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1. Introduction

We study the second-order divergence-form (self-adjoint) equation

− (α(x)u′(x))′ + β(x)u(x) = γ(x)u(x), x ∈ I, (1.1)

on an interval I ⊂ R, where α ∈ C1(I) with α > 0, and β, γ ∈ C(I) with β ≥ 0. Our aim is to derive
Lyapunov-type inequalities for (1.1) under the assumption that a1, a2 ∈ I are two consecutive zeros of
a nontrivial solution u.

In the benchmark case α ≡ 1 and β ≡ 0, (1.1) reduces to

− u′′(x) = γ(x)u(x), x ∈ I, (1.2)

for which Lyapunov’s classical result [1] asserts: If u . 0 satisfies u(a1) = u(a2) = 0 with a1 < a2, then∫ a2

a1

|γ(x)| dx >
4

a2 − a1
. (1.3)
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Several generalizations and extensions of the Lyapunov inequality (1.3) can be found in the
literature. For example, by an application of the Sturm-Picone comparison theorem, Wintner [2]
showed that if u solves (1.2) and a1 < a2 are consecutive zeros of u, then∫ a2

a1

γ+(x) dx >
4

a2 − a1
, (1.4)

where γ+(x) := max{0, γ(x)}. Hartman and Wintner [3] sharpened this by proving∫ a2

a1

(x − a1)(a2 − x) γ+(x) dx > a2 − a1. (1.5)

Under the same hypotheses, Patula [4] established the following subinterval inequalities:∫ c∗

a1

γ+(x) dx >
1

c∗ − a1
, (1.6)∫ a2

c∗
γ+(x) dx >

1
a2 − c∗

, (1.7)

where c∗ ∈ (a1, a2) denotes any point at which |u| attains its maximum on [a1, a2].
In the special case β ≡ 0, Eq (1.1) reduces to

− (α(x)u′(x))′ = γ(x)u(x), x ∈ I. (1.8)

Hartman [5] proved that if u solves (1.8) and a1 < a2 are consecutive zeros of u, then∫ a2

a1

γ+(x) dx > 4
(∫ a2

a1

1
α(x)

dx
)−1

. (1.9)

In particular, taking α ≡ 1 yields
∫ a2

a1
γ+(x) dx > 4/(a2 − a1), which recovers (1.4).

The Lyapunov inequality has been generalized in many directions, encompassing higher-order
differential equations [6, 7], various nonlinear settings [8, 9], partial differential equations [10, 11],
and fractional differential equations [12–14].

Lyapunov-type inequalities have a wide scope of applications-ranging from eigenvalue estimates
and bounds on the number of bound states to stability criteria, disconjugacy, and disfocality. For
comprehensive overviews, see the monograph [15].

In Section 2 we extend the classical inequalities–Wintner (1.4), Hartman-Wintner (1.5), Patula (1.6)
and (1.7), and Hartman’s weighted form (1.9)–to the self-adjoint Eq (1.1). Section 3 then specializes
these results to the models (1.8), the generalized radial Schrödinger equation, and the modified Bessel
equation. As a consequence, we obtain a sharpening of Bargmann’s inequality [17] for the radial
Schrödinger case.

2. Main results

Throughout this section we work under the standing hypotheses

α ∈ C1(I), α > 0, β, γ ∈ C(I), β ≥ 0.

Given a1, a2 ∈ I with a1 < a2, we select functions ϕa1 , ϕa2 ∈ C2([a1, a2]) satisfying:
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(C1) {ϕa1 , ϕa2} is a fundamental system of solutions of

(α(x)z′(x))′ − β(x)z(x) = 0, a1 < x < a2. (2.1)

(C2) ϕa1(a1) = 0 and ϕ′a1
(x) > 0 for all x ∈ [a1, a2].

(C3) ϕa2(a2) = 0 and ϕ′a2
(x) < 0 for all x ∈ [a1, a2].

The existence of ϕa1 and ϕa2 follows from the assumption β ≥ 0 together with the maximum
principle (see [16]); a direct construction avoiding the maximum principle is deferred to the
remark below.

From (C2) and (C3) we have

ϕa1(x) > 0, a1 < x ≤ a2,

ϕa2(x) > 0, a1 ≤ x < a2,

W(ϕa2 , ϕa1)(x) > 0, a1 ≤ x ≤ a2,

where the (unweighted) Wronskian is

W(ϕa2 , ϕa1)(x) = ϕa2(x)ϕ′a1
(x) − ϕ′a2

(x)ϕa1(x).

Remark 2.1. For completeness, and to avoid invoking the maximum principle, we record a direct
argument yielding the existence and the strict positivity/monotonicity of ϕa1 and ϕa2 .

Since α ∈ C1(I) with α > 0 and β ∈ C(I), the initial value problem (α(x)ϕ′a1
(x))′ − β(x)ϕa1(x) = 0, a1 < x < a2,

ϕa1(a1) = 0, (αϕ′a1
)(a1) = 1

admits a unique solution ϕa1 ∈ C2([a1, a2]), and ϕ′a1
(a1) = 1/α(a1) > 0.

