;(n4;,c) < 0 and
he —mw' — ballTM‘:* > 0, ]’l283 + myr&ey, — bazzr;* > 0,
1 +clry —diTi % > 0, 1 + cndoty — diTindy? > 0, (A.3)
1+cAyTy — d2T2/7.32 > 0, 1+ Cﬂ/l3T2 - dszT]/lgz >0
hold, and M, satisfies
2h; — 2h, —
M1<min{ I “2}. (A4)
a a

We define the non-negative, bounded, continuous functions u(t), ¥(t), w(?) and u(t), v(z), w(t) on R as
follows:

i) el Vi<, o el —qge™! Yit<ty,
u(t) = u(t) =
w4+ ue, Vt>t, = u' —ge M, Vt>ty,
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(1) = et 4+ Qe’lﬂzt’ Yt<t, W(t) = et — qe’l/lzt’ YVit<ts,
Vi vie ™ V>, - Vi—ge M, Vi>ts,
() = eBt + qe™t, Vi<, W(e) = ebt —qe™ Vit <t
w +wel, Vi>t, = w'—ge M, Vi> 1,

where A > 0 is small enough, g > 1 is large enough, and
t1 > 0> max {t, 13,14, 15, 1} .
Lemma A.2. Assume that (A.3) and (A.4) hold. Then (u(t), v(t), w(t)) is an upper solution of (3.1).
Proof. For u(t), by the definitions of 4; and i(7), we have
W' (th—) =" > e =i (t+).
(i) Ifr <1y, () = eV, then

w(B)(gr* V(@) a0)(gz * w)(t)
by + a(t) by + (1)
<d,i”(t) — cit’ (t) + u(t) = e A (A, ¢) = 0.

da” () — ci' (t) + u(r)(1 — a(r)) —

@) If t > 1y, u(t) = u* + u*e™", then

u()(gr * v)(0)  u(0)(ga * wi(®)
by + u(t) by + ()
<d\Pure™ + caute™ — (ut +ute )2

<Pi(A) - u" := Q1(1),

di” () — ci' (t) + u(r)(1 — a(t)) —

where P, (1) := d2u*e " +cAue™", and then P;(0) = 0 implies that Q,(0) = —u**> < 0. Consequently,
for sufficiently small 4, it follows that Q;(1) < 0.
For ¥(t), from the assumptions on ¢, 1, 4 and the definitions of A,, ¥(¢), it follows that

At

V(th=) = e + qnie™ > —'e™ =V (t,+).

() Ift < 1, < 0, since ¥(f) = e + g™, then fori = 1,3,

+00

1 _s 1 _Ini? o .

gi*V :f —e T e 4d2s(e/12(t yv=es) 4 qe’lﬂz(f v CS))dde
o Ti o Vand,s

+00 . 2
1 Nt~ 2 —clystdasiy? 1 _ <||>r||+221121s/12||vu>
= —ee T e » dyds
o Ti o Vand,s

+00 " 2

q ndat _—=—cnly s+dasn? 2 1 —7(“"””?;”?2“‘,”)

+ —el™e i e = dyds
o Ti o Vand,s

Aot +00 1 _ l+c/12'r,~7d2'ri/122 s I]/l P +00 1 _ 1+('1]Azri7d27]211227[ s
=e™ —e i ds + ge'™” —e i ds
o Ti o Ti

Aot

e qen/lzt

= + s A5
1+ ctidy — dotia® 1+ ctindy — dati? 5> (A-5)
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thus
(0 = ')+ a0 + “LELDD oo - o)

Aot
a e
<d) 3¢ + dpqn* 15" — clre™ — cqnie™ + 5
1+ CT3/12 - d2T3/12
Aot nAat
e
+ l 5
1+ CT177/12 — dlenz/lz

alqen/lzt 1 /llt( e
1+ CT377/12 - d2T3772/122 1+ CT1/12 - d2T1/122

<M [qu(n/lz, c)+ ale(%_wzt + alqe’l"]
<™ [q(As(1do, ©) + are) + an,
given Ay(n;,¢) < 0, since 1, < 0 and g > 1 is large enough such that
gD, ¢) + are'™) +a; < 0.

(i) If t > t,, since ¥(t) = v* + v'e ¥, then fori = 1,3,

Iyl

el s f 1 _
kY = —e T e (V* + V*e—/l(t—y'v—cs))d ds
§ L Ti Q Vénd,s Y

1 _ (yll=2dy s>

—+00 %
1% _s 2
:V*+f Lo, = +Acs+da s f e s dyds
o Ti o Vanrd,s
+00 1 lfc‘ri/lfdz'rﬂz
=V + v*e_hf —e v ds
o Ti
—At
Ve
*
=V + . (A.6)
1 —ct;d — dy1;A?

