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Abstract: The beta regression model (BRM) is a popular and widely applied modeling approach,
especially when dealing with data bounded within the interval (0, 1). It has been used extensively
in various fields, including chemistry, environmental science, medicine, and biology. BRM aims
to estimate unknown model parameters, typically achieved using the maximum likelihood estimator
(MLE). However, MLE is not without limitations. It can be highly sensitive to multicollinearity
and outliers, which can distort coefficient estimates, lead to misleading conclusions, and inflate
variance, ultimately increasing the mean squared error (MSE). To address these challenges, this study
proposed new robust estimators for BRM that incorporated robust modified ridge-type estimators.
These estimators were specifically designed to reduce the adverse effects of multicollinearity and
outliers. Their performance was theoretically compared to that of the traditional MLE and robust
ridge estimators. In addition, an extensive simulation study was carried out in various scenarios
to evaluate their effectiveness. Both theoretical comparisons and simulation results demonstrated
the clear advantages of the proposed robust estimators in managing multicollinearity and handling
outliers. To further validate the findings, the estimators were applied to real-world data from breast
cancer patients. The results confirmed that the proposed robust estimators offer greater robustness
and reliability compared to MLE and robust ridge methods. These findings highlighted the practical
importance of using robust estimation techniques to improve the accuracy and dependability of BRMs,
particularly in empirical research involving highly multicollinear and outlier data.
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1. Introduction

The beta regression model (BRM) has emerged as a practical and flexible approach for analyzing
data bounded between 0 and 1, such as proportions and rates, which we often find in fields such as
biology, chemistry, and environmental sciences [1,2]. What makes this type of data tricky is that
traditional methods, like linear or logistic regression, are not designed to handle the constraints of the
(0,1) interval, and they often fall short. That’s where the beta regression model proves its worth. As
part of the broader class of generalized linear models (GLMs), it gives us a powerful framework to
model such data appropriately, while also allowing for flexible relationships between variables [3,4].
The standard method for estimating the parameters in a beta regression model is maximum likelihood
estimation (MLE). However, as any researcher who has worked with real-world data knows, things are
rarely clean and simple. Two issues in particular can cause serious problems: multicollinearity and
outliers.

Multicollinearity arises when two or more predictors are highly correlated. It may sound harmless
at first, but it complicates the model by making it difficult to isolate the effect of each variable.
This results in unstable parameter estimates, inflated variances, and often misleading conclusions.
This challenge has been known for decades, going back to Frisch [5], and has since been explored
extensively, including in the context of GLMs by Segerstedt [6]. To mitigate its effects, ridge regression
was introduced by Hoerl and Kennard [7], and later Liu proposed an alternative estimator that also
introduces a shrinkage parameter to stabilize the estimates [8]. Since then, researchers have continued
to build on these foundations, offering several modifications like the modified ridge-type estimator [9],
the Dawoud-Kibria estimator [10], the modified two-parameter Liu estimator [11], feasible Stein-
type [12], and the Kibria-Lukman estimator [13] to better handle multicollinearity, particularly within
the context of GLMs. More recently, work by Qasim et al. [14], Hammad et al. [15], and Akram
et al. [16] has shown that these biased estimators can outperform standard MLE, especially under
challenging conditions.

On the other hand, outlier data points that significantly deviate from the general trend—pose
another threat. Even one or two of these unusual values can throw off your results, particularly if
the dataset is small [17]. This issue is well-documented, and several robust estimation techniques
have been proposed over the years to counteract it, including maximum likelihood-type estimators (M-
estimators), scale estimators (S-estimators), and Mallows M-estimators (MM-estimators) [18, 19], as
well as least absolute deviations (LAD) and least trimmed squares (LTS) [20]. In beta regression
specifically, where the response is strictly between 0 and 1, even a minor distortion can have a
significant impact. Robust methods help reduce the influence of these anomalies, making the model
more reliable and the conclusions more trustworthy—even when the data isn’t perfect [21,22].

Now, what happens when both multicollinearity and outliers occur together in a dataset? This,
unfortunately, is not a rare situation, and it creates a particularly challenging scenario for statistical
modeling. While several estimators handle either issue on their own, their performance tends to suffer
when the two coexist. The distortions from multicollinearity can amplify the effects of outliers, and
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vice versa, leading to severely biased estimates and questionable inference [23,24]. This intersection of
problems has motivated researchers to explore more robust and adaptive estimation techniques—ones
that can simultaneously withstand the effects of both issues, ensuring more stable and accurate
regression results under real-world conditions. This research recognizes this methodological gap
and builds upon recent work by Lukman et al. [24], who defined a robust Kibria-Lukman estimator
for logistic regression; Altukhaes et al. [25], who proposed a robust Liu estimator for a restricted
semiparametric regression model; Olaluwoye et al. [26], who developed robust methods for beta
regression; Mohammad et al. [27], who introduced a new robust two-parameter estimator for Poisson
regression; Lukman et al. [28] on robust enhanced ridge-type estimation for Poisson regression; Suhail
et al. [29] on a quantile-based ridge M-estimator for linear regression; Algasem et al. [30] in a
comprehensive study on a robust Poisson James-Stein estimator; Oyeleke et al. [31] in a comparative
study of one and two-parameter estimators; Majid et al. [32] on a robust Kibria-Lukman estimator
for linear regression; Norouzirad and Arashi [33] on preliminary test and Stein-type shrinkage ridge
estimators in robust regression; and Alghamdi et al. [34] on robust modified Liu estimation in Poisson
regression, all of whom address the joint problem of multicollinearity and outliers across various
regression models.

Conventional MLE delivers asymptotically efficient inference but proves highly unstable under
conditions of multicollinearity or data contamination. While biased estimators mitigate the effect of
multicollinearity, this is achieved at the expense of bias, and their performance remains susceptible
to outliers. Conversely, robust regression methods enhance stability against anomalous observations
but fail to explicitly address multicollinearity. Although recent improved methodologies have sought
to integrate shrinkage and robustness, such approaches remain limited and, crucially, are markedly
understudied within the context of BRM. This identified gap motivates the present work, which aims
to develop an estimator capable of simultaneously curtailing variance, managing bias, and ensuring
robustness in finite samples.

To this end, this paper introduces a novel robust estimator specifically designed for the BRM
framework that handles the dual challenges of multicollinearity and outliers. The performance of
the proposed estimator is evaluated through theoretical comparisons and an extensive Monte Carlo
simulation study. Its empirical validity is further demonstrated through an application to real-world
breast cancer data. Results confirm the superiority of the proposed estimator over competing methods,
including traditional MLE and robust ridge regression estimators. By concurrently addressing these
two common data pathologies, the proposed method provides a more reliable and stable analytical tool
for applied researchers working with real-world data that violates ideal statistical assumptions.

This paper is structured as follows: Section 2 provides a comprehensive review of the literature,
covering the beta regression model along with both non-robust and robust estimators, highlighting their
statistical properties. Section 3 introduces the proposed estimator, discusses its theoretical comparison,
and compares it analytically with other estimators. Section 4 outlines an extensive simulation study
conducted under scenarios involving multicollinearity and outliers, showcasing the results from the
simulation. Section 5 applies the proposed methods to real-world data from breast cancer patients,
demonstrating how the estimators perform in practice. Finally, Section 6 summarizes the key findings
and offers suggestions for future research directions.
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2. Methodology

2.1. Beta regression model

Consider a set of observations yy, y,,...,Yy,, drawn from a random variable y that follows a beta
distribution, denoted as S.(a, b), where both parameters a and b are positive. The probability density
function (PDF) of the beta distribution is given by

I'(a+b)

a=1:1 _ b1
F(a)F(b)y (I-y7, forye(0,1), (2.1)

f(y;a,b) =
where I'(-) represents the gamma function, and the parameters a and b control the shape of the
distribution. The mean and variance of y are

ab
(a@a+b*a+b+1)

E(y) = ﬁ Var(y) =

To adapt the beta distribution for regression modeling, Ferrari and Cribari-Neto [1] introduced a
useful reparameterization. Instead of working directly with a and b, by u = % and ¢ = a + b, using
this transformation, we express a = u¢ and b = (1 — u)¢. The PDF becomes

I'(¢)
L(up)I(( = 1))

In this form, y ~ B,(u, ¢), where u € (0, 1) is the mean, and ¢ > O is the precision. The mean and
variance under this parameterization are

fip, d) = PO =)l fory € (0, 1), (2.2)

p(l —p)

E(y) =u,  Var(y) = Tvo

The BRM is based on this reparameterized beta distribution. It assumes each response y; follows
a beta distribution with mean y; and a shared precision ¢. The mean is linked to predictors through a
link function g(i;) = n; = x! B, where x; is the i-th row of the design matrix X, which contains p + 1
explanatory variables, and B is a vector of unknown regression coefficients. The function g(-) ensures
that the estimated means y; stay within the (0,1) interval. The link is defined as
Hi X F

g(w) = log(1 ), so that u; = (2.3)

1 +e5B

i

The log-likelihood function for this model, which we use to estimate S, is
(B)= Z[10gf(¢)—IOgF(ﬂi@—lOgF((l —)P)+(ip—1) logy; +((1-p)p—1) log(1-yy)] . (2.4)
i=1

To estimate the regression coeflicients 5, the MLE is typically used. It’s obtained using an iterative
reweighted least squares algorithm, and the beta maximum likelihood estimator (BMLE) is given by

Beave = U'XTWe, (2.5)
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where U = XWX, ¢ = f]+W_1Q(y* —p*), and W = diag(W, ..., w,). Here, W and Q are the matrices
W and Q, respectively, evaluated at the BMLE estimator [26, 35].
The variance-covariance, matrix mean squared error (MMSE), and MSE of ,@BMLE are

Var-Cov(Bayg) = ¢ U, (2.6)

MMSE(BBMLE) = $7A_17T, (2.7)
p+1 1

MSE@Byie) =6 )+ (2.8)
=t

To compute the MMSE and the MSE, we start by assuming that @ = y'B. Additionally, we define
the diagonal matrix A = diag(d, As, ..., 4,.1), which corresponds to the expression yAyT. In this
context, ¥ is an orthogonal matrix whose columns are the eigenvectors of the matrix U, denoted
as ¥Yi,---»¥p1- The values Ay, 4y,..., 4, are the corresponding eigenvalues of U, arranged in
descending order such that 4; > A, > ... > 4,4 > 0.

When explanatory variables in a BRM are highly correlated, the matrix U becomes ill-conditioned,
which means that some of its eigenvalues are very small. As a result, the estimated MSE of the MLE
tends to be inflated. Multicollinearity not only increases the variance of the estimates but also leads
to wider confidence intervals and unstable, unreliable parameter estimates. To overcome these issues,
researchers have turned to regularization techniques, such as ridge regression and a modified ridge-type
estimator, which provide more stable solutions [36]. Furthermore, the optimal subset selection criterion
that is related to covariance matrices, observation matrices, and response vectors (COR criterion) has
been introduced as an alternative strategy for subset selection in regression models, offering a novel
means of improving the accuracy of the estimation under multicollinearity [37]. In this study, we focus
on the beta modified ridge-type estimator, a variant specifically suited to beta regression models, which
will be explored in detail in the following subsection.

2.2. Beta ridge regression estimator

To address the instability caused by multicollinearity in BRM. Abonazel and Taha [35], along with
Qasim et al. [14], introduced the beta ridge regression estimator (BRRE). The BRRE is formulated as

Borre = (U + kL) 'UBgypp. k>0, (2.9)

where k = is the BRRE parameter, controlling the degree of shrinkage applied, and I

1)2[""11 A2
denotes the 1dent1tjy m/atrix of dimension (p + 1) X (p + 1). Notably, when k = 0, the BRRE simplifies
to the BMLE.

