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1. Introduction

We study the second-order divergence-form (self-adjoint) equation

— (@)U’ (x))" + pu(x) = y(u(x),  xel, (1.1)

on an interval / ¢ R, where a € C'(I) with @ > 0, and 3,y € C(I) with 8 > 0. Our aim is to derive
Lyapunov-type inequalities for (1.1) under the assumption that a;, a, € I are two consecutive zeros of
a nontrivial solution u.

In the benchmark case @ = 1 and 8 = 0, (1.1) reduces to

—u”(x) = y(xX)u(x), xel, (1.2)

for which Lyapunov’s classical result [1] asserts: If u # O satisfies u(a,) = u(a,) = 0 with a; < a,, then

ley(x)ldx> 4 . (1.3)

a; —ai
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Several generalizations and extensions of the Lyapunov inequality (1.3) can be found in the
literature. For example, by an application of the Sturm-Picone comparison theorem, Wintner [2]
showed that if u solves (1.2) and a; < a, are consecutive zeros of u, then

a) 4
f Y (dx > : (1.4)
aj a) —a
where y*(x) := max{0, y(x)}. Hartman and Wintner [3] sharpened this by proving
fﬂ (x—a)(a; —x)y " (x)dx > a; —ay. (1.5)
Under the same hypotheses, Patula [4] established the following subinterval inequalities:
c* . 1
Y (dx > — , (1.6)
ap ¢ —a
2 1
f Y (dx > : (1.7)
e a, —c*

where ¢* € (ay, ay) denotes any point at which |¢| attains its maximum on [a;, a;].
In the special case 8 = 0, Eq (1.1) reduces to

— (a(x)u' (x)) = y(x)u(x), xel. (1.8)

Hartman [5] proved that if u solves (1.8) and a; < a, are consecutive zeros of u, then

2 ar -1
f}fr(x)dx > 4([ %x)dx) . (1.9)

In particular, taking @ = 1 yields fa sz v*(x)dx > 4/(a, — a;), which recovers (1.4).

The Lyapunov inequality has been generalized in many directions, encompassing higher-order
differential equations [6, 7], various nonlinear settings [8, 9], partial differential equations [10, 11],
and fractional differential equations [12-14].

Lyapunov-type inequalities have a wide scope of applications-ranging from eigenvalue estimates
and bounds on the number of bound states to stability criteria, disconjugacy, and disfocality. For
comprehensive overviews, see the monograph [15].

In Section 2 we extend the classical inequalities—Wintner (1.4), Hartman-Wintner (1.5), Patula (1.6)
and (1.7), and Hartman’s weighted form (1.9)—to the self-adjoint Eq (1.1). Section 3 then specializes
these results to the models (1.8), the generalized radial Schrodinger equation, and the modified Bessel
equation. As a consequence, we obtain a sharpening of Bargmann’s inequality [17] for the radial
Schrédinger case.

2. Main results

Throughout this section we work under the standing hypotheses
aeC\D), a >0, B.yecCd), B=>0.

Given ay, a, € I with a; < a,, we select functions ¢,,, ¢,, € C?%([ay, ay)) satisfying:
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(C1) {@q4,, ¢4} 1s a fundamental system of solutions of
(@()Z' (%)) = B(x)z(x) = 0, a; < x < ap. (2.1)

(C2) ¢, (ar) =0and ¢, (x) > 0 for all x € [a, as].
(C3) @4,(az) = 0and ¢, (x) < 0 for all x € [a, a].

The existence of ¢,, and ¢,, follows from the assumption § > 0 together with the maximum
principle (see [16]); a direct construction avoiding the maximum principle is deferred to the
remark below.

