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Abstract: This study offers an in-depth exploration of traveling wave solutions to the simplified
modified Camassa-Holm (SMCH) equation through the application of the modified S-expansion
method. Utilizing a traveling wave transformation, the SMCH equation is converted into a nonlinear
ordinary differential equation, from which a wide range of exact solutions is systematically obtained.
The modified S-expansion method, implemented using the Maple software, proves to be a robust and
efficient analytical tool, yielding a variety of soliton solutions such as kink, bright, and dark solitons.
To capture the intricate behavior of these solutions, MATLAB is employed to produce detailed 2D,
3D, and contour visualizations that reveal their structural features and propagation dynamics. A
comparative assessment with the modified simple equation method and the exp(—¢(n))-expansion
method highlights the modified S-expansion method’s superior accuracy, simplicity, and adaptability
to solve nonlinear partial differential equations. Significantly, the method also extends to
fractional-order equations, showcasing its broad applicability in nonlinear system analysis. Key
solutions are graphically represented under constrained parameter values to emphasize the core
propagation features. Overall, this work enhances the current analytical methods to solve both
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classical and fractional-order nonlinear partial differential equations (PDEs) and offers a valuable
foundation for future research into closed-form traveling wave solutions across various disciplines.

Keywords: the simplified modified Camassa-Holm equation; modified S-expansion method; soliton

solutions; nonlinear differential equations
Mathematics Subject Classification: 33F05, 35C08, 35E05, 35Q51, 37J25, 37L50

1. Introduction

Many researchers [1-16] have investigated the family of equations that takes the following
form:

Py — Pyt + (@ + 1)PP, = PPy + PPeyy. (1.1)

Equation (1.1) reduces to the Camassa-Holm (CH) equation when a = 2 and takes the
following form:

Py — Pyyt + 3PP, = 2P Py + PPyy. (1.2)

Equation (1.1) reduces to the Degasperis-Procesi (DP) equation when @ = 3 and takes the
following form:

Py — Pyyt + 4PP, = 3PPy + PPeyy. (1.3)

Both the CH and DP equations exhibit bi-Hamiltonian structures and are linked to
corresponding isospectral problems [1]. They are formally integrable through the scattering and
inverse scattering techniques [1]. Interestingly, these equations admit peaked solitary wave solutions,
commonly known as peakons. While Eqs (1.2) and (1.3) share some structural resemblances, they
are inherently different. In particular, the isospectral problem for the DP equation is third-order,
whereas it is second-order for the CH equation [1]. Using the method of asymptotic integrability,
Degasperis and Procesi [2] established that Eq (1.1) is only integrable when a@ = 2 or @ = 3. The
CH equation (1.2), which corresponds to when a = 2, models shallow water waves and was initially
derived as an approximation to the incompressible Euler equations. It was subsequently shown to be
completely integrable, which led to a Lax pair formulation [2]. Likewise, the DP Eq (1.3), linked to
when a = 3, models shallow-water phenomena and has been proven to be integrable. Additionally,
researchers have shown that Eq (1.1) supports single-peakon solutions and multi-peakon structures [2].
This study aims to build upon and advance the current research on the DP and CH equations. In
particular, Wazwaz [3] introduced modified forms of these equations, which are presented as the
modified DP and modified CH equations as follows:

P, — Py + 4P%P, = 3PP, + PPy, (1.4)
and

P, — Py + 3P%P, = 2PP,, + PP,,,, (1.5)
respectively. Wazwaz [4] introduced a unified model that combines features of both the CH and DP

equations, referred to as the general modified DP—CH equation, given by the following:
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Py — Pyyt + (@ + 1)P2P, = QP P,y + PPy, (1.6)

where @ = 2 and a = 3. It is evident that the nonlinear convection term PP, present in Eqs (1.2)
and (1.3) is modified to P2P, in Eqs (1.5) and (1.6). Wazwaz [4] simplified Eq (1.6) according to
modified form of the CH equation by setting a = 2, which led to the following:

Pt = Pxxt + 3p2px — 2PxPxx — PPxxx = 0. (1.7)

The following integrable CH equation for water waves was developed by Camassa and Holm

