
Research article

Lyapunov-type inequalities for self-adjoint differential equations of second order

Mohamed Jleli and Bessem Samet*

Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

* **Correspondence:** Email: bsamet@ksu.edu.sa.

Abstract: We present a general method that yields Patula, Hartman-Wintner, and Lyapunov-type inequalities for the second-order differential equation

$$-(\alpha(x)u'(x))' + \beta(x)u(x) = \gamma(x)u(x), \quad x \in I,$$

where I is an interval of \mathbb{R} , $\alpha \in C^1(I)$, $\alpha > 0$, $\beta, \gamma \in C(I)$, and $\beta \geq 0$. Applications cover the generalized radial Schrödinger equation and the modified Bessel equation and include an improved (sharpened) form of Bargmann's inequality.

Keywords: self-adjoint differential equations; Lyapunov-type inequalities; generalized radial Schrödinger's equation; modified Bessel's differential equation

Mathematics Subject Classification: 34B05, 34B30, 34C10, 26D15

1. Introduction

We study the second-order divergence-form (self-adjoint) equation

$$-(\alpha(x)u'(x))' + \beta(x)u(x) = \gamma(x)u(x), \quad x \in I, \quad (1.1)$$

on an interval $I \subset \mathbb{R}$, where $\alpha \in C^1(I)$ with $\alpha > 0$, and $\beta, \gamma \in C(I)$ with $\beta \geq 0$. Our aim is to derive Lyapunov-type inequalities for (1.1) under the assumption that $a_1, a_2 \in I$ are two consecutive zeros of a nontrivial solution u .

In the benchmark case $\alpha \equiv 1$ and $\beta \equiv 0$, (1.1) reduces to

$$-u''(x) = \gamma(x)u(x), \quad x \in I, \quad (1.2)$$

for which Lyapunov's classical result [1] asserts: If $u \not\equiv 0$ satisfies $u(a_1) = u(a_2) = 0$ with $a_1 < a_2$, then

$$\int_{a_1}^{a_2} |\gamma(x)| dx > \frac{4}{a_2 - a_1}. \quad (1.3)$$

Several generalizations and extensions of the Lyapunov inequality (1.3) can be found in the literature. For example, by an application of the Sturm-Picone comparison theorem, Wintner [2] showed that if u solves (1.2) and $a_1 < a_2$ are consecutive zeros of u , then

$$\int_{a_1}^{a_2} \gamma^+(x) dx > \frac{4}{a_2 - a_1}, \quad (1.4)$$

where $\gamma^+(x) := \max\{0, \gamma(x)\}$. Hartman and Wintner [3] sharpened this by proving

$$\int_{a_1}^{a_2} (x - a_1)(a_2 - x) \gamma^+(x) dx > a_2 - a_1. \quad (1.5)$$

Under the same hypotheses, Patula [4] established the following subinterval inequalities:

$$\int_{a_1}^{c^*} \gamma^+(x) dx > \frac{1}{c^* - a_1}, \quad (1.6)$$

$$\int_{c^*}^{a_2} \gamma^+(x) dx > \frac{1}{a_2 - c^*}, \quad (1.7)$$

where $c^* \in (a_1, a_2)$ denotes any point at which $|u|$ attains its maximum on $[a_1, a_2]$.

In the special case $\beta \equiv 0$, Eq (1.1) reduces to

$$-(\alpha(x)u'(x))' = \gamma(x)u(x), \quad x \in I. \quad (1.8)$$

Hartman [5] proved that if u solves (1.8) and $a_1 < a_2$ are consecutive zeros of u , then

$$\int_{a_1}^{a_2} \gamma^+(x) dx > 4 \left(\int_{a_1}^{a_2} \frac{1}{\alpha(x)} dx \right)^{-1}. \quad (1.9)$$

In particular, taking $\alpha \equiv 1$ yields $\int_{a_1}^{a_2} \gamma^+(x) dx > 4/(a_2 - a_1)$, which recovers (1.4).

The Lyapunov inequality has been generalized in many directions, encompassing higher-order differential equations [6, 7], various nonlinear settings [8, 9], partial differential equations [10, 11], and fractional differential equations [12–14].

Lyapunov-type inequalities have a wide scope of applications-ranging from eigenvalue estimates and bounds on the number of bound states to stability criteria, disconjugacy, and disfocality. For comprehensive overviews, see the monograph [15].

In Section 2 we extend the classical inequalities—Wintner (1.4), Hartman-Wintner (1.5), Patula (1.6) and (1.7), and Hartman’s weighted form (1.9)—to the self-adjoint Eq (1.1). Section 3 then specializes these results to the models (1.8), the generalized radial Schrödinger equation, and the modified Bessel equation. As a consequence, we obtain a sharpening of Bargmann’s inequality [17] for the radial Schrödinger case.

2. Main results

Throughout this section we work under the standing hypotheses

$$\alpha \in C^1(I), \quad \alpha > 0, \quad \beta, \gamma \in C(I), \quad \beta \geq 0.$$

Given $a_1, a_2 \in I$ with $a_1 < a_2$, we select functions $\varphi_{a_1}, \varphi_{a_2} \in C^2([a_1, a_2])$ satisfying:

(C1) $\{\varphi_{a_1}, \varphi_{a_2}\}$ is a fundamental system of solutions of

$$(\alpha(x)z'(x))' - \beta(x)z(x) = 0, \quad a_1 < x < a_2. \quad (2.1)$$

(C2) $\varphi_{a_1}(a_1) = 0$ and $\varphi'_{a_1}(x) > 0$ for all $x \in [a_1, a_2]$.

(C3) $\varphi_{a_2}(a_2) = 0$ and $\varphi'_{a_2}(x) < 0$ for all $x \in [a_1, a_2]$.

The existence of φ_{a_1} and φ_{a_2} follows from the assumption $\beta \geq 0$ together with the maximum principle (see [16]); a direct construction avoiding the maximum principle is deferred to the remark below.

From **(C2)** and **(C3)** we have

$$\begin{aligned} \varphi_{a_1}(x) &> 0, & a_1 < x \leq a_2, \\ \varphi_{a_2}(x) &> 0, & a_1 \leq x < a_2, \\ W(\varphi_{a_2}, \varphi_{a_1})(x) &> 0, & a_1 \leq x \leq a_2, \end{aligned}$$

where the (unweighted) Wronskian is

$$W(\varphi_{a_2}, \varphi_{a_1})(x) = \varphi_{a_2}(x) \varphi'_{a_1}(x) - \varphi'_{a_2}(x) \varphi_{a_1}(x).$$

Remark 2.1. For completeness, and to avoid invoking the maximum principle, we record a direct argument yielding the existence and the strict positivity/monotonicity of φ_{a_1} and φ_{a_2} .

Since $\alpha \in C^1(I)$ with $\alpha > 0$ and $\beta \in C(I)$, the initial value problem

$$\begin{cases} (\alpha(x)\varphi'_{a_1}(x))' - \beta(x)\varphi_{a_1}(x) = 0, & a_1 < x < a_2, \\ \varphi_{a_1}(a_1) = 0, & (\alpha\varphi'_{a_1})(a_1) = 1 \end{cases}$$

admits a unique solution $\varphi_{a_1} \in C^2([a_1, a_2])$, and $\varphi'_{a_1}(a_1) = 1/\alpha(a_1) > 0$.