We claim that ϕa1 satisfies (C2).
Step 1. We prove that

ϕ′a1
(t)ϕa1(t) > 0, for all t ∈ (a1, a2]. (2.2)

For any solution ϕ of (αϕ′)′ − βϕ = 0, one has

(αϕϕ′)′ = α(ϕ′)2 + β ϕ2.

Integrating from a1 to t ∈ (a1, a2] and using ϕa1(a1) = 0 gives

α(t)ϕ′a1
(t)ϕa1(t) =

∫ t

a1

(
α(ϕ′a1

)2 + β ϕ2
a1

)
dx.

Since ϕ′a1
(a1) = 1/α(a1) > 0, by continuity there exists ε > 0 with ϕ′a1

> 0 on (a1, a1 + ε]. Because
α > 0 and β ≥ 0, the integrand α(ϕ′a1

)2 + β ϕ2
a1

is strictly positive on that subinterval; therefore, for
every t > a1, the right-hand side is > 0, and hence (2.2) holds.
Step 2. We show that

ϕa1(t) > 0, for all t ∈ (a1, a2]. (2.3)
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From ϕ′a1
(a1) > 0 and continuity, ϕ′a1

> 0 on (a1, a1 + ε] for some ε > 0 (small enough). Then (2.2)
gives ϕa1 > 0 on (a1, a1 + ε]. If there were x̂ ∈ (a1, a2] with ϕa1(x̂) ≤ 0, then by the Intermediate Value
Theorem there would exist y ∈ (a1, x̂] with ϕa1(y) = 0, contradicting (2.2). Thus, (2.3) holds.
Step 3. (monotonicity) Combining (2.2) and (2.3) yields ϕ′a1

> 0 on (a1, a2]. Together with
ϕ′a1

(a1) = 1/α(a1) > 0, we obtain

ϕ′a1
(t) > 0, for all t ∈ [a1, a2].

Hence ϕa1 satisfies (C2).
Similarly, the initial value problem (α(x)ϕ′a2

(x))′ − β(x)ϕa2(x) = 0, a1 < x < a2,

ϕa2(a2) = 0, (αϕ′a2
)(a2) = −1

admits a unique solution ϕa2 ∈ C2([a1, a2]), and, arguing as above (integrating from t to a2), one gets
ϕa2 > 0 on [a1, a2) and ϕ′a2

< 0 on [a1, a2), i.e., (C3).
Moreover, by (C2) and (C3), we have

W(ϕa2 , ϕa1)(x) = ϕa2(x)ϕ′a1
(x) − ϕa1(x)ϕ′a2

(x) > 0

for all x ∈ [a1, a2], which shows that ϕa1 and ϕa2 are linearly independent. Thus (C1) holds.

Remark 2.2. (On the role of β ≥ 0) The hypothesis β ≥ 0 is essential: When β < 0, the homogeneous
equation may become oscillatory and obstruct (C1)–(C3).

Indeed, let λ > 0, α ≡ 1, and β ≡ −λ2 < 0 on I = [a1, a2] with length L := a2 − a1. Then

(αz′)′ − βz = 0 ⇐⇒ z′′ + λ2z = 0,

and the functions
ϕa1(x) = sin

(
λ(x − a1)

)
, ϕa2(x) = sin

(
λ(a2 − x)

)
solve the equation with ϕa1(a1) = 0 and ϕa2(a2) = 0. However:

Failure of (C2) and (C3) for long intervals.

ϕ′a1
(x) = λ cos

(
λ(x − a1)

)
, ϕ′a2

(x) = −λ cos
(
λ(a2 − x)

)
.

If L > π
2λ , these derivatives change sign on [a1, a2], so one cannot have ϕ′a1

> 0 and ϕ′a2
< 0 throughout.

Failure of (C1) at resonant lengths. If L = kπ
λ

for some k ∈ N, then

ϕa2(x) = sin
(
λL − λ(x − a1)

)
= (−1)k+1ϕa1(x),

so ϕa1 and ϕa2 are linearly dependent (Wronskian ≡ 0).
These obstructions underline why the nonnegativity condition β ≥ 0 is pivotal for enforcing (C1)–

(C3) in our framework.

Our first main result is the following theorem.
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Theorem 2.1. Assume that u ∈ C2(I) solves (1.1), and let a1, a2 ∈ I be two consecutive zeros of u. Let
c∗ ∈ (a1, a2) be any point with |u(c∗)| = maxa1≤x≤a2 |u(x)|. Then∫ c∗

a1

ϕa1(x)γ+(x) dx > α(c∗)ϕ′a1
(c∗), (2.4)∫ a2

c∗
ϕa2(x)γ+(x) dx > −α(c∗)ϕ′a2

(c∗). (2.5)

Proof. Without restriction of the generality, we may assume that

u(x) > 0, a1 < x < a2.