[5]:
Py — Pyyt + 2aP, + kPP, = 2P P,y + PPy, (1.8)

which kept two terms that are typically neglected in the shallow water, small amplitude limit.
The following modified CH equation was studied by Tian and Song [6]:

P, — Poys + 2aP, + kPP, = 2P,P,y + PP,yy, (1.9)

which acquired fresh peaking solutions for lone waves. Furthermore, Boyd [7] found that the
two additional terms on the right-hand side of (1.8) were minimal if the solitary wave slowly varied
with o = x — ct; the solutions gave the soliton the lowest order as follows:

P, — P,y + 2aP, + kPP, = 0. (1.10)

Wazwaz [8] examined a modified version of the CH equation, which was derived from the
modified CH (MCH) equation and simplified in light of (1.10) as follows:

Pt_Pxxt+2an+kPan:0' (1.11)
In this study, we only consider n = 2 of Eq (1.11):
Pt + 2BPx — Dxxe T kp°px =0, ER, k >0, (1.12)

where p(x,t) is a function that specifies the height of the sea surface or the amplitude of waves,
and x and t are coordinates of space and time. This equation has garnered significant attention
from the research community due to its broad relevance in modeling a wide range of wave
phenomena [9]. Its study is of interest not only to mathematicians and physicists but also to engineers
and experts in fields such as fluid dynamics, nonlinear optics, and image processing [10]. In
particular, the simplified modified form of the CH equation plays a crucial role in analyzing wave
behavior, and its numerous applications remain an active area of exploration [11]. Ali et al. [12]
obtained accurate traveling wave solutions to the SMCH equation, presenting wave structures
characterized by hyperbolic, trigonometric, exponential, and rational function forms. Islam et al. [13]
studied the exact solutions of the simplified modified Camassa-Holm (SMCH)equation, and
emphasized its wide applicability across the fields of mathematics, physics, and engineering. In this
paper, we use the modified equation form as a basis to explore the changes in the physical nature of
the solutions, from peakon solutions illustrated in Eq (1.3) to bell-shaped solitary waves and soliton
structures expressed as ratios of exponential functions [14]. To conduct this investigation, we utilize
the modified S-expansion method [15]. The modified S-expansion method is a powerful and efficient
tool to solve nonlinear partial differential equations (PDEs), thereby offering a broad solution space,
enhanced flexibility, reduced computational complexity, and adaptability to various physical models
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and boundary conditions across diverse scientific and engineering fields. Despite its strengths, the
modified S-expansion method has limitations, including the difficulty with highly nonlinear terms,
the reliance on specific assumptions and parameter choices, a limited generalizability, and the
reduced effectiveness for numerical or high-dimensional problems, which makes it best suited for
select classes of nonlinear PDEs. The main steps of this method are presented in the following

sections.
2. Materials and methods

We consider the following:

ow ow 9*w 92w a*w

P(W,

ot ' ox ' 9%x ' otox’ 9%t

) =0.

First, we use the travelling variable as follows:

W) =W(x,t),2 =x—ct.

Placing Eq (2.2) into Eq (2.1), we obtain the following:

Fow,w',w",

Again, we consider the following ansatz equation:

0(&) = Eg + XL [EAN ()} +

where N(&) satisfies

Fi
(NN

1,

N'(€) = 9o + 9N (§) + 9N ()*;

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

the values of 9;, where 0 < L < 2, can be found in Table 1 [16]. The values of E; and F; will be

determined at a later stage.

Table 1. Relationships between (9, 9;,9,) and the function N(§).

(99,91, 9>)

N ()

(9, = 0.5,9; = 0.0,9, = 0.5)

N(&) = sec(€&) + tan(§).
N(&) = csc(€&) + cot(€).
N($) = sec(§) — tan($).
N($) = esc($§) = cot($).

(9, = +£1.0,9; = 0.0,9, = +1.0)

N(§) = tan(s).
N(§) = cot(S).

(¥, = 0.0,9; = 1.0,9, = —1.0)

1 1
N(§) =51+ tanh(5 ).

(¥, = 1.0,9; = 0.0,9, = —1.0)

N($) = tanh($).
N($) = coth($).