The MMSE and MSE of BRRE are given by

MMSE(Bgrrr) = dyAL AN YT + Py A aneanis Ay, (2.10)
p+1 p+l MLE
J

MSE(ﬂBRRE) ¢Z (/1 Z o (2.11)

A2 — ~Th
where @“vie = ¥ Bemig-
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2.3. Beta modified ridge-type estimator

Akram et al. [16] proposed the beta-modified ridge-type estimator (BMRTE), an extension of the
beta ridge regression, which incorporates two shrinkage parameters to provide a more flexible approach
to regularization. The BMRTE is defined as

Bavrre = U+ k(1 + D) "UBgyyp, 0<d<1,k>0, (2.12)
where d and k are the modified ridge-type shrinkage parameters that control the regularization effect
in this case, using k as in BRRE and d = max (QZLE’_} [26,38]. When k = 0, the BMRTE reduces to

~2
a MLE_/"’T].

the BMLE. Similarly, when d = 0, the estimator simplifies to the BRRE.
The bias vector and variance-covariance matrix for BMRTE are given as follows:

Bias(ﬁBMRTE) = E(BBMRTE) - B =—k(1 + DALP. (2.13)

Var-Cov(Bywirrs) = (U+k(1+d)L,) " UVar-Cov(Bapy ) (U+k(1+d)L) U= A AN AGA. (2.14)

Then the MMSE and MSE for BMRTE are given by

MMSE(Bpyrre) = $YAUAAL Y + K2(d + 1y A) dvedne’ Ay’ (2.15)
p+l ptl 12 242
A N A; k(d+1)CZMLE~
MSE = . , 2.16
(Povrre) ¢; 4+ kd + 1)? +; 4+ kd + 1))? (2.16)

2.4. Beta robust estimators

The MLE, BRRE, and BMRTE are known to be sensitive to outliers. This sensitivity highlights
the need for robust alternatives in BRM. As a result, several robust estimators have been developed
to improve estimation accuracy in the presence of outliers. This section summarizes two well-known
robust methods designed for BRM.

Ghosh [21] introduced the minimum density power divergence estimator (MDPDE), a robust
approach tailored for BRM. This method introduces a tuning parameter 6 > 0, which controls the
trade-off between efliciency and robustness, and is based on the concept of density power divergence.
The estimator solves the following estimating equation:

n

> [AGs 0 folyis 16 = Eii-s(60)] = 0, 2.17)

i=1
where

o fo(vi; 1i, ¢;) 1s the beta density function,
e A(y;; 6) is the score function (i.e., the gradient of the log-likelihood),
o E;;_s(0) is the expected value of the weighted score function.
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In this formulation, the term f? acts as a weight, lowering observations that do not align well with
the model, especially when ¢ € (0, 1) [26].

Ribeiro and Ferrari [22] proposed a surrogate maximum likelihood estimator (SMLE) based on a
modified likelihood function, known as the L,-likelihood. This method reparametrizes the likelihood
using the function L,(a), leading to the objective function L,(0) = >\, L,(fo(yi; i» i) With L(a) =
e, forge(0,1), andg=1-3.

The estimation equation becomes

[A()’i; 0) fo(yis phis ¢i)6] =0. (2.18)
i=1
Although this approach is simple and useful in practice, the resulting estimator is not Fisher consistent
unless 6 = 0. Both the MDPDE and SMLE estimators rely on the assumption that the beta densities
are bounded, ensuring the robustness and validity of their asymptotic properties. Ghosh [21] achieved
Fisher consistency by adjusting the weighted score function, while Ribeiro and Ferrari [22] obtained a
Fisher-consistent estimator by carefully parameterizing the L,-likelihood.

Although the MDPDE and SMLE methods offer robust estimation, they rely on the assumption that
the beta densities are bounded. However, when this assumption doesn’t hold (i.e., the beta densities
are unbounded), numerical issues may occur, as observed in simulation studies. This means these
estimators may not always work reliably in all scenarios. To address this limitation, we propose
alternative robust estimators in the following section that perform well regardless of the type of beta
density.

The main issue with MDPDE and SMLE is that beta densities are not always closed under power

transformations. For any given density v and a constant & > 0, the power transformation is v*(y) =
v

Jvoydy

when certain conditions hold: u¢ > 1 and (1 — )¢ > 1. In simpler terms, only a specific subset of beta

distributions (bounded ones) can handle this transformation, limiting its use.

To overcome this issue, a logit transformation is applied to the response variable: y* = log (lyTy) If
y follows a beta distribution, then y* follows what’s known as the exponential generalized beta of the
second type (EGB) distribution.

Using the transformed variable y*, we define two robust estimators:

This works only if the integral is finite. For the beta density, this transformation is valid only

e [ogit minimum density power divergence estimator (LMDPDE): This estimator builds on earlier
methods by Ribeiro and Ferrari [22] and Ghosh [21]. It minimizes the divergence between
observed and expected densities using the transformed data. The objective function is

H,(0) = = D [Kieo(® = ahg(y; i ¢1)°). (2.19)
e

The corresponding estimating equation balances the influence of each data point based on how
likely it is under the model. The parameter ¢ € [0, 1) controls robustness such that when ¢ = 0, it

reduces to the usual MLE and for 6 > 0, the method becomes more robust to outliers.
e Logit surrogate maximum likelihood estimator (LSMLE): Inspired by the work of Ribeiro
and Ferrari [22], this method maximizes a modified likelihood function—specifically, the L,-
likelihood—using the EGB-transformed densities. This approach maintains statistical properties
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like consistency while being robust. The LSMLE solves the equation:
D AL OO i ) =0, (2.20)
i=1

where A*(y:;6) is the modified score vector [26]. By leveraging the stability of the EGB
distribution under power transformations, LSMLE offers a reliable alternative when the original
methods (MDPDE and SMLE) fall short.

2.5. Robust beta ridge regression estimators

Based on the works of Ribeiro and Ferrari [22] and Ghosh [21], Olaluwoye et al. [26] proposed
a robust beta ridge regression estimator, which is derived by combining the ridge estimator with four
robust beta estimators: MDPDE, SMLE, LMDPDE, and LSMLE. The expressions for the robust beta
estimators of B are given by

Berre gy = (U +KL) " U g, (2.21)
BBRRELMDPDE = (U + k1) UB yippoe- (2.22)
ﬁBRRESMLE = (U + kL) " UBgyigs (2.23)
BBRREMDPDE = (U + kL)™' UByippoe- (2.24)

where k(k > 0) is ridge parameter, and / represents the identity matrix of order (p + 1) X (p + 1).
The MSE expressions for these estimators are as follows:

P+ p+l1
A _ LSMLE]
MSEByrrg o.,) = Z o k)2 Z R (2.25)
=1
2 < e LMDPDE]
MSE(BerrErsmros) = Z @ +k)2 Z e (2.26)
=1
& &Y g
2 3 J
MSE(BgrrEgy ) = ¢Z o+ k)2 Z A+ nyseR (2.27)
j=1
p+
2 MDPDEJ
MSE(BgrrEypeo:) = Z % +k)2 Z PP (2.28)
=1

where a? ; denotes the squared weight associated with the j-th predictor under estimator r, and is

computed as the inner product of the vector ¥ and the estimated coefficient vector j3,, for each r €
{LSMLE, LMDPDE, SMLE, MDPDE}.
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3. Proposed estimator

Building on the work of Ghosh [21] and Ribeiro and Ferrari [22], and extending the approach
proposed by Olaluwoye et al. [26], we propose a novel robust estimator for beta regression. This
estimator is constructed by combining a modified ridge-type estimator with four robust beta estimators:
the MDPDE, the SMLE, the LMDPDE, and the LSMLE. The resulting estimator effectively addresses
both multicollinearity and the presence of outliers. Additionally, it encompasses several existing
estimators, including robust beta ridge regression and the classical maximum likelihood estimator,
as special cases, thereby offering a more flexible and comprehensive modeling approach.

The expressions for the robust beta modified ridge-type estimators for B are given by the following
equations:

Bovire e = (U + k(1 + L) U gy (3.1)
ﬁBMRTELMDPDE = (U + k(1 + L) " UB ypppe. (3.2)
Berrreggy = (U + k(1 + L) UBgy i, (3.3)
Bantrriypm: = (U + k(1 + 1) ™ Uyippog- (3.4)

The proposed robust beta modified ridge-type estimators are flexible and encompass several well-
known estimators as special cases under specific choices of the shrinkage parameters £ and d. In
particular:

e When k = 0: The robust beta modified ridge-type estimators reduce to their corresponding base
robust estimators. For instance:

i'ﬁABMRTELSMLE = ﬂLASMLE’
ii'BABMRTELMDPDE :AﬂLMDPDE’
iii‘é’BMRTESMLE = ﬂ§MLE’
V-BeMRTEeoe = BMDPDE-
e When d = 0: The estimators reduce to the robust beta ridge estimator forms based on the
corresponding robust estimators:
ﬂBMRTE, = ﬁBRRE,-

e When k = 0 and d = 0: The estimators reduce to the MLE if the base estimator used is the MLE:

ﬁBMRTE, = ﬂMLE’

where r € {LSMLE, LMDPDE, SMLE, MDPDE}. These special cases demonstrate that the BMRTE
framework generalizes several existing estimators, offering robustness against multicollinearity and
outliers, while maintaining interpretability and flexibility.

The SMSE expressions for these estimators are as follows:

(3.5)

ptl prl g2 262
A ) A k(d + 1)"@"LsmLE;
MSEBemrre sue) = ¢ Z (A + k(d + 1))? Z

Jj=1 /

k(d A+ k(d+1)*
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P+ p+l 12 242
R k“(d + 1)*@" 1 mpppE
MSE = '
SE(BEMRTE, vipro:) Z}: A+ k(d + 1)) JZ::; A +k(d+ 1) (3.6)
P+1 p+1 2 242
A R 1. k“(d + 1)*@"smLE;
MSE = ; J 7
SE(BemRTEs 15 ¢; (A; + k(d + 1))? - JZ:; (A +k(d+1)?* G0
ptl p+l 52 242
A A 1 k*(d + 1)°&"mpppE;
MSE - y j '
SE(BemrrEyper:) = @ Zl (4 + k(d + 1))? Z (A; + k(d + 1))? Co

3.1. Theoretical comparisons between estimators

In this section, we present the theoretical comparisons between the proposed estimators and the
existing ones, using the MSE as the primary criterion for evaluation. Since we introduced four types
of robust estimators, we focus our theoretical comparison on one of them, for instance, the estimator
based on the LSMLE, to illustrate the methodology. The same approach can be applied analogously
to the other robust estimators (SMLE, MDPDE, and LMDPDE), as they share a similar mathematical
structure. This allows us to assess the efficiency of the proposed estimators in terms of reducing MSE
while addressing issues such as multicollinearity and potential outliers in the data.