From (C2) and (C3) we have

@a,(x) > 0, a; < x < ay,
@a,(x) > 0, a < x<ap,

W(@az, Qpal)(X) > O, aq <x< as,

where the (unweighted) Wronskian is

W(‘Paz’ ‘pal)(-x) = Souz(x) (,D;I(X) - SO;Z(X) ‘pal (X)

Remark 2.1. For completeness, and to avoid invoking the maximum principle, we record a direct
argument yielding the existence and the strict positivity/monotonicity of ¢,, and ¢,,.
Since @ € C'(I) with @ > 0 and 8 € C(I), the initial value problem
(a(X)@y, (X)) = B(X)ga,(x) =0, ay < x < ay,
fula) =0, (ag),)a) =1

admits a unique solution ¢,, € C*([a;, a,]), and ¢, (ar) = 1/a(ar) > 0.
We claim that ¢,, satisfies (C2).

Step 1. We prove that
@, (D) @a, (1) >0, forallt € (a,a]. 2.2)

For any solution ¢ of (a¢’)’ — Be = 0, one has
(@py') = @) +B¢.

Integrating from a, to t € (a;, a,] and using ¢, (a;) = 0 gives

a(t)so;l(t)%l(t)=f(a(90;1)2+ﬁ9051)dx-

Since ¢, (a1) = 1/a(a;) > 0, by continuity there exists £ > 0 with ¢, > 0 on (a,a; + €]. Because
a > 0 and B > 0, the integrand cv((,o;l)2 + ﬁgoil is strictly positive on that subinterval; therefore, for
every t > ay, the right-hand side is > 0, and hence (2.2) holds.
Step 2. We show that

@q, (1) >0, forallte (aj,a]. (2.3)
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From ¢, (a;) > 0 and continuity, ¢, > 0 on (a;,a; + &] for some £ > 0 (small enough). Then (2.2)
gives ¢, > 0 on (a;,a; + €]. If there were X € (a;, ay] with ¢, (X) < 0, then by the Intermediate Value
Theorem there would exist y € (a;, X] with ¢, (y) = 0, contradicting (2.2). Thus, (2.3) holds.

Step 3. (monotonicity) Combining (2.2) and (2.3) yields ¢, > 0 on (aj,a,]. Together with
@, (a)) = 1/a(a;) > 0, we obtain

¢, ) >0, forallte[a,a;]

Hence ¢,, satisfies (C2).
Similarly, the initial value problem

(@(X)¢), (D)) — BWPe(¥) =0, ar < x < a,
Gula) =0, (agl,)(ar) = -1

admits a unique solution ¢,, € C?%(lay, a3]), and, arguing as above (integrating from ¢ to a,), one gets
%4, > 00n [a),a;) and ¢, < 0 on [ay,ay), i.e., (C3).
Moreover, by (C2) and (C3), we have
W(@uy Pay (%) = @a, (%) @, (X) = ¢4, (x) g, (x) > 0
for all x € [ay, ay], which shows that ¢,, and ¢,, are linearly independent. Thus (C1) holds.

Remark 2.2. (On the role of § > 0) The hypothesis 5 > 0 is essential: When S < 0, the homogeneous
equation may become oscillatory and obstruct (C1)—(C3).
Indeed, let A > 0, = 1,and 8 = —4> <0 on I = [a;,a,] with length L := a, — a;. Then

(7)) -Bz=0 = 7"+ A%z = 0,

and the functions
@a, (x) = sin(A(x — ay)), @a, (%) = sin(A(az - x))
solve the equation with ¢, (a;) = 0 and ¢,,(a,) = 0. However:

Failure of (C2) and (C3) for long intervals.
@, (x) = Acos(A(x — ay)), @, (x) = —=Acos(A(az — x)).

If L > 5, these derivatives change sign on [ay, a,], so one cannot have ¢, > 0 and ¢, < 0 throughout.

Failure of (C1) at resonant lengths. If L = %’T for some k € N, then

Pa,(X) = sin(AL = Ax = a1)) = (=11, (%),

so ¢,, and ¢, are linearly dependent (Wronskian = 0).
These obstructions underline why the nonnegativity condition 5 > 0 is pivotal for enforcing (C1)—
(C3) in our framework.

Our first main result is the following theorem.