(190 = 0.5,191 = 0.0,192 = _0.5)

N(§&) = tanh(€§) £ sech(§).
N(§&) = coth( &) + csch(§).
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2.1. Flowchart of the modified S-Expansion method

A flowchart is a graphical representation of a process, sequence, or workflow, and utilizes
standard symbols and connecting lines to illustrate the progression of steps. It simplifies complex
tasks or decisions into clear, manageable stages, typically arranged from top to bottom or left to right.
Flowcharts are widely employed across various fields—such as business process mapping, software
development, troubleshooting, and education—to enhance our understanding, analysis, and
optimization of workflows. In this section, we present a flowchart that outlines the steps of the
modified S-expansion method. This visual aid provides a clear and systematic overview of the
procedure of applying the method to nonlinear PDEs.

Step 2: Apply the traveling wave

Step 1: Start with the given
PDE:

F(u, g, Uy, Uy oo

transformation

)=0 u(x, t) = u(é),where & =x — vt

Step 3: Convert PDE to ODE via
traveling wave transformation

Step 4: Taking series

expansion of the ODE

Step 6: Substitute the constants
into the sub-equation and
construct u(&) for the PDE

Step 5: Balance the terms and

solve for unknown coefficients

Step 7: obtained solution

3. Solving the SMCH via the modified S-expansion method

Using the change of variables p(x,t) = 0(p) with o = x — ct, Eq (1.12) is transformed into
the following equation:

—cO' +2k0’ +cO" + fO20’ = 0, (3.1)

where the prime notation signifies the derivative with respect to the variable g. Integrating Eq (3.1)
concerning o yields the following:

—cO +2kO + 0"c + =[O + C =0, (3.2)
where C is a constant of integration.
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Balancing the highest order linear and nonlinear terms appearing in Eq (3.2), we achieved M = 1.
Therefore, we find the following:

0 =21+ 4N+ % (3.3)

Then, by setting the coefficients of this polynomial equal to zero, a system of linear algebraic
equations is formed, and the following set is obtained as its solution:

4k 6k
Set-I. =0, c=————5—, 1, = <+ —>;
© ¢ apopr—p3-2" "0 H _\/43#0#2—&4‘%—23

6k
/11 Or q1 ZMO (_\/4ﬁﬂoﬂ2_ﬁ”%_zﬁ)

Set-Il: =0, c=—————, 1y = :
Apopy—py—2 5 6k
(4touz—pu7—2)p(t m)
6k
= (t & ) 40
1= 42 —\/wuouz—ﬁuf—m 1
Set-Il: € = — 96k itz cm_ 4k
’ . ek ’ BUolz+ui+2
B(8”0”2+#1+2) + <8ﬁuouz+ﬁu§+zﬁ>
AO = - okin P
(8Moﬂz+ﬂ%+2)ﬁ(ij<m>)
—6k
=2 (),
L= o 2(—\/ SBhoriz+piar2p)

12’([1,0

-6k
(8“0"2*”%*2)‘*<i<] (m)))

Substituting the above values of Set-I in (3.3), then we achieve the following:

q1 = —

6k 6k 1
= + — + —= )| x= .
© [’ul (_\/4.3110#2—/3#%—23) 24 (_\/4ﬁﬂoﬂ2—ﬁﬂi—2ﬁ)] N S
If uy =0.5, u; =0.0,and p, = 0.5, then Eq (3.4) gives the following:

’6k 1

0, =1 -8 X sec(é)+tan(§)’ (3-5)
6k 1

0,==% B X csc(&)—cot(é)’ (36
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’6k 1
0; ==+ B X sec(&)—tan(§)’ S
6k 1
0,=1% B X csc(&)+cot(é)’ 39
If uo = £1, py =0.0,and u, = *1, then Eq (3.4) gives the following:
6k 1
0; =2 [i\/%] X e (3.9)
6k 1
0g =2 [i\/%] X prevry (3.10)
If uo =0.0, u; = 1.0, and u, = —1.0, then Eq (3.4) gives the following:
6k 1
@7—i EXW. (311)
If uo =1.0, u; =0.0,and u, = —1.0, then Eq (3.4) gives the following:
’ K 1
Og =2 [i 3] X tanh(§)’ (3.12)
, k 1
By =2 [i 3] X PN (3.13)
If uyp =0.5, u; =0.0,and p, = —0.5, then Eq (3.4) gives the following:
2k 1
O =% —B ” tanh(§)tsech(é)’ G-19)
2k 1
Ou = £ 55 X Ctn@rosenter (3.15)
Substituting the above values of Set-II in Eq (3.3), then we achieve the following:
— + [——=———] % N. .
© . 2 a4 6k 242 <_\/43#0#2—3M%—23) N (3-16)
(horz =M= 2B | 2
If up =0.5, u; =0.0,and u, = 0.5, then Eq (3.16) gives the following:
0,, =% /% x sec(é) + tan(é); (3.17)
0,3=1% /% X csc(§é) — cot(€); (3.18)
014 =1 /% x sec(§) — tan(§); (3.19)
0,s =+ /% X csc(€) + cot(§). (3.20)
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If uyo = £1, puy =0.0,and p, = *1, then Eq (3.16) gives the following:
If uo =0.0, u; = 1.0, and p, = —1.0, then Eq (3.16) gives the following:
O =+ |—F Z(i\/z:" x X (1 + tanh (1 (5)). (3.23)
_3ﬁiJ7_k _B 2 2
-B
If uo =1.0, u; =0.0,and pu, = —1.0, then Eq (3.16) gives the following:
0, = -2 [i /_"_ﬁ] x tanh(£) ; (3.24)
0,0 = —2 [i /_"—ﬁ] X cot h(%). (3.25)
If uy =0.5, u; =0.0,and p, = —0.5, then Eq (3.16) gives the following:
0, = — (i /%) x (tanh(£) + sech(&)); (3.26)
0y = —(& /%) x (coth(€) + csch(€)). (3.27)
Substituting the above values of Set-I1I in Eq (3.3), then we achieve the following:
6k
0=- A +
—6k
(8 +uz+2)B( + ( )
ot 5+ 2P\ 8B puoms + puT + 28
-6k _ 12kug 1
2Hz (i\/(sﬁﬂoﬂz‘ﬂgﬂ%‘*zﬁ)) xN ek % N’ (3.28)
(8uoua+u3+2)p i(\/<8ﬁﬂ0u2+ﬁﬂ%+zﬁ>)
If uyp =0.5, u; =0.0,and p, = 0.5, then Eq (3.28) gives the following:
’—31( 6k 1
0,5 =+ 7 X (sec(é) + tan(§)) — =z X e (3.29)
t 5z
,—3k 6k 1
0,, ==+ 3 X (csc(€é) — cot(§)) — T X o) —cotD)” (3.30)

AIMS Mathematics

Volume 10, Issue 9, 21533-21548.



21541

’—3k 6k 1
0,5 = + 2 X (sec(é) —tan(§)) — e iﬁk X D)’ (3.31)

_ . [k _ 6k 1
0, =+ / TR (csc(€) + cot(£)) e __3[;( X e reot®’ (3.32)

If uo = £1, puy =0.0,and p, = *1, then Eq (3.28) gives the following:

—6k] 12k 1

07 = 2[ [1o5] X () ~| T | ¥ ey (3.33)
—4 10
[ [-6K] 12k 1
B, =2 i m_ X (COt(f)) — op __6,[; X ot (e’ (3.34)
—4 10
If uo =0.0, u; = 1.0, and u, = —1.0, then Eq (3.28) gives the following:
O = + |—E — —2(+ =y x1(1 + tanh (1 (5)). (3.35)
3B(+ [—S_ek) 3B 2 2
B
If uo =1.0, u; =0.0,and u, = —1.0, then Eq (3.28) gives the following:
k 12k 1
=-2[+ |2 — ; .
03, 2 [_\/;] X tanh(¢) —Gﬁ(i\/% X @’ (3.36)
k 12k 1
03, = -2 [i\/;] X coth(§) — —6ﬁ(4_r\/§ X ot (3.37)

4. Graphical representation

To make effective use of graphical representations, it is important to comprehend different types
of graphs, such as 2D, 3D, contour, cyclic, and full graphs. Specifically, in the study of nonlinear
partial differential equations, 2D, 3D, and contour plots play crucial roles in visualizing, analyzing,
and understanding the behavior of soliton solutions. In this section, we focus on these three graph
types, and emphasize their importance and relevance in soliton analysis. Additionally, we compare
the outcomes obtained through our proposed methods with those from existing techniques applied to
the same equations, thus highlighting the enhanced accuracy of our results.