Theorem 1. The proposed estimator BBMRTELSMLE is superior to By, p in the MSE sense. Formally,

MSE(ﬁBMRTELSMLE) - MSE(ﬁBMLE) <0,
ford>0,k>0 and0 < d < 1, if and only if
A+ Lk (d + 18 e — A + k(d + 1))* <0, forall j=1,...p+1.
Proof. The difference between MSE@BMRTELSMLE) and MSE([?BMLE), as computed using Eq (3.5) and
Eq (2.8), is given by

1 1 N
< & k(d + l)za’zLSMLEj

A - n A; N
MSE(Bsyrre i) ~ MSE(Bpmie) :¢Z o+ k(; 1) + Z 4+ kd+ 1) - ¢

pr (]5/12 +A4 kz(d + I)ZQ’ZLSMLE/ (]5(/1] + k(d + 1))2
- Z (4 + k(d + 1))> '

Sl
4
(3.9)

M"’s

~.
Il
—_

Hence, the difference is negative, i.e., MSE (BBMRTELSMLE) - MSE (ﬁBMLE) < 0, whenever (]3/13 +

kH(d+1)207 i J —¢(A; +k(d + 1))* < 0, under the regularity conditions ¢ > 0,k > 0,and 0 < d < 1,
forall j=1,...,p+ 1. The proof is completed. O

Theorem 2. The proposed estimator B BMRTE, . 1S SUPErior to Z?BRRE in the MSE sense. Formally,
MSE(BBMRTELSMLE) - MSE(ﬁBRRE) <0,
ford>0,k>0 and0 < d < 1if and only if
(A + k)@, + K(d + 1’ 1sure)) — (A + k(d + D) (PA; + K& yre)) <0, forall j=1,..,p+1.
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Proof. The difference between MSE(ﬁBMRTELSMLE) and MSE(ﬁBRRE), as computed using Eq (3.5) and
Eq (2.11), is given by

p+l 4 2 242 242
N A ¢/1j+k(d+1)aLSMLE] ¢/lj+kaMLEj
MEEEsurre ) ~ MSEPorze) = Zl A +kd+1)? Z 4 + kP

Jj=
B ad (A + kXA + k2(d + 1@ 1swmie)) — (4 + k(d + 1)*(d4; + kza'zMLE ,)
B Z (A + k)24, + k(d + 1))?

(3.10)

Hence, the difference is negative, i.e., MSE(BBMRTELSMLE) — MSE(Bgggg) < 0, whenever (1 i+, +
K*(d + 128* swie)) — (4 + k(d + 1)* (¢, + k*@*wie) < 0, under the regularity conditions ¢ > 0, k > 0,
and 0 <d < 1,forall j=1,...,, p+ 1. The proof is completed. i

Theorem 3. The proposed estimator ﬁBMRTELSMLE is superior to Bgyrrs in the MSE sense. Formally,
MSE(BBMRTELSMLE) — MSEBpyrre) < 0,
ford>0,k>0 and0 < d < 1, if,. and only if
K(d+ 18 tsywe; — kK d + 18 e <0, forallj=1,..,p+1.

Proof. The difference between MSE(ﬂBMRTELSMLE) and MSE(BBMRTE), as computed using Eq (3.5) and
Eq (2.16), is given by

A AKA+1 0 smig; & A +KA(d+ 1)@
(4 + k(d + 1))? Z (4 + k(d + 1))?

K (d + 1)2(12LSMLE/ — KX(d + 1)2@’2MLE]
(A + k(d + 1))? '

p+
MSE(Baurre, ) ~MSEBanire) Z

,_.,_.

(3.11)

J=1

Hence, the difference is negative, i.e., MSE(ﬁBMRTELSMLE) — MSE(Bgypre) < 0, whenever
K*(d+1)*@ smiej—k*(d+1)*@*wig; < 0, under the regularity conditions ¢ > 0, k > 0,and 0 < d < 1,
forall j =1,..., p + 1. The proof is completed. O

Theorem 4. The proposed estimator BBMRTELSMLE is superior to BBRRELSMLE in the MSE sense. Formally,
MSE(BBMRTELSMLE) - MSE(&BRRELSMLE) <0,
ford>0,k>0 and0 < d < 1, if, and only if.
da; [(kza/LSMLE](d +2) = 20k)A; + kK> (2kt gy (d + 1) — $(d + 2))] <0, forallj=1,..,p+1.

Proof. The difference between MSE(ﬁBMRTELSMLE) and MSE(BBRRELSMLE), as computed using Eq (3.5)
and Eq (2.25), is given by

ptl 2 2 252 ptl 3 242
R N PAj+k~(d+1) 0 LsmLE; PA;j+k G LsmLE;
MSEBesmrre,syie) ~MSEBarre,suie) = ,Z:; (1) + k(d + 1))? _Z (4, + k)?

2 (A | (263 gy g (d +2) = 20004, + K22k gy, (d + 1) = $(d +2))

_Z (A + k)2, + k(d + 1))?

(3.12)
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Hence, the difference is negative, i.e., MSE(fiBMRTELSMLE) MSE(BBRRELSMLE) < 0, whenever
da; [(kZQLSMLE (d+2)- 2¢k)/l +k2(2k&LSMLE (d+1)- ¢(d + 2))] < 0, under the regularity
conditions ¢ > 0,k >0,and 0 <d < 1, forall j = 1,..., p + 1. The proof is completed. O

Theorem 5. The proposed estimator ﬁBMRTEL g LS superior to ﬁBRRELMDPDE in the MSE sense. Formally,
MSE (BBMRTELSMLE) — MSE (BBRRELMDPDE) <0,
ford>0,k>0 and0 < d < 1, if,. and only if
(A + K2@A; + KA(d + 126 psuze))~ (A + k(d + DDA, + K& 1appoe;) <0, forall j=1,...p + 1.

Proof. The difference between MSE([?BMRTELSMLE) and MSE([?BRRELMDPDE), as computed using Eq (3.5)
and Eq (2.26), is given by

p+l 4 2 242 p+l 4 242
" R ¢/lj+k (d+1) a LSMLE ¢/1j+k @ LMDPDE
MSE(B —MSE(@B = -

BMRTE sy ) BRRELvpror) ijl (Aj + k(d + 1)) Z (4 +k)?

(3.13)

B Si (A + (@A, + KA(d + 1?8 Lswie)) — (A, + k(d + 1)*(A; + k2&* mpppE;)
B (A + )2, + k(d + 1)) '

Hence, the difference is negative, i.e., MSE(,@BMRTELSMLE) - MSE(ﬁBRRELMDFDE) < 0, whenever (4; +
k(@A) + KA (d + 1)*@% smie)) — (4 + k(d + 1))*($A; + k*&*vpepe ;) < 0, under the regularity conditions
$>0,k>0,and0 <d < 1,forall j=1,..., p+ 1. The proof is completed. O

Theorem 6. The proposed estimator B BMRTE, gy 1S SUperior to BBRRESMLE in the MSE sense. Formally,
MSE(ﬁBMRTELSMLE) - MSE(ﬁBRRESMLE) < 0’
for$>0,k>0, and0 < d < 1, if. and only if.
(A + k(@A + K2(d + 1’ & rsmre ) — (A; + k(d + D) (@A + K& syie;) < O, forall j=1,...,p+ 1.

Proof. The difference between MSE([A?BMRTELSMLE) and MSE(/;’BRRESMLE), as computed using Eq (3.5)
and Eq (2.27), is given by

p+l 4 2 242 242
) R PA+k*(d + 1)° @ Lsmig ¢/1j+k Q°SMLE
MSEBpMrrE ) " MSEBprrEgy ) = Z (Aj + k(d + 1))? Z (4; + k)?

J=1

(3.14)

E () + 2@ + kAd + D28 smig)) — (A, + k(d + 1)*(dA; + kz@ SMLE )
= Z ( (A + k24 + k(d + 1))? ] '

Hence, the difference is negative, i.e., MSE@BMRTELSMLE) - MSE(BBRRESMLE) < 0, whenever (4; +
KX (@A; + k2(d + 1)@ 1smie)) — (4 + k(d + 1))2($A; + K*&*swie;) < 0, under the regularity conditions
& >0,k>0,and 0 <d < 1,forall j=1,...,, p+ 1. The proof is completed. m]
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Theorem 7. The proposed estimator BBMRTELSMLE is superior to BBRREMDPDE in the MSE sense. Formally,
MSE(ﬁBMRTELSMLE) - MS E(BBRREMDPDE) <0,
$>0 k>0 and0 <d < 1, if and only if,
(A + K)X(PA; + K2(d + 1)’ rsuie;) — (A + k(d + 1)) (@A, + K& ypppej) < 0, forall j=1,....p+ 1.

Proof. The difference between MSE([?BMRTELSMLE) and MSE(BBRREMDPDE)’ as computed using Eq (3.5)
and Eq (2.28), is given by

p+l 2 2 242 p+l 4 )
. R PA;+k*(d + 1)@ LsmLE; @A +k“0 MppDE
MSEBenrre,syie) ~MSEBarreymm:) = ,Z—; (4) + k(d + 1))* _,Z—; (4, +k)?

) - i - (3.15)
3 i (A; + k)*(@A; + KA (d + 1)* &P Lsmie)) — (4 + k(d + 1))*($4; + k*&*mpppE))
- < (A + k)2(4; + k(d + 1))? '

The difference MSE(Bgyirrr, . n) ~ MSE(BrrrE, o) < 0> Whenever (4;+k)*(¢A;+k*(d+1)* ¢ Lsmie,) —
(4; + k(d + 1)*(¢4; + K*&*vpppE,) < 0, under the regularity conditions ¢ > 0,k > 0,and 0 < d < 1,
forall j =1,..., p + 1. The proof is completed. O

These methodologies are applied to the breast cancer patient dataset in Section 5.
4. Monte Carlo simulation study

We conducted a comprehensive Monte Carlo simulation study to assess the performance of different
robust and non-robust estimators in BRM. Similar simulation frameworks have been employed in
previous research [26,39,40]. Following the approach used in Lukman et al. [28], Alghamdi et al. [34],
and Mohammad et al. [27], the explanatory variables were generated using the following model:

Xij = \/l—pzzij+pzi(p+1), i=1,2,...,n, j: 1,2,...,(p+1), (41)

where 7 is the sample size, p is the number of predictors, and p controls the degree of multicollinearity
among the predictors. The variables z;; are drawn from a standard normal distribution with mean 0 and
standard deviation 1. This structure ensures that the correlation between predictors is approximately
p*. The MSE is calculated as a function of 8, with the constraint /8 = 1 as discussed in Alghamdi
et al. [34] and Olaluwoye et al. [26].

To evaluate the robustness of the estimators, we introduced outliers into the dataset through a
controlled process. First, a set number of outliers, either 10% or 20% of the total observations,
was determined. These outliers were then randomly assigned to specific observation indices. For
each selected index, outliers were added to the first and fourth predictors (x; and x4) by replacing
their original values with samples drawn from a normal distribution with a mean of 5 and a standard
deviation of 2. This intentional distortion enables us to rigorously examine how well the estimators
perform in the presence of anomalous data.

Following the works of Alghamdi et al. [34], Mohammad et al. [27], and Algasem et al. [30] in
robust regression, this study conducts an extensive Monte Carlo simulation to evaluate the performance
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of competing estimators under a wide range of data conditions. The primary objective of the
simulation is to generate data that accurately emulates challenging real-world scenarios, including
multicollinearity and outliers, thereby providing a rigorous test of estimator robustness and efficiency.
The simulation design incorporates a comprehensive factorial array of parameters known to influence
estimator performance. This includes varying sample sizes (n = 35,50, 75, 100, 200, 300), numbers of
predictors (p = 4, 8), and degrees of multicollinearity (p = 0.80, 0.90, 0.95,0.99,0.999). Furthermore,
the study investigates the impact of overdispersion (¢ = 5,10) and the presence of outliers at
contamination levels of 10% and 20%. Estimator performance was evaluated using both the MSE
and the median squared error, calculated as the average squared deviation between the estimated and
true parameter values across 1000 replications. All simulations were implemented in R, using the
betareg() function for standard estimation.
The MSE was computed using the following formula:

1000

— 1 —_ —_
MSE(@) = m Z;(ﬂij _ﬁi)T(ﬂij -B): 4.2)
j=

where ﬁi ; 1s the estimate of the i parameter in the j™ replication, and 3, is the true parameter value.
In addition to classical estimators, the simulation also incorporated four robust estimators available
through the robustbetareg package in R.

