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Abstract: This study offers an in-depth exploration of traveling wave solutions to the simplified 

modified Camassa-Holm (SMCH) equation through the application of the modified S-expansion 

method. Utilizing a traveling wave transformation, the SMCH equation is converted into a nonlinear 

ordinary differential equation, from which a wide range of exact solutions is systematically obtained. 

The modified S-expansion method, implemented using the Maple software, proves to be a robust and 

efficient analytical tool, yielding a variety of soliton solutions such as kink, bright, and dark solitons. 

To capture the intricate behavior of these solutions, MATLAB is employed to produce detailed 2D, 

3D, and contour visualizations that reveal their structural features and propagation dynamics. A 

comparative assessment with the modified simple equation method and the exp(−ϕ(η))-expansion 

method highlights the modified S-expansion method’s superior accuracy, simplicity, and adaptability 

to solve nonlinear partial differential equations. Significantly, the method also extends to 

fractional-order equations, showcasing its broad applicability in nonlinear system analysis. Key 

solutions are graphically represented under constrained parameter values to emphasize the core 

propagation features. Overall, this work enhances the current analytical methods to solve both 
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classical and fractional-order nonlinear partial differential equations (PDEs) and offers a valuable 

foundation for future research into closed-form traveling wave solutions across various disciplines. 

Keywords: the simplified modified Camassa-Holm equation; modified S-expansion method; soliton 

solutions; nonlinear differential equations 

Mathematics Subject Classification: 33F05, 35C08, 35E05, 35Q51, 37J25, 37L50 

 

1. Introduction 

Many researchers [1–16] have investigated the family of equations that takes the following 

form: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + (𝛼 + 1)𝑃𝑃𝑥 = 𝛼𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥 .      (1.1) 

Equation (1.1) reduces to the Camassa-Holm (CH) equation when 𝛼 = 2  and takes the 

following form: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 3𝑃𝑃𝑥 = 2𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥.       (1.2) 

Equation (1.1) reduces to the Degasperis-Procesi (DP) equation when 𝛼 = 3 and takes the 

following form: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 4𝑃𝑃𝑥 = 3𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥.       (1.3) 

Both the CH and DP equations exhibit bi-Hamiltonian structures and are linked to 

corresponding isospectral problems [1]. They are formally integrable through the scattering and 

inverse scattering techniques [1]. Interestingly, these equations admit peaked solitary wave solutions, 

commonly known as peakons. While Eqs (1.2) and (1.3) share some structural resemblances, they 

are inherently different. In particular, the isospectral problem for the DP equation is third-order, 

whereas it is second-order for the CH equation [1]. Using the method of asymptotic integrability, 

Degasperis and Procesi [2] established that Eq (1.1) is only integrable when 𝛼 = 2 or 𝛼 = 3. The 

CH equation (1.2), which corresponds to when 𝛼 = 2, models shallow water waves and was initially 

derived as an approximation to the incompressible Euler equations. It was subsequently shown to be 

completely integrable, which led to a Lax pair formulation [2]. Likewise, the DP Eq (1.3), linked to 

when 𝛼 = 3, models shallow-water phenomena and has been proven to be integrable. Additionally, 

researchers have shown that Eq (1.1) supports single-peakon solutions and multi-peakon structures [2]. 

This study aims to build upon and advance the current research on the DP and CH equations. In 

particular, Wazwaz [3] introduced modified forms of these equations, which are presented as the 

modified DP and modified CH equations as follows: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 4𝑃2𝑃𝑥 = 3𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥,        (1.4) 

and 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 3𝑃2𝑃𝑥 = 2𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥,        (1.5) 

respectively. Wazwaz [4] introduced a unified model that combines features of both the CH and DP 

equations, referred to as the general modified DP–CH equation, given by the following: 
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𝑃𝑡 − 𝑃𝑥𝑥𝑡 + (𝛼 + 1)𝑃2𝑃𝑥 = 𝛼𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥,      (1.6) 

where 𝛼 = 2 and 𝛼 = 3. It is evident that the nonlinear convection term 𝑃𝑃𝑥 present in Eqs (1.2) 

and (1.3) is modified to 𝑃2𝑃𝑥 in Eqs (1.5) and (1.6). Wazwaz [4] simplified Eq (1.6) according to 

modified form of the CH equation by setting 𝛼 = 2, which led to the following: 

𝑝𝑡 − 𝑝𝑥𝑥𝑡 + 3𝑝2𝑝𝑥 − 2𝑝𝑥𝑝𝑥𝑥 − 𝑝𝑝𝑥𝑥𝑥 = 0.      (1.7) 

The following integrable CH equation for water waves was developed by Camassa and Holm 

[5]: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 2𝛼𝑃𝑥 + 𝑘𝑃𝑃𝑥 = 2𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥,      (1.8) 

which kept two terms that are typically neglected in the shallow water, small amplitude limit. 