First, we claim that
γ+ . 0, on (a1, c∗), (2.6)

and
γ+ . 0, on (c∗, a2). (2.7)

Indeed, multiplying (1.1) by u, and integrating over x ∈ (a1, c∗), we obtain

−

∫ c∗

a1

(α(x)u′(x))′u(x) dx +

∫ c∗

a1

β(x)u2(x) dx =

∫ c∗

a1

γ(x)u2(x) dx. (2.8)

On the other hand, using that u′(c∗) = 0 and u(a1) = 0, we obtain

−

∫ c∗

a1

(α(x)u′(x))′u(x) dx = −[α(x)u′(x)u(x)]c∗
x=a1

+

∫ c∗

a1

α(x)[u′(x)]2 dx

=

∫ c∗

a1

α(x)[u′(x)]2 dx.

Since a1, a2 are two consecutive zeros of u and α > 0, then

−

∫ c∗

a1

(α(x)u′(x))′u(x) dx =

∫ c∗

a1

α(x)[u′(x)]2 dx > 0,

which implies by (2.8) that ∫ c∗

a1

γ(x)u2(x) dx > 0.

This proves (2.6). Similarly, multiplying (1.1) by u, and integrating over x ∈ (c∗, a2), we obtain∫ a2

c∗
γ(x)u2(x) dx > 0,

which proves (2.7).
Next, multiplying (1.1) by ϕa1 , and integrating over x ∈ (a1, c∗), we obtain

−

∫ c∗

a1

(α(x)u′(x))′ϕa1(x) dx +

∫ c∗

a1

β(x)u(x)ϕa1(x) dx =

∫ c∗

a1

ϕa1(x)γ(x)u(x) dx. (2.9)
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Writing
γ(x) = γ+(x) − γ−(x),

where
γ−(x) = max{0,−γ(x)},

using (2.6) and (2.9), we obtain

−

∫ c∗

a1

(α(x)u′(x))′ϕa1(x) dx +

∫ c∗

a1

β(x)u(x)ϕa1(x) dx

≤ −

∫ c∗

a1

(α(x)u′(x))′ϕa1(x) dx +

∫ c∗

a1

β(x)u(x)ϕa1(x) dx +

∫ c∗

a1

ϕa1(x)γ−(x)u(x) dx

=

∫ c∗

a1

ϕa1(x)γ+(x)u(x) dx

< u(c∗)
∫ c∗

a1

ϕa1(x)γ+(x) dx,

that is,

−

∫ c∗

a1

(α(x)u′(x))′ϕa1(x) dx +

∫ c∗

a1

β(x)u(x)ϕa1(x) dx < u(c∗)
∫ c∗

a1

ϕa1(x)γ+(x) dx. (2.10)

On the other hand, integrating by parts, and using that u(a1) = u′(c∗) = ϕa1(a1) = 0, we obtain

−

∫ c∗

a1

(α(x)u′(x))′ϕa1(x) dx = −[α(x)u′(x)ϕa1(x)]c∗
x=a1

+

∫ c∗

a1

u′(x)(α(x)ϕ′a1
(x)) dx

= −[α(x)u′(x)ϕa1(x)]c∗
x=a1

+ [u(x)α(x)ϕ′a1
(x)]c∗

x=a1

−

∫ c∗

a1

u(x)(α(x)ϕ′a1
(x))′ dx

= u(c∗)α(c∗)ϕ′a1
(c∗) −

∫ c∗

a1

u(x)(α(x)ϕ′a1
(x))′ dx.

Then, by (2.10), we obtain

u(c∗)α(c∗)ϕ′a1
(c∗) −

∫ c∗

a1

u(x)
[
(α(x)ϕ′a1

(x))′ − β(x)ϕa1(x)
]

dx < u(c∗)
∫ c∗

a1

ϕa1(x)γ+(x) dx.

Furthermore, by (C1), we know that

(α(x)ϕ′a1
(x))′ − β(x)ϕa1(x) = 0, a1 < x < c∗.

Consequently, we deduce that

u(c∗)
∫ c∗

a1

ϕa1(x)γ+(x) dx > u(c∗)α(c∗)ϕ′a1
(c∗),

which yields (2.4).
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Similarly, multiplying (1.1) by ϕa2 , and integrating over x ∈ (c∗, a2), we obtain

−

∫ a2

c∗
(α(x)u′(x))′ϕa2(x) dx +

∫ a2

c∗
β(x)u(x)ϕa2(x) dx =

∫ a2

c∗
ϕa2(x)γ(x)u(x) dx,

which implies by (2.7) that

−

∫ a2

c∗
(α(x)u′(x))′ϕa2(x) dx +

∫ a2

c∗
β(x)u(x)ϕa2(x) dx < u(c∗)

∫ a2

c∗
ϕa2γ

+(x) dx.

Then, integrating by parts, and using that u(a2) = u′(c∗) = ϕa2(a2) = 0, we obtain

−u(c∗)α(c∗)ϕ′a2
(c∗) −

∫ a2

c∗
u(x)

[
(α(x)ϕ′a2

(x))′ − β(x)ϕa2(x)
]

dx < u(c∗)
∫ a2

c∗
ϕa2(x)γ+(x) dx.