In both the simulation study and the empirical application, the shrinkage parameter k for the robust
and non-robust BRREs was determined following the approaches of Abonazel and Taha [35], Akram

et al. [16], and Qasim et al. [14], defined as k = m. For the robust and non-robust BMRTE:s,
j=1 4

the same value of k was employed as in the BRRE, while the additional shrinkage parameter d was

AD _
Aypp,—1

estimated using d = max

A2

Mgt

The simulation results j are summarized in Tables 1-8 and Figures 1-8.
These results comprehensively assess the performance of MLE, BRRE, BMRTE,
BRREsmie, BRRELvpppE BRREsmiE, BRREMpppE, BMRTELsmie, BMRTEpLmpppe, BMRTEgyiE,
and BMRTEypppg, under varying conditions, including different sample sizes (n), multicollinearity
levels (p), numbers of predictors (p), levels of contamination by outliers, and standard deviations (¢).
The key findings from these simulations are as follows:

e Sample Size (n): As expected, MSE decreased for all estimators as sample size increased from
n = 30 to n = 300. Reflecting improved estimation accuracy with more data. This pattern
holds across both clean and contaminated datasets. However, the performance advantage of the
robust BMRTE estimators was most pronounced in smaller samples (n = 30, 50, 75), where their
stability is most critical.

e Multicollinearity (p): Increased multicollinearity increases MSE for all robust and non-robust
estimators, especially for non-robust methods such as MLE, BRRE, and BMRTE. This suggests
that multicollinearity adversely affects the precision of parameter estimates.

e Number of explanatory variables(p): Increasing model complexity from p = 4 to p = 8
led to higher MSE across all scenarios, particularly under small sample sizes and strong
multicollinearity.
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e Dispersion (¢): A higher dispersion parameter (¢ = 10 vs. ¢ = 5) increased MSE for all
estimators, as expected. The robust estimators maintained their relative superiority, proving
effective in high-noise environments.

e Outliers: Increasing the proportion of outliers from 10% to 20% led to higher MSE values across
all estimators, with the effect being particularly severe for non-robust estimators, thereby reducing
their reliability.

e BMLE: Exhibited pronounced sensitivity to both multicollinearity and outliers, which

consistently resulted in higher MSE values and substantially reduced its reliability in practical
applications.
Non-robust biased estimators such: Include BRRE and BMRTE. While these estimators
handled multicollinearity well, they offered no protection against outliers. Their MSE values
frequently doubled or tripled with 20% outliers, demonstrating that shrinkage alone does not
confer robustness.

e Robust biased estimators: These include the robust versions of BRRE and BMRTE
implemented with LSMLE, MDPDE, LSMLE, and SMLE. In clear contrast to their non-robust
counterparts, the robust estimators maintained notable stability under both multicollinearity and
contamination. This highlights their primary role in ensuring reliable inference when data are
simultaneously affected by strong multicollinearity and outliers.

e The biased estimators, BRRE and BMRTE, clearly outperform BMLE in the presence of
multicollinearity, primarily due to their built-in shrinkage mechanisms that stabilize parameter
estimates and reduce variance. Furthermore, BMRTE outperforms BRRE in reducing MSE.
However, a critical limitation of these non-robust estimators is their pronounced susceptibility
to contamination by outliers, which significantly inflates their MSE and significantly reduces
their reliability. In contrast, the proposed robust estimators demonstrate superior performance in
the presence of data contamination, effectively mitigating the impact of outlier observations. It is
worth noting that the robust BMRTE; sy g, BMRTEg\y g, and BMRTEypppg offer exceptional
estimation accuracy and stability. While the robust BRRE ypppg and BRRE; gypg, show
reasonably good and robust performance, the BMRTE-based estimators consistently dominate,
achieving the lowest mean estimation error across a wide range of conditions, proving to be the
most superior and reliable class of estimators for practical application.

e Figures 1-8 illustrate that the BMLE does the worst (in figures RBRR1 is shorthand for
BRRE  smiE, to RBRR4 for BRREypppe. The same applies for the BMRTE estimators, with
RBMRTI representing BMRTE; s\, and so on.), especially when there are problems like
multicollinearity and outliers. The BMLE is very sensitive to these issues, leading to poor
performance. On the other hand, non-robust estimators BRRE and BMRTE do better than BMLE,
but they still struggle when the data has a lot of outliers. Among these, the robust versions of
the BRRE estimators (like BRRE spp g, BRREypppE, and BRREgy; g) show clear improvements,
especially when there are 10% or 20% outliers. This shows that adding robustness helps the
estimator handle bad data better. However, the best-performing estimators are from the BMRTE
family (like BMRTE spi g, BMRTENpppe, and BMRTEgy ). These estimators consistently
perform the best in all situations, with the lowest MSE, meaning they are the most reliable even
when the data is messy with outliers or correlations between variables.
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Table 1. Estimated MSE for non-robust and robust estimation methods when p = 4, ¢ = 5,
and 10% outliers.

o n Traditional Non-robust Robust estimator Non-robust Robust estimator
BMLE BRRE BRRE BRRE BRRE BRRE BMRTE BMRTE BMRTE BMRTE BMRTE
(LSMLE) (LMDPDE) (SMLE) (MDPDE) (LSMLE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 2.23818 1.65113 0.2469 0.1849 0.1961  0.25378 1.43344 0.17892  0.15282 0.17672 0.24456
50 1.7627 1.21559 0.06198  0.03763 0.04043  0.06228 1.32083 0.0614 0.03273 0.03621 0.06191
75  1.61344 1.41339 0.04887  0.032 0.03468 0.04919 0.98612 0.0404 0.02607 0.03075 0.0488
100 1.28577 0.98369 0.04878  0.03621 0.03837 0.04901 0.94346 0.0391 0.03015 0.03494 0.04873
200 1.232 1.03634 0.02694  0.01988 0.02096 0.02703 0.83722 0.02696  0.01717 0.01927 0.02693

300 1.07887 0.89437 0.02278  0.01999 0.02053  0.02283 0.79213 0.02343  0.01707 0.0191  0.02277
0.85 30  3.22865 1.96417 0.25666  0.20452 0.21449 0.26139 1.65916 0.18708  0.17228 0.19646 0.25512
50  2.10159 1.31215 0.08194  0.06056 0.06394 0.08234 1.3489 0.06645  0.05046 0.05832 0.08185
75 1.62731 1.42954 0.06644  0.06067 0.06192  0.06681 1.0563 0.05772  0.05593 0.05965 0.06634
100 1.44806 0.85339 0.04562  0.03897 0.04023  0.04576 0.88682 0.04098  0.03465 0.03811 0.04559
200 1.21578 1.11681 0.03867  0.03109 0.03254 0.03882 0.81613 0.03059  0.02629 0.03009 0.03863
300 1.18108 0.98471 0.02368  0.01839 0.01935 0.02374 0.50682 0.02364  0.01521 0.01775  0.02367
090 30 4.62448 1.36292 0.53312  0.33239 0.36249  0.54981 2.05495 0.30226  0.25164 0.31227  0.52846
50 3.42235 2.32639 0.0934 0.06236 0.06661 0.09406 1.58964 0.06187  0.05136 0.05987 0.09325
75  1.83988 1.66437 0.0844 0.06058 0.06459 0.08498 1.19259 0.06099  0.04922 0.05822  0.08426
100 1.7386 1.34889 0.06919  0.05849 0.06049  0.06949 0.97203 0.05996  0.05151 0.05698 0.06911
200 1.57342 1.14832 0.04923  0.03934 0.04112  0.04944 0.74296 0.03694  0.03355 0.03815 0.04918

300 1.387 0.80407 0.03064  0.02333 0.02466 0.03071 0.58489 0.02602  0.01923 0.02254  0.03062
095 30 5.33023 3.19626 0.66259  0.34806 0.38753  0.68406 2.8168 0.35071  0.24318 0.31917 0.65586
50  5.22417 1.98249 0.19377  0.12032 0.1307  0.19628 1.76749 0.10448  0.0916 0.11387 0.19321
75 277837 1.91867 0.08258  0.05171 0.05628 0.08329 1.73365 0.04796  0.03972 0.04918  0.08242
100 2.49888 1.71151 0.06697  0.04775 0.05093  0.0674 1.61904 0.04679  0.03822 0.04576  0.06686
200 1.95866 1.22028 0.04968  0.03664 0.03884 0.04993 1.065 0.03954  0.02991 0.03524  0.04962

300 1.63745 1.1526 0.0432 0.03283 0.03465 0.04336 0.55228 0.03009  0.02727 0.03174 0.04317
099 30 26.60737  3.67301 1.35745  0.35143 0.43758 1.59225 3.09081 0.35566  0.18459 0.3016  1.30339

50 12.2836 3.62686 1.06275  0.45277 0.53781 1.18304 2.57773 0.44368  0.2629 0.39931 1.03062
75  10.55861 1.79743 0.56299  0.23159 0.26936 0.58793 1.37667 0.22737  0.14151 0.20805 0.55727
100 5.35789 1.6595 0.498 0.22175 0.25642 0.52481 1.02274 0.21537  0.13764 0.1997  0.49141

200 3.14077 1.34161 0.18761 0.10514 0.11691 0.19243 1.00173 0.08777  0.07471 0.09821 0.18651
300 2.60641 1.09939 0.12658  0.08506 0.09176  0.1286 0.60674 0.07398  0.06515 0.08051 0.12608

Table 2. Estimated MSE for non-robust and robust estimation methods when p =4, ¢ = 5,
and 20% outliers.

o n Traditional Non-robust Robust estimator Non-robust Robust estimator
BMLE BRRE BRRE BRRE BRRE BRRE BMRTE BMRTE BMRTE BMRTE BMRTE
(LSMLE) (LMDPDE) (SMLE) (MDPDE) (LSMLE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 3.8749 3.17921 0.47107 0.32887 0.35115 0.47975 2.99636 0.31343 0.26813 0.31433  0.4682
50 3.325 3.06512 0.14821 0.08837 0.09781 0.14862 2.97475 0.09708 0.06551 0.08403 0.14812

75  2.87535 2.41637 0.1294 0.09476 0.1012  0.12986 2.30602 0.09006  0.07654 0.0915  0.12929
100 2.67993 2.26012 0.13879  0.10838 0.114 0.13912 2.18952 0.09771 0.09188 0.10543  0.13872
200 2.531 2.11006 0.09313  0.07192 0.07569 0.09327 1.9834 0.06472  0.05935 0.06947 0.09311
300 2.32275 2.05674 0.08887  0.08229 0.08358 0.08896 1.96814 0.06976  0.07736 0.08137 0.08886
0.85 30 5.32214 3.90514 0.63928  0.50024 0.52512  0.64674 3.65478 045125  0.41869 0.48111 0.63711
50  3.36755 3.11516 0.19667  0.14936 0.1572  0.19727 3.05415 0.12887  0.12453 0.14435 0.19654

75  3.28625 2.35553 0.17729  0.15529 0.15963 0.17787 2.31443 0.14127  0.1407 0.15246 0.17714
100 3.13969 2.27581 0.14238  0.12167 0.12552  0.1426 1.96636 0.10667  0.1082 0.11909 0.14233
200 2.48196 2.1461 0.11743  0.10133 0.1045  0.11764 1.99094 0.09482  0.09065 0.09932  0.11738
300 2.3857 2.10208 0.084 0.06896 0.07179  0.08409 1.85218 0.06058  0.05949 0.06722  0.08399
0.90 30 5.74657 4.2361 1.3659 0.85108 0.9255  1.39447 4.03287 0.74767  0.64506 0.80126 1.35832