The following modified CH equation was studied by Tian and Song [6]: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 2𝛼𝑃𝑥 + 𝑘𝑃𝑛𝑃𝑥 = 2𝑃𝑥𝑃𝑥𝑥 + 𝑃𝑃𝑥𝑥𝑥,       (1.9) 

which acquired fresh peaking solutions for lone waves. Furthermore, Boyd [7] found that the 

two additional terms on the right-hand side of (1.8) were minimal if the solitary wave slowly varied 

with 𝜚 = 𝑥 − 𝑐𝑡; the solutions gave the soliton the lowest order as follows: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 2𝛼𝑃𝑥 + 𝑘P𝑃𝑥 = 0.       (1.10) 

Wazwaz [8] examined a modified version of the CH equation, which was derived from the 

modified CH (MCH) equation and simplified in light of (1.10) as follows: 

𝑃𝑡 − 𝑃𝑥𝑥𝑡 + 2𝛼𝑃𝑥 + 𝑘𝑃𝑛𝑃𝑥 = 0.        (1.11) 

In this study, we only consider 𝑛 = 2 of Eq (1.11): 

𝑝𝑡 + 2𝛽𝑝𝑥 − 𝑝𝑥𝑥𝑡 + 𝑘𝑝2𝑝𝑥 = 0 , 𝛽 ∈ ℜ, 𝑘 > 0,     (1.12) 

where 𝑝(𝑥, 𝑡) is a function that specifies the height of the sea surface or the amplitude of waves, 

and 𝑥 and 𝑡 are coordinates of space and time. This equation has garnered significant attention 

from the research community due to its broad relevance in modeling a wide range of wave 

phenomena [9]. Its study is of interest not only to mathematicians and physicists but also to engineers 

and experts in fields such as fluid dynamics, nonlinear optics, and image processing [10]. In 

particular, the simplified modified form of the CH equation plays a crucial role in analyzing wave 

behavior, and its numerous applications remain an active area of exploration [11]. Ali et al. [12] 

obtained accurate traveling wave solutions to the SMCH equation, presenting wave structures 

characterized by hyperbolic, trigonometric, exponential, and rational function forms. Islam et al. [13] 

studied the exact solutions of the simplified modified Camassa-Holm (SMCH)equation, and 

emphasized its wide applicability across the fields of mathematics, physics, and engineering. In this 

paper, we use the modified equation form as a basis to explore the changes in the physical nature of 

the solutions, from peakon solutions illustrated in Eq (1.3) to bell-shaped solitary waves and soliton 

structures expressed as ratios of exponential functions [14]. To conduct this investigation, we utilize 

the modified S-expansion method [15]. The modified S-expansion method is a powerful and efficient 

tool to solve nonlinear partial differential equations (PDEs), thereby offering a broad solution space, 

enhanced flexibility, reduced computational complexity, and adaptability to various physical models 
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and boundary conditions across diverse scientific and engineering fields. Despite its strengths, the 

modified S-expansion method has limitations, including the difficulty with highly nonlinear terms, 

the reliance on specific assumptions and parameter choices, a limited generalizability, and the 

reduced effectiveness for numerical or high-dimensional problems, which makes it best suited for 

select classes of nonlinear PDEs. The main steps of this method are presented in the following 

sections. 