Since (by (C1))
(α(x)ϕ′a2

(x))′ − β(x)ϕa2(x) = 0, c∗ < x < a2,

it holds that
u(c∗)

∫ a2

c∗
ϕa2(x)γ+(x) dx > −u(c∗)α(c∗)ϕ′a2

(c∗),

which yields (2.5). This completes the proof of Theorem 2.1. �

Remark 2.3. Note that the choice of functions ϕa1 and ϕa2 satisfying (C1)–(C3) is not unique.
However, the obtained inequalities (2.4) and (2.5) are independent of any choice. Indeed, let us assume
that {ϕa1 , ϕa2} is another fundamental set of solutions of the homogeneous differential Eq (2.1), and
ϕa1 , ϕa2 satisfy (C2) and (C3). Then,

ϕa1 = µ1ϕa1 + µ2ϕa2 , ϕa2 = λ1ϕa1 + λ2ϕa2

for some (µ1, µ2), (λ1, λ2) ∈ R2. Since ϕa1(a1) = ϕa1(a1) = 0, then µ2ϕa2(a1) = 0. On the other hand,
by (C3), we have ϕa2(a1) > ϕa2(a2) = 0, which yields µ2 = 0, ϕa1 = µ1ϕa1 , and µ1 > 0. Similarly, since
ϕa2(a2) = ϕa2(a2) = 0, then λ1ϕa1(a2) = 0. Furthermore, by (C2), we have ϕa1(a2) > ϕa1(a1) = 0, which
yields λ1 = 0, ϕa2 = λ2ϕa2 , and λ2 > 0. Consequently,∫ c∗

a1

ϕa1(x)γ+(x) dx > α(c∗)ϕa1
′(c∗)

is equivalent to (2.4). Similarly, ∫ a2

c∗
ϕa2(x)γ+(x) dx > −α(c∗)ϕa2

′(c∗)

is equivalent to (2.5).

Next, using Theorem 2.1, we obtain the following Patula-type inequalities.

Theorem 2.2. Assume that u ∈ C2(I) solves (1.1), and let a1, a2 ∈ I be two consecutive zeros of u. Let
c∗ ∈ (a1, a2) be any point with |u(c∗)| = maxa1≤x≤a2 |u(x)|. Then∫ c∗

a1

γ+(x) dx >
α(c∗)ϕ′a1

(c∗)
ϕa1(c∗)

, (2.11)∫ a2

c∗
γ+(x) dx > −

α(c∗)ϕ′a2
(c∗)

ϕa2(c∗)
. (2.12)
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Proof. By (C2), we have ∫ c∗

a1

ϕa1(x)γ+(x) dx ≤ ϕa1(c
∗)

∫ c∗

a1

γ+(x) dx.

Since ϕa1(c
∗) > 0, using (2.4) and the above inequality, we obtain (2.11).

Similarly, by (C3), we obtain∫ a2

c∗
ϕa2(x)γ+(x) dx ≤ ϕa2(c

∗)
∫ a2

c∗
γ+(x) dx.

Since ϕa2(c
∗) > 0, using (2.5) and the above inequality, we obtain (2.12). �

Our next main result is the following Hartman-Wintner-type inequality.

Theorem 2.3. Assume that u ∈ C2(I) is a solution to (1.1), and a1, a2 ∈ I are two consecutive zeros
of u. Then, the following inequality holds:∫ a2

a1

ϕa1(x)ϕa2(x)γ+(x) dx > min
a1≤s≤a2

[
α(s)W(ϕa2 , ϕa1)(s)

]
. (2.13)

Proof. Let c∗ ∈ (a1, a2) be such that |u(c∗)| = max
a1≤x≤a2

|u(x)|. We have∫ a2

a1

ϕa1(x)ϕa2(x)γ+(x) dx =

∫ c∗

a1

ϕa1(x)ϕa2(x)γ+(x) dx +

∫ a2

c∗
ϕa1(x)ϕa2(x)γ+(x) dx. (2.14)

Since ϕa2 is a decreasing function (by (C3)), we have∫ c∗

a1

ϕa1(x)ϕa2(x)γ+(x) dx ≥ ϕa2(c
∗)

∫ c∗

a1

ϕa1(x)γ+(x) dx,

which implies by (2.4) that ∫ c∗

a1

ϕa1(x)ϕa2(x)γ+(x) dx > α(c∗)ϕa2(c
∗)ϕ′a1

(c∗). (2.15)

Similarly, since ϕa1 is an increasing function (by (C2)), we have∫ a2

c∗
ϕa1(x)ϕa2(x)γ+(x) dx ≥ ϕa1(c

∗)
∫ a2

c∗
ϕa2(x)γ+(x) dx,

which implies by (2.5) that∫ a2

c∗
ϕa1(x)ϕa2(x)γ+(x) dx > −α(c∗)ϕ′a2

(c∗)ϕa1(c
∗). (2.16)

Hence, by (2.14)–(2.16), we obtain∫ a2

a1

ϕa1(x)ϕa2(x)γ+(x) dx > α(c∗)ϕa2(c
∗)ϕ′a1

(c∗) − α(c∗)ϕ′a2
(c∗)ϕa1(c

∗)

= α(c∗)
[
ϕa2(c

∗)ϕ′a1
(c∗) − ϕ′a2

(c∗)ϕa1(c
∗)
]

= α(c∗)W(ϕa2 , ϕa1)(c
∗)

≥ min
a1≤s≤a2

[
α(s)W(ϕa2 , ϕa1)(s)

]
,

which proves (2.13). �
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Using Theorem 2.3, we obtain the following result.