AIMS Mathematics Volume 10, Issue 9, 21675-21692.
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Theorem 2.1. Assume that u € C*(I) solves (1.1), and let a;, a, € I be two consecutive zeros of u. Let
c* € (ay,ay) be any point with |u(c*)| = max,, <y<q, U(x)|. Then

f a DY Ddx > alc)g, (), (2.4)
ﬁ u(DY D dx >~ (). 2.5)

Proof. Without restriction of the generality, we may assume that
ux) >0, a <x<a.
First, we claim that
y"#£0, on(a,c), (2.6)

and
7+ F 0’ on (C*’ a2)- (27)

Indeed, multiplying (1.1) by u, and integrating over x € (a;, c*), we obtain
—~ f (@ (XU (x)) u(x) dx + f B (x)dx = f Y(x)u*(x) dx. (2.8)
ap ap ai
On the other hand, using that «’(c*) = 0 and u(a,) = 0, we obtain

— fc (a0 (x)) u(x) dx = —[a(x)u’(x)u(x)]f;a1 + fc a(0)[u' (X)) dx

aj

= f ) a(xX)[u' (x)])? dx.

aj
Since a;, a, are two consecutive zeros of u and a > 0, then

- fc (a(x)u' (x)) u(x)dx = fc (X)W (x))*dx > 0,

ai

which implies by (2.8) that
f y(x)uz(x) dx > 0.

This proves (2.6). Similarly, multiplying (1.1) by u, and integrating over x € (c*, a,), we obtain

fz y(x)uz(x) dx >0,

C

which proves (2.7).
Next, multiplying (1.1) by ¢,,, and integrating over x € (a;, c*), we obtain

. f (@ (X)) g, () x + f B pa, () dx = f o (YU dr.  (29)

ap

AIMS Mathematics Volume 10, Issue 9, 21675-21692.



21680

Writing
y(x0) =y (%) -y (%),
where
Y~ (%) = max{0, —y(x)},
using (2.6) and (2.9), we obtain

- f (@)U (%)) a, (x) dx + f B)u(x)gq, (x) dx

1

< - fal c*(a(X)u'(X))'%l(X) dx + f; ) Bx)u(x)pa, (x) dx + fa ) Pa, (X)y" ()u(x) dx
= fal ) Pay (X)y" (X)u(x) dx
<u(c) ful ) Pa, (X)y" (x) dx,

that 1s,

. f (@ ()Y 0, () dx + f B, (x) dx < u(c) f by (dx.  (2.10)

On the other hand, integrating by parts, and using that u(a,) = u’(c*) = ¢,,(a;) = 0, we obtain

- f (@)U (X)) @, (X) dx = —[ (U (X)pay (V)] + f W (X)(a(x)g,, (1) dx
= —[a()U (), (D], + [ux)a (X)), ()],
. f u(x) @), () dx
- Ul () f u(x) @), () dx.
Then, by (2.10), we obtain
u(cadc)gl, (") — f u(0) [(@(0)g, () = B ()| dx < u(c?) f 0ay (X" (x) dx.

Furthermore, by (C1), we know that

(@()@,, (%)) = PP, (x) =0, ar <x<c".

Consequently, we deduce that
u(c”) f Pa, ()Y () dx > u(c)a(c)g), (),
ap
which yields (2.4).
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Similarly, multiplying (1.1) by ¢,,, and integrating over x € (c*, a,), we obtain
- fc N (@)’ (X)) q, (x) dx + f 2 BX)u(x)pa,(x) dx = f 2 Par (X)y (X)u(x) dx,
which implies by (2.7) that
- f 2(CY(X)M'(X))'%(X) dx + j: HZ,B(X)M(X)%Z(X) dx < u(c") j: i Pay" (X) dx.
Then, integrating by parts, and using that u(a,) = u’(c*) = ¢,,(a;) = 0, we obtain
—u(c")a(c ), (c) - f e |0, (X)) = Bx)w, ()] dx < u(c?) f w0y () dx.