The discussion will be divided into the following two parts:
() t>t > ty, u(t) = u* + u*e¥, and then

(1) — 7 (1) + an(gs # 7)) + DGO sy — )
by + a(t)
—At

<d A e e ranvt [1+ ¢ +a M |1+
HhA Ve cave apv 1—ct3d—dyT3 A2 arthry l—ctiA-dhT 1 22

-t
_hl (V* +v*e—/lt)2

<V'(P2(d) + ay + ayM, — 4hie™) 1= 0,(Q),
us aM, ) Then P,(0) = a; + a;M, implies that

where Py(1) = e (dyA + cd+ 2t — +
0,(0) = 2v*(a; + ayM, — 2h;) < 0 by (A.4). Consequently, for sufficiently small A, it follows that

0,(1) <0.
(2) t; > t > b, U(f) = eY’, and similar to (1), we get

(1) = 7 () + (g + 7)) + LEDEUID sty — 1) < 0.
b1 + I/t(l)

For w(¢), from the assumptions on ¢, 1, A and the definitions of A3, w(¢), it follows that

W(ts—) = 3e™ + gnaze™’ > —Aaw*e™ = W (t3+).
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() Ift <13 <0, w(t) = e + g™, and similar to (A.5), fori = 2,4,

Ast

e qen/l3t

= + ,
1+ cT A3 — d3T,‘/132 1+ CT,‘?]/13 — d3Tl~7]2/l32

8i*w

thus

axi(1)(g2 * w)(1)

ds W (1) = ¢ (1) + aa(ga * W)(1) + = ma PO ~ b ()

b, + (1)
Sd3/126/13t + d3qn2/12€7]/13f _ C/l3€/l3t _ qu]/lge”/ht 4 0'26/13[
3 ’ 1 + ctads — d3Ta 5>
st At nAst
arqe _ta /ht( e - ge 2)
1+ ctynds — dstan? A3 1+ ctods — dsTads 1+ ctonds — dsTorP s

<ot [ oA (L st At
< qAs(nAz,c) + ape” + axqe

<™ [q(As(rz, €) + ae™) + o,
given A3(nds, c) < 0, since t3 < 0 and g > 1 is large enough such that
q(As(nAz, ©) + are™) + a, < 0.
(i) If t > t3, w(£) = w* + w'e™¥, and similar to (A.6), fori = 2,4,

W*e—/lt

+ .
1- CT,‘/l - d3Tl‘/12

gi*xw=w

The discussion will be divided into the following two parts:
(Dt>t >t 0(t) = u* + u'e¥, and then

ai(t)(g2 * WD)

s (1) — o' (1) + a(gy * W)(0) + maT(OW(1) = haW* (1)

by + ()
2 2 2 e
<d;1*we™ + caw*e " + 11+
<dz;A"w'e ciw'e arw ( 1—c1'4/l—d3‘r4/12)
el W +ue |1+ - — (Maw*V* + how)(1 + e )?
b2 +u* 1—-cmd - d3T2/12
P —At
aru*w e " —At
SP /l + — 1 — 1 + = /l ,
3( ) b2 + u* (1 - CTQ/l - d3T2/7.2 ) 2w ( ¢ ) Q3( )

where P3(1) = wre Y (d3/12 +cd+ H’W;Ym — (},’2). Then P;(0) = 0 1mphes that Q3(O):—2Q’2W*<O.
Consequently, for sufficiently small A, it follows that Q3(1) < 0.
Q) t; >t > t3, i(t) = eV, and then

@D+ WO

dsw” (1) — W' (1) + aa(ga * W)(1) +

by + ()
2 2 2 e B A2
<d;Xw'e '+ caw' e +aow” | 1+ +aMw* 1+ —hy(wW* +we™
<d;A"w’e cAw’e aLw ( 1—c74/l—d37'4/12) aMw ( e d—diral? (W +w'e™™)
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<v* (Pa() + a1 + axMy = dhpe™) 1= Q4(),

where Py(1) = e ¥ (d3/12 +cd+ &2 + oM, ) Then P4(0) = a; + a,M, implies that

1—cT4A—d314A2 1—cT2A—d312 12

04(0) = 2w*(ay + a;M;| — 2h,) < 0 for (A.4). Consequently, for sufficiently small A, it follows that

Q4(1) < 0.
To summarize, (i(t), v(t), w(t)) is an upper solution of (3.1). O

Lemma A.3. Assume that (A.2) and (A.3) hold. Then (u(t), v(t), w(?)) is a lower solution of (3.1).
Proof. For u(t), from the assumptions on ¢, 1, A and the definitions of A, u(t), it follows that

=t

U (t4=) = 1€ — gnd @™ < g11e™" = ' (ty+).