We claim that φ_{a_1} satisfies **(C2)**.

Step 1. We prove that

$$\varphi'_{a_1}(t) \varphi_{a_1}(t) > 0, \quad \text{for all } t \in (a_1, a_2]. \quad (2.2)$$

For any solution φ of $(\alpha\varphi')' - \beta\varphi = 0$, one has

$$(\alpha \varphi \varphi')' = \alpha(\varphi')^2 + \beta \varphi^2.$$

Integrating from a_1 to $t \in (a_1, a_2]$ and using $\varphi_{a_1}(a_1) = 0$ gives

$$\alpha(t) \varphi'_{a_1}(t) \varphi_{a_1}(t) = \int_{a_1}^t (\alpha(\varphi'_{a_1})^2 + \beta \varphi_{a_1}^2) dx.$$

Since $\varphi'_{a_1}(a_1) = 1/\alpha(a_1) > 0$, by continuity there exists $\varepsilon > 0$ with $\varphi'_{a_1} > 0$ on $(a_1, a_1 + \varepsilon]$. Because $\alpha > 0$ and $\beta \geq 0$, the integrand $\alpha(\varphi'_{a_1})^2 + \beta \varphi_{a_1}^2$ is strictly positive on that subinterval; therefore, for every $t > a_1$, the right-hand side is > 0 , and hence (2.2) holds.

Step 2. We show that

$$\varphi_{a_1}(t) > 0, \quad \text{for all } t \in (a_1, a_2]. \quad (2.3)$$

From $\varphi'_{a_1}(a_1) > 0$ and continuity, $\varphi'_{a_1} > 0$ on $(a_1, a_1 + \varepsilon]$ for some $\varepsilon > 0$ (small enough). Then (2.2) gives $\varphi_{a_1} > 0$ on $(a_1, a_1 + \varepsilon]$. If there were $\hat{x} \in (a_1, a_2]$ with $\varphi_{a_1}(\hat{x}) \leq 0$, then by the Intermediate Value Theorem there would exist $y \in (a_1, \hat{x}]$ with $\varphi_{a_1}(y) = 0$, contradicting (2.2). Thus, (2.3) holds.

Step 3. (monotonicity) Combining (2.2) and (2.3) yields $\varphi'_{a_1} > 0$ on $(a_1, a_2]$. Together with $\varphi'_{a_1}(a_1) = 1/\alpha(a_1) > 0$, we obtain

$$\varphi'_{a_1}(t) > 0, \quad \text{for all } t \in [a_1, a_2].$$

Hence φ_{a_1} satisfies **(C2)**.

Similarly, the initial value problem

$$\begin{cases} (\alpha(x)\varphi'_{a_2}(x))' - \beta(x)\varphi_{a_2}(x) = 0, & a_1 < x < a_2, \\ \varphi_{a_2}(a_2) = 0, & (\alpha\varphi'_{a_2})(a_2) = -1 \end{cases}$$

admits a unique solution $\varphi_{a_2} \in C^2([a_1, a_2])$, and, arguing as above (integrating from t to a_2), one gets $\varphi_{a_2} > 0$ on $[a_1, a_2]$ and $\varphi'_{a_2} < 0$ on $[a_1, a_2]$, i.e., **(C3)**.

Moreover, by **(C2)** and **(C3)**, we have

$$W(\varphi_{a_2}, \varphi_{a_1})(x) = \varphi_{a_2}(x)\varphi'_{a_1}(x) - \varphi_{a_1}(x)\varphi'_{a_2}(x) > 0$$

for all $x \in [a_1, a_2]$, which shows that φ_{a_1} and φ_{a_2} are linearly independent. Thus **(C1)** holds.

Remark 2.2. (On the role of $\beta \geq 0$) The hypothesis $\beta \geq 0$ is essential: When $\beta < 0$, the homogeneous equation may become oscillatory and obstruct **(C1)**–**(C3)**.

Indeed, let $\lambda > 0$, $\alpha \equiv 1$, and $\beta \equiv -\lambda^2 < 0$ on $I = [a_1, a_2]$ with length $L := a_2 - a_1$. Then

$$(\alpha z')' - \beta z = 0 \iff z'' + \lambda^2 z = 0,$$

and the functions

$$\varphi_{a_1}(x) = \sin(\lambda(x - a_1)), \quad \varphi_{a_2}(x) = \sin(\lambda(a_2 - x))$$

solve the equation with $\varphi_{a_1}(a_1) = 0$ and $\varphi_{a_2}(a_2) = 0$. However:

Failure of (C2) and (C3) for long intervals.

$$\varphi'_{a_1}(x) = \lambda \cos(\lambda(x - a_1)), \quad \varphi'_{a_2}(x) = -\lambda \cos(\lambda(a_2 - x)).$$

If $L > \frac{\pi}{2\lambda}$, these derivatives change sign on $[a_1, a_2]$, so one cannot have $\varphi'_{a_1} > 0$ and $\varphi'_{a_2} < 0$ throughout.

Failure of (C1) at resonant lengths. If $L = \frac{k\pi}{\lambda}$ for some $k \in \mathbb{N}$, then

$$\varphi_{a_2}(x) = \sin(\lambda L - \lambda(x - a_1)) = (-1)^{k+1} \varphi_{a_1}(x),$$

so φ_{a_1} and φ_{a_2} are linearly dependent (Wronskian $\equiv 0$).

These obstructions underline why the nonnegativity condition $\beta \geq 0$ is pivotal for enforcing **(C1)**–**(C3)** in our framework.

Our first main result is the following theorem.

Theorem 2.1. Assume that $u \in C^2(I)$ solves (1.1), and let $a_1, a_2 \in I$ be two consecutive zeros of u . Let $c^* \in (a_1, a_2)$ be any point with $|u(c^*)| = \max_{a_1 \leq x \leq a_2} |u(x)|$. Then

$$\int_{a_1}^{c^*} \varphi_{a_1}(x) \gamma^+(x) dx > \alpha(c^*) \varphi'_{a_1}(c^*), \quad (2.4)$$

$$\int_{c^*}^{a_2} \varphi_{a_2}(x) \gamma^+(x) dx > -\alpha(c^*) \varphi'_{a_2}(c^*). \quad (2.5)$$

Proof. Without restriction of the generality, we may assume that

$$u(x) > 0, \quad a_1 < x < a_2.$$

First, we claim that

$$\gamma^+ \not\equiv 0, \quad \text{on } (a_1, c^*), \quad (2.6)$$

and

$$\gamma^+ \not\equiv 0, \quad \text{on } (c^*, a_2). \quad (2.7)$$

Indeed, multiplying (1.1) by u , and integrating over $x \in (a_1, c^*)$, we obtain

$$-\int_{a_1}^{c^*} (\alpha(x)u'(x))'u(x) dx + \int_{a_1}^{c^*} \beta(x)u^2(x) dx = \int_{a_1}^{c^*} \gamma(x)u^2(x) dx. \quad (2.8)$$