Since (by (C1))
(@0, (X)) = BOPa,(X) =0, ¢ <x<a,

it holds that o
u(c") f Pa, (X)y" (x) dx > —u(c)a(c")), (c7),
which yields (2.5). This completes the proof of Theorem 2.1. O

Remark 2.3. Note that the choice of functions ¢, and ¢,, satisfying (C1)-(C3) is not unique.
However, the obtained inequalities (2.4) and (2.5) are independent of any choice. Indeed, let us assume
that {¢,,, ¢4} 1s another fundamental set of solutions of the homogeneous differential Eq (2.1), and
Qa,» Pa, satisfy (C2) and (C3). Then,

Pa; = H1¥a; T H2Pa,s Qo_az = /11Q0a1 + /12()002

for some (uy, 12), (41, ;) € R2. Since @Ya(a1) = g, (a)) = 0, then urp,,(a;) = 0. On the other hand,
by (C3), we have ¢,,(a1) > ¢4,(az) = 0, which yields y, = 0, ¢, = p1¢,,, and u; > 0. Similarly, since
Ya,(@2) = @g,(an) = 0, then A,¢,,(az) = 0. Furthermore, by (C2), we have ¢,,(a>) > ¢,,(a;) = 0, which
yields 4, =0, ¢,, = Ax¢,,, and A, > 0. Consequently,

f Ga ()Y (0) dx > (g, ()

ai

is equivalent to (2.4). Similarly,

f* Par ()Y (X) dx > —a(c)pa, (")

is equivalent to (2.5).
Next, using Theorem 2.1, we obtain the following Patula-type inequalities.

Theorem 2.2. Assume that u € C*(I) solves (1.1), and let a;, a, € I be two consecutive zeros of u. Let
c* € (ay,ay) be any point with lu(c*)| = max,, <y<q, U(x)|. Then

fc Y (x)dx > %’ s
j;az)ﬁ(x)dx > —%. o
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Proof. By (C2), we have

f Pa ()Y () dx < @, (c") f ¥ (x)dx.

aj
Since ¢,,(c*) > 0, using (2.4) and the above inequality, we obtain (2.11).
Similarly, by (C3), we obtain

f (,042(X)7+(X) dx < ‘Paz(c*) j‘* ')/+(X) dx.

Since ¢,,(c*) > 0, using (2.5) and the above inequality, we obtain (2.12).

Our next main result is the following Hartman-Wintner-type inequality.

Theorem 2.3. Assume that u € C*(I) is a solution to (1.1), and a,,a, € I are two consecutive zeros

of u. Then, the following inequality holds:

f Pa (O)Pa, ()Y (x) dx > min [@()W(@a,, 0a)(9)] .

ai

Proof. Let c¢* € (ay,a;) be such that |u(c*)| = max |u(x)|. We have
aj<x<ap

a

f ©ay (X)@a, (X)y " (x) dx = f ©ay (X)@a, (X)y ™ (x) dx + f Pa, (X)@a, (X)y" (x) dx.

ap ap c*

Since ¢,, is a decreasing function (by (C3)), we have

f Pa, (X)Pa, (X)y" (X) dx > 4, () f @a, (X)y" (x) dx,

which implies by (2.4) that

f P (e, (X)y" (%) dx > (" )pa, (), ().

ai

Similarly, since ¢,, is an increasing function (by (C2)), we have

) )
f Pa, (X)@a, (XY (x) dx = @4, (") f Pa, (X)y" (x) dx,
which implies by (2.5) that

ﬁ Pay (X)Pa, (X)y" (x) dx > —a (")), (€ )pa (7).

Hence, by (2.14)—(2.16), we obtain

f Pay () Pay ()Y (X) dx > a(c)pay (), (¢7) — ™)@, (¢ )pa, (€7)

= o) @ur(€)2l, (€)= @l (€ Npun (€7)]
= a(c)W(Pay» a, (")
> min [a($)W(@a,s ©a)(5)]

aj<s<ap

which proves (2.13).

(2.13)

(2.14)

(2.15)

(2.16)

O
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Using Theorem 2.3, we obtain the following result.

Theorem 2.4. Assume that u € C*(I) is a solution to (1.1), and a,,a, € I are two consecutive zeros
of u. Then, the following inequality holds:

min [@($)W(@ay» a,)(5)]

@ <s<ap
y*(x) dx > =2 . (2.17)
fal max [0, ()a,(1)]

Proof. We have

2

f soal(X)soaz(X)y*(X)dxSa{rgltaéz [@a, (Da, (1)] f y*(x)dx.

aj aj

Then, (2.17) follows from (2.13) and the above inequality. O
3. Applications
In this section, we study some special cases of (1.1).

