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Abstract: The beta regression model (BRM) is a popular and widely applied modeling approach,
especially when dealing with data bounded within the interval (0, 1). It has been used extensively
in various fields, including chemistry, environmental science, medicine, and biology. BRM aims
to estimate unknown model parameters, typically achieved using the maximum likelihood estimator
(MLE). However, MLE is not without limitations. It can be highly sensitive to multicollinearity
and outliers, which can distort coefficient estimates, lead to misleading conclusions, and inflate
variance, ultimately increasing the mean squared error (MSE). To address these challenges, this study
proposed new robust estimators for BRM that incorporated robust modified ridge-type estimators.
These estimators were specifically designed to reduce the adverse effects of multicollinearity and
outliers. Their performance was theoretically compared to that of the traditional MLE and robust
ridge estimators. In addition, an extensive simulation study was carried out in various scenarios
to evaluate their effectiveness. Both theoretical comparisons and simulation results demonstrated
the clear advantages of the proposed robust estimators in managing multicollinearity and handling
outliers. To further validate the findings, the estimators were applied to real-world data from breast
cancer patients. The results confirmed that the proposed robust estimators offer greater robustness
and reliability compared to MLE and robust ridge methods. These findings highlighted the practical
importance of using robust estimation techniques to improve the accuracy and dependability of BRMs,
particularly in empirical research involving highly multicollinear and outlier data.

Keywords: Beta regression; multicollinearity; outliers; robust modified ridge-type estimator; robust
ridge estimator

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2025958


21550

Mathematics Subject Classification:62H12, 62J05, 62J07, 65C05

1. Introduction

The beta regression model (BRM) has emerged as a practical and flexible approach for analyzing
data bounded between 0 and 1, such as proportions and rates, which we often find in fields such as
biology, chemistry, and environmental sciences [1, 2]. What makes this type of data tricky is that
traditional methods, like linear or logistic regression, are not designed to handle the constraints of the
(0,1) interval, and they often fall short. That’s where the beta regression model proves its worth. As
part of the broader class of generalized linear models (GLMs), it gives us a powerful framework to
model such data appropriately, while also allowing for flexible relationships between variables [3, 4].
The standard method for estimating the parameters in a beta regression model is maximum likelihood
estimation (MLE). However, as any researcher who has worked with real-world data knows, things are
rarely clean and simple. Two issues in particular can cause serious problems: multicollinearity and
outliers.

Multicollinearity arises when two or more predictors are highly correlated. It may sound harmless
at first, but it complicates the model by making it difficult to isolate the effect of each variable.
This results in unstable parameter estimates, inflated variances, and often misleading conclusions.
This challenge has been known for decades, going back to Frisch [5], and has since been explored
extensively, including in the context of GLMs by Segerstedt [6]. To mitigate its effects, ridge regression
was introduced by Hoerl and Kennard [7], and later Liu proposed an alternative estimator that also
introduces a shrinkage parameter to stabilize the estimates [8]. Since then, researchers have continued
to build on these foundations, offering several modifications like the modified ridge-type estimator [9],
the Dawoud-Kibria estimator [10], the modified two-parameter Liu estimator [11], feasible Stein-
type [12], and the Kibria-Lukman estimator [13] to better handle multicollinearity, particularly within
the context of GLMs. More recently, work by Qasim et al. [14], Hammad et al. [15], and Akram
et al. [16] has shown that these biased estimators can outperform standard MLE, especially under
challenging conditions.

On the other hand, outlier data points that significantly deviate from the general trend—pose
another threat. Even one or two of these unusual values can throw off your results, particularly if
the dataset is small [17]. This issue is well-documented, and several robust estimation techniques
have been proposed over the years to counteract it, including maximum likelihood-type estimators (M-
estimators), scale estimators (S-estimators), and Mallows M-estimators (MM-estimators) [18, 19], as
well as least absolute deviations (LAD) and least trimmed squares (LTS) [20]. In beta regression
specifically, where the response is strictly between 0 and 1, even a minor distortion can have a
significant impact. Robust methods help reduce the influence of these anomalies, making the model
more reliable and the conclusions more trustworthy—even when the data isn’t perfect [21, 22].

Now, what happens when both multicollinearity and outliers occur together in a dataset? This,
unfortunately, is not a rare situation, and it creates a particularly challenging scenario for statistical
modeling. While several estimators handle either issue on their own, their performance tends to suffer
when the two coexist. The distortions from multicollinearity can amplify the effects of outliers, and
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vice versa, leading to severely biased estimates and questionable inference [23,24]. This intersection of
problems has motivated researchers to explore more robust and adaptive estimation techniques—ones
that can simultaneously withstand the effects of both issues, ensuring more stable and accurate
regression results under real-world conditions. This research recognizes this methodological gap
and builds upon recent work by Lukman et al. [24], who defined a robust Kibria-Lukman estimator
for logistic regression; Altukhaes et al. [25], who proposed a robust Liu estimator for a restricted
semiparametric regression model; Olaluwoye et al. [26], who developed robust methods for beta
regression; Mohammad et al. [27], who introduced a new robust two-parameter estimator for Poisson
regression; Lukman et al. [28] on robust enhanced ridge-type estimation for Poisson regression; Suhail
et al. [29] on a quantile-based ridge M-estimator for linear regression; Alqasem et al. [30] in a
comprehensive study on a robust Poisson James-Stein estimator; Oyeleke et al. [31] in a comparative
study of one and two-parameter estimators; Majid et al. [32] on a robust Kibria-Lukman estimator
for linear regression; Norouzirad and Arashi [33] on preliminary test and Stein-type shrinkage ridge
estimators in robust regression; and Alghamdi et al. [34] on robust modified Liu estimation in Poisson
regression, all of whom address the joint problem of multicollinearity and outliers across various
regression models.

Conventional MLE delivers asymptotically efficient inference but proves highly unstable under
conditions of multicollinearity or data contamination. While biased estimators mitigate the effect of
multicollinearity, this is achieved at the expense of bias, and their performance remains susceptible
to outliers. Conversely, robust regression methods enhance stability against anomalous observations
but fail to explicitly address multicollinearity. Although recent improved methodologies have sought
to integrate shrinkage and robustness, such approaches remain limited and, crucially, are markedly
understudied within the context of BRM. This identified gap motivates the present work, which aims
to develop an estimator capable of simultaneously curtailing variance, managing bias, and ensuring
robustness in finite samples.

To this end, this paper introduces a novel robust estimator specifically designed for the BRM
framework that handles the dual challenges of multicollinearity and outliers. The performance of
the proposed estimator is evaluated through theoretical comparisons and an extensive Monte Carlo
simulation study. Its empirical validity is further demonstrated through an application to real-world
breast cancer data. Results confirm the superiority of the proposed estimator over competing methods,
including traditional MLE and robust ridge regression estimators. By concurrently addressing these
two common data pathologies, the proposed method provides a more reliable and stable analytical tool
for applied researchers working with real-world data that violates ideal statistical assumptions.

This paper is structured as follows: Section 2 provides a comprehensive review of the literature,
covering the beta regression model along with both non-robust and robust estimators, highlighting their
statistical properties. Section 3 introduces the proposed estimator, discusses its theoretical comparison,
and compares it analytically with other estimators. Section 4 outlines an extensive simulation study
conducted under scenarios involving multicollinearity and outliers, showcasing the results from the
simulation. Section 5 applies the proposed methods to real-world data from breast cancer patients,
demonstrating how the estimators perform in practice. Finally, Section 6 summarizes the key findings
and offers suggestions for future research directions.
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2. Methodology

2.1. Beta regression model

Consider a set of observations y1, y2, . . . , yn, drawn from a random variable y that follows a beta
distribution, denoted as βe(a, b), where both parameters a and b are positive. The probability density
function (PDF) of the beta distribution is given by

f (y; a, b) =
Γ(a + b)
Γ(a)Γ(b)

ya−1(1 − y)b−1, for y ∈ (0, 1), (2.1)

where Γ(·) represents the gamma function, and the parameters a and b control the shape of the
distribution. The mean and variance of y are

E(y) =
a

a + b
, Var(y) =

ab
(a + b)2(a + b + 1)

.

To adapt the beta distribution for regression modeling, Ferrari and Cribari-Neto [1] introduced a
useful reparameterization. Instead of working directly with a and b, by µ = a

a+b and φ = a + b, using
this transformation, we express a = µφ and b = (1 − µ)φ. The PDF becomes

f (y; µ, φ) =
Γ(φ)

Γ(µφ)Γ((1 − µ)φ)
yµφ−1(1 − y)(1−µ)φ−1, for y ∈ (0, 1). (2.2)

In this form, y ∼ βe(µ, φ), where µ ∈ (0, 1) is the mean, and φ > 0 is the precision. The mean and
variance under this parameterization are

E(y) = µ, Var(y) =
µ(1 − µ)

1 + φ
.

The BRM is based on this reparameterized beta distribution. It assumes each response yi follows
a beta distribution with mean µi and a shared precision φ. The mean is linked to predictors through a
link function g(µi) = ηi = xT

i β, where xi is the i-th row of the design matrix X, which contains p + 1
explanatory variables, and β is a vector of unknown regression coefficients. The function g(·) ensures
that the estimated means µi stay within the (0,1) interval. The link is defined as

g(µi) = log
(

µi

1 − µi

)
, so that µi =

exT
i β

1 + exT
i β
. (2.3)

The log-likelihood function for this model, which we use to estimate β, is

`(β)=

n∑
i=1

[
logΓ(φ)−logΓ(µiφ)−logΓ((1−µi)φ)+(µiφ−1) logyi+((1−µi)φ−1) log(1−yi)

]
. (2.4)

To estimate the regression coefficients β, the MLE is typically used. It’s obtained using an iterative
reweighted least squares algorithm, and the beta maximum likelihood estimator (BMLE) is given by

β̂BMLE = U−1XT Ŵĉ, (2.5)
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where U = XT ŴX, ĉ = η̂+Ŵ−1Q̂(y∗−µ∗), and Ŵ = diag(ŵ1, . . . , ŵn). Here, Ŵ and Q̂ are the matrices
W and Q, respectively, evaluated at the BMLE estimator [26, 35].

The variance-covariance, matrix mean squared error (MMSE), and MSE of β̂BMLE are

Var-Cov(β̂BMLE) = φ̂ U−1, (2.6)

MMSE(β̂BMLE) = φ̂ γΛ−1γT , (2.7)

MSE(β̂BMLE) = φ̂

p+1∑
j=1

1
λ j
. (2.8)

To compute the MMSE and the MSE, we start by assuming that α = γT β̂. Additionally, we define
the diagonal matrix Λ = diag(λ1, λ2, . . . , λp+1), which corresponds to the expression γΛγT . In this
context, γ is an orthogonal matrix whose columns are the eigenvectors of the matrix U, denoted
as γ1, . . . ,γp+1. The values λ1, λ2, . . . , λp+1 are the corresponding eigenvalues of U, arranged in
descending order such that λ1 > λ2 > . . . > λp+1 > 0.

When explanatory variables in a BRM are highly correlated, the matrix U becomes ill-conditioned,
which means that some of its eigenvalues are very small. As a result, the estimated MSE of the MLE
tends to be inflated. Multicollinearity not only increases the variance of the estimates but also leads
to wider confidence intervals and unstable, unreliable parameter estimates. To overcome these issues,
researchers have turned to regularization techniques, such as ridge regression and a modified ridge-type
estimator, which provide more stable solutions [36]. Furthermore, the optimal subset selection criterion
that is related to covariance matrices, observation matrices, and response vectors (COR criterion) has
been introduced as an alternative strategy for subset selection in regression models, offering a novel
means of improving the accuracy of the estimation under multicollinearity [37]. In this study, we focus
on the beta modified ridge-type estimator, a variant specifically suited to beta regression models, which
will be explored in detail in the following subsection.