50 5.35932 3.41922 0.19856  0.14214 0.15079  0.19937 3.37099 0.1322 0.11677 0.13692  0.19838
75  3.61779 2.76638 0.20698  0.15808 0.16669 0.20777 2.65483 0.14584  0.13243 0.15321  0.2068
100 3.23058 2.47441 0.19277  0.16617 0.17114  0.19332 2.31909 0.13275  0.14869 0.16274  0.19265
200 3.05713 2.01524 0.13332  0.11002 0.11423 0.13362 1.50588 0.0932 0.09614 0.10735 0.13325
300 2.82472 1.76739 0.09828  0.08239 0.08545 0.09838 1.37372 0.08151  0.07288 0.08075 0.09826
095 30 7.10833 5.25115 225894  1.13513 1.26968 2.30967 4.30734 1.1106 0.7868 1.04717  2.24639
50  7.02289 3.95326 0.42148  0.27457 0.29506 0.42497 3.72787 0.24127  0.21716 0.26198 0.42071
75  4.8097 3.88319 0.18895  0.13594 0.14437 0.18989 3.18977 0.11416  0.11144 0.13107 0.18875
100 4.51296 3.5039 0.16369  0.12935 0.13516 0.16425 2.59601 0.11522  0.111 0.1257  0.16357
200 3.78428 2.805 0.13883  0.11048 0.1154  0.13925 2.31029 0.09687  0.0946 0.10732  0.13874
300 3.37906 2.44077 0.11619  0.09729 0.10068 0.11639 1.51024 0.08838  0.08645 0.09525 0.11614
099 30 3441163  5.33942 3.84577  1.07395 1.30803 3.98942 5.03074 1.02948  0.60297 0.93931 3.74442
50 14.01101  4.49891 2.0611 0.85588 1.0012  2.24079 3.80164 0.74526  0.51913 0.75559 2.00624

75 11.71253  3.44133 1.37424  0.56016 0.64667 1.41905 3.75141 0.53074  0.3558 0.50771 1.36438
100 7.96278 3.33563 1.11703  0.52045 0.59258 1.16129 3.43875 0.50676  0.3422 04744  1.10642
200 5.14339 2.96119 0.352 0.21534 0.23432  0.35834 2.65998 0.18114  0.16504 0.20386 0.35058
300 4.8189 2.1478 0.27411 0.19432 0.20691 0.2772 1.80348 0.16498  0.15663 0.18585 0.27339
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Table 3. Estimated MSE for non-robust and robust estimation methods when p = 4, ¢ = 10,
and 10% outliers.

o Traditional Non-robust Robust estimator Non-robust Robust estimator
BRRE  BRRE BRRE BRRE BMRTE BMRIE  BMRIE BMRIE
BMLE BRRE 1 sMLE) (LMDPDE) (SMLE) (MDPDE) BMRTE joMIE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 3.08398  3.54757 125671  0.91549 1.00968 139312 326314  0.85787  0.73889 0.85643 1.1741
50 344878 298579  0.41431  0.40422 040336 041742 256463 046234 041064 0.40285 0.41325
75  3.10808  2.7527 03258 033151 032621 032765  2.89138  0.37905  0.3468 033113 0.32502
100 2.66266 251306 033207 031713 031891 033474 243744 034533 0.31396 0.3145  0.33076
200 248042 234252  0.19163  0.20892 0.20306 0.19145 224961 02706  0.2257 0.21035 0.19167
300 226274  2.1264 0.17207  0.18498 0.18135 0.17169  2.04517 022433  0.19674 0.18671 0.1722
0.85 30 553882  4.63301 1.61686  1.1783 128277 1.7551 4.09746 1.15438  0.9333 1.09126  1.53435
50  3.6307 3.03408 041728  0.3744 0.38075 042256  2.69429  0.39999  0.36123 0.36969 0.41566
75 316613 294942 035143 0.35661 035167 035364 292726 041256  0.36981 0.35576  0.35039
100 3.03526  2.60422 024874  0.24471 0.24403 0.24963  2.38361 027134  0.25104 0.24492  0.24839
200 242572 23324 0.28482  0.28455 028314 028563 226363 031504  0.28974 0.28411 0.28435
300 227336 2.12996  0.1839  0.19011 0.18813 0.18378  2.03023 022154  0.19697 0.19095 0.18392
090 30 8.33461  4.87062 224868  1.33759 153561 2.57536  4.35058 1.2906  0.90577 1.18822  2.07747
50 5.83611  4.86237  0.59784  0.48951 051036 0.61414  4.1203 0.50049  0.43585 047413 0.59174
75 349394 333958  0.53035  0.45828 047331 054293  3.19863 047892  0.41908 0.44569  0.52429
100 330985 295091  0.36493  0.32028 032699 037061 271265  0.35019  0.30247 0.31335 0.36247
200 3.00538  2.68443  0.32727  0.29382 030006 033122 247628 030295  0.27599 0.28786 0.32533
300 2.55248  2.16614  0.21843  0.21631 021618 021889  1.9836 023654 021703 021583 0.21825
0.95 30 9.07345  6.44803 1.92464  0.89093 1.03623 221386  5.72455  0.87063  0.61113 0.79438  1.81085
50 858366  4.96358 1.07715  0.70815 0.77506 1.14388 428323  0.67574  0.54232 0.66056  1.05309
75 502237 421155 049106  0.38985 0.40986 0.50846  3.79318  0.40019  0.34138 0.37638  0.48507
100 4.58647  3.99663 044273 036976 03852 045399  3.61819 036391  0.32799 0.35828 0.43834
200 3.72993  3.464 031665  0.27235 0.28079 032207 325687 028429  0.251 0.26641 0.31471
300 330791 2922 0.29893  0.2716 02775 030216 271478 027657  0.25498 0.26744 0.29774
0.99 30 47.12558  12.31155 327466  1.55295 1.93704 439102  10.80985  1.52496  0.84349 125138 2.63319
50 20.64951 10.99776  3.12991  1.80045 221345 4.00063  8.81813 155186 0.94773 1.44494  2.56159
75 15.76569  6.98031 1.82486  0.76155 0.91473 2.15354  5.5116 0.85901  0.44326 0.64885 1.69934
100 9.11107  4.43714 159133 0.77378 0.93627 192081  3.74876  0.59998  0.45476 0.66593  1.4495
200 636343 423202  0.8896  0.51662 059113  0.9928 3.56591 0.54827 035391 0.46586  0.84745
300 4.74903 336754  0.63524  0.40483 0.4494  0.68401 298224 040519  0.29488 0.37154  0.61515
Table 4. Estimated MSE for non-robust and robust estimation methods when p = 4, ¢ = 10,
and 20% outliers.
o Traditional Non-robust Robust estimator Non-robust Robust estimator
BRRE  BRRE BRRE  BRRE BMRTE BMRIE  BMRIE BMRIE
BMLE BRRE 1 SMLE) (LMDPDE) (SMLE) (MDPDE) BPMRTE " qoMIE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 6.15759 566758 246623  1.85247 1.98072 2.64361 547157 1.65757  1.56496 177072 238174
50 548342 535034 098921  0.93796 0.94497 099334 529175 095757  0.92152 0.93269 0.98804
75 497408 475551  0.82176  0.8117 0.81293 0.82395  4.64926  0.83298  0.80878 0.80967 0.82088
100 4.48439  4.11387  0.89272  0.8655 0.87101 0.89557  4.00313  0.86504  0.84995 0.86134 0.89162
200 4.28987  3.82816  0.63012  0.64436 0.63929 0.63016  3.65964  0.68826  0.65696 0.6449  0.6301
300 4.05184  3.8001 0.63611  0.64348 0.64155 0.63598  3.54683  0.66487  0.65022 0.64451  0.63615
0.85 30 8.14544  7.00649  2.80673  2.19393 23361 293415  6.9246 206453 1.82003 208779 2.74822
50 5.62173 548519 095973  0.87159 0.88602 0.96602  5.425 0.86657  0.83387 0.86228 0.95796
75 5.61152 495521  0.87421  0.86044 0.86366 0.87703  4.53182  0.86973  0.85058 0.85702 0.87275
100 5.1109 439858  0.67913  0.66122 0.66419 0.68046  3.98297  0.67428  0.65326 0.65889 0.67868
200 4.18637  4.06702  0.82954  0.82154 0.82299 0.83073  3.9609 0.83054  0.81662 0.81964 0.82897
300 3.99128  3.75828  0.63221  0.63447 0.63342 0.63231  3.52669  0.65448  0.63776 0.63456  0.63217
090 30 8.51678  7.26985  4.96261  3.05446 341515 541446  6.9604 290775  2.17232 2778722 4.77798
50 810939  5.67505 1.19165  1.02159 1.05175 120671  5.62142 099763  0.94083 1.00174  1.18697
75 581092  5.45683 1.19495  1.08778 1.11077 120768  4.72944 1.06428 102385 1.07191 1.19
100 530037  4.93497  0.88872  0.82382 0.83805 0.89605  4.61259 07857  0.77834 0.81302 0.88633
200 5.0931 4.7801 0.84004  0.7938 0.80351 0.84446 455579 077982  0.76324 0.78623 0.8384
300 4.61631 401613  0.69701  0.68872 0.6901  0.69761  3.58719  0.69864  0.68473 0.68747 0.69679
095 30 1036219 865022  5.65653 2.8714 327023 6.16769  8.17144 245896  1.99059 262312 5.50729
50 1024682  7.12794 257568  1.74508 1.87653 2.67018  6.56105 1.60519  1.40514 1.65299  2.54389
75 7.5605 6.83812  1.10812  0.94556 097549 1.12684 637414 09246  0.86819 0.92617 1.10207
100 7.08362  6.59366  0.9808  0.88026 0.90006 0.99118  6.25846  0.85507  0.82397 0.86647 0.97728
200 6.16248 594612  0.78963  0.73093 0.74282  0.7957 584692 071579  0.69637 0.72252  0.78758
300 5.73657 534922 0.79873  0.75733 0.76577 0.80206  5.12244 074979  0.73226 0.75147 0.79757
099 30 5354163 1351391  11.64353 5.42388 6.7005  15.22485 1140885  4.54351  2.98715 455771 10.24972
50 379455  9.89207  6.32926  3.65982 438473 7.81185 845659  2.67948  2.19213 3.15532  5.62359
75 25.64605 891053  4.05866  2.03371 235288 4.56183  7.53901 212392 1.31431 1.80952 3.88973
100 1099714  6.50208  3.45403  1.77697 206563 3.96749 597096  1.9646  1.1495 156654 3.25095
200 841055  6.00051 1.79108  1.25081 136121 191694  5.26811 1.21951  0.98716 117713 1.74611
300 7.2251 5.76921 13667  1.0409 1.11009 142933  5.10499 1.00659  0.85437 0.98944  1.34297
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Table 5. Estimated MSE for non-robust and robust estimation methods when p = 8, ¢ = 5,
and 10% outliers.

o n Traditional Non-robust Robust estimator Non-robust Robust estimator
BMLE BRRE BRRE BRRE BRRE BRRE BMRTE BMRTE BMRTE BMRTE BMRTE
(LSMLE) (LMDPDE) (SMLE) (MDPDE) (LSMLE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 5.32426 2.92399 1.38863  0.6332 0.7115  1.52667 2.24503 0.57076  0.4973 0.60153 1.35523

50  2.78709 2.1314 0.13357  0.11925 0.1203  0.13416 2.00785 0.16759  0.12055 0.11882 0.13344
75 2.55563 1.86764 0.14575  0.12144 0.12544  0.14646 1.71276 0.13248  0.11079 0.11919  0.14559

100 2.29911 1.86412 0.05254  0.0463 0.04679  0.05267 1.61635 0.08616  0.0469 0.04609 0.05252
200 1.88056 1.66862 0.03831  0.03191 0.03265 0.03838 1.41193 0.04543  0.03114 0.03153  0.0383
300 1.79806 1.46953 0.03903  0.03578 0.03595 0.03907 1.24409 0.07702  0.03681 0.03578  0.03902

0.85 30 6.43345 2.97315 1.5563 0.87829 0.95588 1.59887 2.74044 0.7381 0.70211 0.83733  1.54707
50 4.12232 2.6096 0.25957  0.20563 0.2067  0.26119 2.34658 0.25993  0.21326 0.2054  0.25924
75 2.80087 2.4222 0.26012  0.19565 0.20362 0.26198 1.88643 0.22419  0.17856 0.19129 0.25973