3.1. The differential Eq (1.8)

We consider the second-order differential Eq (1.8), where & € C'(I), @ > 0, and y € C(I). This
differential equation is a special case of (1.1) with 8 = 0.
Let a;,a; € I with a; < a,. We introduce the functions ¢,, and ¢,, defined by

|
sDal(X)=f —ds, a<x<a,
0 (8)

and

2 1]
soaz(X):f—ds, a; < x < a,.

a(s)
Differentiating under the integral sign gives

= —— gl ()=
0= s P =

a(x)’

Hence
ap, =1, ag, =-1,

so (ay, ) (x) =0fori=1,2,i.e., each ¢, solves the homogeneous differential equation
(@) (x)) =0, a; <x<a,. (3.1)

Moreover,

’ 1 4 1

$a(a1) =0, @4 (az) =0, @, =—>0, ¢, =—— <0,
a o'
SO @a,» Pa, > 0 0n (ay, ay) and are strictly increasing/decreasing, respectively. The Wronskian is
W(@ay> 00 )(X) = a, ()@, (X) = @a, (X)), (X)

_ Pay (X) + gy (X)
B a(x)

AIMS Mathematics Volume 10, Issue 9, 21675-21692.
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that is,

1 |
W(@ay> Pa )(X) = Wx)f %ds > 0. (3.2)

Hence {¢,,,¢,,} 1s a fundamental set of solutions of (3.1). Consequently, the functions ¢,, and ¢,,
satisfy (C1)—(C3).
Applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.1. Let a € C'(I), @ > 0, and y € C(I). Assume that u € C*(I) is a solution to (1.8), and
a, ap € I are two consecutive zeros of u. Let ¢* € (ay, ay) be any point with |u(c*)| = max,, <x<q, [U(x)|.
Then

1

c* . c* 1 -
L. yi(x)dx > ( j‘; _a/(x) dx) ,
a) | -1
f Y (x)dx > ( f“ — dx) .

c* c* CL’(X)

Applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.2. Let a € C'(I), @ > 0, and y € C(I). Assume that u € C*(I) is a solution to (1.8), and
ai,ay € I are two consecutive zeros of u. Then, the following inequality holds:

@ S| | N 21
Ll (L mdS)(‘fo mdS)’y (x)dx>£ %dx

Applying Theorem 2.4, we obtain the following Hartman inequality [5].

Corollary 3.3. Let a € C'(I), @ > 0, and y € C(I). Assume that u € C*(I) is a solution to (1.8), and
ai,a; € I are two consecutive zeros of u. Then, (1.9) holds.

Proof. By (2.17) and (3.2), we have

a1 <t<ay

a min [a(T)W(@a,, ¢, )(7)]
f v (x)dx >

X T (00 33

= (;2?;22 [gDal(t)(paz ([)]) f m dx.

On the other hand, we have

! 1 a) 1
max (o, (D¢e (D] = max ( f mdS) ( [ mdS)

= gy b=
b2
= Z’

21
b—f %ds

AIMS Mathematics Volume 10, Issue 9, 21675-21692.
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Then, by (3.3), we obtain
a) 4
f v (x)dx > 5

) 1 -1
ﬂ‘(f,“ ﬂd) ’

which proves (1.9). O

3.2. Generalized radial Schrodinger’s equation

We consider the following generalized radial Schrodinger equation

1 ' —k
_tym@)+9%§3mm:yumux x>0, (3.4)

where m > k > 0, and y € C((0, 00)). Clearly, (3.4) is a special case of (1.1) with

m—k

1
a(x) = e B(x) = o I = (0, 00).
For 0 < a; < a,, we introduce the functions ¢,, and ¢,, defined by

@a,(x) = xM (x“z_"‘ - a‘fz_‘“) , a; <x<a,

and
Cur () = X7 (257" = X)), @y S x<a,
where
Ck+ 1= N k+ 12 +4m—k)
ay = ) ’
and
Ck+ 1+ N k+ 12 +4m—k)
y = 3 .
It can be easily seen that
a; <0< .