(i) If t < 14, then u(?) = e — ge™" < 1. Therefore, we have

u®(g *v)(0)  ut)(ga2 * w)(2)
b, + u(r) b, + u(t)
>d et — dign* A, 7™ — cAieM + cqndi ™ + et — ge™!

_ (e/llt _ qer]/llt)Z _ e/llt(e/lzt + qen/lgl‘) _ e/llt(e/l3t + qen/l3t)

diu”(t) — cu' (1) + u(t)(1 — u(®)) -

it 4=t (A=) Q- | (B pur | (B
> — ™" g(A1(nAy, c) + TIRTAE g ATIRETAN 4 plETIAL 4 ot +e M

> — ™ [g(A1(nAy, ©) + 2eM) + 3eM],
given A;(ndy,c) <0, since t4, < 0 and g > 1 is large enough such that
g(A (N1, ©) + 2eM) + 3eM < 0.
(ii) If t > 14, then

u®(g * V(1) ut)(ga2 * w)(?)
by + u(t) b, + u(t)

diu” (1) — cu' (1) + u(@)(1 — u(?) —

> —dileie —clere™ +ut —u? — g + 2utg e — ge
W —se) (g x N W = e (g x W)(2)
by +u* — gre= by +u* —gre
* % * At =
-t * At 2 -2t uv (u" —g1e7) (g1 * V)(1)
=g1e"Ps() + Qu" — Deje™ —gie™ ™" + -
(@) +( ) ! b, +u* b +u —ge

ww' (= e1e”")(gy * W)(1)
- = ),
b2 + u* bz +u* — 816_/1[ QS( )

where Ps(1) := —d, 2> — cA. Then Ps(0) = 0. On the other hand, let

wvt (uw—ge)(gE)(t)  ww' (U —g1e”)(grxW)(0)
by +u* by +u —ge by +u* by + u* — gre~t
uwvt - M,  uwwt (uf - geV)M;

by +u* b +u—cet by+u* by+u —get

I, 1) :=Qu'—1)g e —gle ™ +

>Qu" — g™ — gfe™" +
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By Lemma A.1

uv* (u* —e)M, uw* (u* — e1)M;

1(2,0) > Qu* — g, — & + > 0.
(4,0) > 2u )E1 — €] by+u* by+u—& by+u by+u—g “0

We can choose §; > 0 such that §* := g; + 0; satisfies

u'v W —0M, u'w (u )3>80>0’

by+u b +u—06 by+u by+u -6 2

Qu*—1)6 -6 +

for 6 € [&1,67].
If ¢ € (14, 0], noting that £;e~" is decreasing on (t4, 0], for sufficiently small A such that &, < gje™¥ <

816_/114 =g+, =06, then I(4,1) > 0.
If t > 0, we have

_ _ uv W —ee) (. Ve M
I, 1) 2Qu" — Deje™ — gfe™" + - — |V + >
by +u by +u—get 1 —ctid—dyri A
ww* (Lt* _ gle—/lt) - W*e—/lt
- w
b, +u* by +ut—ge 1 — ¢ty — d31p A2

. _ _ uv* u . vie
>Qu" — Dge™ —gte™ + - v+ >
by +u by +u 1 —crid—drri A
N M*W* u* . N w*e—/lt
- w
by + u* by + u* 1 —ctod — d3T2/12
uv* 1 uw 1
=" |Qu" - e, — &} - 5 = . 51
by +u*l—crid—dyriA by +u* 1 — ctyd — d3mod

Since

2 Qu* — 1) S u*M, N u*Ms;

max{QRu* - e, — &7} = > ,
\ Jer =) 4 by +u* by +u
then there exists 0 < gy’ < % such that
uv* 1 uw* 1
2 >0,

2~ ey — & -
B e e T crd - byt w 1= erd— oy

for g, € (&7, —2”;_1
Therefore, taking &| = max{e], £]"}, we have I(4,1) > 0 for g, € (&], MT‘I), that is, for sufficiently

small A such that Os(1) > O.
For v(¢), from the assumptions on g, 1, A and the definitions of A,, v(#), it follows that