2.2. Beta ridge regression estimator

To address the instability caused by multicollinearity in BRM. Abonazel and Taha [35], along with
Qasim et al. [14], introduced the beta ridge regression estimator (BRRE). The BRRE is formulated as

β̂BRRE = (U + kIs)−1Uβ̂BMLE, k > 0, (2.9)

where k =
φ̂

(p+1)
∑p+1

j=1 α̂
2
j

is the BRRE parameter, controlling the degree of shrinkage applied, and Is

denotes the identity matrix of dimension (p + 1) × (p + 1). Notably, when k = 0, the BRRE simplifies
to the BMLE.

The MMSE and MSE of BRRE are given by

MMSE(β̂BRRE) = φ̂γΛ−1
k ΛΛ

−1
k γ

T + k2γΛ−1
k αMLEαMLE

TΛ−1
k γ

T , (2.10)

MSE(β̂BRRE) = φ̂

p+1∑
j=1

λ j

(λ j + k)2 + k2
p+1∑
j=1

α2
MLE j

(λ j + k)2 , (2.11)

where α̂2
MLE = γT β̂BMLE.
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2.3. Beta modified ridge-type estimator

Akram et al. [16] proposed the beta-modified ridge-type estimator (BMRTE), an extension of the
beta ridge regression, which incorporates two shrinkage parameters to provide a more flexible approach
to regularization. The BMRTE is defined as

β̂BMRTE = (U + k(1 + d)Is)−1Uβ̂BMLE, 0 < d < 1, k > 0, (2.12)

where d and k are the modified ridge-type shrinkage parameters that control the regularization effect

in this case, using k̂ as in BRRE and d̂ = max
(
α̂2

MLE j−1
α̂2

MLE j+
1
λ j

)
[26,38]. When k = 0, the BMRTE reduces to

the BMLE. Similarly, when d = 0, the estimator simplifies to the BRRE.
The bias vector and variance-covariance matrix for BMRTE are given as follows:

Bias
(
β̂BMRTE

)
= E

(
β̂BMRTE

)
− β = −k(1 + d)Λ−1

kdβ, (2.13)

Var-Cov
(
β̂BMRTE

)
= (U+k(1+d)Is)−1UVar-Cov(β̂BMLE)(U+k(1+d)Is)−1U= φ̂Λ−1

kdΛΛ
−1Λ−1

kdΛ. (2.14)

Then the MMSE and MSE for BMRTE are given by

MMSE(β̂BMRTE) = φ̂γΛ−1
kdΛΛ

−1
kdγ

T + k2(d + 1)2γΛ−1
kd α̂MLEα̂MLE

TΛ−1
kdγ

T , (2.15)

MSE(β̂BMRTE) = φ̂

p+1∑
j=1

λ j

(λ j + k(d + 1))2 +

p+1∑
j=1

k2(d + 1)2α̂2
MLE j

(λ j + k(d + 1))2 . (2.16)

2.4. Beta robust estimators

The MLE, BRRE, and BMRTE are known to be sensitive to outliers. This sensitivity highlights
the need for robust alternatives in BRM. As a result, several robust estimators have been developed
to improve estimation accuracy in the presence of outliers. This section summarizes two well-known
robust methods designed for BRM.

Ghosh [21] introduced the minimum density power divergence estimator (MDPDE), a robust
approach tailored for BRM. This method introduces a tuning parameter δ ≥ 0, which controls the
trade-off between efficiency and robustness, and is based on the concept of density power divergence.
The estimator solves the following estimating equation:

n∑
i=1

[
A(yi; θ) fθ(yi; µi, φi)δ − Ei,1−δ(θ)

]
= 0, (2.17)

where

• fθ(yi; µi, φi) is the beta density function,
• A(yi; θ) is the score function (i.e., the gradient of the log-likelihood),
• Ei,1−δ(θ) is the expected value of the weighted score function.
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In this formulation, the term f δθ acts as a weight, lowering observations that do not align well with
the model, especially when δ ∈ (0, 1) [26].

Ribeiro and Ferrari [22] proposed a surrogate maximum likelihood estimator (SMLE) based on a
modified likelihood function, known as the Lq-likelihood. This method reparametrizes the likelihood
using the function Lq(a), leading to the objective function Lq(θ) =

∑n
i=1 Lq( fθ(yi; µi, φi)) with Lq(a) =

a1−q−1
1−q , for q ∈ (0, 1), and q = 1 − δ.

The estimation equation becomes
n∑

i=1

[
A(yi; θ) fθ(yi; µi, φi)δ

]
= 0. (2.18)

Although this approach is simple and useful in practice, the resulting estimator is not Fisher consistent
unless δ = 0. Both the MDPDE and SMLE estimators rely on the assumption that the beta densities
are bounded, ensuring the robustness and validity of their asymptotic properties. Ghosh [21] achieved
Fisher consistency by adjusting the weighted score function, while Ribeiro and Ferrari [22] obtained a
Fisher-consistent estimator by carefully parameterizing the Lq-likelihood.

Although the MDPDE and SMLE methods offer robust estimation, they rely on the assumption that
the beta densities are bounded. However, when this assumption doesn’t hold (i.e., the beta densities
are unbounded), numerical issues may occur, as observed in simulation studies. This means these
estimators may not always work reliably in all scenarios. To address this limitation, we propose
alternative robust estimators in the following section that perform well regardless of the type of beta
density.

The main issue with MDPDE and SMLE is that beta densities are not always closed under power
transformations. For any given density v and a constant ξ > 0, the power transformation is vξ(y) =

v(y)ξ∫
v(y)ξdy

This works only if the integral is finite. For the beta density, this transformation is valid only
when certain conditions hold: µφ ≥ 1 and (1− µ)φ ≥ 1. In simpler terms, only a specific subset of beta
distributions (bounded ones) can handle this transformation, limiting its use.

To overcome this issue, a logit transformation is applied to the response variable: y∗ = log
(

y
1−y

)
If

y follows a beta distribution, then y∗ follows what’s known as the exponential generalized beta of the
second type (EGB) distribution.

Using the transformed variable y∗, we define two robust estimators:

• Logit minimum density power divergence estimator (LMDPDE): This estimator builds on earlier
methods by Ribeiro and Ferrari [22] and Ghosh [21]. It minimizes the divergence between
observed and expected densities using the transformed data. The objective function is

Hn(θ) =
1
n

n∑
i=1

[
Ki,1+δ(θ) − αhθ(y∗i ; µi, φi)δ

]
. (2.19)

The corresponding estimating equation balances the influence of each data point based on how
likely it is under the model. The parameter δ ∈ [0, 1) controls robustness such that when δ = 0, it
reduces to the usual MLE and for δ > 0, the method becomes more robust to outliers.
• Logit surrogate maximum likelihood estimator (LSMLE): Inspired by the work of Ribeiro

and Ferrari [22], this method maximizes a modified likelihood function—specifically, the Lq-
likelihood—using the EGB-transformed densities. This approach maintains statistical properties
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like consistency while being robust. The LSMLE solves the equation:
n∑

i=1

A∗(y∗i ; θ)h∗θ(y
∗
i ; µi, φi)δ = 0, (2.20)

where A∗(y∗i ; θ) is the modified score vector [26]. By leveraging the stability of the EGB
distribution under power transformations, LSMLE offers a reliable alternative when the original
methods (MDPDE and SMLE) fall short.

2.5. Robust beta ridge regression estimators

Based on the works of Ribeiro and Ferrari [22] and Ghosh [21], Olaluwoye et al. [26] proposed
a robust beta ridge regression estimator, which is derived by combining the ridge estimator with four
robust beta estimators: MDPDE, SMLE, LMDPDE, and LSMLE. The expressions for the robust beta
estimators of β are given by

β̂BRRELSMLE
= (U + kIs)−1Uβ̂LSMLE, (2.21)

β̂BRRELMDPDE
= (U + kIs)−1Uβ̂LMDPDE, (2.22)

β̂BRRESMLE
= (U + kIs)−1Uβ̂SMLE, (2.23)

β̂BRREMDPDE
= (U + kIs)−1Uβ̂MDPDE, (2.24)

where k(k > 0) is ridge parameter, and Is represents the identity matrix of order (p + 1) × (p + 1).
The MSE expressions for these estimators are as follows:

MSE(β̂BRRELSMLE
) = φ̂

p+1∑
j=1

λ j

(λ j + k)2 + k2
p+1∑
j=1

α2
LSMLE j

(λ j + k)2 , (2.25)

MSE(β̂BRRELMDPDE
) = φ̂

p+1∑
j=1

λ j

(λ j + k)2 + k2
p+1∑
j=1

α2
LMDPDE j

(λ j + k)2 , (2.26)

MSE(β̂BRRESMLE
) = φ̂

p+1∑
j=1

λ j

(λ j + k)2 + k2
p+1∑
j=1

α2
SMLE j

(λ j + k)2 , (2.27)

MSE(β̂BRREMDPDE
) = φ̂

p+1∑
j=1

λ j

(λ j + k)2 + k2
p+1∑
j=1

α2
MDPDE j

(λ j + k)2 , (2.28)

where α2
r j denotes the squared weight associated with the j-th predictor under estimator r, and is

computed as the inner product of the vector γ and the estimated coefficient vector β̂r, for each r ∈
{LSMLE,LMDPDE,SMLE,MDPDE}.
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3. Proposed estimator

Building on the work of Ghosh [21] and Ribeiro and Ferrari [22], and extending the approach
proposed by Olaluwoye et al. [26], we propose a novel robust estimator for beta regression. This
estimator is constructed by combining a modified ridge-type estimator with four robust beta estimators:
the MDPDE, the SMLE, the LMDPDE, and the LSMLE. The resulting estimator effectively addresses
both multicollinearity and the presence of outliers. Additionally, it encompasses several existing
estimators, including robust beta ridge regression and the classical maximum likelihood estimator,
as special cases, thereby offering a more flexible and comprehensive modeling approach.

The expressions for the robust beta modified ridge-type estimators for β are given by the following
equations:

β̂BMRTELSMLE
= (U + k(1 + d)Is)−1Uβ̂LSMLE, (3.1)

β̂BMRTELMDPDE
= (U + k(1 + d)Is)−1Uβ̂LMDPDE, (3.2)

β̂BMRTESMLE
= (U + k(1 + d)Is)−1Uβ̂SMLE, (3.3)

β̂BMRTEMDPDE
= (U + k(1 + d)Is)−1Uβ̂MDPDE. (3.4)

The proposed robust beta modified ridge-type estimators are flexible and encompass several well-
known estimators as special cases under specific choices of the shrinkage parameters k and d. In
particular:

• When k = 0: The robust beta modified ridge-type estimators reduce to their corresponding base
robust estimators. For instance:

i-β̂BMRTELSMLE
= β̂LSMLE,

ii-β̂BMRTELMDPDE
= β̂LMDPDE,

iii-β̂BMRTESMLE
= β̂SMLE,

iv-β̂BMRTEMDPDE
= β̂MDPDE.

• When d = 0: The estimators reduce to the robust beta ridge estimator forms based on the
corresponding robust estimators:

β̂BMRTEr
= β̂BRREr

.

• When k = 0 and d = 0: The estimators reduce to the MLE if the base estimator used is the MLE:

β̂BMRTEr
= β̂MLE,

where r ∈ {LSMLE,LMDPDE,SMLE,MDPDE}. These special cases demonstrate that the BMRTE
framework generalizes several existing estimators, offering robustness against multicollinearity and
outliers, while maintaining interpretability and flexibility.

The SMSE expressions for these estimators are as follows:

MSE(β̂BMRTELSMLE
) = φ̂

p+1∑
j=1

λ j

(λ j + k(d + 1))2 +

p+1∑
j=1

k2(d + 1)2α̂2
LSMLE j

(λ j + k(d + 1))2 , (3.5)
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MSE(β̂BMRTELMDPDE
) = φ̂

p+1∑
j=1

λ j

(λ j + k(d + 1))2 +

p+1∑
j=1

k2(d + 1)2α̂2
LMDPDE j

(λ j + k(d + 1))2 , (3.6)

MSE(β̂BMRTESMLE
) = φ̂

p+1∑
j=1

λ j

(λ j + k(d + 1))2 +

p+1∑
j=1

k2(d + 1)2α̂2
SMLE j

(λ j + k(d + 1))2 , (3.7)

MSE(β̂BMRTEMDPDE
) = φ̂

p+1∑
j=1

λ j

(λ j + k(d + 1))2 +

p+1∑
j=1

k2(d + 1)2α̂2
MDPDE j

(λ j + k(d + 1))2 . (3.8)

3.1. Theoretical comparisons between estimators

In this section, we present the theoretical comparisons between the proposed estimators and the
existing ones, using the MSE as the primary criterion for evaluation. Since we introduced four types
of robust estimators, we focus our theoretical comparison on one of them, for instance, the estimator
based on the LSMLE, to illustrate the methodology. The same approach can be applied analogously
to the other robust estimators (SMLE, MDPDE, and LMDPDE), as they share a similar mathematical
structure. This allows us to assess the efficiency of the proposed estimators in terms of reducing MSE
while addressing issues such as multicollinearity and potential outliers in the data.