On the other hand, using that $u'(c^*) = 0$ and $u(a_1) = 0$, we obtain

$$\begin{aligned} -\int_{a_1}^{c^*} (\alpha(x)u'(x))'u(x) dx &= -[\alpha(x)u'(x)u(x)]_{x=a_1}^{x=c^*} + \int_{a_1}^{c^*} \alpha(x)[u'(x)]^2 dx \\ &= \int_{a_1}^{c^*} \alpha(x)[u'(x)]^2 dx. \end{aligned}$$

Since a_1, a_2 are two consecutive zeros of u and $\alpha > 0$, then

$$-\int_{a_1}^{c^*} (\alpha(x)u'(x))'u(x) dx = \int_{a_1}^{c^*} \alpha(x)[u'(x)]^2 dx > 0,$$

which implies by (2.8) that

$$\int_{a_1}^{c^*} \gamma(x)u^2(x) dx > 0.$$

This proves (2.6). Similarly, multiplying (1.1) by u , and integrating over $x \in (c^*, a_2)$, we obtain

$$\int_{c^*}^{a_2} \gamma(x)u^2(x) dx > 0,$$

which proves (2.7).

Next, multiplying (1.1) by φ_{a_1} , and integrating over $x \in (a_1, c^*)$, we obtain

$$-\int_{a_1}^{c^*} (\alpha(x)u'(x))'\varphi_{a_1}(x) dx + \int_{a_1}^{c^*} \beta(x)u(x)\varphi_{a_1}(x) dx = \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma(x)u(x) dx. \quad (2.9)$$

Writing

$$\gamma(x) = \gamma^+(x) - \gamma^-(x),$$

where

$$\gamma^-(x) = \max\{0, -\gamma(x)\},$$

using (2.6) and (2.9), we obtain

$$\begin{aligned} & - \int_{a_1}^{c^*} (\alpha(x)u'(x))' \varphi_{a_1}(x) dx + \int_{a_1}^{c^*} \beta(x)u(x)\varphi_{a_1}(x) dx \\ & \leq - \int_{a_1}^{c^*} (\alpha(x)u'(x))' \varphi_{a_1}(x) dx + \int_{a_1}^{c^*} \beta(x)u(x)\varphi_{a_1}(x) dx + \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma^-(x)u(x) dx \\ & = \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma^+(x)u(x) dx \\ & < u(c^*) \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma^+(x) dx, \end{aligned}$$

that is,

$$- \int_{a_1}^{c^*} (\alpha(x)u'(x))' \varphi_{a_1}(x) dx + \int_{a_1}^{c^*} \beta(x)u(x)\varphi_{a_1}(x) dx < u(c^*) \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma^+(x) dx. \quad (2.10)$$

On the other hand, integrating by parts, and using that $u(a_1) = u'(c^*) = \varphi_{a_1}(a_1) = 0$, we obtain

$$\begin{aligned} - \int_{a_1}^{c^*} (\alpha(x)u'(x))' \varphi_{a_1}(x) dx & = -[\alpha(x)u'(x)\varphi_{a_1}(x)]_{x=a_1}^{c^*} + \int_{a_1}^{c^*} u'(x)(\alpha(x)\varphi'_{a_1}(x)) dx \\ & = -[\alpha(x)u'(x)\varphi_{a_1}(x)]_{x=a_1}^{c^*} + [u(x)\alpha(x)\varphi'_{a_1}(x)]_{x=a_1}^{c^*} \\ & \quad - \int_{a_1}^{c^*} u(x)(\alpha(x)\varphi'_{a_1}(x))' dx \\ & = u(c^*)\alpha(c^*)\varphi'_{a_1}(c^*) - \int_{a_1}^{c^*} u(x)(\alpha(x)\varphi'_{a_1}(x))' dx. \end{aligned}$$

Then, by (2.10), we obtain

$$u(c^*)\alpha(c^*)\varphi'_{a_1}(c^*) - \int_{a_1}^{c^*} u(x)[(\alpha(x)\varphi'_{a_1}(x))' - \beta(x)\varphi_{a_1}(x)] dx < u(c^*) \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma^+(x) dx.$$

Furthermore, by **(C1)**, we know that

$$(\alpha(x)\varphi'_{a_1}(x))' - \beta(x)\varphi_{a_1}(x) = 0, \quad a_1 < x < c^*.$$

Consequently, we deduce that

$$u(c^*) \int_{a_1}^{c^*} \varphi_{a_1}(x)\gamma^+(x) dx > u(c^*)\alpha(c^*)\varphi'_{a_1}(c^*),$$

which yields (2.4).

Similarly, multiplying (1.1) by φ_{a_2} , and integrating over $x \in (c^*, a_2)$, we obtain

$$-\int_{c^*}^{a_2} (\alpha(x)u'(x))' \varphi_{a_2}(x) dx + \int_{c^*}^{a_2} \beta(x)u(x)\varphi_{a_2}(x) dx = \int_{c^*}^{a_2} \varphi_{a_2}(x)\gamma(x)u(x) dx,$$

which implies by (2.7) that

$$-\int_{c^*}^{a_2} (\alpha(x)u'(x))' \varphi_{a_2}(x) dx + \int_{c^*}^{a_2} \beta(x)u(x)\varphi_{a_2}(x) dx < u(c^*) \int_{c^*}^{a_2} \varphi_{a_2}\gamma^+(x) dx.$$

Then, integrating by parts, and using that $u(a_2) = u'(c^*) = \varphi_{a_2}(a_2) = 0$, we obtain

$$-u(c^*)\alpha(c^*)\varphi'_{a_2}(c^*) - \int_{c^*}^{a_2} u(x) \left[(\alpha(x)\varphi'_{a_2}(x))' - \beta(x)\varphi_{a_2}(x) \right] dx < u(c^*) \int_{c^*}^{a_2} \varphi_{a_2}(x)\gamma^+(x) dx.$$

Since (by **(C1)**)

$$(\alpha(x)\varphi'_{a_2}(x))' - \beta(x)\varphi_{a_2}(x) = 0, \quad c^* < x < a_2,$$

it holds that

$$u(c^*) \int_{c^*}^{a_2} \varphi_{a_2}(x)\gamma^+(x) dx > -u(c^*)\alpha(c^*)\varphi'_{a_2}(c^*),$$

which yields (2.5). This completes the proof of Theorem 2.1. \square

Remark 2.3. Note that the choice of functions φ_{a_1} and φ_{a_2} satisfying **(C1)–(C3)** is not unique. However, the obtained inequalities (2.4) and (2.5) are independent of any choice. Indeed, let us assume that $\{\overline{\varphi_{a_1}}, \overline{\varphi_{a_2}}\}$ is another fundamental set of solutions of the homogeneous differential Eq (2.1), and $\overline{\varphi_{a_1}}, \overline{\varphi_{a_2}}$ satisfy **(C2)** and **(C3)**. Then,

$$\overline{\varphi_{a_1}} = \mu_1 \varphi_{a_1} + \mu_2 \varphi_{a_2}, \quad \overline{\varphi_{a_2}} = \lambda_1 \varphi_{a_1} + \lambda_2 \varphi_{a_2}$$