The reader can easily check that {¢,,,¢,} 1s a fundamental set of solutions of the homogeneous
differential equation

(%Z,(x)) - i k)Z(x) =0, a<x<a,.

)Ck+2

On the other hand, we have

ar—a|

@aa)) =0, ¢, (x)=x"" (azx - ala‘fz_o“) >0, a; <x<a,

and

Par(@) =0, ¢ (x)=x"" (ma;’z_(" - azx”z‘“l) <0, a <x<a,

which show that the functions ¢,, and ¢,, satisfy (C1)—-(C3). Furthermore, an elementary calculation
shows that

2=

W(@ay» @ )(¥) = (@2 — ) (a3 = af™™ ), @y <x<ar

Applying Theorem 2.2, we obtain the following Patula-type inequalities.

AIMS Mathematics Volume 10, Issue 9, 21675-21692.
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Corollary 3.4. Letm > k > 0, andy € C((0, o)). Assume that u € C*((0, o)) is a solution to (3.4), and
ay,ay > 0 are two consecutive zeros of u. Let ¢* € (ay, ay) be any point with |u(c*)| = max,, < <q, [u(x)|.
Then

*@2—Q] allaafz—al
1

< . asC
( ) > b
) { _ ar—a
a c*k+l (C*az | alz 1)

@ @ TN —aay ™"
yi(x)dx > .
o C*k+l (agZ ] C*QQ—(I])

Next, applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.5. Let m > k > 0, and y € C((0, )). Assume that u € C*((0, o)) is a solution to (3.4),
and ay,a, > 0 are two consecutive zeros of u. Then, the following inequality holds:

fz 2ai (xa/z—m _ aclrz—al) (agz—m _ xaz—a1)y+(x) dx > (@ — @) (agr‘” - a?z_a'). (3.5
a

Using Corollary 3.5, we obtain the following result.

Corollary 3.6. Let m > k > 0, and y € C((0, )). Assume that u € C*((0, o)) is a solution to (3.4),
and ay, a, > 0 are two consecutive zeros of u. Then, the following inequality holds:

%) 4 _
f Xyt (x)dx > %. (3.6)
ai a2 - al
Proof. By (3.5), we have
(a2 — ) (agr“' - a‘fz“")

a
< f X (x"r‘” - a(]”_‘”) (agz_”l - x"r‘“))ﬁ(x) dx
aj

as
ar—ay ar—a| -y ar—a 201+
< max [(s —d; )(a2 - )]f x My (x)dx,

aj<s<ap a
which yields
a» (Cx2 _ a]) a(IQ—(lq _ a(lz—(ll
f PNy (x) dx > (e ) : (3.7)
a2 —] _ a2—] ar—a] _ a2—]
o Jmax, |(s77 - apm ) (ag - sm)
On the other hand, we have
- _ -] -] a-a) — _ _
s (577 =) (7 = 5] = X = A B -0
_(B-4AY
= TR
where A = a*™*' and B = a5>™*'. Then, by (3.7), we obtain
“ 4 ar —a)(B-A)
2a
f(; Xy (x)dx > B Ay
_ d(ar — ay)
B-A "’
which proves (3.6). O
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Using again Corollary 3.5, we obtain the following result.

Corollary 3.7. Let m > k > 0, and y € C((0, )). Assume that u € C*((0, o)) is a solution to (3.4),
and ay, a, > 0 are two consecutive zeros of u. Then, the following inequality holds:

ay-ag ar-ag
) (az—al)(azz +a,”’ )
f xRy (x) dx > ETEETET . (3.8)
ap a2 2 _ al 2
Proof. By (3.5), we have
(a2 —a) (a3 —ap*™)

az
2a1 ar—ay ay—ay ar—a ar—ay +
<f X (x —-da )(a2 —X )y (x)dx
a

faz (xaz—al _ a(lm_a'])(ag?_al _ x(lz—a/l)
ai

x(21+012,y+(x) d.x

x@2—a
(S(yz—oq _ aaz—al) (aaz—al _ Stlz—al) ,
! 2 a+ay .+
< max p—— f X112y (x) dix,
ay1<s<ap Ky a
which yields
ar
f xaf|+az,y+(x) dx
ai
(5™ = amm) (ager — g | (3.9)
! 2 az—ay ar—]
> | max a—a (a —a )
a1<s<ap sa2—ai ( 2 1) 2 1