100 2.46475 1.66534 0.08938  0.07467 0.07688  0.08965 1.6037 0.09095  0.0689 0.07333  0.08933
200 1.97699 1.41782 0.05166  0.04812 0.04695 0.05175 1.13835 0.09407  0.056 0.04888 0.05164
300 1.90991 1.35075 0.0396 0.03557 0.03585 0.03966 1.05773 0.07181  0.03631 0.03549 0.03958
090 30 8.76589 3.2144 1.45174  0.72808 0.80425 1.49344 2.92184 0.5515 0.55464 0.68704 1.44311
50 3.76869 2.16734 0.3245 0.2236 0.23603  0.3276 1.88151 0.22663  0.19525 0.21679  0.32385
75  3.07688 2.01468 0.31936  0.2517 0.25938  0.32256 1.57771 0.27778  0.23706 0.24766 0.31867

100 2.55572 1.79546 0.10235  0.09182 0.09175 0.10274 1.45695 0.12619  0.09686 0.09213  0.10227
200 2.17002 1.64308 0.09342  0.08396 0.08456 0.09367 1.40509 0.09645  0.08526 0.08377 0.09336

300 1.94456 1.4171 0.037 0.03317 0.03342  0.03705 1.16475 0.05767  0.03398 0.03311  0.03699
095 30 16.72502  4.92647 2.73733 1.22329 1.36596 2.91341 3.27857 1.12525  0.90844 1.14431  2.69959
50  6.4583 3.25201 0.46961  0.2713 0.28964 0.47818 2.60337 0.26854  0.23724 0.26196 0.46785

75  4.89723 2.80633 0.4165 0.29689 0.3085  0.42162 2.28323 0.3065 0.27477 0.29087 0.41543
100 3.81666 2.58717 0.19243  0.14963 0.15384 0.19396 2.26716 0.1697 0.14409 0.14752  0.19211
200 2.74401 2.33211 0.09503  0.07534 0.07555 0.09549 2.23159 0.12167  0.08153 0.07561  0.09494
300 2.64417 1.55027 0.0805 0.07295 0.07257 0.08071 1.30024 0.10429  0.07772 0.07321 0.08046
099 30 6638526  21.55779  7.54753  3.30369 4.19356 10.11851 16.15912  3.15141 1.85076 2.92258 6.70302
50  26.89449  6.21287 2.29039  0.87953 0.9998  2.46892 3.37033 0.86212  0.63621 0.81574 225468

75 17.24697  6.00886 2.29095 1.0865 1.25205 2.53302 2.79798 1.0386 0.74234 0.99791 2.23525
100 11.21879  3.32262 0.73281  0.35515 0.38222 0.75892 2.26361 0.36605  0.31235 0.34194  0.72757
200 7.96539 1.9305 0.35063  0.2005 0.2101  0.35764 1.33744 0.2344 0.19265 0.19623  0.34923
300 6.47835 1.48865 0.28659  0.17747 0.1856  0.28969 0.80457 0.19367  0.1676 0.17351 0.28595

Table 6. Estimated MSE for non-robust and robust estimation methods when p = 8, ¢ = 5,
and 20% outliers.

o n Traditional Non-robust Robust estimator Non-robust Robust estimator
BMLE BRRE BRRE BRRE BRRE BRRE BMRTE BMRTE BMRTE BMRTE BMRTE
(LSMLE) (LMDPDE) (SMLE) (MDPDE) (LSMLE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 6.03183 5.34731 4.39709 1.6374 1.86149 4.64766 5.29159 1.33623 1.21384 1.54012 4.34266

50 5.6615 4.72255 0.40636  0.34221 0.35059 0.40725 4.63312 0.34434  0.32071 0.33714  0.40618
75 59164 4.35949 0.34714  0.26185 0.27417 0.3481 421619 0.26532  0.23144 0.25555 0.34694
100 5.35227 4.24839 0.14538  0.12581 0.12861 0.14552 4.13829 0.14253  0.11871 0.12412  0.14535
200 4.58084 3.69734 0.11971  0.10502 0.10721 0.11978 3.33053 0.11104  0.09905 0.10366 0.1197

300 3.93839 3.40422 0.11732  0.10485 0.10535 0.11738 3.2317 0.14422  0.1075 0.10477 0.11731
0.85 30 832019 5.56396 6.31385  3.04238 337117 6.41421 5.52672 2.38397  2.25953 2.86054 6.29328
50  6.60477 5.2986 1.21916  0.7775 0.82952  1.2236 5.16504 0.70237  0.65219 0.75013  1.21825
75  6.05807 4.45751 0.74262  0.5265 0.55564 0.74542 4.42025 0.46551  0.4488 0.50951 0.74205
100 5.80524 4.00621 0.23237  0.18787 0.19428 0.23269 3.68514 0.19966  0.17049 0.18402 0.23231
200 4.80435 3.82202 0.14748  0.13171 0.13276  0.14757 3.3143 0.16 0.13222 0.13125 0.14746
300 4.78643 2.8635 0.11367  0.10224 0.10351 0.11373 2.58 0.12522  0.10021 0.10158 0.11366

0.90 30 10.71589  5.13428 9.60152  3.83866 4.34121 9.74763 4.81408 2.7806 2.69664 3.57012 5.57216
50 6.52946 4.97365 0.78749  0.51035 0.54565 0.79202 4.52799 0.4482 0.41893 0.49 0.78656
75  6.10125 4.57888 0.74464  0.54085 0.56604 0.74906 4.41446 0.50367  0.47964 0.52726  0.74372
100 5.07246 4.1395 0.26374  0.21969 0.22427  0.26422 3.75331 0.23556  0.21127 0.2173  0.26364
200 5.05438 3.99594 0.25987  0.21934 0.22407  0.26022 3.74455 0.23225  0.20894 0.21666 0.25979
300 4.98219 3.6552 0.11341  0.10381 0.10473  0.11346 3.47193 0.1282 0.10311 0.10337 0.1134

095 30 18.70803  6.56193 12.87734  7.04438 8.18353 13.78167  5.45291 5.59887  4.59079 6.43105 6.69873
50  9.48829 5.94035 1.81463  0.97688 1.0685  1.83298 5.2677 0.82661  0.75588 0.92513  1.81091
75 7.84901 5.59758 0.96788  0.61406 0.65464 0.97438 5.20485 0.55597  0.51545 0.59137 0.96655
100 6.7178 5.27849 0.39197  0.30118 0.31158 0.39355 5.13766 0.30621 0.27816 0.29539 0.39165

200 6.14107 5.2455 0.22082  0.1646 0.17015  0.22138 5.05607 0.17714  0.15488 0.16163  0.2207
300 5.6568 4.52196 0.19699  0.17412 0.17596 0.19724 4.30407 0.18907  0.17262 0.17323  0.19694
099 30 98.82904 4474133 27.27003  7.3956 9.49943 36.18372  40.57217  6.76694  3.89491 6.45721 15.2833
50  30.2868 8.64646 6.93006  2.16406 2.53639 7.27102 5.59133 1.93273 1.38567 1.96262 6.86274
75 26.75165  7.9603 5.31479  2.28945 2.64932  5.69947 5.5411 2.08955 1.49833 2.08991 5.23206

100 15.48847  6.51094 1.82086  0.79244 0.88214 1.85891 4.34398 0.74952  0.60486 0.7438  1.8132
200 13.38036  5.02655 091108  0.46222 0.50309 0.92239 4.12049 0.444 0.37842 0.43999  0.9088
300 11.14839  3.67117 0.70595  0.39112 0.42204 0.71108 2.39053 0.37476  0.32344 0.37352  0.70491
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Table 7. Estimated MSE for non-robust and robust estimation methods when p = 8, ¢ = 10,
and 10% outliers.