for some $(\mu_1, \mu_2), (\lambda_1, \lambda_2) \in \mathbb{R}^2$. Since $\varphi_{a_1}(a_1) = \overline{\varphi_{a_1}}(a_1) = 0$, then $\mu_2 \varphi_{a_2}(a_1) = 0$. On the other hand, by **(C3)**, we have $\varphi_{a_2}(a_1) > \varphi_{a_2}(a_2) = 0$, which yields $\mu_2 = 0$, $\overline{\varphi_{a_1}} = \mu_1 \varphi_{a_1}$, and $\mu_1 > 0$. Similarly, since $\varphi_{a_2}(a_2) = \overline{\varphi_{a_2}}(a_2) = 0$, then $\lambda_1 \varphi_{a_1}(a_2) = 0$. Furthermore, by **(C2)**, we have $\varphi_{a_1}(a_2) > \varphi_{a_1}(a_1) = 0$, which yields $\lambda_1 = 0$, $\overline{\varphi_{a_2}} = \lambda_2 \varphi_{a_2}$, and $\lambda_2 > 0$. Consequently,

$$\int_{a_1}^{c^*} \overline{\varphi_{a_1}}(x)\gamma^+(x) dx > \alpha(c^*)\overline{\varphi_{a_1}}'(c^*)$$

is equivalent to (2.4). Similarly,

$$\int_{c^*}^{a_2} \overline{\varphi_{a_2}}(x)\gamma^+(x) dx > -\alpha(c^*)\overline{\varphi_{a_2}}'(c^*)$$

is equivalent to (2.5).

Next, using Theorem 2.1, we obtain the following Patula-type inequalities.

Theorem 2.2. Assume that $u \in C^2(I)$ solves (1.1), and let $a_1, a_2 \in I$ be two consecutive zeros of u . Let $c^* \in (a_1, a_2)$ be any point with $|u(c^*)| = \max_{a_1 \leq x \leq a_2} |u(x)|$. Then

$$\int_{a_1}^{c^*} \gamma^+(x) dx > \frac{\alpha(c^*)\varphi'_{a_1}(c^*)}{\varphi_{a_1}(c^*)}, \quad (2.11)$$

$$\int_{c^*}^{a_2} \gamma^+(x) dx > -\frac{\alpha(c^*)\varphi'_{a_2}(c^*)}{\varphi_{a_2}(c^*)}. \quad (2.12)$$

Proof. By **(C2)**, we have

$$\int_{a_1}^{c^*} \varphi_{a_1}(x) \gamma^+(x) dx \leq \varphi_{a_1}(c^*) \int_{a_1}^{c^*} \gamma^+(x) dx.$$

Since $\varphi_{a_1}(c^*) > 0$, using (2.4) and the above inequality, we obtain (2.11).

Similarly, by **(C3)**, we obtain

$$\int_{c^*}^{a_2} \varphi_{a_2}(x) \gamma^+(x) dx \leq \varphi_{a_2}(c^*) \int_{c^*}^{a_2} \gamma^+(x) dx.$$

Since $\varphi_{a_2}(c^*) > 0$, using (2.5) and the above inequality, we obtain (2.12). \square

Our next main result is the following Hartman-Wintner-type inequality.

Theorem 2.3. *Assume that $u \in C^2(I)$ is a solution to (1.1), and $a_1, a_2 \in I$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx > \min_{a_1 \leq s \leq a_2} [\alpha(s) W(\varphi_{a_2}, \varphi_{a_1})(s)]. \quad (2.13)$$

Proof. Let $c^* \in (a_1, a_2)$ be such that $|u(c^*)| = \max_{a_1 \leq x \leq a_2} |u(x)|$. We have

$$\int_{a_1}^{a_2} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx = \int_{a_1}^{c^*} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx + \int_{c^*}^{a_2} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx. \quad (2.14)$$

Since φ_{a_2} is a decreasing function (by **(C3)**), we have

$$\int_{a_1}^{c^*} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx \geq \varphi_{a_2}(c^*) \int_{a_1}^{c^*} \varphi_{a_1}(x) \gamma^+(x) dx,$$

which implies by (2.4) that

$$\int_{a_1}^{c^*} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx > \alpha(c^*) \varphi_{a_2}(c^*) \varphi'_{a_1}(c^*). \quad (2.15)$$

Similarly, since φ_{a_1} is an increasing function (by **(C2)**), we have

$$\int_{c^*}^{a_2} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx \geq \varphi_{a_1}(c^*) \int_{c^*}^{a_2} \varphi_{a_2}(x) \gamma^+(x) dx,$$

which implies by (2.5) that

$$\int_{c^*}^{a_2} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx > -\alpha(c^*) \varphi'_{a_2}(c^*) \varphi_{a_1}(c^*). \quad (2.16)$$

Hence, by (2.14)–(2.16), we obtain

$$\begin{aligned} \int_{a_1}^{a_2} \varphi_{a_1}(x) \varphi_{a_2}(x) \gamma^+(x) dx &> \alpha(c^*) \varphi_{a_2}(c^*) \varphi'_{a_1}(c^*) - \alpha(c^*) \varphi'_{a_2}(c^*) \varphi_{a_1}(c^*) \\ &= \alpha(c^*) [\varphi_{a_2}(c^*) \varphi'_{a_1}(c^*) - \varphi'_{a_2}(c^*) \varphi_{a_1}(c^*)] \\ &= \alpha(c^*) W(\varphi_{a_2}, \varphi_{a_1})(c^*) \\ &\geq \min_{a_1 \leq s \leq a_2} [\alpha(s) W(\varphi_{a_2}, \varphi_{a_1})(s)], \end{aligned}$$

which proves (2.13). \square

Using Theorem 2.3, we obtain the following result.

Theorem 2.4. *Assume that $u \in C^2(I)$ is a solution to (1.1), and $a_1, a_2 \in I$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} \gamma^+(x) dx > \frac{\min_{a_1 \leq s \leq a_2} [\alpha(s)W(\varphi_{a_2}, \varphi_{a_1})(s)]}{\max_{a_1 \leq t \leq a_2} [\varphi_{a_1}(t)\varphi_{a_2}(t)]}. \quad (2.17)$$

Proof. We have

$$\int_{a_1}^{a_2} \varphi_{a_1}(x)\varphi_{a_2}(x)\gamma^+(x) dx \leq \max_{a_1 \leq t \leq a_2} [\varphi_{a_1}(t)\varphi_{a_2}(t)] \int_{a_1}^{a_2} \gamma^+(x) dx.$$

Then, (2.17) follows from (2.13) and the above inequality. \square

3. Applications

In this section, we study some special cases of (1.1).

3.1. The differential Eq (1.8)

We consider the second-order differential Eq (1.8), where $\alpha \in C^1(I)$, $\alpha > 0$, and $\gamma \in C(I)$. This differential equation is a special case of (1.1) with $\beta = 0$.