Theorem 2.4. Assume that u ∈ C2(I) is a solution to (1.1), and a1, a2 ∈ I are two consecutive zeros
of u. Then, the following inequality holds:∫ a2

a1

γ+(x) dx >
min

a1≤s≤a2

[
α(s)W(ϕa2 , ϕa1)(s)

]
max

a1≤t≤a2

[
ϕa1(t)ϕa2(t)

] . (2.17)

Proof. We have ∫ a2

a1

ϕa1(x)ϕa2(x)γ+(x) dx ≤ max
a1≤t≤a2

[
ϕa1(t)ϕa2(t)

] ∫ a2

a1

γ+(x) dx.

Then, (2.17) follows from (2.13) and the above inequality. �

3. Applications

In this section, we study some special cases of (1.1).

3.1. The differential Eq (1.8)

We consider the second-order differential Eq (1.8), where α ∈ C1(I), α > 0, and γ ∈ C(I). This
differential equation is a special case of (1.1) with β = 0.

Let a1, a2 ∈ I with a1 < a2. We introduce the functions ϕa1 and ϕa2 defined by

ϕa1(x) =

∫ x

a1

1
α(s)

ds, a1 ≤ x ≤ a2,

and
ϕa2(x) =

∫ a2

x

1
α(s)

ds, a1 ≤ x ≤ a2.

Differentiating under the integral sign gives

ϕ′a1
(x) =

1
α(x)

, ϕ′a2
(x) = −

1
α(x)

.

Hence
αϕ′a1

≡ 1, αϕ′a2
≡ −1,

so (αϕ′ai
)′(x) = 0 for i = 1, 2, i.e., each ϕai solves the homogeneous differential equation

(α(x)z′(x))′ = 0, a1 < x < a2. (3.1)

Moreover,

ϕa1(a1) = 0, ϕa2(a2) = 0, ϕ′a1
=

1
α
> 0, ϕ′a2

= −
1
α
< 0,

so ϕa1 , ϕa2 > 0 on (a1, a2) and are strictly increasing/decreasing, respectively. The Wronskian is

W(ϕa2 , ϕa1)(x) = ϕa2(x)ϕ′a1
(x) − ϕa1(x)ϕ′a2

(x)

=
ϕa1(x) + ϕa2(x)

α(x)
,
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that is,

W(ϕa2 , ϕa1)(x) =
1

α(x)

∫ a2

a1

1
α(s)

ds > 0. (3.2)

Hence {ϕa1 , ϕa2} is a fundamental set of solutions of (3.1). Consequently, the functions ϕa1 and ϕa2

satisfy (C1)–(C3).
Applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.1. Let α ∈ C1(I), α > 0, and γ ∈ C(I). Assume that u ∈ C2(I) is a solution to (1.8), and
a1, a2 ∈ I are two consecutive zeros of u. Let c∗ ∈ (a1, a2) be any point with |u(c∗)| = maxa1≤x≤a2 |u(x)|.
Then ∫ c∗

a1

γ+(x) dx >

(∫ c∗

a1

1
α(x)

dx
)−1

,∫ a2

c∗
γ+(x) dx >

(∫ a2

c∗

1
α(x)

dx
)−1

.

Applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.2. Let α ∈ C1(I), α > 0, and γ ∈ C(I). Assume that u ∈ C2(I) is a solution to (1.8), and
a1, a2 ∈ I are two consecutive zeros of u. Then, the following inequality holds:∫ a2

a1

(∫ x

a1

1
α(s)

ds
) (∫ a2

x

1
α(s)

ds
)
γ+(x) dx >

∫ a2

a1

1
α(x)

dx.

Applying Theorem 2.4, we obtain the following Hartman inequality [5].

Corollary 3.3. Let α ∈ C1(I), α > 0, and γ ∈ C(I). Assume that u ∈ C2(I) is a solution to (1.8), and
a1, a2 ∈ I are two consecutive zeros of u. Then, (1.9) holds.

Proof. By (2.17) and (3.2), we have∫ a2

a1

γ+(x) dx >
min

a1≤τ≤a2

[
α(τ)W(ϕa2 , ϕa1)(τ)

]
max

a1≤t≤a2

[
ϕa1(t)ϕa2(t)

]
=

(
max

a1≤t≤a2

[
ϕa1(t)ϕa2(t)

])−1 ∫ a2

a1

1
α(x)

dx.