Theorem 1. The proposed estimator β̂BMRTELSMLE
is superior to β̂BMLE in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BMLE) < 0,

for φ̂ > 0, k > 0, and 0 < d < 1, if, and only if,

φ̂λ2
j + λ jk2(d + 1)2α̂2

LSMLE j − φ̂(λ j + k(d + 1))2 < 0, for all j = 1, ..., p + 1.

Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BMLE), as computed using Eq (3.5) and

Eq (2.8), is given by

MSE(β̂BMRTELSMLE
) −MSE(β̂BMLE) =φ̂

p+1∑
j=1

λ j

(λ j + k(d + 1))2 +

p+1∑
j=1

k2(d + 1)2α̂2
LSMLE j

(λ j + k(d + 1))2 − φ̂

p+1∑
j=1

1
λ j

=

p+1∑
j=1

 φ̂λ2
j + λ jk2(d + 1)2α̂2

LSMLE j − φ̂(λ j + k(d + 1))2

λ j(λ j + k(d + 1))2

 .
(3.9)

Hence, the difference is negative, i.e., MSE
(
β̂BMRTELSMLE

)
− MSE

(
β̂BMLE

)
< 0, whenever φ̂λ2

j +

λ jk2(d+1)2α̂2
LSMLE, j− φ̂(λ j + k(d + 1))2 < 0, under the regularity conditions φ̂ > 0, k > 0, and 0 < d < 1,

for all j = 1, . . . , p + 1. The proof is completed. �

Theorem 2. The proposed estimator β̂BMRTELSMLE
is superior to β̂BRRE in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BRRE) < 0,

for φ̂ > 0, k > 0, and 0 < d < 1 if, and only if,

(λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

MLE j) < 0, for all j = 1, ..., p + 1.
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Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BRRE), as computed using Eq (3.5) and

Eq (2.11), is given by

MSE(β̂BMRTELSMLE
) −MSE(β̂BRRE) =

p+1∑
j=1

φ̂λ j + k2(d + 1)2α̂2
LSMLE j

(λ j + k(d + 1))2 −

p+1∑
j=1

φ̂λ j + k2α̂2
MLE j

(λ j + k)2

=

p+1∑
j=1

 (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

MLE j)
(λ j + k)2(λ j + k(d + 1))2

 .
(3.10)

Hence, the difference is negative, i.e., MSE(β̂BMRTELSMLE
) −MSE(β̂BRRE) < 0, whenever (λ j + k)2(φ̂λ j +

k2(d + 1)2α̂2
LSMLE j)− (λ j + k(d + 1))2(φ̂λ j + k2α̂2

MLE j) < 0, under the regularity conditions φ̂ > 0, k > 0,
and 0 < d < 1, for all j = 1, ..., p + 1. The proof is completed. �

Theorem 3. The proposed estimator β̂BMRTELSMLE
is superior to β̂BMRTE in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BMRTE) < 0,

for φ̂ > 0, k > 0, and 0 < d < 1, if, and only if,

k2(d + 1)2α̂2
LSMLE j − k2(d + 1)2α̂2

MLE j < 0, for all j = 1, ..., p + 1.

Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BMRTE), as computed using Eq (3.5) and

Eq (2.16), is given by

MSE(β̂BMRTELSMLE
)−MSE(β̂BMRTE)=

p+1∑
j=1

φ̂λ j+k2(d+1)2α̂2
LSMLE j

(λ j + k(d + 1))2 −

p+1∑
j=1

φ̂λ j+k2(d+1)2α̂2
MLE j

(λ j + k(d + 1))2

=

p+1∑
j=1

(
k2(d + 1)2α̂2

LSMLE j − k2(d + 1)2α̂2
MLE j

(λ j + k(d + 1))2

)
.

(3.11)

Hence, the difference is negative, i.e., MSE(β̂BMRTELSMLE
) − MSE(β̂BMRTE) < 0, whenever

k2(d+1)2α̂2
LSMLE j−k2(d+1)2α̂2

MLE j < 0, under the regularity conditions φ̂ > 0, k > 0, and 0 < d < 1,
for all j = 1, ..., p + 1. The proof is completed. �

Theorem 4. The proposed estimator β̂BMRTELSMLE
is superior to β̂BRRELSMLE

in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BRRELSMLE

) < 0,

for φ̂ > 0, k > 0, and 0 < d < 1, if, and only if,

dλ j

[
(k2α̂2

LSMLE, j(d + 2) − 2φ̂k)λ j + k2(2kα̂2
LSMLE, j(d + 1) − φ̂(d + 2))

]
< 0, for all j = 1, ..., p + 1.

Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BRRELSMLE

), as computed using Eq (3.5)
and Eq (2.25), is given by

MSE(β̂BMRTELSMLE
)−MSE(β̂BRRELSMLE

)=

p+1∑
j=1

φ̂λ j+k2(d+1)2α̂2
LSMLE j

(λ j + k(d + 1))2 −

p+1∑
j=1

φ̂λ j+k2α̂2
LSMLE j

(λ j + k)2

=

p+1∑
j=1

dλ j

[
(k2α̂2

LSMLE, j(d + 2) − 2φ̂k)λ j + k2(2kα̂2
LSMLE, j(d + 1) − φ̂(d + 2))

]
(λ j + k)2(λ j + k(d + 1))2

 .
(3.12)
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Hence, the difference is negative, i.e., MSE(β̂BMRTELSMLE
) − MSE(β̂BRRELSMLE

) < 0 , whenever
dλ j

[
(k2α̂2

LSMLE, j(d + 2) − 2φ̂k)λ j + k2(2kα̂2
LSMLE, j(d + 1) − φ̂(d + 2))

]
< 0, under the regularity

conditions φ̂ > 0, k > 0, and 0 < d < 1, for all j = 1, ..., p + 1. The proof is completed. �

Theorem 5. The proposed estimator β̂BMRTELSMLE
is superior to β̂BRRELMDPDE

in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BRRELMDPDE

) < 0,

for φ̂ > 0, k > 0, and 0 < d < 1, if, and only if,

(λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j)−(λ j + k(d + 1))2(φ̂λ j + k2α̂2

LMDPDE j)<0, for all j = 1, ..., p + 1.

Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BRRELMDPDE

), as computed using Eq (3.5)
and Eq (2.26), is given by

MSE(β̂BMRTELSMLE
)−MSE(β̂BRRELMDPDE

)=

p+1∑
j=1

φ̂λ j+k2(d+1)2α̂2
LSMLE j

(λ j + k(d + 1))2 −

p+1∑
j=1

φ̂λ j+k2α̂2
LMDPDE j

(λ j + k)2

=

p+1∑
j=1

 (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

LMDPDE j)
(λ j + k)2(λ j + k(d + 1))2

 .
(3.13)

Hence, the difference is negative, i.e., MSE(β̂BMRTELSMLE
) − MSE(β̂BRRELMDPDE

) < 0, whenever (λ j +

k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j)− (λ j + k(d + 1))2(φ̂λ j + k2α̂2

LMDPDE j) < 0, under the regularity conditions
φ̂ > 0, k > 0, and 0 < d < 1, for all j = 1, ..., p + 1. The proof is completed. �

Theorem 6. The proposed estimator β̂BMRTELSMLE
is superior to β̂BRRESMLE

in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BRRESMLE

) < 0,

for φ̂ > 0, k > 0, and 0 < d < 1, if, and only if,

(λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

SMLE j) < 0, for all j = 1, ..., p + 1.

Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BRRESMLE

), as computed using Eq (3.5)
and Eq (2.27), is given by

MSE(β̂BMRTELSMLE
)−MSE(β̂BRRESMLE

)=

p+1∑
j=1

φ̂λ j+k2(d + 1)2α̂2
LSMLE j

(λ j + k(d + 1))2 −

p+1∑
j=1

φ̂λ j+k2α̂2
SMLE j

(λ j + k)2

=

p+1∑
j=1

 (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

SMLE j)
(λ j + k)2(λ j + k(d + 1))2

 .
(3.14)

Hence, the difference is negative, i.e., MSE(β̂BMRTELSMLE
) − MSE(β̂BRRESMLE

) < 0, whenever (λ j +

k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

SMLE j) < 0, under the regularity conditions
φ̂ > 0, k > 0, and 0 < d < 1, for all j = 1, ..., p + 1. The proof is completed. �
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Theorem 7. The proposed estimator β̂BMRTELSMLE
is superior to β̂BRREMDPDE

in the MSE sense. Formally,

MSE(β̂BMRTELSMLE
) −MSE(β̂BRREMDPDE

) < 0,

φ̂ > 0, k > 0, and 0 < d < 1, if, and only if,

(λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

MDPDE j) < 0, for all j = 1, ..., p + 1.

Proof. The difference between MSE(β̂BMRTELSMLE
) and MSE(β̂BRREMDPDE

), as computed using Eq (3.5)
and Eq (2.28), is given by

MSE(β̂BMRTELSMLE
)−MSE(β̂BRREMDPDE

)=

p+1∑
j=1

φ̂λ j+k2(d + 1)2α̂2
LSMLE j

(λ j + k(d + 1))2 −

p+1∑
j=1

φ̂λ j+k2α̂2
MDPDE j

(λ j + k)2

=

p+1∑
j=1

 (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2
LSMLE j) − (λ j + k(d + 1))2(φ̂λ j + k2α̂2

MDPDE j)
(λ j + k)2(λ j + k(d + 1))2

 .
(3.15)

The difference MSE(β̂BMRTELSMLE
)−MSE(β̂BRREMDPDE

) < 0, whenever (λ j+k)2(φ̂λ j+k2(d+1)2α̂2
LSMLE j)−

(λ j + k(d + 1))2(φ̂λ j + k2α̂2
MDPDE j) < 0, under the regularity conditions φ̂ > 0, k > 0, and 0 < d < 1,

for all j = 1, ..., p + 1. The proof is completed. �

These methodologies are applied to the breast cancer patient dataset in Section 5.

4. Monte Carlo simulation study

We conducted a comprehensive Monte Carlo simulation study to assess the performance of different
robust and non-robust estimators in BRM. Similar simulation frameworks have been employed in
previous research [26,39,40]. Following the approach used in Lukman et al. [28], Alghamdi et al. [34],
and Mohammad et al. [27], the explanatory variables were generated using the following model:

xi j =
√

1 − ρ2 zi j + ρzi(p+1), i = 1, 2, . . . , n, j = 1, 2, . . . , (p + 1), (4.1)

where n is the sample size, p is the number of predictors, and ρ controls the degree of multicollinearity
among the predictors. The variables zi j are drawn from a standard normal distribution with mean 0 and
standard deviation 1. This structure ensures that the correlation between predictors is approximately
ρ2. The MSE is calculated as a function of β, with the constraint β′β = 1 as discussed in Alghamdi
et al. [34] and Olaluwoye et al. [26].

To evaluate the robustness of the estimators, we introduced outliers into the dataset through a
controlled process. First, a set number of outliers, either 10% or 20% of the total observations,
was determined. These outliers were then randomly assigned to specific observation indices. For
each selected index, outliers were added to the first and fourth predictors (x1 and x4) by replacing
their original values with samples drawn from a normal distribution with a mean of 5 and a standard
deviation of 2. This intentional distortion enables us to rigorously examine how well the estimators
perform in the presence of anomalous data.