Let $a_1, a_2 \in I$ with $a_1 < a_2$. We introduce the functions φ_{a_1} and φ_{a_2} defined by

$$\varphi_{a_1}(x) = \int_{a_1}^x \frac{1}{\alpha(s)} ds, \quad a_1 \leq x \leq a_2,$$

and

$$\varphi_{a_2}(x) = \int_x^{a_2} \frac{1}{\alpha(s)} ds, \quad a_1 \leq x \leq a_2.$$

Differentiating under the integral sign gives

$$\varphi'_{a_1}(x) = \frac{1}{\alpha(x)}, \quad \varphi'_{a_2}(x) = -\frac{1}{\alpha(x)}.$$

Hence

$$\alpha\varphi'_{a_1} \equiv 1, \quad \alpha\varphi'_{a_2} \equiv -1,$$

so $(\alpha\varphi'_{a_i})'(x) = 0$ for $i = 1, 2$, i.e., each φ_{a_i} solves the homogeneous differential equation

$$(\alpha(x)z'(x))' = 0, \quad a_1 < x < a_2. \quad (3.1)$$

Moreover,

$$\varphi_{a_1}(a_1) = 0, \quad \varphi_{a_2}(a_2) = 0, \quad \varphi'_{a_1} = \frac{1}{\alpha} > 0, \quad \varphi'_{a_2} = -\frac{1}{\alpha} < 0,$$

so $\varphi_{a_1}, \varphi_{a_2} > 0$ on (a_1, a_2) and are strictly increasing/decreasing, respectively. The Wronskian is

$$\begin{aligned} W(\varphi_{a_2}, \varphi_{a_1})(x) &= \varphi_{a_2}(x)\varphi'_{a_1}(x) - \varphi_{a_1}(x)\varphi'_{a_2}(x) \\ &= \frac{\varphi_{a_1}(x) + \varphi_{a_2}(x)}{\alpha(x)}, \end{aligned}$$

that is,

$$W(\varphi_{a_2}, \varphi_{a_1})(x) = \frac{1}{\alpha(x)} \int_{a_1}^{a_2} \frac{1}{\alpha(s)} ds > 0. \quad (3.2)$$

Hence $\{\varphi_{a_1}, \varphi_{a_2}\}$ is a fundamental set of solutions of (3.1). Consequently, the functions φ_{a_1} and φ_{a_2} satisfy **(C1)–(C3)**.

Applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.1. *Let $\alpha \in C^1(I)$, $\alpha > 0$, and $\gamma \in C(I)$. Assume that $u \in C^2(I)$ is a solution to (1.8), and $a_1, a_2 \in I$ are two consecutive zeros of u . Let $c^* \in (a_1, a_2)$ be any point with $|u(c^*)| = \max_{a_1 \leq x \leq a_2} |u(x)|$. Then*

$$\begin{aligned} \int_{a_1}^{c^*} \gamma^+(x) dx &> \left(\int_{a_1}^{c^*} \frac{1}{\alpha(x)} dx \right)^{-1}, \\ \int_{c^*}^{a_2} \gamma^+(x) dx &> \left(\int_{c^*}^{a_2} \frac{1}{\alpha(x)} dx \right)^{-1}. \end{aligned}$$

Applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.2. *Let $\alpha \in C^1(I)$, $\alpha > 0$, and $\gamma \in C(I)$. Assume that $u \in C^2(I)$ is a solution to (1.8), and $a_1, a_2 \in I$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} \left(\int_{a_1}^x \frac{1}{\alpha(s)} ds \right) \left(\int_x^{a_2} \frac{1}{\alpha(s)} ds \right) \gamma^+(x) dx > \int_{a_1}^{a_2} \frac{1}{\alpha(x)} dx.$$

Applying Theorem 2.4, we obtain the following Hartman inequality [5].

Corollary 3.3. *Let $\alpha \in C^1(I)$, $\alpha > 0$, and $\gamma \in C(I)$. Assume that $u \in C^2(I)$ is a solution to (1.8), and $a_1, a_2 \in I$ are two consecutive zeros of u . Then, (1.9) holds.*

Proof. By (2.17) and (3.2), we have

$$\begin{aligned} \int_{a_1}^{a_2} \gamma^+(x) dx &> \frac{\min_{a_1 \leq \tau \leq a_2} [\alpha(\tau) W(\varphi_{a_2}, \varphi_{a_1})(\tau)]}{\max_{a_1 \leq t \leq a_2} [\varphi_{a_1}(t) \varphi_{a_2}(t)]} \\ &= \left(\max_{a_1 \leq t \leq a_2} [\varphi_{a_1}(t) \varphi_{a_2}(t)] \right)^{-1} \int_{a_1}^{a_2} \frac{1}{\alpha(x)} dx. \end{aligned} \quad (3.3)$$

On the other hand, we have

$$\begin{aligned} \max_{a_1 \leq t \leq a_2} [\varphi_{a_1}(t) \varphi_{a_2}(t)] &= \max_{a_1 \leq t \leq a_2} \left(\int_{a_1}^t \frac{1}{\alpha(s)} ds \right) \left(\int_t^{a_2} \frac{1}{\alpha(s)} ds \right) \\ &= \max_{0 \leq r \leq b} r(b-r) \\ &= \frac{b^2}{4}, \end{aligned}$$

where

$$b = \int_{a_1}^{a_2} \frac{1}{\alpha(s)} ds.$$

Then, by (3.3), we obtain

$$\begin{aligned} \int_{a_1}^{a_2} \gamma^+(x) dx &> \frac{4}{b} \\ &= 4 \left(\int_{a_1}^{a_2} \frac{1}{\alpha(s)} ds \right)^{-1}, \end{aligned}$$

which proves (1.9). \square

3.2. Generalized radial Schrödinger's equation

We consider the following generalized radial Schrödinger equation

$$-\left(\frac{1}{x^k} u'(x)\right)' + \frac{(m-k)}{x^{k+2}} u(x) = \gamma(x)u(x), \quad x > 0, \quad (3.4)$$

where $m \geq k \geq 0$, and $\gamma \in C((0, \infty))$. Clearly, (3.4) is a special case of (1.1) with

$$\alpha(x) = \frac{1}{x^k}, \quad \beta(x) = \frac{m-k}{x^{k+2}}, \quad I = (0, \infty).$$

For $0 < a_1 < a_2$, we introduce the functions φ_{a_1} and φ_{a_2} defined by

$$\varphi_{a_1}(x) = x^{\alpha_1} (x^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}), \quad a_1 \leq x \leq a_2,$$

and

$$\varphi_{a_2}(x) = x^{\alpha_1} (a_2^{\alpha_2-\alpha_1} - x^{\alpha_2-\alpha_1}), \quad a_1 \leq x \leq a_2,$$

where

$$\alpha_1 = \frac{k+1 - \sqrt{(k+1)^2 + 4(m-k)}}{2},$$

and

$$\alpha_2 = \frac{k+1 + \sqrt{(k+1)^2 + 4(m-k)}}{2}.$$

It can be easily seen that

$$\alpha_1 \leq 0 < \alpha_2.$$

The reader can easily check that $\{\varphi_{a_1}, \varphi_{a_2}\}$ is a fundamental set of solutions of the homogeneous differential equation

$$\left(\frac{1}{x^k} z'(x)\right)' - \frac{(m-k)}{x^{k+2}} z(x) = 0, \quad a_1 < x < a_2.$$