o Traditional Non-robust Robust estimator Non-robust Robust estimator
BRRE _ BRRE BRRE  BRRE BMRTE BMRTE _ BMRTE BMRTE
BMLE BRRE 1 SMLE) (LMDPDE) (SMLE) (MDPDE) BPMRTE  {oMIE) (LMDPDE) (SMLE) (MDPDE)
080 30 7.08557 693734  5.83648 4.11309 426103 561904 628064  2.3878  2.60639 2.01585 3.73374
50 291879 259173 0.69559  0.60555 0.61579 071067  2.35651 0.68807  0.59961 0.60093  0.69167
75 258506  2.4788 0.71874  0.63035 0.64958  0.73728 233675  0.66586  0.60002 0.6228  0.71235
100 233199 222761  0.32244  0.33726 033039 032276  2.11515 040716  0.36116 0.33933  0.32235
200 1.97365  1.88386  0.26458  0.27137 0.26865 026464  1.84468 032406  0.28365 0.27292  0.26455
300 192564  1.83129 026761  0.28211 027705 026745 171793 034667  0.29915 0.28394  0.26763
0.85 30 8.11991 564452 438538  2.59312 3.00239  5.0665 4.89559 243279  1.90703 243185  4.11524
50 435384  3.7353 141192 1.03621 1.11047  1.48003  3.37778 1.00365  0.90295 1.00881 139242
75 2.83664  2.71001 1.07756  0.77908 0.8404 113658  2.56065  0.75185  0.66188 075273 1.05916
100 273869  2.18233  0.48388  0.43081 043761 049064  1.87462 047849  0.42269 042686  0.48198
200 2.10554  1.92015  0.34782  0.34559 034327 034904  1.85593 041538  0.35653 0.34584  0.3475
300 197612  1.90477 026245  0.26516 0.26304 026295  1.79201 032107  0.27484 0.26589  0.26229
0.90 30 9.94832  6.64374  4.62421  2.60223 300552  5.35049  5.54504 244701  1.88446 241953 4.35285
50 4.03811  3.13152 127656 0.90598 0.98038 1.35725  2.61038  0.87747  0.76908 0.87514  1.2525
75 320767  2.76859 1.19957  0.94683 1.01404 126977 242977  0.90808  0.82174 091961  1.17254
100 2.9214 249382  0.62772  0.52463 0.54294  0.64297  2.1888 0.53943  0.49061 0.51577  0.62332
200 228028  1.97051  0.50675  0.44528 045425  0.5148 1.85879  0.48954  0.42966 043985  0.50441
300 196218  1.90025 025143  0.26857 026156 025159  1.7727 032096  0.29046 027024 025138
095 30 18.67138 11.23936  6.64 3.85106 458746  8.08275  9.09761 3.68704  2.60662 3.54148  6.05953
50 7.48446 541869 231549 141244 1.5988  2.56972  4.53002 136062 1.07439 1.33357  2.23409
75 540093  4.15875 1.63528  1.07722 1.1928 177176  3.56361 1.02514  0.86816 1.03116 159343
100 4.0764 337542 096167  0.73057 077905  1.00704  2.86618  0.7158  0.63573 0.70893  0.94787
200 291413 258948  0.55016  0.40211 042298 056637  2.41983 043931  0.36862 0.39336  0.54633
300 2.78788 231533 051131  0.44591 04589 051986  2.04736 047498  0.42066 0.43996  0.50879
0.99 30 727248  46.04896 2244061 1296224 1548505 20.85603 41.52265  10.73165 9.70638 1101371 12.1437
50 3073471 1811691  4.41237  2.52812 307086  5.53265  13.61907  2.53113  1.5992 227876 3.93261
75  23.86083  18.08586  3.90374  3.41181 421972 469542 1297199  2.4031 1.07141 2.06348  3.05693
100 12.73777 733884  2.65861  1.28559 152697  3.14474  5.33166 140014 0.89061 11873  2.51642
200 8.54659  4.25763 1.60539  0.79406 091813 179775  3.07982  0.7515  0.5841 0.74404  1.55666
300 751719  4.21078 131344 0.71007 079256 140952  2.88795  0.66751  0.54343 0.66749  1.28986
Table 8. Estimated MSE for non-robust and robust estimation methods when p = 8, ¢ = 10,
and 20% outliers.
o Traditional Non-robust Robust estimator Non-robust Robust estimator
BRRE  BRRE BRRE  BRRE BMRTE  BMRTE BMRTE BMRTE
BMLE BRRE 1 sMLE) (MDPDE) (SMLE) (MDPDE) BMRTE  (oMIE) (LMDPDE) (SMLE) (MDPDE)
0.80 30 8.82739 622272 5.66219 548573 6.0809  6.0253 576935  4.34538  3.9829 426733 622949
50 5.93879  5.75381 149862 1.29035 13246 151561  5.69714 127462 122177 127619 1.49453
75 5.67876  5.17575 143165  1.28211 131238 1.44792  5.05159 12639 1.22061 127064 142723
100 538694  5.15211 0.8571  0.84454 0.84459  0.85815  4.86833  0.84044  0.84905 0.84413  0.85685
200 4.59554  4.46663  0.75839  0.7567 0.75504  0.75876 440105  0.73903  0.73518 0.75718  0.75829
300 4.02426 375397 0.73422  0.73958 073697  0.73436  3.51204  0.72048  0.7292 0.72038  0.72418
0.85 30 894377 634229  6.05103  5.66231 6.00216  6.10451 578164  5.04478  4.11317 534328 5.14869
50  6.68658  6.08499  3.32338  2.40621 256229 340117  5.77901 216231 2.08294 234621 3.30445
75 6.0248 5.83793  2.04832 155653 1.6467 210358  5.45669 139753 1.34713 15121 2.03471
100 4.88141  4.71763 11199 1.00928 102751 1.12691  4.65986 1.01073  0.96838 1.00032  1.11821
200 4.87559  4.493 0.91085  0.8833 0.88625 091226 420237 09188  0.88061 0.88181  0.91052
300 4.83208  3.98636  0.75021  0.74541 0.74467  0.75077  3.37286  0.784 0.75045 0.74536  0.75007
090 30 1103616 7.92249 629488  5.65315 645221 630139 679138  4.92324  4.13895 531808  6.04353
50 670318  5.67534  2.48053  1.83418 195432 2.56759  5.25412 1.67786  1.5642 177656 2.45831
75 621378 555504  2.17497  1.82412 190924 224172 4.74491 170039 1.61787 17794 2.15267
100 5.2906 4.85344 139363 1.2125 124608  1.40878  4.69528 1.17069  1.12995 1.19511 138978
200 5.06258  4.66659 113739 1.00928 1.03167  1.14647  4.05568  0.99728  0.95312 0.99683  1.1351
300 5.02868  4.43681  0.7204  0.71317 071224 072117  3.95455  0.75514  0.7193 0.713 0.72022
095 30 20.6934  12.12534 778511  6.34487 727944  8.80189  10.00104  6.80838  5.83209 6.52586  7.71848
50 9.85152  7.73651 559356 3.25304 3.63857 596448 672439 292211  2.47103 3.08117  5.49796
75 811659  6.80471 345616 2.28989 249783  3.62386  6.03993  2.04761  1.85143 219713  3.41387
100 6.9252 6.10335 1.88736  1.52206 159481 193332 5.43962 1.44746  1.34934 148507  1.87494
200 624698  5.52764 1.15843  0.92608 0.96295 1.17485 539129  0.90797  0.84212 0.90757  1.15464
300 5.77177  5.46502 1.16673  1.05654 107719  1.17494  4.9971 1.04146  1.01091 1.04776  1.16469
0.99 30 106.90229 59.40106  14.56561 11.82064  16.19343 18.17106 51.05839  11.01016 6.41234 1043825 10.07316
50  39.44154 1849573 1044411 5.45969 6.5587  12.8078 154478 520708  3.40035 491328  9.7275
75 3338302 2196648  7.69568  5.82789 6.96489  9.3508 1320366 5.14659  3.61072 5.19246  6.56767
100 19.25723  10.06645  5.67036  3.00421 346103 6.35904  7.73574  2.77646  2.10588 278899  5.5008
200 17.41936  7.49841 3.55074  1.87745 21252 3.83585  5.89416 175526 1.37978 175901  3.48457
300 155475  7.20389  2.67246  1.41026 1.57168  2.8057 5.28717 136285  1.05212 132127 2.64304
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Figure 1. Estimated MSE for non-robust and robust estimators across sample sizes with 10%

outliers.
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Figure 2. Estimated MSE for non-robust and robust estimators across sample sizes with 20%

outliers.
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Figure 3. Estimated MSE for non-robust and robust estimators across dispersion parameter
with 10% outliers.
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Figure 4. Estimated MSE for non-robust and robust estimators across dispersion parameter

with 20% outliers.
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Figure 5. Estimated MSE for non-robust and robust estimators across multicollinearity level

with 10% outliers.
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Figure 6. Estimated MSE for non-robust and robust estimators across multicollinearity level

with 20% outliers.
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Figure 7. Estimated MSE for non-robust and robust estimators across the number of
explanatory variables with 10% outliers.
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Figure 8. Estimated MSE for non-robust and robust estimators across the number of
explanatory variables with 20% outliers.

Across all eight simulation scenarios, the results show that: Robust BMRTE estimators, particularly
BMRTE; s\ g and BMRTEypppg, consistently provide the lowest MSE values, regardless of sample
size, correlation level, or degree of outliers. BMLE and non-robust estimators are unreliable in
the presence of outliers and multicollinearity. Therefore, BMRTE g\ g is the most reliable and
recommended estimator, offering a practical and powerful solution for real-world count data with
outliers and multicollinearity issues.

5. Numerical analysis

This study draws on data sourced from the breast cancer Wisconsin (Diagnostic) dataset, originally
compiled from clinical cases at the University of Wisconsin Hospitals between January 1989 and
November 1991. The dataset includes diagnostic measurements from 569 patients. Previous analyses
of this dataset have been conducted by Abo El-Nasr et al. [41] and Rahmashari et al. [42].

Breast cancer remains a major global public health challenge, representing the most frequently
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diagnosed malignancy in women and the second most common cause of cancer-related deaths.
The disease is marked by uncontrolled proliferation of breast tissue cells, leading to considerable
morbidity. The current analysis employs radius mean—defined as the average distance from the
center to the periphery of sampled cells—as the response variable. This selection is motivated by
the variable’s utility in reflecting tumor size and spatial expansion, which serve as indicators of
disease progression. Unlike prior studies that emphasized classification of diagnostic outcomes, this
work adopts a regression-based approach to model tumor morphology as a function of diagnostic
and cellular characteristics. The use of a continuous measure, such as radius mean, permits the
application of a broader suite of statistical techniques and supports a more nuanced interpretation
of tumor development. This approach aids in identifying relationships between tumor characteristics
and disease severity. Alongside radius mean, the study incorporates ten predictor variables: diagnosis,
texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal
dimension. These covariates provide complementary information on histological attributes that are
clinically relevant to understanding tumor behavior and prognosis.

In this study, we investigate the impact of ten independent variables on the dependent variable, mean
radius (y), which represents the average distance from the tumor center to points on its perimeter. The
independent variables include: Diagnosis (x;), indicating whether the tumor is malignant (cancerous
and likely to spread) or benign (noncancerous and typically requiring less aggressive treatment); texture
(x2), measuring the standard deviation of gray-scale values in the image; perimeter (x3), reflecting the
average perimeter of the core tumor; area (x,), representing the size of the core tumor; smoothness
(xs), indicating local variation in radius lengths; compactness (xg), calculated as (perimeter? / area);
concavity (x;), capturing the severity of concave portions of the tumor contour; concave points (xg),
which count the number of concave segments along the contour; symmetry (xo), related to differences
in breast density; and fractal dimension (xjy), a measure used to approximate the complexity of the
tumor’s boundary.

Table 9 presents descriptive statistics for variables in the breast cancer dataset, including the
number of observations (7), minimum, maximum, mean, and standard deviation for each feature. The
mean texture value is 19.29 (range: 9.71-39.28), the mean perimeter is 91.97 pixels (range: 43.79—
188.50), and the mean area is 654.89 square pixels (range: 143.50-2501.00). Elevated values in these
metrics may reflect increased cellular irregularity, larger tumor dimensions, and more advanced disease

progression.
Table 9. Descriptive statistics of the breast cancer dataset variables.

Variable n Minimum Maximum Mean Std. Deviation
Diagnosis (x) 569 0.0000 1.0000 0.3726 0.4839
Texture (x,) 569 9.7100 39.2800 19.2896  4.3010
Perimeter (x3) 569 43.7900 188.5000 91.9690  24.2980

Area (x4) 569 143.0000 2501.0000 654.8891 351.9141
Smoothness (xs) 569 0.0526 0.1634 0.0964 0.0141
Compactness (x) 569 0.0194 0.3454 0.1043 0.0528
Concavity (x7) 569 0.0000 0.4268 0.0890 0.0797
Concave points (xg) 569 0.0000 0.2012 0.0489 0.0388
Symmetry (xo) 569 0.1060 0.3040 0.1812 0.0274

Fractal dimension (x;9) 569 0.0490 0.0974 0.0628 0.0071
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Smoothness averages 0.096 (range: 0.05-0.16), while compactness averages 0.104 (range:
0.02-0.35). Reduced smoothness and elevated compactness are associated with irregular morphology
and higher tissue density, potentially indicating more aggressive tumor growth.

Concavity shows a mean of 0.089 (range: 0.00-0.43), and concave points average 0.049 (range:
0.00-0.20). Higher values suggest more pronounced contour concavities, which may correlate with
invasive tumor characteristics.

Symmetry averages 0.181 (range: 0.11-0.30), and fractal dimension averages 0.063 (range:
0.05-0.10). Asymmetry and complex fractal patterns may indicate structural abnormality and
aggressive phenotypic behavior.

To begin with, we assess the presence of multicollinearity and outliers in the dataset. In this study,
multicollinearity is examined using three different approaches. The first approach involves inspecting
the correlation matrix of the explanatory variables. As shown in Figure 9, there are strong correlations
among several variables, particularly between x; and x4, x; and xg, and x¢ and x7, which indicates
potential multicollinearity. In addition, we calculate the condition number, which is defined as the
square root of the ratio of the matrix U’s largest to smallest eigenvalue. The eigenvalues of our matrix
are as follows: 1.754524E+12, 1.560116E+09, 3.966556E+07, 3.313754E+05, 1.515372E+04,
1.007115E+04, 1.198765E+03, 7.172950E+02, 3.086800E+02, 1.146600E+02, and 1.887900E+01.
Using these values, the condition number is calculated to be approximately 304854.8, which is
significantly higher than the commonly used threshold of 100. This indicates the presence of severe
multicollinearity. These findings are further supported by the variance inflation factors (VIFs) of the
explanatory variables, which are: 3.126, 1.325, 89.300, 61.937, 3.026, 15.433, 12.742, 24.844, 1.872,
and 6.203. We observe that several VIF values exceed the critical value of 10, further confirming the
existence of strong correlations among the variables and indicating severe multicollinearity, which may
adversely affect the interpretability and reliability of the data’s estimates.

x10 . .
0.58 x5 ‘ .
0.56 x9 .
0.57 | 0.66  0.60  x6 ‘. ‘ ‘
0.88  x7 ‘ . ’ .
0.55 0.83 | 092 «x8 ‘ . .
0.60 | 0.70 | 0.78 | «x1 . ‘
0.56 = 0.72 | 0.85 0.74 x3 ‘

0.69 0.82 0.71 0.99 x4

x2

Figure 9. Correlation matrix for independent variables in the breast cancer data.