Following the works of Alghamdi et al. [34], Mohammad et al. [27], and Alqasem et al. [30] in
robust regression, this study conducts an extensive Monte Carlo simulation to evaluate the performance
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of competing estimators under a wide range of data conditions. The primary objective of the
simulation is to generate data that accurately emulates challenging real-world scenarios, including
multicollinearity and outliers, thereby providing a rigorous test of estimator robustness and efficiency.
The simulation design incorporates a comprehensive factorial array of parameters known to influence
estimator performance. This includes varying sample sizes (n = 35, 50, 75, 100, 200, 300), numbers of
predictors (p = 4, 8), and degrees of multicollinearity (ρ = 0.80, 0.90, 0.95, 0.99, 0.999). Furthermore,
the study investigates the impact of overdispersion (φ = 5, 10) and the presence of outliers at
contamination levels of 10% and 20%. Estimator performance was evaluated using both the MSE
and the median squared error, calculated as the average squared deviation between the estimated and
true parameter values across 1000 replications. All simulations were implemented in R, using the
betareg() function for standard estimation.

The MSE was computed using the following formula:

MSE(̂β) =
1

1000

1000∑
j=1

(̂βi j − βi)
T (̂βi j − βi), (4.2)

where β̂i j is the estimate of the ith parameter in the jth replication, and βi is the true parameter value.
In addition to classical estimators, the simulation also incorporated four robust estimators available
through the robustbetareg package in R.

In both the simulation study and the empirical application, the shrinkage parameter k for the robust
and non-robust BRREs was determined following the approaches of Abonazel and Taha [35], Akram
et al. [16], and Qasim et al. [14], defined as k =

φ̂

(p+1)
∑p+1

j=1 α̂
2
j
. For the robust and non-robust BMRTEs,

the same value of k was employed as in the BRRE, while the additional shrinkage parameter d was

estimated using d̂ = max

 α̂2
MLE, j−1

α̂2
MLE, j+

1
λ j

 .
The simulation results are summarized in Tables 1–8 and Figures 1–8.

These results comprehensively assess the performance of MLE, BRRE, BMRTE,
BRRELSMLE,BRRELMDPDE,BRRESMLE,BRREMDPDE, BMRTELSMLE, BMRTELMDPDE, BMRTESMLE,
and BMRTEMDPDE, under varying conditions, including different sample sizes (n), multicollinearity
levels (ρ), numbers of predictors (p), levels of contamination by outliers, and standard deviations (φ).
The key findings from these simulations are as follows:

• Sample Size (n): As expected, MSE decreased for all estimators as sample size increased from
n = 30 to n = 300. Reflecting improved estimation accuracy with more data. This pattern
holds across both clean and contaminated datasets. However, the performance advantage of the
robust BMRTE estimators was most pronounced in smaller samples (n = 30, 50, 75), where their
stability is most critical.
• Multicollinearity (ρ): Increased multicollinearity increases MSE for all robust and non-robust

estimators, especially for non-robust methods such as MLE, BRRE, and BMRTE. This suggests
that multicollinearity adversely affects the precision of parameter estimates.
• Number of explanatory variables(p): Increasing model complexity from p = 4 to p = 8

led to higher MSE across all scenarios, particularly under small sample sizes and strong
multicollinearity.
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• Dispersion (φ): A higher dispersion parameter (φ = 10 vs. φ = 5) increased MSE for all
estimators, as expected. The robust estimators maintained their relative superiority, proving
effective in high-noise environments.
• Outliers: Increasing the proportion of outliers from 10% to 20% led to higher MSE values across

all estimators, with the effect being particularly severe for non-robust estimators, thereby reducing
their reliability.
• BMLE: Exhibited pronounced sensitivity to both multicollinearity and outliers, which

consistently resulted in higher MSE values and substantially reduced its reliability in practical
applications.
Non-robust biased estimators such: Include BRRE and BMRTE. While these estimators
handled multicollinearity well, they offered no protection against outliers. Their MSE values
frequently doubled or tripled with 20% outliers, demonstrating that shrinkage alone does not
confer robustness.
• Robust biased estimators: These include the robust versions of BRRE and BMRTE

implemented with LSMLE, MDPDE, LSMLE, and SMLE. In clear contrast to their non-robust
counterparts, the robust estimators maintained notable stability under both multicollinearity and
contamination. This highlights their primary role in ensuring reliable inference when data are
simultaneously affected by strong multicollinearity and outliers.
• The biased estimators, BRRE and BMRTE, clearly outperform BMLE in the presence of

multicollinearity, primarily due to their built-in shrinkage mechanisms that stabilize parameter
estimates and reduce variance. Furthermore, BMRTE outperforms BRRE in reducing MSE.
However, a critical limitation of these non-robust estimators is their pronounced susceptibility
to contamination by outliers, which significantly inflates their MSE and significantly reduces
their reliability. In contrast, the proposed robust estimators demonstrate superior performance in
the presence of data contamination, effectively mitigating the impact of outlier observations. It is
worth noting that the robust BMRTELSMLE, BMRTESMLE, and BMRTEMDPDE offer exceptional
estimation accuracy and stability. While the robust BRRELMDPDE and BRRELSMLE, show
reasonably good and robust performance, the BMRTE-based estimators consistently dominate,
achieving the lowest mean estimation error across a wide range of conditions, proving to be the
most superior and reliable class of estimators for practical application.
• Figures 1–8 illustrate that the BMLE does the worst (in figures RBRR1 is shorthand for

BRRELSMLE, to RBRR4 for BRREMDPDE. The same applies for the BMRTE estimators, with
RBMRT1 representing BMRTELSMLE, and so on.), especially when there are problems like
multicollinearity and outliers. The BMLE is very sensitive to these issues, leading to poor
performance. On the other hand, non-robust estimators BRRE and BMRTE do better than BMLE,
but they still struggle when the data has a lot of outliers. Among these, the robust versions of
the BRRE estimators (like BRRELSMLE, BRREMDPDE, and BRRESMLE) show clear improvements,
especially when there are 10% or 20% outliers. This shows that adding robustness helps the
estimator handle bad data better. However, the best-performing estimators are from the BMRTE
family (like BMRTELSMLE, BMRTEMDPDE, and BMRTESMLE). These estimators consistently
perform the best in all situations, with the lowest MSE, meaning they are the most reliable even
when the data is messy with outliers or correlations between variables.
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Table 1. Estimated MSE for non-robust and robust estimation methods when p = 4, φ = 5,
and 10% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 2.23818 1.65113 0.2469 0.1849 0.1961 0.25378 1.43344 0.17892 0.15282 0.17672 0.24456
50 1.7627 1.21559 0.06198 0.03763 0.04043 0.06228 1.32083 0.0614 0.03273 0.03621 0.06191
75 1.61344 1.41339 0.04887 0.032 0.03468 0.04919 0.98612 0.0404 0.02607 0.03075 0.0488
100 1.28577 0.98369 0.04878 0.03621 0.03837 0.04901 0.94346 0.0391 0.03015 0.03494 0.04873
200 1.232 1.03634 0.02694 0.01988 0.02096 0.02703 0.83722 0.02696 0.01717 0.01927 0.02693
300 1.07887 0.89437 0.02278 0.01999 0.02053 0.02283 0.79213 0.02343 0.01707 0.0191 0.02277

0.85 30 3.22865 1.96417 0.25666 0.20452 0.21449 0.26139 1.65916 0.18708 0.17228 0.19646 0.25512
50 2.10159 1.31215 0.08194 0.06056 0.06394 0.08234 1.3489 0.06645 0.05046 0.05832 0.08185
75 1.62731 1.42954 0.06644 0.06067 0.06192 0.06681 1.0563 0.05772 0.05593 0.05965 0.06634
100 1.44806 0.85339 0.04562 0.03897 0.04023 0.04576 0.88682 0.04098 0.03465 0.03811 0.04559
200 1.21578 1.11681 0.03867 0.03109 0.03254 0.03882 0.81613 0.03059 0.02629 0.03009 0.03863
300 1.18108 0.98471 0.02368 0.01839 0.01935 0.02374 0.50682 0.02364 0.01521 0.01775 0.02367

0.90 30 4.62448 1.36292 0.53312 0.33239 0.36249 0.54981 2.05495 0.30226 0.25164 0.31227 0.52846
50 3.42235 2.32639 0.0934 0.06236 0.06661 0.09406 1.58964 0.06187 0.05136 0.05987 0.09325
75 1.83988 1.66437 0.0844 0.06058 0.06459 0.08498 1.19259 0.06099 0.04922 0.05822 0.08426
100 1.7386 1.34889 0.06919 0.05849 0.06049 0.06949 0.97203 0.05996 0.05151 0.05698 0.06911
200 1.57342 1.14832 0.04923 0.03934 0.04112 0.04944 0.74296 0.03694 0.03355 0.03815 0.04918
300 1.387 0.80407 0.03064 0.02333 0.02466 0.03071 0.58489 0.02602 0.01923 0.02254 0.03062

0.95 30 5.33023 3.19626 0.66259 0.34806 0.38753 0.68406 2.8168 0.35071 0.24318 0.31917 0.65586
50 5.22417 1.98249 0.19377 0.12032 0.1307 0.19628 1.76749 0.10448 0.0916 0.11387 0.19321
75 2.77837 1.91867 0.08258 0.05171 0.05628 0.08329 1.73365 0.04796 0.03972 0.04918 0.08242
100 2.49888 1.71151 0.06697 0.04775 0.05093 0.0674 1.61904 0.04679 0.03822 0.04576 0.06686
200 1.95866 1.22028 0.04968 0.03664 0.03884 0.04993 1.065 0.03954 0.02991 0.03524 0.04962
300 1.63745 1.1526 0.0432 0.03283 0.03465 0.04336 0.55228 0.03009 0.02727 0.03174 0.04317

0.99 30 26.60737 3.67301 1.35745 0.35143 0.43758 1.59225 3.09081 0.35566 0.18459 0.3016 1.30339
50 12.2836 3.62686 1.06275 0.45277 0.53781 1.18304 2.57773 0.44368 0.2629 0.39931 1.03062
75 10.55861 1.79743 0.56299 0.23159 0.26936 0.58793 1.37667 0.22737 0.14151 0.20805 0.55727
100 5.35789 1.6595 0.498 0.22175 0.25642 0.52481 1.02274 0.21537 0.13764 0.1997 0.49141
200 3.14077 1.34161 0.18761 0.10514 0.11691 0.19243 1.00173 0.08777 0.07471 0.09821 0.18651
300 2.60641 1.09939 0.12658 0.08506 0.09176 0.1286 0.60674 0.07398 0.06515 0.08051 0.12608

Table 2. Estimated MSE for non-robust and robust estimation methods when p = 4, φ = 5,
and 20% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 3.8749 3.17921 0.47107 0.32887 0.35115 0.47975 2.99636 0.31343 0.26813 0.31433 0.4682
50 3.325 3.06512 0.14821 0.08837 0.09781 0.14862 2.97475 0.09708 0.06551 0.08403 0.14812
75 2.87535 2.41637 0.1294 0.09476 0.1012 0.12986 2.30602 0.09006 0.07654 0.0915 0.12929
100 2.67993 2.26012 0.13879 0.10838 0.114 0.13912 2.18952 0.09771 0.09188 0.10543 0.13872
200 2.531 2.11006 0.09313 0.07192 0.07569 0.09327 1.9834 0.06472 0.05935 0.06947 0.09311
300 2.32275 2.05674 0.08887 0.08229 0.08358 0.08896 1.96814 0.06976 0.07736 0.08137 0.08886

0.85 30 5.32214 3.90514 0.63928 0.50024 0.52512 0.64674 3.65478 0.45125 0.41869 0.48111 0.63711
50 3.36755 3.11516 0.19667 0.14936 0.1572 0.19727 3.05415 0.12887 0.12453 0.14435 0.19654
75 3.28625 2.35553 0.17729 0.15529 0.15963 0.17787 2.31443 0.14127 0.1407 0.15246 0.17714
100 3.13969 2.27581 0.14238 0.12167 0.12552 0.1426 1.96636 0.10667 0.1082 0.11909 0.14233
200 2.48196 2.1461 0.11743 0.10133 0.1045 0.11764 1.99094 0.09482 0.09065 0.09932 0.11738
300 2.3857 2.10208 0.084 0.06896 0.07179 0.08409 1.85218 0.06058 0.05949 0.06722 0.08399