Furthermore, we have

max (Saz_m B a(llz_al) (agz_m B Sm—m) = max X-ANB-X)

a1 <s<qn sl A<X<B X ’

Q2=

where A = a{>™*' and B = a5>™*'. Letting

L(X) = (X‘AﬁB‘X), A<X<B

and differentiating L, we obtain

(@—X)(Z\/E+X)

L'(X) =

This shows that

max L(X) = L( VAB) = (VB - \/Z)z.

A<X<B
Consequently, we obtain

(saz—ozl — atllz—m)(agz—al _ Saz—m)

max :(\/E_ \/Z)Z,

aj<s<a sy
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which implies by (3.9) that

faz ARy (x) dx > (2 — a)(B _2A)
o (VE - VA)
(@2 _a’l)(\/E'*' \/Z)
~ VB-VA
which proves (3.8). O
Consider now the radial Schrodinger equation
—u"(x) + 5(5;2_ 1)u()c) =vy(xu(x), x>0, (3.10)

where £ > 0 is the angular momentum. Then, (3.10) is a special case of (3.4) with
k=0, m=<£4{+1).

In this case, we have

1 - VT+40+ 1)

) = > = —¢,
and
1+ V1+46€+1
oy = 3 ( ):f'f‘l.

From Corollary 3.5, we deduce the following Hartman-Wintner-type inequality for (3.10).

Corollary 3.8. Let £ > 0 and y € C((0, 0)). Assume that u € C*((0, )) is a solution to (3.10), and
ai,ay > 0 are two consecutive zeros of u. Then, the following inequality holds:

ay
f x—2t’ (x2€+l _ a%€+l)(a§€+l _ x2€+1),y+(x) dx > (2{ + 1) (a§€+l _ a%€+l) )
From Corollary 3.6, we deduce the following result.

Corollary 3.9. Let £ > 0 and y € C((0, 0)). Assume that u € C*((0, )) is a solution to (3.10), and
ai,ay > 0 are two consecutive zeros of u. Then, the following inequality holds:

@ 42¢+ 1
f x 2yt (x)dx > @+ 1)

a21€+1 _ a%€+l

aj 2

From Corollary 3.7, we deduce the following result.

Corollary 3.10. Let £ > 0 and y € C((0, 0)). Assume that u € C*((0, o)) is a solution to (3.10), and
ai,ay > 0 are two consecutive zeros of u. Then, the following inequality holds:

) (25+1)(ajT+] +a12l)T+l)
f xy"(x)dx > . (3.11)

20+1 20+1
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Remark 3.1. From a result due to Bargmann [17], under the assumptions of Corollary 3.10, we have

f xly(x)|dx > 2€ + 1.

Clearly, our obtained inequality (3.11) improves (3.12). Indeed, we have

20+1 20+1

(2€+1)(azT +a,’ ) ) a
20+ 1< ] < f xyT(x)dx < f xly(x)| dx.
ai ai

3.3. The modified Bessel differential equation

We consider the modified Bessel differential equation
— (xu' (%)) + xu(x) = y(x)u(x), x>0.
The above differential equation is a special case of (1.1) with
a(x)=px)=x, I=1(0,00).
For 0 < a; < a,, we consider the homogeneous Bessel differential equation

(xZ(x)) —xz(x) =0, a; <x<ay.