The presented graphs visually depict the solutions of the SMCH equation for various
parameter settings. Figure 1 represents the 2D  for different fractional orders (a0 = 0.4, 0.5, 0.6, 0.8,
and 0.9), 3D, and contour profiles for the multi-soliton shaped solution of Eq (3.7) for the different
parameter values k = 0.001, [ =0.002, ¢ =0.003, w, =0.05, w; =0.00, w, =0.05, r, =
0.02, =4, a =0.7, and t = 10. A multi-soliton-shaped solution describes the interaction of
multiple solitary waves, each retaining its shape and speed after collision, which reflects the
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integrability and stability of the underlying nonlinear system.

n

Real U Values
Imaginary U Values
p o

@

Figure 1. 2D, 3D, and contour profiles for the multi-soliton shaped solution of Eq (3.7)
are obtained for certain values of k = 0.001, [ = 0.002, ¢ = 0.003, w, = 0.05, w; =
0.00, w, = 0.05, r; =0.02, f =4, and t = 10, thus showing its smooth transition
and propagation over space and time.

Figure 2 represents 2D for different fractional orders (o = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D, and
contour profiles for the bright and dark soliton shaped solutions of Eq (3.9) for the different
parameter values k =0.1, [ =0.2, c=0.3, wy =10, w; =00, w, =-1.0, =02, g =2,
a = 0.5, and t = 10. Bright solitons are localized, peak-shaped waves that arise in systems with
focusing nonlinearity, thereby concentrating energy in a narrow region without a constant
background, and are observed in various physical contexts such as optical fibers, water waves,
plasmas, and Bose-Einstein condensates. A dark soliton-shaped solution features a localized drop in
intensity or amplitude against a continuous wave background, typically arising in systems with
defocusing nonlinearity, and is characterized by a phase shift across the soliton. Bright and dark
solitons are unique wave solutions important for fluid dynamics because they exhibit stable,
self-reinforcing structures capable of travelling great distances without changing the shape.
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Figure 2. 2D, 3D, and contour profiles for the bright and dark soliton-shaped solutions of
Eq (3.9) is obtained for certain values of k =0.1, [ =0.2, c =03, wy =1.0, w; =
0.0, wy=-10, =02, =2, a=.5, and t =10, thus showing its smooth
transition and propagation over space and time.

Figure 3 represents the 2D for different fractional orders (a = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D,
and contour profiles for the bright multi-soliton-shaped solution of Eq (3.23) for the different
parameter values k =0.1, [ =0.2, c=0.3, wy =0.0, w; =10, w, =-1.0, =02, g =2,
a =0.7, and t = 10. A bright multi-soliton-shaped solution consists of multiple localized wave
peaks that maintain their shape, speed, and amplitude during interactions, which typically occur in
systems with focusing nonlinearity and demonstrate the coherence and stability of bright soliton
dynamics.

Figure 4 represents the 2D for different fractional orders (a = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D,
and contour profiles for the plane wave soliton solution of Eq (3.26) for the different parameter
values k=0.1, [ =02, c=03, wy =05, w; =00, wy,=-05, =02, =2, a=0.5,
and t = 10. A plane wave soliton solution is characterized by a uniform amplitude and phase,
non-decaying background, and evenly distributed energy, thus serving as a foundational structure to
analyze soliton formation, modulation, and stability in nonlinear systems.

Figure 5 represents the 2D for different fractional orders (a = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D,
and contour profiles for the dark soliton solution of Eq (3.36) for the different parameter values =
01,1=02, c=03, wy =05, w; =00,w, =05, =02, =2, a =0.8,and t = 10.
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Figure 3. 2D, 3D, and contour profiles for the bright multi-soliton-shaped solution of Eq
(3.23) is obtained for certain values of k = 0.1, [ = 0.2, ¢ = 0.3, wy = 0.0, w; = 1.0,
w, =-10, =02, § =2, a =0.7,and t = 10, thus showing its smooth transition
and propagation over space and time.
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Real U Values
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Real u Values
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Figure 4. 2D, 3D, and contour profiles for the plane wave soliton solution of Eq (3.26) is
obtained for certain values of k =0.1, [ =0.2, c =0.3, wy =0.5, w; =0.0, w, =
—-05, n1 =02, =2, a=0.5, and t = 10, thus showing its smooth transition and
propagation over space and time.
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Figure 5. 2D, 3D, and contour profiles for the dark soliton solution of Eq (3.36) is
obtained for certain values of k =0.1, [ =0.2, ¢ =0.3, wy = 0.5, w; =0.0, w, =
0.5, =02, =2, a =028, and t = 10, thus showing its smooth transition and
propagation over space and time.