0.90 30 5.74657 4.2361 1.3659 0.85108 0.9255 1.39447 4.03287 0.74767 0.64506 0.80126 1.35832
50 5.35932 3.41922 0.19856 0.14214 0.15079 0.19937 3.37099 0.1322 0.11677 0.13692 0.19838
75 3.61779 2.76638 0.20698 0.15808 0.16669 0.20777 2.65483 0.14584 0.13243 0.15321 0.2068
100 3.23058 2.47441 0.19277 0.16617 0.17114 0.19332 2.31909 0.13275 0.14869 0.16274 0.19265
200 3.05713 2.01524 0.13332 0.11002 0.11423 0.13362 1.50588 0.0932 0.09614 0.10735 0.13325
300 2.82472 1.76739 0.09828 0.08239 0.08545 0.09838 1.37372 0.08151 0.07288 0.08075 0.09826

0.95 30 7.10833 5.25115 2.25894 1.13513 1.26968 2.30967 4.30734 1.1106 0.7868 1.04717 2.24639
50 7.02289 3.95326 0.42148 0.27457 0.29506 0.42497 3.72787 0.24127 0.21716 0.26198 0.42071
75 4.8097 3.88319 0.18895 0.13594 0.14437 0.18989 3.18977 0.11416 0.11144 0.13107 0.18875
100 4.51296 3.5039 0.16369 0.12935 0.13516 0.16425 2.59601 0.11522 0.111 0.1257 0.16357
200 3.78428 2.805 0.13883 0.11048 0.1154 0.13925 2.31029 0.09687 0.0946 0.10732 0.13874
300 3.37906 2.44077 0.11619 0.09729 0.10068 0.11639 1.51024 0.08838 0.08645 0.09525 0.11614

0.99 30 34.41163 5.33942 3.84577 1.07395 1.30803 3.98942 5.03074 1.02948 0.60297 0.93931 3.74442
50 14.01101 4.49891 2.0611 0.85588 1.0012 2.24079 3.80164 0.74526 0.51913 0.75559 2.00624
75 11.71253 3.44133 1.37424 0.56016 0.64667 1.41905 3.75141 0.53074 0.3558 0.50771 1.36438
100 7.96278 3.33563 1.11703 0.52045 0.59258 1.16129 3.43875 0.50676 0.3422 0.4744 1.10642
200 5.14339 2.96119 0.352 0.21534 0.23432 0.35834 2.65998 0.18114 0.16504 0.20386 0.35058
300 4.8189 2.1478 0.27411 0.19432 0.20691 0.2772 1.80348 0.16498 0.15663 0.18585 0.27339
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Table 3. Estimated MSE for non-robust and robust estimation methods when p = 4, φ = 10,
and 10% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 3.98398 3.54757 1.25671 0.91549 1.00968 1.39312 3.26314 0.85787 0.73889 0.85643 1.1741
50 3.44878 2.98579 0.41431 0.40422 0.40336 0.41742 2.56463 0.46234 0.41064 0.40285 0.41325
75 3.10808 2.7527 0.3258 0.33151 0.32621 0.32765 2.89138 0.37905 0.3468 0.33113 0.32502
100 2.66266 2.51306 0.33207 0.31713 0.31891 0.33474 2.43744 0.34533 0.31396 0.3145 0.33076
200 2.48042 2.34252 0.19163 0.20892 0.20306 0.19145 2.24961 0.2706 0.2257 0.21035 0.19167
300 2.26274 2.1264 0.17207 0.18498 0.18135 0.17169 2.04517 0.22433 0.19674 0.18671 0.1722

0.85 30 5.53882 4.63301 1.61686 1.1783 1.28277 1.7551 4.09746 1.15438 0.9333 1.09126 1.53435
50 3.6307 3.03408 0.41728 0.3744 0.38075 0.42256 2.69429 0.39999 0.36123 0.36969 0.41566
75 3.16613 2.94942 0.35143 0.35661 0.35167 0.35364 2.92726 0.41256 0.36981 0.35576 0.35039
100 3.03526 2.60422 0.24874 0.24471 0.24403 0.24963 2.38361 0.27134 0.25104 0.24492 0.24839
200 2.42572 2.3324 0.28482 0.28455 0.28314 0.28563 2.26363 0.31504 0.28974 0.28411 0.28435
300 2.27336 2.12996 0.1839 0.19011 0.18813 0.18378 2.03023 0.22154 0.19697 0.19095 0.18392

0.90 30 8.33461 4.87062 2.24868 1.33759 1.53561 2.57536 4.35058 1.2906 0.90577 1.18822 2.07747
50 5.83611 4.86237 0.59784 0.48951 0.51036 0.61414 4.1203 0.50049 0.43585 0.47413 0.59174
75 3.49394 3.33958 0.53035 0.45828 0.47331 0.54293 3.19863 0.47892 0.41908 0.44569 0.52429
100 3.30985 2.95091 0.36493 0.32028 0.32699 0.37061 2.71265 0.35019 0.30247 0.31335 0.36247
200 3.00538 2.68443 0.32727 0.29382 0.30006 0.33122 2.47628 0.30295 0.27599 0.28786 0.32533
300 2.55248 2.16614 0.21843 0.21631 0.21618 0.21889 1.9836 0.23654 0.21703 0.21583 0.21825

0.95 30 9.07345 6.44803 1.92464 0.89093 1.03623 2.21386 5.72455 0.87063 0.61113 0.79438 1.81085
50 8.58366 4.96358 1.07715 0.70815 0.77506 1.14388 4.28323 0.67574 0.54232 0.66056 1.05309
75 5.02237 4.21155 0.49106 0.38985 0.40986 0.50846 3.79318 0.40019 0.34138 0.37638 0.48507
100 4.58647 3.99663 0.44273 0.36976 0.3852 0.45399 3.61819 0.36391 0.32799 0.35828 0.43834
200 3.72993 3.464 0.31665 0.27235 0.28079 0.32207 3.25687 0.28429 0.251 0.26641 0.31471
300 3.30791 2.922 0.29893 0.2716 0.2775 0.30216 2.71478 0.27657 0.25498 0.26744 0.29774

0.99 30 47.12558 12.31155 3.27466 1.55295 1.93704 4.39102 10.80985 1.52496 0.84349 1.25138 2.63319
50 20.64951 10.99776 3.12991 1.80045 2.21345 4.00063 8.81813 1.55186 0.94773 1.44494 2.56159
75 15.76569 6.98031 1.82486 0.76155 0.91473 2.15354 5.5116 0.85901 0.44326 0.64885 1.69934
100 9.11107 4.43714 1.59133 0.77378 0.93627 1.92081 3.74876 0.59998 0.45476 0.66593 1.4495
200 6.36343 4.23202 0.8896 0.51662 0.59113 0.9928 3.56591 0.54827 0.35391 0.46586 0.84745
300 4.74903 3.36754 0.63524 0.40483 0.4494 0.68401 2.98224 0.40519 0.29488 0.37154 0.61515

Table 4. Estimated MSE for non-robust and robust estimation methods when p = 4, φ = 10,
and 20% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 6.15759 5.66758 2.46623 1.85247 1.98972 2.64361 5.47157 1.65757 1.56496 1.77072 2.38174
50 5.48342 5.35034 0.98921 0.93796 0.94497 0.99334 5.29175 0.95757 0.92152 0.93269 0.98804
75 4.97408 4.75551 0.82176 0.8117 0.81293 0.82395 4.64926 0.83298 0.80878 0.80967 0.82088
100 4.48439 4.11387 0.89272 0.8655 0.87101 0.89557 4.00313 0.86504 0.84995 0.86134 0.89162
200 4.28987 3.82816 0.63012 0.64436 0.63929 0.63016 3.65964 0.68826 0.65696 0.6449 0.6301
300 4.05184 3.8001 0.63611 0.64348 0.64155 0.63598 3.54683 0.66487 0.65022 0.64451 0.63615

0.85 30 8.14544 7.00649 2.80673 2.19393 2.3361 2.93415 6.9246 2.06453 1.82003 2.08779 2.74822
50 5.62173 5.48519 0.95973 0.87159 0.88602 0.96602 5.425 0.86657 0.83387 0.86228 0.95796
75 5.61152 4.95521 0.87421 0.86044 0.86366 0.87703 4.53182 0.86973 0.85058 0.85702 0.87275
100 5.1109 4.39858 0.67913 0.66122 0.66419 0.68046 3.98297 0.67428 0.65326 0.65889 0.67868
200 4.18637 4.06702 0.82954 0.82154 0.82299 0.83073 3.9609 0.83054 0.81662 0.81964 0.82897
300 3.99128 3.75828 0.63221 0.63447 0.63342 0.63231 3.52669 0.65448 0.63776 0.63456 0.63217

0.90 30 8.51678 7.26985 4.96261 3.05446 3.41515 5.41446 6.9604 2.90775 2.17232 2.78722 4.77798
50 8.10939 5.67505 1.19165 1.02159 1.05175 1.20671 5.62142 0.99763 0.94083 1.00174 1.18697
75 5.81092 5.45683 1.19495 1.08778 1.11077 1.20768 4.72944 1.06428 1.02385 1.07191 1.19
100 5.30037 4.93497 0.88872 0.82382 0.83805 0.89605 4.61259 0.7857 0.77834 0.81302 0.88633
200 5.0931 4.7801 0.84004 0.7938 0.80351 0.84446 4.55579 0.77982 0.76324 0.78623 0.8384
300 4.61631 4.01613 0.69701 0.68872 0.6901 0.69761 3.58719 0.69864 0.68473 0.68747 0.69679

0.95 30 10.36219 8.65022 5.65653 2.8714 3.27023 6.16769 8.17144 2.45896 1.99059 2.62312 5.50729
50 10.24682 7.12794 2.57568 1.74508 1.87653 2.67018 6.56105 1.60519 1.40514 1.65299 2.54389
75 7.5605 6.83812 1.10812 0.94556 0.97549 1.12684 6.37414 0.9246 0.86819 0.92617 1.10207
100 7.08362 6.59366 0.9808 0.88026 0.90006 0.99118 6.25846 0.85507 0.82397 0.86647 0.97728
200 6.16248 5.94612 0.78963 0.73093 0.74282 0.7957 5.84692 0.71579 0.69637 0.72252 0.78758
300 5.73657 5.34922 0.79873 0.75733 0.76577 0.80206 5.12244 0.74979 0.73226 0.75147 0.79757

0.99 30 53.54163 13.51391 11.64353 5.42388 6.7005 15.22485 11.40885 4.54351 2.98715 4.55771 10.24972
50 37.9455 9.89207 6.32926 3.65982 4.38473 7.81185 8.45659 2.67948 2.19213 3.15532 5.62359
75 25.64605 8.91053 4.05866 2.03371 2.35288 4.56183 7.53901 2.12392 1.31431 1.80952 3.88973
100 10.99714 6.50208 3.45403 1.77697 2.06563 3.96749 5.97096 1.9646 1.1495 1.56654 3.25095
200 8.41055 6.00051 1.79108 1.25081 1.36121 1.91694 5.26811 1.21951 0.98716 1.17713 1.74611
300 7.2251 5.76921 1.3667 1.0409 1.11009 1.42933 5.10499 1.00659 0.85437 0.98944 1.34297
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Table 5. Estimated MSE for non-robust and robust estimation methods when p = 8, φ = 5,
and 10% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 5.32426 2.92399 1.38863 0.6332 0.7115 1.52667 2.24503 0.57076 0.4973 0.60153 1.35523
50 2.78709 2.1314 0.13357 0.11925 0.1203 0.13416 2.00785 0.16759 0.12055 0.11882 0.13344
75 2.55563 1.86764 0.14575 0.12144 0.12544 0.14646 1.71276 0.13248 0.11079 0.11919 0.14559
100 2.29911 1.86412 0.05254 0.0463 0.04679 0.05267 1.61635 0.08616 0.0469 0.04609 0.05252
200 1.88056 1.66862 0.03831 0.03191 0.03265 0.03838 1.41193 0.04543 0.03114 0.03153 0.0383
300 1.79806 1.46953 0.03903 0.03578 0.03595 0.03907 1.24409 0.07702 0.03681 0.03578 0.03902