V(ts—) = e — qnire™ < gre”" =V (15+).
(@) If 1 < 15, (1) = €™ — ge™', w(t) < eb' + g™, and similar to (A.5), fori =1, 3,

e/lzt qen/lzl‘

1+ ctidy — dhTin? 1+ ety — doTiP A%

8i*V
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thus

a u(r)(g = v)(1)
by + u(1)

doy" () — cv' (D) + (g3 * V(1) + — my(OW(t) — V(1)

aleﬂzl‘

>Dr 56" — dyg 5™ — clye™ + cqnare™ + P
CT3Ay — A T3/

a,lqen/lzt

Aot T]/lzt Ast 7]/131‘ Aot 7]/121‘ 2
- —my(e™ — qe™*) (e + gy — hy(e™ — ge?)
1+ CT37]/12 - d2T37]2/122 : 1 1 : 1

Lty _
> _ oMt g(Aa(nda, ) + mle(/lz+fl(/13—/lz))t) + mle( T, At + h1€(2 n)Aat

> = " [q(Ao(dz, €) + my) + my + ],
given A,(nd,, ¢) < 0, since t5 < 0 and ¢ > 1 is large enough such that
C](Az(n/lz, C) + m]) +my + ]’l] < 0.

@) If t > t5, v(t) = v* — gre™¥, w(t) < w* + we ", and similar to (A.6),

=t

% % &e
v=v" - ,
AR 1 —cm3d - d2T3/12
thus
a u()(gy * v)(t
@wm—wvyum&*wm+‘ixg DO i) — (o
- - - by + u(?) - -
Y
> _ d /12 =Ar 1 —At + * &€
- 24 £2€ A&l “ (V 1-— CT3/1 - d2T3/12
—m (V" = &2¢” W + we™) — hi (v — greM)?
=e2¢ " Po() + (v = £26™") [(hlé‘z —mwh)e ™ = S 1= (),
bl + u*
where Pg(1) := —dyA? — cA — l_mfm + a@;. Then P¢(0) = O implies that Qg(0) > 0 by (A.3).

Consequently, for sufficiently small A, it follows that Qg(1) > O.
For w(t), from the assumptions on g, 17, 4 and the definitions of A3, w(z), it follows that

At

W (te—) = 3™’ — qnaze™' < gze™ = w'(te+).

(i) If 1 < 1, wW(t) = &M — ge"™', v(t) = e®' — g™, and similar to (A.5), fori = 2,4,

A3t

e gems!

gi*W= 2 2?
1 + c1id3 — d3TiA3 1 + ctinA; — dztin? A3

thus

aru(1)(ga * w)(1)
by + u(t)

" (t) — cw' (1) + aa(ga * w)(2) + mayy(Ow(t) — how? (1)
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>d3 36" — dagn 3e™™ — clze™ + cqnize™' +

azqer]/l3l‘

- 1+ CT47]/13 - d3T47]2/l32

> — ™" |gAs(nAs, ©) + mpe

et

1+ ct4d3 — d3T4/132

_ m2(e/lzt _ qen/lzt)(e/l3t _ qen/l3t) _ hz(e/l_st _ qen/l3t)2

Aop+dy

T et

> — ™! [gA3(nAs, ©) + my + ],

given A3(nds, c) < 0, since tg < 0 and ¢ > 1 is large enough such that

qgA3(nA3,c) + my + hy < 0.

(@) If t > tg, w(f) = w* — &3¢, v(f) = v* — gre™, and similar to (A.6),

=At

N « &3eé
w=w"— ,
far 1 —cryd — d3T4/12
thus
aru(t * W)(T
s (0) = ew () + aa(ga = (o) + 2EE WD ) — o0
- - - by + u(?) - -
—At
> — dilee ™ — clee M + - &3¢
= 3 E3€ caeze (0%) (W 1— CT4/1 _ d3T4/12
—my(V* — &2e” (W — g3¢Y) — (W — g3 1)?
=3¢ P (D) + (W' — s3¢™) [(h283 +mpee - 1= 05(),
h+ U
where P7(1) := —d3A%> — cA — m + a,. Then P7(0) = 0 implies that Q;(0) > 0 by (A.3).

Consequently, for sufficiently small 4, it follows that Q;(1) > 0.
To summarize, (u(t), v(t), w(t)) is a lower solution of (3.1). m|
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