(3.12)

(3.13)

(3.14)

It is well-known (see, e.g., Abramowitz and Stegun [18] and DLMF [19]) that /; and K|, are two linearly
independent solutions to (3.14), where [, (resp. Kj) is the modified Bessel function of the first kind of
order zero (resp. the modified Bessel function of the second kind of order zero). We recall below some

useful properties of /y and K (see [18] for more details):

e The special functions I, and K, have the following integral representations:
1 T 00
Ip(x) = — f cosh(xcosf) df, Ky(x)= f cos(xsinh6) d6, x> 0.
T Jo 0

e For all x > 0, we have
Ih(x) >0, Ij(x)>0.

e For all x > 0, we have
Ko(x) >0, Kj(x)<0.
e For all x > 0, we have
W(Ko, Io)(x) = %
Now, we introduce the functions ¢,, and ¢,, defined by

@4, (x) = Ko(a)ly(x) — In(a)Ko(x), a; <x<ay,

and
©a,(x) = In(a)Ko(x) — Ko(ax)lp(x), a; < x < ao.

(3.15)
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Using the above properties of I, and K, it can be easily seen that {¢,,, ¢,,} is a fundamental set of
solutions of the homogeneous Bessel differential Eq (3.14). On the other hand, we have

Pa(a1) =0, ¢ (x) = Kolaly(x) — Io(a)Ky(x) >0, a1 < x<a,

and
Pa (@) =0, ¢, (x) = Iy(a))Ky(x) = Ko(a)Ij(x) <0, a; < x < ay,

which show that the functions ¢,, and ¢,, satisfy (C1)—(C3). Furthermore, using (3.15), we obtain

Io(ax)Ko(ay) — Ip(a)Ko(ay)

W(()Oap Pa, )(X) = X

a; < x < a.

Then, applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.11. Let y € C((0, )). Assume that u € C*(I) is a solution to (3.13), and a,,a, > 0 are
two consecutive zeros of u. Let ¢* € (ay, a,) be any point with |u(c*)| = maxy, <<q, [U(x)|. Then

jﬁ+<m > ¢ (KolanIi(c”) = Io(anKy(c"))
M Ko(@ano(e) — I(anKo(c")
f@ c* (Ko(aI(c*) = Io(a)Ky(c))

W > K@) = Ko(@)lo(@)

Remark 3.2. Note that
Ko(a)lo(c*) = Ip(a)Ko(c™) > 0.

Indeed, since I is strictly increasing and K, is strictly decreasing on (0, ), and both functions are
positive there, we obtain

Ko(anIy(c*) > Ko(ai)lo(ar)
> Ko(cHIp(ay).

Hence the desired inequality follows. Similarly, one shows that
Io(az)Ko(c") — Ko(az)lo(c") > 0.

Applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.12. Let y € C((0, )). Assume that u € C*(I) is a solution to (3.13), and a,,a, > 0 are
two consecutive zeros of u. Then, the following inequality holds:

f 2 (Ko(a)Io(x) — In(ar)Ko(x)) (Io(a2) Ko(x) — Ko(a)Io(x)) y* (x) dx
> Io(az)Ko(ar) — Ip(ar)Ko(as).
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4. Conclusions

We developed a unified framework for Lyapunov-type inequalities associated with the second-order
differential equation

—(au') +Bu=yu (x€l),

under the standing hypotheses @ € C'(I) with @ > 0 and 8 > 0. The approach uses boundary-adapted
fundamental solutions ¢,, and ¢,, with strict monotonicity obtained via a direct ODE identity, together
with the interior maximizer ¢* between consecutive zeros. Within this setting we extend the classical
bounds (1.4)—(1.7) and (1.9) to the general operator L = —(au’)’ + Su. In the special case § = 0 we
recover (1.9), and if, moreover a = 1, this reduces to (1.4).

The scope of the method is illustrated on two model families: generalized radial Schrodinger
equations—where we obtain a refinement of Bargmann’s inequality—and the modified Bessel equation,
for which the constants can be expressed explicitly in terms of the modified Bessel functions.

We also show that 8 > 0 is genuinely needed, since 8 < 0 may induce oscillatory behavior that
destroys the required monotonicity and even linear independence of the boundary-adapted solutions.

Natural directions for further study include sign-changing S, alternative boundary conditions, non-
self-adjoint perturbations, discrete and fractional analogues, and higher-dimensional radial reductions.
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