0.85 30 6.43345 2.97315 1.5563 0.87829 0.95588 1.59887 2.74044 0.7381 0.70211 0.83733 1.54707
50 4.12232 2.6096 0.25957 0.20563 0.2067 0.26119 2.34658 0.25993 0.21326 0.2054 0.25924
75 2.80087 2.4222 0.26012 0.19565 0.20362 0.26198 1.88643 0.22419 0.17856 0.19129 0.25973
100 2.46475 1.66534 0.08938 0.07467 0.07688 0.08965 1.6037 0.09095 0.0689 0.07333 0.08933
200 1.97699 1.41782 0.05166 0.04812 0.04695 0.05175 1.13835 0.09407 0.056 0.04888 0.05164
300 1.90991 1.35075 0.0396 0.03557 0.03585 0.03966 1.05773 0.07181 0.03631 0.03549 0.03958

0.90 30 8.76589 3.2144 1.45174 0.72808 0.80425 1.49344 2.92184 0.5515 0.55464 0.68704 1.44311
50 3.76869 2.16734 0.3245 0.2236 0.23603 0.3276 1.88151 0.22663 0.19525 0.21679 0.32385
75 3.07688 2.01468 0.31936 0.2517 0.25938 0.32256 1.57771 0.27778 0.23706 0.24766 0.31867
100 2.55572 1.79546 0.10235 0.09182 0.09175 0.10274 1.45695 0.12619 0.09686 0.09213 0.10227
200 2.17002 1.64308 0.09342 0.08396 0.08456 0.09367 1.40509 0.09645 0.08526 0.08377 0.09336
300 1.94456 1.4171 0.037 0.03317 0.03342 0.03705 1.16475 0.05767 0.03398 0.03311 0.03699

0.95 30 16.72502 4.92647 2.73733 1.22329 1.36596 2.91341 3.27857 1.12525 0.90844 1.14431 2.69959
50 6.4583 3.25201 0.46961 0.2713 0.28964 0.47818 2.60337 0.26854 0.23724 0.26196 0.46785
75 4.89723 2.80633 0.4165 0.29689 0.3085 0.42162 2.28323 0.3065 0.27477 0.29087 0.41543
100 3.81666 2.58717 0.19243 0.14963 0.15384 0.19396 2.26716 0.1697 0.14409 0.14752 0.19211
200 2.74401 2.33211 0.09503 0.07534 0.07555 0.09549 2.23159 0.12167 0.08153 0.07561 0.09494
300 2.64417 1.55027 0.0805 0.07295 0.07257 0.08071 1.30024 0.10429 0.07772 0.07321 0.08046

0.99 30 66.38526 21.55779 7.54753 3.30369 4.19356 10.11851 16.15912 3.15141 1.85076 2.92258 6.70302
50 26.89449 6.21287 2.29039 0.87953 0.9998 2.46892 3.37033 0.86212 0.63621 0.81574 2.25468
75 17.24697 6.00886 2.29095 1.0865 1.25205 2.53302 2.79798 1.0386 0.74234 0.99791 2.23525
100 11.21879 3.32262 0.73281 0.35515 0.38222 0.75892 2.26361 0.36605 0.31235 0.34194 0.72757
200 7.96539 1.9305 0.35063 0.2005 0.2101 0.35764 1.33744 0.2344 0.19265 0.19623 0.34923
300 6.47835 1.48865 0.28659 0.17747 0.1856 0.28969 0.80457 0.19367 0.1676 0.17351 0.28595

Table 6. Estimated MSE for non-robust and robust estimation methods when p = 8, φ = 5,
and 20% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 6.03183 5.34731 4.39709 1.6374 1.86149 4.64766 5.29159 1.33623 1.21384 1.54012 4.34266
50 5.6615 4.72255 0.40636 0.34221 0.35059 0.40725 4.63312 0.34434 0.32071 0.33714 0.40618
75 5.9164 4.35949 0.34714 0.26185 0.27417 0.3481 4.21619 0.26532 0.23144 0.25555 0.34694
100 5.35227 4.24839 0.14538 0.12581 0.12861 0.14552 4.13829 0.14253 0.11871 0.12412 0.14535
200 4.58084 3.69734 0.11971 0.10502 0.10721 0.11978 3.33053 0.11104 0.09905 0.10366 0.1197
300 3.93839 3.40422 0.11732 0.10485 0.10535 0.11738 3.2317 0.14422 0.1075 0.10477 0.11731

0.85 30 8.32019 5.56396 6.31385 3.04238 3.37117 6.41421 5.52672 2.38397 2.25953 2.86054 6.29328
50 6.60477 5.2986 1.21916 0.7775 0.82952 1.2236 5.16504 0.70237 0.65219 0.75013 1.21825
75 6.05807 4.45751 0.74262 0.5265 0.55564 0.74542 4.42025 0.46551 0.4488 0.50951 0.74205
100 5.80524 4.00621 0.23237 0.18787 0.19428 0.23269 3.68514 0.19966 0.17049 0.18402 0.23231
200 4.80435 3.82202 0.14748 0.13171 0.13276 0.14757 3.3143 0.16 0.13222 0.13125 0.14746
300 4.78643 2.8635 0.11367 0.10224 0.10351 0.11373 2.58 0.12522 0.10021 0.10158 0.11366

0.90 30 10.71589 5.13428 9.60152 3.83866 4.34121 9.74763 4.81408 2.7806 2.69664 3.57012 5.57216
50 6.52946 4.97365 0.78749 0.51035 0.54565 0.79202 4.52799 0.4482 0.41893 0.49 0.78656
75 6.10125 4.57888 0.74464 0.54085 0.56604 0.74906 4.41446 0.50367 0.47964 0.52726 0.74372
100 5.07246 4.1395 0.26374 0.21969 0.22427 0.26422 3.75331 0.23556 0.21127 0.2173 0.26364
200 5.05438 3.99594 0.25987 0.21934 0.22407 0.26022 3.74455 0.23225 0.20894 0.21666 0.25979
300 4.98219 3.6552 0.11341 0.10381 0.10473 0.11346 3.47193 0.1282 0.10311 0.10337 0.1134

0.95 30 18.70803 6.56193 12.87734 7.04438 8.18353 13.78167 5.45291 5.59887 4.59079 6.43105 6.69873
50 9.48829 5.94035 1.81463 0.97688 1.0685 1.83298 5.2677 0.82661 0.75588 0.92513 1.81091
75 7.84901 5.59758 0.96788 0.61406 0.65464 0.97438 5.20485 0.55597 0.51545 0.59137 0.96655
100 6.7178 5.27849 0.39197 0.30118 0.31158 0.39355 5.13766 0.30621 0.27816 0.29539 0.39165
200 6.14107 5.2455 0.22082 0.1646 0.17015 0.22138 5.05607 0.17714 0.15488 0.16163 0.2207
300 5.6568 4.52196 0.19699 0.17412 0.17596 0.19724 4.30407 0.18907 0.17262 0.17323 0.19694

0.99 30 98.82904 44.74133 27.27003 7.3956 9.49943 36.18372 40.57217 6.76694 3.89491 6.45721 15.2833
50 30.2868 8.64646 6.93006 2.16406 2.53639 7.27102 5.59133 1.93273 1.38567 1.96262 6.86274
75 26.75165 7.9603 5.31479 2.28945 2.64932 5.69947 5.5411 2.08955 1.49833 2.08991 5.23206
100 15.48847 6.51094 1.82086 0.79244 0.88214 1.85891 4.34398 0.74952 0.60486 0.7438 1.8132
200 13.38036 5.02655 0.91108 0.46222 0.50309 0.92239 4.12049 0.444 0.37842 0.43999 0.9088
300 11.14839 3.67117 0.70595 0.39112 0.42204 0.71108 2.39053 0.37476 0.32344 0.37352 0.70491
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Table 7. Estimated MSE for non-robust and robust estimation methods when p = 8, φ = 10,
and 10% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 7.08557 6.93734 5.83648 4.11309 4.26103 5.61904 6.28964 2.3878 2.60639 2.01585 3.73374
50 2.91879 2.59173 0.69559 0.60555 0.61579 0.71067 2.35651 0.68807 0.59961 0.60093 0.69167
75 2.58506 2.4788 0.71874 0.63035 0.64958 0.73728 2.33675 0.66586 0.60002 0.6228 0.71235
100 2.33199 2.22761 0.32244 0.33726 0.33039 0.32276 2.11515 0.40716 0.36116 0.33933 0.32235
200 1.97365 1.88386 0.26458 0.27137 0.26865 0.26464 1.84468 0.32406 0.28365 0.27292 0.26455
300 1.92564 1.83129 0.26761 0.28211 0.27705 0.26745 1.71793 0.34667 0.29915 0.28394 0.26763

0.85 30 8.11991 5.64452 4.38538 2.59312 3.00239 5.0665 4.89559 2.43279 1.90703 2.43185 4.11524
50 4.35384 3.7353 1.41192 1.03621 1.11047 1.48003 3.37778 1.00365 0.90295 1.00881 1.39242
75 2.83664 2.71001 1.07756 0.77908 0.8404 1.13658 2.56065 0.75185 0.66188 0.75273 1.05916
100 2.73869 2.18233 0.48388 0.43081 0.43761 0.49064 1.87462 0.47849 0.42269 0.42686 0.48198
200 2.10554 1.92015 0.34782 0.34559 0.34327 0.34904 1.85593 0.41538 0.35653 0.34584 0.3475
300 1.97612 1.90477 0.26245 0.26516 0.26304 0.26295 1.79201 0.32107 0.27484 0.26589 0.26229

0.90 30 9.94832 6.64374 4.62421 2.60223 3.00552 5.35049 5.54504 2.44701 1.88446 2.41953 4.35285
50 4.03811 3.13152 1.27656 0.90598 0.98038 1.35725 2.61038 0.87747 0.76908 0.87514 1.2525
75 3.20767 2.76859 1.19957 0.94683 1.01404 1.26977 2.42977 0.90808 0.82174 0.91961 1.17254
100 2.9214 2.49382 0.62772 0.52463 0.54294 0.64297 2.1888 0.53943 0.49061 0.51577 0.62332
200 2.28028 1.97051 0.50675 0.44528 0.45425 0.5148 1.85879 0.48954 0.42966 0.43985 0.50441
300 1.96218 1.90025 0.25143 0.26857 0.26156 0.25159 1.7727 0.32096 0.29046 0.27024 0.25138

0.95 30 18.67138 11.23936 6.64 3.85106 4.58746 8.08275 9.09761 3.68704 2.60662 3.54148 6.05953
50 7.48446 5.41869 2.31549 1.41244 1.5988 2.56972 4.53002 1.36062 1.07439 1.33357 2.23409
75 5.40093 4.15875 1.63528 1.07722 1.1928 1.77176 3.56361 1.02514 0.86816 1.03116 1.59343
100 4.0764 3.37542 0.96167 0.73057 0.77905 1.00704 2.86618 0.7158 0.63573 0.70893 0.94787
200 2.91413 2.58948 0.55016 0.40211 0.42298 0.56637 2.41983 0.43931 0.36862 0.39336 0.54633
300 2.78788 2.31533 0.51131 0.44591 0.4589 0.51986 2.04736 0.47498 0.42066 0.43996 0.50879

0.99 30 72.7248 46.04896 22.44061 12.96224 15.48505 20.85603 41.52265 10.73165 9.70638 11.01371 12.1437
50 30.73471 18.11691 4.41237 2.52812 3.07086 5.53265 13.61907 2.53113 1.5992 2.27876 3.93261
75 23.86083 18.08586 3.90374 3.41181 4.21972 4.69542 12.97199 2.4031 1.07141 2.06348 3.05693
100 12.73777 7.33884 2.65861 1.28559 1.52697 3.14474 5.33166 1.40014 0.89061 1.1873 2.51642
200 8.54659 4.25763 1.60539 0.79406 0.91813 1.79775 3.07982 0.7515 0.5841 0.74404 1.55666
300 7.51719 4.21078 1.31344 0.71007 0.79256 1.40952 2.88795 0.66751 0.54343 0.66749 1.28986

Table 8. Estimated MSE for non-robust and robust estimation methods when p = 8, φ = 10,
and 20% outliers.