On the other hand, we have

$$\varphi_{a_1}(a_1) = 0, \quad \varphi'_{a_1}(x) = x^{\alpha_1-1} (\alpha_2 x^{\alpha_2-\alpha_1} - \alpha_1 a_1^{\alpha_2-\alpha_1}) > 0, \quad a_1 \leq x \leq a_2,$$

and

$$\varphi_{a_2}(a_2) = 0, \quad \varphi'_{a_2}(x) = x^{\alpha_1-1} (\alpha_1 a_2^{\alpha_2-\alpha_1} - \alpha_2 x^{\alpha_2-\alpha_1}) < 0, \quad a_1 \leq x \leq a_2,$$

which show that the functions φ_{a_1} and φ_{a_2} satisfy **(C1)–(C3)**. Furthermore, an elementary calculation shows that

$$W(\varphi_{a_2}, \varphi_{a_1})(x) = (\alpha_2 - \alpha_1) (a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}) x^k, \quad a_1 \leq x \leq a_2.$$

Applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.4. Let $m \geq k \geq 0$, and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.4), and $a_1, a_2 > 0$ are two consecutive zeros of u . Let $c^* \in (a_1, a_2)$ be any point with $|u(c^*)| = \max_{a_1 \leq x \leq a_2} |u(x)|$. Then

$$\begin{aligned} \int_{a_1}^{c^*} \gamma^+(x) dx &> \frac{\alpha_2 c^{*\alpha_2-\alpha_1} - \alpha_1 a_1^{\alpha_2-\alpha_1}}{c^{*k+1} (c^{*\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1})}, \\ \int_{c^*}^{a_2} \gamma^+(x) dx &> \frac{\alpha_2 c^{*\alpha_2-\alpha_1} - \alpha_1 a_2^{\alpha_2-\alpha_1}}{c^{*k+1} (a_2^{\alpha_2-\alpha_1} - c^{*\alpha_2-\alpha_1})}. \end{aligned}$$

Next, applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.5. Let $m \geq k \geq 0$, and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.4), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:

$$\int_{a_1}^{a_2} x^{2\alpha_1} (x^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}) (a_2^{\alpha_2-\alpha_1} - x^{\alpha_2-\alpha_1}) \gamma^+(x) dx > (\alpha_2 - \alpha_1) (a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}). \quad (3.5)$$

Using Corollary 3.5, we obtain the following result.

Corollary 3.6. Let $m \geq k \geq 0$, and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.4), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:

$$\int_{a_1}^{a_2} x^{2\alpha_1} \gamma^+(x) dx > \frac{4(\alpha_2 - \alpha_1)}{a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}}. \quad (3.6)$$

Proof. By (3.5), we have

$$\begin{aligned} & (\alpha_2 - \alpha_1) (a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}) \\ & < \int_{a_1}^{a_2} x^{2\alpha_1} (x^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}) (a_2^{\alpha_2-\alpha_1} - x^{\alpha_2-\alpha_1}) \gamma^+(x) dx \\ & \leq \max_{a_1 \leq s \leq a_2} [(s^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}) (a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1})] \int_{a_1}^{a_2} x^{2\alpha_1} \gamma^+(x) dx, \end{aligned}$$

which yields

$$\int_{a_1}^{a_2} x^{2\alpha_1} \gamma^+(x) dx > \frac{(\alpha_2 - \alpha_1) (a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1})}{\max_{a_1 \leq s \leq a_2} [(s^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1}) (a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1})]}. \quad (3.7)$$

On the other hand, we have

$$\begin{aligned} \max_{a_1 \leq s \leq a_2} [(s^{\alpha_2-\alpha_1} - a_2^{\alpha_2-\alpha_1}) (a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1})] &= \max_{A \leq X \leq B} (X - A)(B - X) \\ &= \frac{(B - A)^2}{4}, \end{aligned}$$

where $A = a_1^{\alpha_2-\alpha_1}$ and $B = a_2^{\alpha_2-\alpha_1}$. Then, by (3.7), we obtain

$$\begin{aligned} \int_{a_1}^{a_2} x^{2\alpha_1} \gamma^+(x) dx &> \frac{4(\alpha_2 - \alpha_1)(B - A)}{(B - A)^2} \\ &= \frac{4(\alpha_2 - \alpha_1)}{B - A}, \end{aligned}$$

which proves (3.6). \square

Using again Corollary 3.5, we obtain the following result.

Corollary 3.7. *Let $m \geq k \geq 0$, and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.4), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} x^{\alpha_1+\alpha_2} \gamma^+(x) dx > \frac{(\alpha_2 - \alpha_1) \left(a_2^{\frac{\alpha_2-\alpha_1}{2}} + a_2^{\frac{\alpha_2-\alpha_1}{2}} \right)}{a_2^{\frac{\alpha_2-\alpha_1}{2}} - a_1^{\frac{\alpha_2-\alpha_1}{2}}}. \quad (3.8)$$

Proof. By (3.5), we have

$$\begin{aligned} & (\alpha_2 - \alpha_1) \left(a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \\ & < \int_{a_1}^{a_2} x^{2\alpha_1} \left(x^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \left(a_2^{\alpha_2-\alpha_1} - x^{\alpha_2-\alpha_1} \right) \gamma^+(x) dx \\ & = \int_{a_1}^{a_2} \frac{\left(x^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \left(a_2^{\alpha_2-\alpha_1} - x^{\alpha_2-\alpha_1} \right)}{x^{\alpha_2-\alpha_1}} x^{\alpha_1+\alpha_2} \gamma^+(x) dx \\ & \leq \max_{a_1 \leq s \leq a_2} \frac{\left(s^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \left(a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1} \right)}{s^{\alpha_2-\alpha_1}} \int_{a_1}^{a_2} x^{\alpha_1+\alpha_2} \gamma^+(x) dx, \end{aligned}$$

which yields

$$\begin{aligned} & \int_{a_1}^{a_2} x^{\alpha_1+\alpha_2} \gamma^+(x) dx \\ & > \left[\max_{a_1 \leq s \leq a_2} \frac{\left(s^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \left(a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1} \right)}{s^{\alpha_2-\alpha_1}} \right]^{-1} (\alpha_2 - \alpha_1) \left(a_2^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right). \end{aligned} \quad (3.9)$$