(3.3)

On the other hand, we have

max
a1≤t≤a2

[
ϕa1(t)ϕa2(t)

]
= max

a1≤t≤a2

(∫ t

a1

1
α(s)

ds
) (∫ a2

t

1
α(s)

ds
)

= max
0≤r≤b

r(b − r)

=
b2

4
,

where
b =

∫ a2

a1

1
α(s)

ds.
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Then, by (3.3), we obtain ∫ a2

a1

γ+(x) dx >
4
b

= 4
(∫ a2

a1

1
α(s)

ds
)−1

,

which proves (1.9). �

3.2. Generalized radial Schrödinger’s equation

We consider the following generalized radial Schrödinger equation

−

(
1
xk u′(x)

)′
+

(m − k)
xk+2 u(x) = γ(x)u(x), x > 0, (3.4)

where m ≥ k ≥ 0, and γ ∈ C((0,∞)). Clearly, (3.4) is a special case of (1.1) with

α(x) =
1
xk , β(x) =

m − k
xk+2 , I = (0,∞).

For 0 < a1 < a2, we introduce the functions ϕa1 and ϕa2 defined by

ϕa1(x) = xα1
(
xα2−α1 − aα2−α1

1

)
, a1 ≤ x ≤ a2,

and
ϕa2(x) = xα1

(
aα2−α1

2 − xα2−α1
)
, a1 ≤ x ≤ a2,

where

α1 =
k + 1 −

√
(k + 1)2 + 4(m − k)

2
,

and

α2 =
k + 1 +

√
(k + 1)2 + 4(m − k)

2
.

It can be easily seen that
α1 ≤ 0 < α2.

The reader can easily check that {ϕa1 , ϕa2} is a fundamental set of solutions of the homogeneous
differential equation (

1
xk z′(x)

)′
−

(m − k)
xk+2 z(x) = 0, a1 < x < a2.

On the other hand, we have

ϕa1(a1) = 0, ϕ′a1
(x) = xα1−1

(
α2xα2−α1 − α1aα2−α1

1

)
> 0, a1 ≤ x ≤ a2,

and
ϕa2(a2) = 0, ϕ′a2

(x) = xα1−1
(
α1aα2−α1

2 − α2xα2−α1
)
< 0, a1 ≤ x ≤ a2,

which show that the functions ϕa1 and ϕa2 satisfy (C1)–(C3). Furthermore, an elementary calculation
shows that

W(ϕa2 , ϕa1)(x) = (α2 − α1)
(
aα2−α1

2 − aα2−α1
1

)
xk, a1 ≤ x ≤ a2.

Applying Theorem 2.2, we obtain the following Patula-type inequalities.
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Corollary 3.4. Let m ≥ k ≥ 0, and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.4), and
a1, a2 > 0 are two consecutive zeros of u. Let c∗ ∈ (a1, a2) be any point with |u(c∗)| = maxa1≤x≤a2 |u(x)|.
Then ∫ c∗

a1

γ+(x) dx >
α2c∗α2−α1 − α1aα2−α1

1

c∗k+1
(
c∗α2−α1 − aα2−α1

1

) ,
∫ a2

c∗
γ+(x) dx >

α2c∗α2−α1 − α1aα2−α1
2

c∗k+1
(
aα2−α1

2 − c∗α2−α1
) .

Next, applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.5. Let m ≥ k ≥ 0, and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.4),
and a1, a2 > 0 are two consecutive zeros of u. Then, the following inequality holds:∫ a2

a1

x2α1
(
xα2−α1 − aα2−α1

1

) (
aα2−α1

2 − xα2−α1
)
γ+(x) dx > (α2 − α1)

(
aα2−α1

2 − aα2−α1
1

)
. (3.5)

Using Corollary 3.5, we obtain the following result.

Corollary 3.6. Let m ≥ k ≥ 0, and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.4),
and a1, a2 > 0 are two consecutive zeros of u. Then, the following inequality holds:∫ a2

a1

x2α1γ+(x) dx >
4(α2 − α1)

aα2−α1
2 − aα2−α1

1

. (3.6)

Proof. By (3.5), we have

(α2 − α1)
(
aα2−α1

2 − aα2−α1
1

)
<

∫ a2

a1

x2α1
(
xα2−α1 − aα2−α1

1

) (
aα2−α1

2 − xα2−α1
)
γ+(x) dx

≤ max
a1≤s≤a2

[(
sα2−α1 − aα2−α1

1

) (
aα2−α1

2 − sα2−α1
)] ∫ a2

a1

x2α1γ+(x) dx,

which yields ∫ a2

a1

x2α1γ+(x) dx >
(α2 − α1)

(
aα2−α1

2 − aα2−α1
1

)
max

a1≤s≤a2

[(
sα2−α1 − aα2−α1

1

) (
aα2−α1

2 − sα2−α1
)] . (3.7)

On the other hand, we have

max
a1≤s≤a2

[(
sα2−α1 − aα2−α1

2

) (
aα2−α1

2 − sα2−α1
)]

= max
A≤X≤B

(X − A)(B − X)

=
(B − A)2

4
,

where A = aα2−α1
1 and B = aα2−α1

2 . Then, by (3.7), we obtain∫ a2

a1

x2α1γ+(x) dx >
4(α2 − α1)(B − A)

(B − A)2

=
4(α2 − α1)

B − A
,

which proves (3.6). �
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Using again Corollary 3.5, we obtain the following result.