ρ n Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE) BMRTE BMRTE

(LSMLE)
BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

0.80 30 8.82739 6.22272 5.66219 5.48573 6.0809 6.0253 5.76935 4.84538 3.9829 4.26733 6.22949
50 5.93879 5.75381 1.49862 1.29035 1.3246 1.51561 5.69714 1.27462 1.22177 1.27619 1.49453
75 5.67876 5.17575 1.43165 1.28211 1.31238 1.44792 5.05159 1.2639 1.22061 1.27064 1.42723
100 5.38694 5.15211 0.8571 0.84454 0.84459 0.85815 4.86833 0.84044 0.84905 0.84413 0.85685
200 4.59554 4.46663 0.75839 0.7567 0.75504 0.75876 4.40105 0.73903 0.73518 0.75718 0.75829
300 4.02426 3.75397 0.73422 0.73958 0.73697 0.73436 3.51204 0.72048 0.7292 0.72038 0.72418

0.85 30 8.94377 6.34229 6.05103 5.66231 6.00216 6.10451 5.78164 5.04478 4.11317 5.34328 5.14869
50 6.68658 6.08499 3.32338 2.40621 2.56229 3.40117 5.77901 2.16231 2.08294 2.34621 3.30445
75 6.0248 5.83793 2.04832 1.55653 1.6467 2.10358 5.45669 1.39753 1.34713 1.5121 2.03471
100 4.88141 4.71763 1.1199 1.00928 1.02751 1.12691 4.65986 1.01073 0.96838 1.00032 1.11821
200 4.87559 4.493 0.91085 0.8833 0.88625 0.91226 4.20237 0.9188 0.88061 0.88181 0.91052
300 4.83208 3.98636 0.75021 0.74541 0.74467 0.75077 3.37286 0.784 0.75045 0.74536 0.75007

0.90 30 11.03616 7.92249 6.29488 5.65315 6.45221 6.30139 6.79138 4.92324 4.13895 5.31808 6.04353
50 6.70318 5.67534 2.48053 1.83418 1.95432 2.56759 5.25412 1.67786 1.5642 1.77656 2.45831
75 6.21378 5.55504 2.17497 1.82412 1.90924 2.24172 4.74491 1.70039 1.61787 1.7794 2.15267
100 5.2906 4.85344 1.39363 1.2125 1.24608 1.40878 4.69528 1.17069 1.12995 1.19511 1.38978
200 5.06258 4.66659 1.13739 1.00928 1.03167 1.14647 4.05568 0.99728 0.95312 0.99683 1.1351
300 5.02868 4.43681 0.7204 0.71317 0.71224 0.72117 3.95455 0.75514 0.7193 0.713 0.72022

0.95 30 20.6934 12.12534 7.78511 6.34487 7.27944 8.80189 10.00104 6.80838 5.83209 6.52586 7.71848
50 9.85152 7.73651 5.59356 3.25304 3.63857 5.96448 6.72439 2.92211 2.47103 3.08117 5.49796
75 8.11659 6.80471 3.45616 2.28989 2.49783 3.62386 6.03993 2.04761 1.85143 2.19713 3.41387
100 6.9252 6.10335 1.88736 1.52206 1.59481 1.93332 5.43962 1.44746 1.34934 1.48507 1.87494
200 6.24698 5.52764 1.15843 0.92608 0.96295 1.17485 5.39129 0.90797 0.84212 0.90757 1.15464
300 5.77177 5.46502 1.16673 1.05654 1.07719 1.17494 4.9971 1.04146 1.01091 1.04776 1.16469

0.99 30 106.90229 59.40106 14.56561 11.82064 16.19343 18.17106 51.05839 11.01016 6.41234 10.43825 10.07316
50 39.44154 18.49573 10.44411 5.45969 6.5587 12.8078 15.4478 5.20708 3.40035 4.91328 9.7275
75 33.38302 21.96648 7.69568 5.82789 6.96489 9.3508 13.20366 5.14659 3.61072 5.19246 6.56767
100 19.25723 10.06645 5.67036 3.00421 3.46103 6.35904 7.73574 2.77646 2.10588 2.78899 5.5008
200 17.41936 7.49841 3.55074 1.87745 2.1252 3.83585 5.89416 1.75526 1.37978 1.75901 3.48457
300 15.5475 7.20389 2.67246 1.41026 1.57168 2.8057 5.28717 1.36285 1.05212 1.32127 2.64304
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Figure 1. Estimated MSE for non-robust and robust estimators across sample sizes with 10%
outliers.
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Figure 2. Estimated MSE for non-robust and robust estimators across sample sizes with 20%
outliers.
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Figure 3. Estimated MSE for non-robust and robust estimators across dispersion parameter
with 10% outliers.
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Figure 4. Estimated MSE for non-robust and robust estimators across dispersion parameter
with 20% outliers.
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Figure 5. Estimated MSE for non-robust and robust estimators across multicollinearity level
with 10% outliers.
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Figure 6. Estimated MSE for non-robust and robust estimators across multicollinearity level
with 20% outliers.
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Figure 7. Estimated MSE for non-robust and robust estimators across the number of
explanatory variables with 10% outliers.
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Figure 8. Estimated MSE for non-robust and robust estimators across the number of
explanatory variables with 20% outliers.

Across all eight simulation scenarios, the results show that: Robust BMRTE estimators, particularly
BMRTELSMLE and BMRTEMDPDE, consistently provide the lowest MSE values, regardless of sample
size, correlation level, or degree of outliers. BMLE and non-robust estimators are unreliable in
the presence of outliers and multicollinearity. Therefore, BMRTELSMLE is the most reliable and
recommended estimator, offering a practical and powerful solution for real-world count data with
outliers and multicollinearity issues.

5. Numerical analysis

This study draws on data sourced from the breast cancer Wisconsin (Diagnostic) dataset, originally
compiled from clinical cases at the University of Wisconsin Hospitals between January 1989 and
November 1991. The dataset includes diagnostic measurements from 569 patients. Previous analyses
of this dataset have been conducted by Abo El-Nasr et al. [41] and Rahmashari et al. [42].

Breast cancer remains a major global public health challenge, representing the most frequently
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diagnosed malignancy in women and the second most common cause of cancer-related deaths.
The disease is marked by uncontrolled proliferation of breast tissue cells, leading to considerable
morbidity. The current analysis employs radius mean—defined as the average distance from the
center to the periphery of sampled cells—as the response variable. This selection is motivated by
the variable’s utility in reflecting tumor size and spatial expansion, which serve as indicators of
disease progression. Unlike prior studies that emphasized classification of diagnostic outcomes, this
work adopts a regression-based approach to model tumor morphology as a function of diagnostic
and cellular characteristics. The use of a continuous measure, such as radius mean, permits the
application of a broader suite of statistical techniques and supports a more nuanced interpretation
of tumor development. This approach aids in identifying relationships between tumor characteristics
and disease severity. Alongside radius mean, the study incorporates ten predictor variables: diagnosis,
texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal
dimension. These covariates provide complementary information on histological attributes that are
clinically relevant to understanding tumor behavior and prognosis.

In this study, we investigate the impact of ten independent variables on the dependent variable, mean
radius (y), which represents the average distance from the tumor center to points on its perimeter. The
independent variables include: Diagnosis (x1), indicating whether the tumor is malignant (cancerous
and likely to spread) or benign (noncancerous and typically requiring less aggressive treatment); texture
(x2), measuring the standard deviation of gray-scale values in the image; perimeter (x3), reflecting the
average perimeter of the core tumor; area (x4), representing the size of the core tumor; smoothness
(x5), indicating local variation in radius lengths; compactness (x6), calculated as (perimeter2 / area);
concavity (x7), capturing the severity of concave portions of the tumor contour; concave points (x8),
which count the number of concave segments along the contour; symmetry (x9), related to differences
in breast density; and fractal dimension (x10), a measure used to approximate the complexity of the
tumor’s boundary.

Table 9 presents descriptive statistics for variables in the breast cancer dataset, including the
number of observations (n), minimum, maximum, mean, and standard deviation for each feature. The
mean texture value is 19.29 (range: 9.71–39.28), the mean perimeter is 91.97 pixels (range: 43.79–
188.50), and the mean area is 654.89 square pixels (range: 143.50–2501.00). Elevated values in these
metrics may reflect increased cellular irregularity, larger tumor dimensions, and more advanced disease
progression.

Table 9. Descriptive statistics of the breast cancer dataset variables.

Variable n Minimum Maximum Mean Std. Deviation
Diagnosis (x1) 569 0.0000 1.0000 0.3726 0.4839
Texture (x2) 569 9.7100 39.2800 19.2896 4.3010
Perimeter (x3) 569 43.7900 188.5000 91.9690 24.2980
Area (x4) 569 143.0000 2501.0000 654.8891 351.9141
Smoothness (x5) 569 0.0526 0.1634 0.0964 0.0141
Compactness (x6) 569 0.0194 0.3454 0.1043 0.0528
Concavity (x7) 569 0.0000 0.4268 0.0890 0.0797
Concave points (x8) 569 0.0000 0.2012 0.0489 0.0388
Symmetry (x9) 569 0.1060 0.3040 0.1812 0.0274
Fractal dimension (x10) 569 0.0490 0.0974 0.0628 0.0071
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Smoothness averages 0.096 (range: 0.05–0.16), while compactness averages 0.104 (range:
0.02–0.35). Reduced smoothness and elevated compactness are associated with irregular morphology
and higher tissue density, potentially indicating more aggressive tumor growth.

Concavity shows a mean of 0.089 (range: 0.00–0.43), and concave points average 0.049 (range:
0.00–0.20). Higher values suggest more pronounced contour concavities, which may correlate with
invasive tumor characteristics.

Symmetry averages 0.181 (range: 0.11–0.30), and fractal dimension averages 0.063 (range:
0.05–0.10). Asymmetry and complex fractal patterns may indicate structural abnormality and
aggressive phenotypic behavior.

To begin with, we assess the presence of multicollinearity and outliers in the dataset. In this study,
multicollinearity is examined using three different approaches. The first approach involves inspecting
the correlation matrix of the explanatory variables. As shown in Figure 9, there are strong correlations
among several variables, particularly between x3 and x4, x7 and x8, and x6 and x7, which indicates
potential multicollinearity. In addition, we calculate the condition number, which is defined as the
square root of the ratio of the matrix U’s largest to smallest eigenvalue. The eigenvalues of our matrix
are as follows: 1.754524E+12, 1.560116E+09, 3.966556E+07, 3.313754E+05, 1.515372E+04,
1.007115E+04, 1.198765E+03, 7.172950E+02, 3.086800E+02, 1.146600E+02, and 1.887900E+01.
Using these values, the condition number is calculated to be approximately 304854.8, which is
significantly higher than the commonly used threshold of 100. This indicates the presence of severe
multicollinearity. These findings are further supported by the variance inflation factors (VIFs) of the
explanatory variables, which are: 3.126, 1.325, 89.300, 61.937, 3.026, 15.433, 12.742, 24.844, 1.872,
and 6.203. We observe that several VIF values exceed the critical value of 10, further confirming the
existence of strong correlations among the variables and indicating severe multicollinearity, which may
adversely affect the interpretability and reliability of the data’s estimates.
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Figure 9. Correlation matrix for independent variables in the breast cancer data.