Furthermore, we have

$$\max_{a_1 \leq s \leq a_2} \frac{\left(s^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \left(a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1} \right)}{s^{\alpha_2-\alpha_1}} = \max_{A \leq X \leq B} \frac{(X - A)(B - X)}{X},$$

where $A = a_1^{\alpha_2-\alpha_1}$ and $B = a_2^{\alpha_2-\alpha_1}$. Letting

$$L(X) = \frac{(X - A)(B - X)}{X}, \quad A \leq X \leq B,$$

and differentiating L , we obtain

$$L'(X) = \frac{(\sqrt{AB} - X)(\sqrt{AB} + X)}{X^2}.$$

This shows that

$$\max_{A \leq X \leq B} L(X) = L(\sqrt{AB}) = (\sqrt{B} - \sqrt{A})^2.$$

Consequently, we obtain

$$\max_{a_1 \leq s \leq a_2} \frac{\left(s^{\alpha_2-\alpha_1} - a_1^{\alpha_2-\alpha_1} \right) \left(a_2^{\alpha_2-\alpha_1} - s^{\alpha_2-\alpha_1} \right)}{s^{\alpha_2-\alpha_1}} = (\sqrt{B} - \sqrt{A})^2,$$

which implies by (3.9) that

$$\begin{aligned} \int_{a_1}^{a_2} x^{\alpha_1+\alpha_2} \gamma^+(x) dx &> \frac{(\alpha_2 - \alpha_1)(B - A)}{\left(\sqrt{B} - \sqrt{A}\right)^2} \\ &= \frac{(\alpha_2 - \alpha_1) \left(\sqrt{B} + \sqrt{A}\right)}{\sqrt{B} - \sqrt{A}}, \end{aligned}$$

which proves (3.8). \square

Consider now the radial Schrödinger equation

$$-u''(x) + \frac{\ell(\ell+1)}{x^2} u(x) = \gamma(x)u(x), \quad x > 0, \quad (3.10)$$

where $\ell \geq 0$ is the angular momentum. Then, (3.10) is a special case of (3.4) with

$$k = 0, \quad m = \ell(\ell+1).$$

In this case, we have

$$\alpha_1 = \frac{1 - \sqrt{1 + 4\ell(\ell+1)}}{2} = -\ell,$$

and

$$\alpha_2 = \frac{1 + \sqrt{1 + 4\ell(\ell+1)}}{2} = \ell + 1.$$

From Corollary 3.5, we deduce the following Hartman-Wintner-type inequality for (3.10).

Corollary 3.8. *Let $\ell \geq 0$ and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.10), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} x^{-2\ell} \left(x^{2\ell+1} - a_1^{2\ell+1}\right) \left(a_2^{2\ell+1} - x^{2\ell+1}\right) \gamma^+(x) dx > (2\ell+1) \left(a_2^{2\ell+1} - a_1^{2\ell+1}\right).$$

From Corollary 3.6, we deduce the following result.

Corollary 3.9. *Let $\ell \geq 0$ and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.10), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} x^{-2\ell} \gamma^+(x) dx > \frac{4(2\ell+1)}{a_2^{2\ell+1} - a_1^{2\ell+1}}.$$

From Corollary 3.7, we deduce the following result.

Corollary 3.10. *Let $\ell \geq 0$ and $\gamma \in C((0, \infty))$. Assume that $u \in C^2((0, \infty))$ is a solution to (3.10), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\int_{a_1}^{a_2} x \gamma^+(x) dx > \frac{(2\ell+1) \left(a_2^{\frac{2\ell+1}{2}} + a_1^{\frac{2\ell+1}{2}}\right)}{a_2^{\frac{2\ell+1}{2}} - a_1^{\frac{2\ell+1}{2}}}. \quad (3.11)$$

Remark 3.1. From a result due to Bargmann [17], under the assumptions of Corollary 3.10, we have

$$\int_{a_1}^{a_2} x|\gamma(x)| dx > 2\ell + 1. \quad (3.12)$$

Clearly, our obtained inequality (3.11) improves (3.12). Indeed, we have

$$2\ell + 1 < \frac{(2\ell + 1) \left(a_2^{\frac{2\ell+1}{2}} + a_1^{\frac{2\ell+1}{2}} \right)}{a_2^{\frac{2\ell+1}{2}} - a_1^{\frac{2\ell+1}{2}}} < \int_{a_1}^{a_2} x\gamma^+(x) dx \leq \int_{a_1}^{a_2} x|\gamma(x)| dx.$$

3.3. The modified Bessel differential equation

We consider the modified Bessel differential equation

$$-(xu'(x))' + xu(x) = \gamma(x)u(x), \quad x > 0. \quad (3.13)$$

The above differential equation is a special case of (1.1) with

$$\alpha(x) = \beta(x) = x, \quad I = (0, \infty).$$

For $0 < a_1 < a_2$, we consider the homogeneous Bessel differential equation

$$(xz'(x))' - xz(x) = 0, \quad a_1 < x < a_2. \quad (3.14)$$

It is well-known (see, e.g., Abramowitz and Stegun [18] and DLMF [19]) that I_0 and K_0 are two linearly independent solutions to (3.14), where I_0 (resp. K_0) is the modified Bessel function of the first kind of order zero (resp. the modified Bessel function of the second kind of order zero). We recall below some useful properties of I_0 and K_0 (see [18] for more details):

- The special functions I_0 and K_0 have the following integral representations:

$$I_0(x) = \frac{1}{\pi} \int_0^\pi \cosh(x \cos \theta) d\theta, \quad K_0(x) = \int_0^\infty \cos(x \sinh \theta) d\theta, \quad x > 0.$$

- For all $x > 0$, we have

$$I_0(x) > 0, \quad I_0'(x) > 0.$$

- For all $x > 0$, we have

$$K_0(x) > 0, \quad K_0'(x) < 0.$$

- For all $x > 0$, we have

$$W(K_0, I_0)(x) = \frac{1}{x}. \quad (3.15)$$

Now, we introduce the functions φ_{a_1} and φ_{a_2} defined by

$$\varphi_{a_1}(x) = K_0(a_1)I_0(x) - I_0(a_1)K_0(x), \quad a_1 \leq x \leq a_2,$$

and

$$\varphi_{a_2}(x) = I_0(a_2)K_0(x) - K_0(a_2)I_0(x), \quad a_1 \leq x \leq a_2.$$

Using the above properties of I_0 and K_0 , it can be easily seen that $\{\varphi_{a_1}, \varphi_{a_2}\}$ is a fundamental set of solutions of the homogeneous Bessel differential Eq (3.14). On the other hand, we have

$$\varphi_{a_1}(a_1) = 0, \quad \varphi'_{a_1}(x) = K_0(a_1)I'_0(x) - I_0(a_1)K'_0(x) > 0, \quad a_1 \leq x \leq a_2,$$

and

$$\varphi_{a_2}(a_2) = 0, \quad \varphi'_{a_2}(x) = I_0(a_2)K'_0(x) - K_0(a_2)I'_0(x) < 0, \quad a_1 \leq x \leq a_2,$$

which show that the functions φ_{a_1} and φ_{a_2} satisfy **(C1)–(C3)**. Furthermore, using (3.15), we obtain

$$W(\varphi_{a_2}, \varphi_{a_1})(x) = \frac{I_0(a_2)K_0(a_1) - I_0(a_1)K_0(a_2)}{x}, \quad a_1 \leq x \leq a_2.$$