Corollary 3.7. Let m ≥ k ≥ 0, and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.4),
and a1, a2 > 0 are two consecutive zeros of u. Then, the following inequality holds:

∫ a2

a1

xα1+α2γ+(x) dx >
(α2 − α1)

(
a
α2−α1

2
2 + a

α2−α1
2

2

)
a
α2−α1

2
2 − a

α2−α1
2

1

. (3.8)

Proof. By (3.5), we have

(α2 − α1)
(
aα2−α1

2 − aα2−α1
1

)
<

∫ a2

a1

x2α1
(
xα2−α1 − aα2−α1

1

) (
aα2−α1

2 − xα2−α1
)
γ+(x) dx

=

∫ a2

a1

(
xα2−α1 − aα2−α1

1

) (
aα2−α1

2 − xα2−α1
)

xα2−α1
xα1+α2γ+(x) dx

≤ max
a1≤s≤a2

(
sα2−α1 − aα2−α1

1

) (
aα2−α1

2 − sα2−α1
)

sα2−α1

∫ a2

a1

xα1+α2γ+(x) dx,

which yields ∫ a2

a1

xα1+α2γ+(x) dx

>

 max
a1≤s≤a2

(
sα2−α1 − aα2−α1

1

) (
aα2−α1

2 − sα2−α1
)

sα2−α1


−1

(α2 − α1)
(
aα2−α1

2 − aα2−α1
1

)
.

(3.9)

Furthermore, we have

max
a1≤s≤q2

(
sα2−α1 − aα2−α1

1

) (
aα2−α1

2 − sα2−α1
)

sα2−α1
= max

A≤X≤B

(X − A)(B − X)
X

,

where A = aα2−α1
1 and B = aα2−α1

2 . Letting

L(X) =
(X − A)(B − X)

X
, A ≤ X ≤ B,

and differentiating L, we obtain

L′(X) =

(√
AB − X

) (√
AB + X

)
X2 .

This shows that
max

A≤X≤B
L(X) = L

(√
AB

)
=

(√
B −
√

A
)2
.

Consequently, we obtain

max
a1≤s≤a2

(
sα2−α1 − aα2−α1

1

) (
aα2−α1

2 − sα2−α1
)

sα2−α1
=

(√
B −
√

A
)2
,
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which implies by (3.9) that ∫ a2

a1

xα1+α2γ+(x) dx >
(α2 − α1)(B − A)(√

B −
√

A
)2

=
(α2 − α1)

(√
B +
√

A
)

√
B −
√

A
,

which proves (3.8). �

Consider now the radial Schrödinger equation

− u′′(x) +
`(` + 1)

x2 u(x) = γ(x)u(x), x > 0, (3.10)

where ` ≥ 0 is the angular momentum. Then, (3.10) is a special case of (3.4) with

k = 0, m = `(` + 1).

In this case, we have

α1 =
1 −
√

1 + 4`(` + 1)
2

= −`,

and

α2 =
1 +
√

1 + 4`(` + 1)
2

= ` + 1.

From Corollary 3.5, we deduce the following Hartman-Wintner-type inequality for (3.10).

Corollary 3.8. Let ` ≥ 0 and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.10), and
a1, a2 > 0 are two consecutive zeros of u. Then, the following inequality holds:∫ a2

a1

x−2`
(
x2`+1 − a2`+1

1

) (
a2`+1

2 − x2`+1
)
γ+(x) dx > (2` + 1)

(
a2`+1

2 − a2`+1
1

)
.

From Corollary 3.6, we deduce the following result.

Corollary 3.9. Let ` ≥ 0 and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.10), and
a1, a2 > 0 are two consecutive zeros of u. Then, the following inequality holds:∫ a2

a1

x−2`γ+(x) dx >
4(2` + 1)

a2`+1
2 − a2`+1

1

.

From Corollary 3.7, we deduce the following result.

Corollary 3.10. Let ` ≥ 0 and γ ∈ C((0,∞)). Assume that u ∈ C2((0,∞)) is a solution to (3.10), and
a1, a2 > 0 are two consecutive zeros of u. Then, the following inequality holds:

∫ a2

a1

xγ+(x) dx >
(2` + 1)

(
a

2`+1
2

2 + a
2`+1

2
1

)
a

2`+1
2

2 − a
2`+1

2
1

. (3.11)
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Remark 3.1. From a result due to Bargmann [17], under the assumptions of Corollary 3.10, we have∫ a2

a1

x|γ(x)| dx > 2` + 1. (3.12)

Clearly, our obtained inequality (3.11) improves (3.12). Indeed, we have

2` + 1 <
(2` + 1)

(
a

2`+1
2

2 + a
2`+1

2
1

)
a

2`+1
2

2 − a
2`+1

2
1

<

∫ a2

a1

xγ+(x) dx ≤
∫ a2

a1

x|γ(x)| dx.

3.3. The modified Bessel differential equation

We consider the modified Bessel differential equation

− (xu′(x))′ + xu(x) = γ(x)u(x), x > 0. (3.13)

The above differential equation is a special case of (1.1) with

α(x) = β(x) = x, I = (0,∞).