This diagnostic plot in Figure 10 highlights several concerns with the model, particularly regarding
outliers and influential points. The residual distribution and Q-Q plot indicate that the residuals don’t
follow a normal distribution, especially at the tails, suggesting the presence of outliers. In the residuals
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vs. fitted values plot, we see a curved pattern and some points that are far from the zero line, which
could point to model misspecification and additional outliers. The Cook’s distance plot stands out by
identifying a few data points, especially one that has an unusually large effect on the model’s results.
Moreover, the boxplot in Figure 11 of all variables shows clear evidence of extreme values, particularly
in variable x4, which has many high outliers well outside the interquartile range. Other variables,
like x3 and y, also show mild outliers. These findings strongly suggest the presence of influential
observations and indicate that the dataset might benefit from transformation, outlier handling, or robust
regression methods.
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Figure 10. Model diagnostic plots showing residual distribution, Q-Q plot, residuals vs fitted
values, and Cook’s distance.
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Figure 11. Boxplot of all variables.
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After identifying issues with multicollinearity and outliers in the data, we will model the data
using the traditional Beta model. This will include BMLE for the basic model, along with unbiased
estimators that address multicollinearity alone, such as BRRE and BMRTE. Additionally, we will
employ robust estimators that address both multicollinearity and outliers, including: BRRELSMLE,
BRRELMDPDE, BRRESMLE, BRREMDPDE, BMRTELSMLE, BMRTELMDPDE, BMRTESMLE, BMRTEMDPDE.

Table 10 presents the estimated coefficients and MSE for both non-robust and robust estimation
methods applied to the breast cancer dataset. The traditional BMLE exhibits the highest MSE,
indicating poor performance, likely due to the presence of multicollinearity and outliers in the data.
Non-robust estimators such as BRRE and BMRTE show noticeable improvement in MSE with more
superiority for BMRTE, but the most significant gains are seen with robust variants. Among them,
BMRTELSMLE achieves the lowest MSE value of 61.31, closely followed by BMRTELMDPDE and
BMRTESMLE, which also yield low MSEs. These robust methods are designed to mitigate the impact
of both multicollinearity and outliers, and their effectiveness is reflected in the consistent and stable
coefficient estimates across different robust techniques. For example, parameters like β5 and β6,
which show large fluctuations under MLE, become more stable and moderate under robust estimators.
Overall, the findings suggest that proposed robust BMRTE techniques, particularly BMRTELSMLE,
provide more reliable and accurate coefficient estimates in the presence of data contamination and
multicollinearity.

Figure 12 shows the results of a comparison of the performance of three estimators, BMILE, BRRE,
and BMRTE, based on their MSE and Bias across different values of the shrinkage parameter k. Among
the three, BMRTE consistently delivers the best performance, achieving the lowest MSE while keeping
the bias well-controlled. This advantage is especially noticeable at intermediate values of k, where
the estimator effectively balances the trade-off between bias and variance. These results highlight
BMRTE’s strong robustness in handling multicollinearity and outliers, making it a reliable choice
across various scenarios.

Through the empirical validation presented in Table 11, all theoretical conditions derived in
Theorems 1–7 are rigorously confirmed using real breast cancer data. The results unequivocally
support the superiority of the proposed estimator β̂BMRTELSMLE

over a range of competing estimators
under various multicollinear and outlier data. Below is a detailed itemization of the validations:

• In Theorem 1, the necessary condition φ̂λ2
j + λ jk2(d + 1)2α̂2

LSMLE, j − φ̂(λ j + k(d + 1))2 < 0, for
all j = 1, . . . , p + 1, is satisfied for j = 1, . . . , 11. This confirms the superiority of the estimator
β̂BMRTELSMLE

over β̂BMLE.
• In Theorem 2, the necessary condition (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2

LSMLE j)− (λ j + k(d + 1))2(φ̂λ j +

k2α̂2
MLE j) < 0, for all j = 1, ..., p + 1, is satisfied for j = 1, . . . , 11. This confirms the superiority

of the estimator β̂BMRTELSMLE
over β̂BRRE.

• In Theorem 3, the necessary condition k2(d + 1)2α̂2
LSMLE j − k2(d + 1)2α̂2

MLE j < 0, for
all j =1, ..., p+1, is satisfied for j = 1, . . . , 11. This confirms the superiority of the estimator
β̂BMRTELSMLE

over β̂BMRTE.
• In Theorem 4, the necessary condition dλ j

(
(k2α̂2

LSMLE, j(d + 2) − 2φ̂k)λ j + k2(2kα̂2
LSMLE, j(d + 1) −

φ̂(d + 2))
)
< 0, for all j = 1, ..., p + 1, is satisfied for j = 1, . . . , 11. This confirms the superiority

of the estimator β̂BMRTELSMLE
over β̂BRRELSMLE

.
• In Theorem 5, the necessary condition (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2

LSMLE j)− (λ j + k(d + 1))2(φ̂λ j +
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k2α̂2
LMDPDE j) < 0, for all j = 1, ..., p + 1, is satisfied for j = 1, . . . , 11. This confirms the

superiority of the estimator β̂BMRTELSMLE
over β̂BRRELMDPDE

.
• In Theorem 6, the necessary condition (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2

LSMLE j)− (λ j + k(d + 1))2(φ̂λ j +

k2α̂2
SMLE j) < 0, for all j = 1, ..., p + 1, is satisfied for j = 1, . . . , 11. This confirms the superiority

of the estimator β̂BMRTELSMLE
over β̂BRRESMLE

.
• In Theorem 7, the necessary condition (λ j + k)2(φ̂λ j + k2(d + 1)2α̂2

LSMLE j)− (λ j + k(d + 1))2(φ̂λ j +

k2α̂2
MDPDE j) < 0, for all j = 1, ..., p+1, is satisfied for j = 1, . . . , 11. This confirms the superiority

of the estimator β̂BMRTELSMLE
over β̂BRREMDPDE

.

Table 10. MSE and coefficients of all non-robust and robust estimation methods for breast
cancer data.

Coefficient
Traditional Non-robust Robust estimator Non-robust Robust estimator

BMLE BRRE
BRRE
(LSMLE)

BRRE
(LMDPDE)

BRRE
(SMLE)

BRRE
(MDPDE)

BMRTE
BMRTE
(LSMLE)

BMRTE
(LMDPDE)

BMRTE
(SMLE)

BMRTE
(MDPDE)

β0 -3.29027 -3.1096 -3.15181 -3.09896 -3.1096 -3.1096 -3.02363 -3.06139 -3.00913 -3.02363 -3.02363
β1 0.00883 0.01897 0.0119 0.01551 0.01897 0.01897 0.02566 0.01934 0.02269 0.02566 0.02566
β2 -0.00017 -0.00083 -7e-04 -0.00093 -0.00083 -0.00083 -0.00123 -0.00114 -0.00135 -0.00123 -0.00123
β3 0.02086 0.0187 0.01953 0.01863 0.0187 0.0187 0.01742 0.01815 0.01725 0.01742 0.01742
β4 -0.00059 -0.00048 -0.00053 -0.00047 -0.00048 -0.00048 -4e-04 -0.00045 -0.00039 -4e-04 -4e-04
β5 0.42024 -0.12534 -0.20148 -0.15103 -0.12534 -0.12534 -0.20987 -0.25832 -0.22735 -0.20987 -0.20987
β6 -0.64411 -0.42385 -0.38255 -0.39538 -0.42385 -0.42385 -0.33685 -0.2962 -0.30778 -0.33685 -0.33685
β7 -0.03893 -0.14092 -0.1577 -0.10243 -0.14092 -0.14092 -0.15314 -0.16021 -0.11585 -0.15314 -0.15314
β8 -0.34447 -0.03446 0.04821 -0.03019 -0.03446 -0.03446 -0.00751 0.04684 -0.00341 -0.00751 -0.00751
β9 -0.03807 -0.17306 -0.16847 -0.20542 -0.17306 -0.17306 -0.24105 -0.24124 -0.27108 -0.24105 -0.24105
β10 -0.3492 -0.3127 -0.29783 -0.31109 -0.3127 -0.3127 -0.29947 -0.29038 -0.29625 -0.29947 -0.29947
MSE 2530.11147 118.46066 108.45916 108.44035 118.46066 118.46066 67.81113 61.30519 61.64094 67.81113 67.81113
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Figure 12. Comparison of MSE and Bias for different estimators across different parameter
values.

The consistent negativity of all values across j = 1, . . . , 11 for each theorem, as summarized
in Table 11, provides strong empirical evidence that the proposed estimator β̂BMRTELSMLE

is not only
theoretically sound but also statistically effective in addressing multicollinearity and outlier. This
makes it a robust and reliable choice for practical applications in complex data settings.
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Table 11. Verification of the conditions outlined in the theorems was carried out using breast
cancer data.

Value Theorem 1 Theorem 2 Theorem 3 Theorem 4 Theorem 5 Theorem 6 Theorem 7
j=1 -1.435E-17 -7.196E-18 -1.343E-18 -6.471E-18 -6.455E-18 -7.196E-18 -7.196E-18
j=2 -1.815E-11 -9.100E-12 -1.699E-12 -8.184E-12 -8.164E-12 -9.100E-12 -9.100E-12
j=3 -2.807E-08 -1.408E-08 -2.628E-09 -1.266E-08 -1.263E-08 -1.408E-08 -1.408E-08
j=4 -4.007E-04 -2.004E-04 -3.668E-05 -1.801E-04 -1.797E-04 -2.004E-04 -2.004E-04
j=5 -1.753E-01 -8.055E-02 -4.713E-03 -7.097E-02 -7.082E-02 -8.055E-02 -8.055E-02
j=6 -3.831E-01 -1.707E-01 -3.747E-03 -1.496E-01 -1.494E-01 -1.707E-01 -1.707E-01
j=7 -1.721E+01 -6.101E+00 -8.740E-01 -5.316E+00 -5.302E+00 -6.101E+00 -6.101E+00
j=8 -3.645E+01 -1.042E+01 -1.208E+00 -8.930E+00 -8.899E+00 -1.042E+01 -1.042E+01
j=9 -1.072E+02 -1.751E+01 -1.830E+00 -1.456E+01 -1.451E+01 -1.751E+01 -1.751E+01
j=10 -3.188E+02 -1.658E+01 -8.067E-01 -1.344E+01 -1.310E+01 -1.658E+01 -1.658E+01
j=11 -1.989E+03 -5.277E+00 -3.133E-01 -3.981E+00 -4.038E+00 -5.277E+00 -5.277E+00
Satisfied or not Satisfied Satisfied Satisfied Satisfied Satisfied Satisfied Satisfied

6. Conclusions

The BRM is widely employed for modeling proportional data bounded within the unit interval.
However, the BMLE is highly sensitive to multicollinearity and outliers, frequently resulting in
unstable estimates and inflated standard errors. To overcome these challenges, we introduce a new class
of robust modified ridge-type estimators. The most effective among them, the BMRTELSMLE, merges
shrinkage and robustness methods to deliver stable estimates even when severe multicollinearity and
outliers are present. We support this development with thorough theoretical analysis and extensive
numerical tests. Through Monte Carlo simulations spanning a wide range of conditions and a real-
world application to breast cancer data, our proposed estimators consistently outperform alternatives.
The BMRTELSMLE proves especially powerful in scenarios with high multicollinearity and extreme
outliers. Our work underscores the critical need for robust methodologies in beta regression. By
providing a solution that is both practical and does not add significant complexity, these estimators
make beta regression more reliable and accessible for scientific fields like biomedicine. Despite
its contributions, this study has limitations, which highlight promising avenues for future work.
First, the computational burden of estimating the MSE for both robust and non-robust estimators
grows considerably with the dimensionality of the predictor space (p), raising challenges for high-
dimensional applications. Second, the effectiveness of the proposed estimators is contingent on the
careful choice of tuning parameters. Thus, the development of automated, data-driven procedures
for jointly optimizing shrinkage and robustness represents a valuable direction for methodological
advancement. Moreover, the theoretical and numerical investigations presented here are confined to
cross-sectional data, leaving unexplored the behavior of these estimators in more complex structures
such as time-series, longitudinal, or spatially correlated BRMs. Future research could also integrate
tailored outlier detection strategies and robust estimation methods for the response variable, thereby
enhancing the overall applicability and robustness of BRMs.
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