This diagnostic plot in Figure 10 highlights several concerns with the model, particularly regarding
outliers and influential points. The residual distribution and Q-Q plot indicate that the residuals don’t
follow a normal distribution, especially at the tails, suggesting the presence of outliers. In the residuals
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vs. fitted values plot, we see a curved pattern and some points that are far from the zero line, which
could point to model misspecification and additional outliers. The Cook’s distance plot stands out by
identifying a few data points, especially one that has an unusually large effect on the model’s results.
Moreover, the boxplot in Figure 11 of all variables shows clear evidence of extreme values, particularly
in variable x4, which has many high outliers well outside the interquartile range. Other variables,
like x3 and vy, also show mild outliers. These findings strongly suggest the presence of influential
observations and indicate that the dataset might benefit from transformation, outlier handling, or robust
regression methods.
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Figure 10. Model diagnostic plots showing residual distribution, Q-Q plot, residuals vs fitted
values, and Cook’s distance.
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Figure 11. Boxplot of all variables.

AIMS Mathematics Volume 10, Issue 9, 21549-21580.



21574

After identifying issues with multicollinearity and outliers in the data, we will model the data
using the traditional Beta model. This will include BMLE for the basic model, along with unbiased
estimators that address multicollinearity alone, such as BRRE and BMRTE. Additionally, we will
employ robust estimators that address both multicollinearity and outliers, including: BRREjgwvi,
BRREmpppE; BRREsmLE, BRREvpppE, BMRTE  spi g, BMRTE vpppe; BMRTEsy g, BMRTEwpppE-

Table 10 presents the estimated coeflicients and MSE for both non-robust and robust estimation
methods applied to the breast cancer dataset. The traditional BMLE exhibits the highest MSE,
indicating poor performance, likely due to the presence of multicollinearity and outliers in the data.
Non-robust estimators such as BRRE and BMRTE show noticeable improvement in MSE with more
superiority for BMRTE, but the most significant gains are seen with robust variants. Among them,
BMRTE; smie achieves the lowest MSE value of 61.31, closely followed by BMRTE; yipppg and
BMRTEgw g, which also yield low MSEs. These robust methods are designed to mitigate the impact
of both multicollinearity and outliers, and their effectiveness is reflected in the consistent and stable
coefficient estimates across different robust techniques. For example, parameters like 8s and S,
which show large fluctuations under MLE, become more stable and moderate under robust estimators.
Overall, the findings suggest that proposed robust BMRTE techniques, particularly BMRTE; g\ g,
provide more reliable and accurate coefficient estimates in the presence of data contamination and
multicollinearity.

Figure 12 shows the results of a comparison of the performance of three estimators, BMILE, BRRE,
and BMRTE, based on their MSE and Bias across different values of the shrinkage parameter k. Among
the three, BMRTE consistently delivers the best performance, achieving the lowest MSE while keeping
the bias well-controlled. This advantage is especially noticeable at intermediate values of k, where
the estimator effectively balances the trade-off between bias and variance. These results highlight
BMRTE’s strong robustness in handling multicollinearity and outliers, making it a reliable choice
across various scenarios.

Through the empirical validation presented in Table 11, all theoretical conditions derived in
Theorems 1-7 are rigorously confirmed using real breast cancer data. The results unequivocally
support the superiority of the proposed estimator ﬁBMRTELSMLE over a range of competing estimators
under various multicollinear and outlier data. Below is a detailed itemization of the validations:

e In Theorem 1, the necessary condition (?5/15 + AkA(d + l)z&iSMLE,j — (A + k(d + 1))? < 0, for
all j=1,...,p+ 1, is satisfied for j = 1,..., 11. This confirms the superiority of the estimator
BBMRTE sy OVET BemiE-

e In Theorem 2, the necessary condition (4; + k)*(@A; + k*(d + 1)?&*Lsmie;) — (4, + k(d + 1)*($A; +
kzd/zMLEj) <0, f9r all j =1, o P 1, is satisfied for j = 1,..., 11. This confirms the superiority
of the estimator BpyrrE, o OVET BRRRE-

e In Theorem 3, the necessary condition k*(d + 1@ swig; — k*(d + 1)*@*wig; < 0, for
all j =1, ..., p+1, is satisfied for j = 1,...,11. This confirms the superiority of the estimator

BBMRTELSMLE over Bpyrre-

e In Theorem 4, the necessary condition dA j((kzd’iSMLE,j(d +2) = 2¢k)A; + k> 2k gy d+1)-

éb(d + 2))) <0, forall j=1,...,p+ 1, is satisfied for j = 1,...,11. This confirms the superiority

of the estimator BBMRTELSMLE over BBRRELSMLE. X A
e In Theorem 5, the necessary condition (1; + k)*(¢A; + k*(d + 1)*@ 1 smie) — (4; + k(d + 1))* (¢4, +
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k*&* mpepe;) < 0, forall j = 1,..,p + 1, is satisfied for j = 1,...,11. This confirms the
superiority of the estimator ﬁBMRTELSMLE over ,Z?BRRELMDPDE.

e In Theorem 6, the necessary condition (4; + k)*(@A; + k*(d + 1)?&*Lsmie;) — (4, + k(d + 1))*($A; +
kz&ZSMLEj) <0, for all j =1, ...,pA+ 1, is satisfied for j = 1,..., 11. This confirms the superiority
of the estimator BgyirrE, g OVET BBRREgy -

e In Theorem 7, the necessary condition (4; + k)*(@A; + k*(d + 1)?&*Lsmie;) — (4, + k(d + 1)*($A; +
kK*&*mpppE) < 0, forall j = 1,..., p+1, issatisfied for j = 1,..., 11. This confirms the superiority

of the estimator BgyrrE, i OVET BBRREyppos-

Table 10. MSE and coeflicients of all non-robust and robust estimation methods for breast
cancer data.

Coefficient Traditional Non-robust Robust estimator Non-robust Robust estimator
BMLE BRRE BRRE BRRE BRRE BRRE BMRTE BMRTE BMRTE BMRTE BMRTE
(LSMLE) (LMDPDE) (SMLE) (MDPDE) (LSMLE) (LMDPDE) (SMLE) (MDPDE)
Bo -3.29027 -3.1096 -3.15181 -3.09896 -3.1096 -3.1096 -3.02363 -3.06139  -3.00913 -3.02363  -3.02363
Bi 0.00883 0.01897 0.0119 0.01551 0.01897 0.01897 0.02566 0.01934  0.02269 0.02566  0.02566
B2 -0.00017 -0.00083 -Te-04 -0.00093 -0.00083  -0.00083  -0.00123 -0.00114  -0.00135 -0.00123  -0.00123
B3 0.02086 0.0187 0.01953 0.01863 0.0187 0.0187 0.01742 0.01815  0.01725 0.01742  0.01742
Ba -0.00059 -0.00048 -0.00053  -0.00047 -0.00048  -0.00048  -4e-04 -0.00045  -0.00039 -4e-04 -4e-04
Bs 0.42024 -0.12534 -0.20148  -0.15103 -0.12534  -0.12534  -0.20987 -0.25832  -0.22735 -0.20987  -0.20987
Be -0.64411 -0.42385 -0.38255  -0.39538 -0.42385  -0.42385  -0.33685 -0.2962 -0.30778 -0.33685 -0.33685
B -0.03893 -0.14092 -0.1577 -0.10243 -0.14092  -0.14092  -0.15314 -0.16021  -0.11585 -0.15314  -0.15314
Bs -0.34447 -0.03446 0.04821 -0.03019 -0.03446  -0.03446  -0.00751 0.04684  -0.00341 -0.00751 -0.00751
Bo -0.03807 -0.17306 -0.16847  -0.20542 -0.17306  -0.17306  -0.24105 -0.24124  -0.27108 -0.24105 -0.24105
Bio -0.3492 -0.3127 -0.29783  -0.31109 -0.3127 -0.3127 -0.29947 -0.29038  -0.29625 -0.29947  -0.29947
MSE 2530.11147 118.46066 108.45916 108.44035  118.46066 118.46066 67.81113 61.30519  61.64094 67.81113 67.81113
o
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Figure 12. Comparison of MSE and Bias for different estimators across different parameter
values.

The consistent negativity of all values across j = 1,...,11 for each theorem, as summarized

in Table 11, provides strong empirical evidence that the proposed estimator BBMRTELSMLE is not only
theoretically sound but also statistically effective in addressing multicollinearity and outlier. This
makes it a robust and reliable choice for practical applications in complex data settings.
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Table 11. Verification of the conditions outlined in the theorems was carried out using breast
cancer data.

Value Theorem 1  Theorem2  Theorem3  Theorem4  Theorem5 Theorem 6 Theorem 7
j=1 -1.435E-17 -7.196E-18 -1.343E-18 -6.471E-18 -6.455E-18 -7.196E-18 -7.196E-18
j=2 -1.815E-11  -9.100E-12  -1.699E-12 -8.184E-12 -8.164E-12 -9.100E-12 -9.100E-12
j=3 -2.807E-08 -1.408E-08 -2.628E-09 -1.266E-08 -1.263E-08 -1.408E-08 -1.408E-08
j=4 -4,007E-04  -2.004E-04 -3.668E-05 -1.801E-04 -1.797E-04 -2.004E-04 -2.004E-04
j=5 -1.753E-01  -8.055E-02 -4.713E-03 -7.097E-02 -7.082E-02 -8.055E-02 -8.055E-02
j=6 -3.831E-01 -1.707E-01  -3.747E-03 -1.496E-01 -1.494E-01 -1.707E-01 -1.707E-01
j=7 -1.721E+01 -6.101E+00 -8.740E-01 -5.316E+00 -5.302E+00 -6.101E+00 -6.101E+00
j=8 -3.645E+01 -1.042E+01 -1.208E+00 -8.930E+00 -8.899E+00 -1.042E+01 -1.042E+01
j=9 -1.072E+02 -1.751E+01 -1.830E+00 -1.456E+01 -1.451E+01 -1.751E+01 -1.751E+01
j=10 -3.188E+02 -1.658E+01 -8.067E-01 -1.344E+01 -1.310E+01 -1.658E+01 -1.658E+01
j=11 -1.989E+03 -5.277E+00 -3.133E-01 -3.981E+00 -4.038E+00 -5.277E+00 -5.277E+00
Satisfied or not  Satisfied Satisfied Satisfied Satisfied Satisfied Satisfied Satisfied

6. Conclusions

The BRM is widely employed for modeling proportional data bounded within the unit interval.
However, the BMLE is highly sensitive to multicollinearity and outliers, frequently resulting in
unstable estimates and inflated standard errors. To overcome these challenges, we introduce a new class
of robust modified ridge-type estimators. The most effective among them, the BMRTE; g\ g, merges
shrinkage and robustness methods to deliver stable estimates even when severe multicollinearity and
outliers are present. We support this development with thorough theoretical analysis and extensive
numerical tests. Through Monte Carlo simulations spanning a wide range of conditions and a real-
world application to breast cancer data, our proposed estimators consistently outperform alternatives.
The BMRTE s\ g proves especially powerful in scenarios with high multicollinearity and extreme
outliers. Our work underscores the critical need for robust methodologies in beta regression. By
providing a solution that is both practical and does not add significant complexity, these estimators
make beta regression more reliable and accessible for scientific fields like biomedicine. Despite
its contributions, this study has limitations, which highlight promising avenues for future work.
First, the computational burden of estimating the MSE for both robust and non-robust estimators
grows considerably with the dimensionality of the predictor space (p), raising challenges for high-
dimensional applications. Second, the effectiveness of the proposed estimators is contingent on the
careful choice of tuning parameters. Thus, the development of automated, data-driven procedures
for jointly optimizing shrinkage and robustness represents a valuable direction for methodological
advancement. Moreover, the theoretical and numerical investigations presented here are confined to
cross-sectional data, leaving unexplored the behavior of these estimators in more complex structures
such as time-series, longitudinal, or spatially correlated BRMs. Future research could also integrate
tailored outlier detection strategies and robust estimation methods for the response variable, thereby
enhancing the overall applicability and robustness of BRMs.
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