For 0 < a1 < a2, we consider the homogeneous Bessel differential equation

(xz′(x))′ − xz(x) = 0, a1 < x < a2. (3.14)

It is well-known (see, e.g., Abramowitz and Stegun [18] and DLMF [19]) that I0 and K0 are two linearly
independent solutions to (3.14), where I0 (resp. K0) is the modified Bessel function of the first kind of
order zero (resp. the modified Bessel function of the second kind of order zero). We recall below some
useful properties of I0 and K0 (see [18] for more details):

• The special functions I0 and K0 have the following integral representations:

I0(x) =
1
π

∫ π

0
cosh (x cos θ) dθ, K0(x) =

∫ ∞

0
cos (x sinh θ) dθ, x > 0.

• For all x > 0, we have
I0(x) > 0, I′0(x) > 0.

• For all x > 0, we have
K0(x) > 0, K′0(x) < 0.

• For all x > 0, we have

W(K0, I0)(x) =
1
x
. (3.15)

Now, we introduce the functions ϕa1 and ϕa2 defined by

ϕa1(x) = K0(a1)I0(x) − I0(a1)K0(x), a1 ≤ x ≤ a2,

and
ϕa2(x) = I0(a2)K0(x) − K0(a2)I0(x), a1 ≤ x ≤ a2.
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Using the above properties of I0 and K0, it can be easily seen that {ϕa1 , ϕa2} is a fundamental set of
solutions of the homogeneous Bessel differential Eq (3.14). On the other hand, we have

ϕa1(a1) = 0, ϕ′a1
(x) = K0(a1)I′0(x) − I0(a1)K′0(x) > 0, a1 ≤ x ≤ a2,

and

ϕa2(a2) = 0, ϕ′a2
(x) = I0(a2)K′0(x) − K0(a2)I′0(x) < 0, a1 ≤ x ≤ a2,

which show that the functions ϕa1 and ϕa2 satisfy (C1)–(C3). Furthermore, using (3.15), we obtain

W(ϕa2 , ϕa1)(x) =
I0(a2)K0(a1) − I0(a1)K0(a2)

x
, a1 ≤ x ≤ a2.

Then, applying Theorem 2.2, we obtain the following Patula-type inequalities.

Corollary 3.11. Let γ ∈ C((0,∞)). Assume that u ∈ C2(I) is a solution to (3.13), and a1, a2 > 0 are
two consecutive zeros of u. Let c∗ ∈ (a1, a2) be any point with |u(c∗)| = maxa1≤x≤a2 |u(x)|. Then

∫ c∗

a1

γ+(x) dx >
c∗

(
K0(a1)I′0(c∗) − I0(a1)K′0(c∗)

)
K0(a1)I0(c∗) − I0(a1)K0(c∗)

,

∫ a2

c∗
γ+(x) dx >

c∗
(
K0(a2)I′0(c∗) − I0(a2)K′0(c∗)

)
I0(a2)K0(c∗) − K0(a2)I0(c∗)

.

Remark 3.2. Note that

K0(a1)I0(c∗) − I0(a1)K0(c∗) > 0.

Indeed, since I0 is strictly increasing and K0 is strictly decreasing on (0,∞), and both functions are
positive there, we obtain

K0(a1)I0(c∗) > K0(a1)I0(a1)
> K0(c∗)I0(a1).

Hence the desired inequality follows. Similarly, one shows that

I0(a2)K0(c∗) − K0(a2)I0(c∗) > 0.

Applying Theorem 2.3, we obtain the following Hartman-Wintner-type inequality.

Corollary 3.12. Let γ ∈ C((0,∞)). Assume that u ∈ C2(I) is a solution to (3.13), and a1, a2 > 0 are
two consecutive zeros of u. Then, the following inequality holds:∫ a2

a1

(K0(a1)I0(x) − I0(a1)K0(x)) (I0(a2)K0(x) − K0(a2)I0(x)) γ+(x) dx

> I0(a2)K0(a1) − I0(a1)K0(a2).
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4. Conclusions

We developed a unified framework for Lyapunov-type inequalities associated with the second-order
differential equation

−(αu′)′ + βu = γu (x ∈ I),

under the standing hypotheses α ∈ C1(I) with α > 0 and β ≥ 0. The approach uses boundary-adapted
fundamental solutions ϕa1 and ϕa2 with strict monotonicity obtained via a direct ODE identity, together
with the interior maximizer c∗ between consecutive zeros. Within this setting we extend the classical
bounds (1.4)–(1.7) and (1.9) to the general operator L = −(αu′)′ + βu. In the special case β ≡ 0 we
recover (1.9), and if, moreover α ≡ 1, this reduces to (1.4).

The scope of the method is illustrated on two model families: generalized radial Schrödinger
equations–where we obtain a refinement of Bargmann’s inequality–and the modified Bessel equation,
for which the constants can be expressed explicitly in terms of the modified Bessel functions.

We also show that β ≥ 0 is genuinely needed, since β < 0 may induce oscillatory behavior that
destroys the required monotonicity and even linear independence of the boundary-adapted solutions.

Natural directions for further study include sign-changing β, alternative boundary conditions, non-
self-adjoint perturbations, discrete and fractional analogues, and higher-dimensional radial reductions.
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