Then, applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.11. *Let $\gamma \in C((0, \infty))$. Assume that $u \in C^2(I)$ is a solution to (3.13), and $a_1, a_2 > 0$ are two consecutive zeros of u . Let $c^* \in (a_1, a_2)$ be any point with $|u(c^*)| = \max_{a_1 \leq x \leq a_2} |u(x)|$. Then*

$$\begin{aligned} \int_{a_1}^{c^*} \gamma^+(x) dx &> \frac{c^* (K_0(a_1)I'_0(c^*) - I_0(a_1)K'_0(c^*))}{K_0(a_1)I_0(c^*) - I_0(a_1)K_0(c^*)}, \\ \int_{c^*}^{a_2} \gamma^+(x) dx &> \frac{c^* (K_0(a_2)I'_0(c^*) - I_0(a_2)K'_0(c^*))}{I_0(a_2)K_0(c^*) - K_0(a_2)I_0(c^*)}. \end{aligned}$$

Remark 3.2. Note that

$$K_0(a_1)I_0(c^*) - I_0(a_1)K_0(c^*) > 0.$$

Indeed, since I_0 is strictly increasing and K_0 is strictly decreasing on $(0, \infty)$, and both functions are positive there, we obtain

$$\begin{aligned} K_0(a_1)I_0(c^*) &> K_0(a_1)I_0(a_1) \\ &> K_0(c^*)I_0(a_1). \end{aligned}$$

Hence the desired inequality follows. Similarly, one shows that

$$I_0(a_2)K_0(c^*) - K_0(a_2)I_0(c^*) > 0.$$

Applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.12. *Let $\gamma \in C((0, \infty))$. Assume that $u \in C^2(I)$ is a solution to (3.13), and $a_1, a_2 > 0$ are two consecutive zeros of u . Then, the following inequality holds:*

$$\begin{aligned} &\int_{a_1}^{a_2} (K_0(a_1)I_0(x) - I_0(a_1)K_0(x))(I_0(a_2)K_0(x) - K_0(a_2)I_0(x)) \gamma^+(x) dx \\ &> I_0(a_2)K_0(a_1) - I_0(a_1)K_0(a_2). \end{aligned}$$

4. Conclusions

We developed a unified framework for Lyapunov-type inequalities associated with the second-order differential equation

$$-(\alpha u')' + \beta u = \gamma u \quad (x \in I),$$

under the standing hypotheses $\alpha \in C^1(I)$ with $\alpha > 0$ and $\beta \geq 0$. The approach uses boundary-adapted fundamental solutions φ_{a_1} and φ_{a_2} with strict monotonicity obtained via a direct ODE identity, together with the interior maximizer c^* between consecutive zeros. Within this setting we extend the classical bounds (1.4)–(1.7) and (1.9) to the general operator $L = -(\alpha u')' + \beta u$. In the special case $\beta \equiv 0$ we recover (1.9), and if, moreover $\alpha \equiv 1$, this reduces to (1.4).

The scope of the method is illustrated on two model families: generalized radial Schrödinger equations—where we obtain a refinement of Bargmann’s inequality—and the modified Bessel equation, for which the constants can be expressed explicitly in terms of the modified Bessel functions.

We also show that $\beta \geq 0$ is genuinely needed, since $\beta < 0$ may induce oscillatory behavior that destroys the required monotonicity and even linear independence of the boundary-adapted solutions.

Natural directions for further study include sign-changing β , alternative boundary conditions, non-self-adjoint perturbations, discrete and fractional analogues, and higher-dimensional radial reductions.

Author contributions

Jleli Mohamed: Investigation, formal analysis; Samet Bessem: Investigation, writing-review and editing. All authors have read and approved the final version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The second author was supported by the Ongoing Research Funding Program, (ORF-2025-4), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. A. Lyapunov, Problème général de la stabilité du mouvement, *Ann. Fac. Sci. Toulouse*, **9** (1907), 203–474. <https://doi.org/10.5802/afst.246>
2. A. Wintner, On the non-existence of conjugate points, *Am. J. Math.*, **73** (1951), 368–380. <https://doi.org/10.2307/2372182>

3. P. Hartman, A. Wintner, On an oscillation criterion of Liapunoff, *Am. J. Math.*, **73** (1951), 885–890. <https://doi.org/10.2307/2372122>
4. W. T. Patula, On the distance between zeroes, *P. Am. Math. Soc.*, **52** (1975), 247–251. <https://doi.org/10.1090/S0002-9939-1975-0379986-5>
5. P. Hartman, *Ordinary differential equations*, New York: Wiley, 1964.
6. B. Behrens, S. Dhar, Lyapunov-type inequalities for third-order nonlinear equations, *Differ. Equat. Appl.*, **14** (2022), 265–277. <https://doi.org/10.7153/dea-2022-14-18>
7. K. M. Das, A. S. Vatsala, Green’s function for n - n boundary value problem and an analogue of Hartman’s result, *J. Math. Anal. Appl.*, **51** (1975), 670–677. [https://doi.org/10.1016/0022-247X\(75\)90117-1](https://doi.org/10.1016/0022-247X(75)90117-1)
8. J. Sánchez, V. Vergara, A Lyapunov-type inequality for a ψ -Laplacian operator, *Nonlinear Anal.-Theor.*, **74** (2011), 7071–7077. <https://doi.org/10.1016/j.na.2011.07.027>
9. R. Yang, I. Sim, Y. H. Lee, Lyapunov-type inequalities for one-dimensional Minkowski-curvature problems, *Appl. Math. Lett.*, **91** (2019), 188–193. <https://doi.org/10.1016/j.aml.2018.11.006>
10. A. Cañada, S. Villegas, Lyapunov inequalities for partial differential equations at radial higher eigenvalues, *Discrete Cont. Dyn.*, **33** (2013), 111–122. <https://doi.org/10.3934/dcds.2013.33.111>
11. M. Hashizume, F. Takahashi, Lyapunov inequality for an elliptic problem with the Robin boundary condition, *Nonlinear Anal.-Theor.*, **129** (2015), 189–197. <https://doi.org/10.1016/j.na.2015.08.006>
12. M. Alotaibi, M. Jleli, M. A. Ragusa, B. Samet, On the absence of global weak solutions for a nonlinear time-fractional Schrödinger equation, *Appl. Anal.*, **103** (2024), 1–15. <https://doi.org/10.1080/00036811.2022.2036335>
13. R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, *J. Math. Anal. Appl.*, **412** (2014), 1058–1063.
14. Q. Li, V. D. Rădulescu, J. Zhang, W. Zhang, Concentration of normalized solutions for non-autonomous fractional Schrödinger equations, *Z. Angew. Math. Phys.*, **76** (2025), 132. <https://doi.org/10.1007/s00033-025-02510-0>
15. R. P. Agarwal, M. Bohner, A. Özbekler, *Lyapunov inequalities and applications*, Berlin: Springer, 2021. <https://doi.org/10.1007/978-3-030-69029-8>
16. M. H. Protter, H. F. Weinberger, *Maximum principles in differential equations*, Springer Science & Business Media, 2012.
17. V. Bargmann, On the number of bound states in a central field of force, *P. Natl. Acad. Sci. USA*, **38** (1952), 961–966. <https://doi.org/10.1073/pnas.38.11.961>
18. M. Abramowitz, I. A. Stegun, *Handbook of mathematical functions: With formulas, graphs, and mathematical tables*, Courier Corporation, **55** (1965).
19. F. W. J. Olver, A. B. O. Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, et al., NIST digital library of mathematical functions, *Release*, **1** (2016), 22.