5. Comparison

This study explores a comparative analysis of solutions derived from the modified S-expansion
method, the modified simple equation method [12], and the exp(—¢(n))-expansion method [13],
thereby focusing on their application to the SMCH equation. Each of these methods is a version of
the modified simple equation method, and the exp(—¢(n))-expansion method serves as a distinct
approach in mathematical physics, thereby offering unique features and advantages.

Islam et al. [13] applied the modified simple equation method to the SMCH equation, and
obtained eight solutions under specific parameter conditions (See Appendix I). In contrast, our study
utilized the modified S-expansion method, which yielded 31 distinct solutions characterized by
hyperbolic, trigonometric, and exponential functions. These solutions significantly differ from those
documented by Islam et al [13].

Meanwhile, Ali [12] explored the SMCH equation using the exp(—¢$(n))-expansion method, and
identified only five solutions (See Appendix II). However, by employing the modified S-expansion
method, we derived a more extensive set of 31 solutions, once again expressed through hyperbolic,
trigonometric, and exponential functions.

This comparative analysis underscores the diversity and scope of solutions each method can
achieve, thus highlighting the modified S-expansion method’s capacity to uncover a broader array of
solutions for the SMCH equation.
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6. Conclusions

This study wunveiled a diverse and comprehensive collection of exact soliton
solutions—including dark, bright, kink, anti-kink, and periodic solitons—that capture distinct
features of solitary wave phenomena. The behavior and structure of these solutions were
meticulously visualized through detailed 2D, 3D, and contour plots across both real and imaginary
components, which revealed how various parameters influence their evolution and propagation. One
of the hallmark strengths of the employed modified S-expansion method lies in its computational
efficiency, which enables the swift derivation of exact solutions with significantly reduced
complexity compared to traditional methods. In a comparative context, Islam et al. [13] employed the
modified simple equation method to analyze the SMCH equation, and obtained eight specific
solutions under constrained parameter conditions. Conversely, our study—through the modified
S-expansion method—yielded a much broader set of 31 exact solutions involving hyperbolic,
trigonometric, and exponential forms, and demonstrated a clear enhancement in solution diversity
and scope. Likewise, Ali [12] applied the exp(—¢(n))-expansion method and derived only five
solutions, whereas our approach consistently produced a more comprehensive family of 31 solutions
under the same equation, further reinforcing the robustness and versatility of the modified
S-expansion method. These outcomes accentuate the theoretical significance of the proposed
approach and significantly improve its effectiveness in addressing real-world nonlinear phenomena.
Looking ahead, this work opens promising avenues, including extending the methods to
higher-dimensional systems, integrating machine learning and numerical simulations for an
improved accuracy, and exploring the soliton stability and parameter sensitivity. Experimental
validation in optical fibers, plasma, or fluid systems could further confirm the real-world relevance
and impact of these findings.
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Appendix

Appendix I. The list of solutions to the SMCH equation that was examined using the approach
(Islam et al. [13]) is presented in this part and is organized as follows:

Oz = + 2 cor( ), (AL1)
Osa) = ii@ tan(@f). (A12)
Ose) = i@ coth(LEZE), (A13)
08 = +1J3(3—T h(mf) (Al4)

Appendix II. The list of solutions to the SMCH equation that was examined using the approach (Ali
et al. [12]) is presented in this part and is organized as follows:

0, = a, — 2? . (A2.1)
—\/).2 —4u tanh( €+C1) ao)
0, = ag — j“AL . (A2.2)
—A2+4p tan( (&+cq1) —ap)
. [
O3 = a0 ~ e (A2.3)
_ g _ VoG+enat
04 =0~ G (A2.4)
NG
=a, — . A2.
05 =ao G+cr) (A2.5)
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