2. Materials and methods 

We consider the following: 

𝑃(𝑊,
𝜕𝑊

𝜕𝑡
,

𝜕𝑊

𝜕𝑥
,

𝜕2𝑊

𝜕2𝑥
,

𝜕2𝑊

𝜕𝑡𝜕𝑥
,

𝜕2𝑊

𝜕2𝑡
, ⋯ ⋯ ) = 0.      (2.1) 

First, we use the travelling variable as follows: 

𝑊(𝛺) = 𝑊(𝑥, 𝑡), 𝛺 = 𝑥 − 𝑐𝑡.        (2.2) 

Placing Eq (2.2) into Eq (2.1), we obtain the following: 

𝐹(𝑊, 𝑊′, 𝑊′′, ⋯ ⋯ ) = 0.         (2.3) 

Again, we consider the following ansatz equation: 

𝛩(𝜉) = 𝐸0 + ∑ [𝐸𝑖{𝑁(𝜉)}𝑖𝑀
𝑖=1 +

𝐹𝑖

{𝑁(𝜉)}𝑖],      (2.4) 

where 𝑁(𝜉) satisfies  

𝑁′(𝜉) = 𝜗0 + 𝜗0𝑁(𝜉) + 𝜗0𝑁(𝜉)2;        (2.5) 

the values of 𝜗𝐿, where 0 ≤ 𝐿 ≤ 2, can be found in Table 1 [16]. The values of 𝐸𝑖 and 𝐹𝑖 will be 

determined at a later stage. 

Table 1. Relationships between (𝜗0, 𝜗1, 𝜗2) and the function 𝑁(𝜉). 

(𝜗0, 𝜗1, 𝜗2) 𝑁(𝜉) 

(𝜗0 = 0.5, 𝜗1 = 0.0, 𝜗2 = 0.5) 

𝑁(𝜉) = 𝑠𝑒𝑐( 𝜉) + 𝑡𝑎𝑛( 𝜉). 

𝑁(𝜉) = 𝑐𝑠𝑐( 𝜉) + 𝑐𝑜𝑡( 𝜉). 

𝑁(𝜉) = 𝑠𝑒𝑐( 𝜉) − 𝑡𝑎𝑛( 𝜉). 

𝑁(𝜉) = 𝑐𝑠𝑐( 𝜉) − 𝑐𝑜𝑡( 𝜉). 

(𝜗0 = ±1.0, 𝜗1 = 0.0, 𝜗2 = ±1.0) 
𝑁(𝜉) = 𝑡𝑎𝑛( 𝜉). 

𝑁(𝜉) = 𝑐𝑜𝑡( 𝜉). 

(𝜗0 = 0.0, 𝜗1 = 1.0, 𝜗2 = −1.0) 𝑁(𝜉) =
1

2
(1 + 𝑡𝑎𝑛ℎ(

1

2
𝜉)). 

(𝜗0 = 1.0, 𝜗1 = 0.0, 𝜗2 = −1.0) 
𝑁(𝜉) = 𝑡𝑎𝑛ℎ( 𝜉). 

𝑁(𝜉) = 𝑐𝑜𝑡ℎ( 𝜉). 

(𝜗0 = 0.5, 𝜗1 = 0.0, 𝜗2 = −0.5) 
𝑁(𝜉) = 𝑡𝑎𝑛ℎ( 𝜉) ± 𝑠𝑒𝑐ℎ( 𝜉). 

𝑁(𝜉) = 𝑐𝑜𝑡ℎ( 𝜉) ± 𝑐𝑠𝑐ℎ( 𝜉). 
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2.1. Flowchart of the modified S-Expansion method 

A flowchart is a graphical representation of a process, sequence, or workflow, and utilizes 

standard symbols and connecting lines to illustrate the progression of steps. It simplifies complex 

tasks or decisions into clear, manageable stages, typically arranged from top to bottom or left to right. 

Flowcharts are widely employed across various fields—such as business process mapping, software 

development, troubleshooting, and education—to enhance our understanding, analysis, and 

optimization of workflows. In this section, we present a flowchart that outlines the steps of the 

modified S-expansion method. This visual aid provides a clear and systematic overview of the 

procedure of applying the method to nonlinear PDEs. 

 

 

  

       

 

 

 

 

                                                                                                    

 

 

3. Solving the SMCH via the modified S-expansion method 

Using the change of variables 𝑝(𝑥, 𝑡) = 𝛩(𝜚) with 𝜚 = 𝑥 − 𝑐𝑡, Eq (1.12) is transformed into 

the following equation: 

−𝑐𝛩′ + 2𝑘𝛩′ + 𝑐𝛩′′′ + 𝛽𝛩2𝛩′ = 0,        (3.1) 

where the prime notation signifies the derivative with respect to the variable 𝜚. Integrating Eq (3.1) 

concerning 𝜚 yields the following: 

−𝑐𝛩 + 2𝑘𝛩 + 𝛩′′𝑐 +
1

3
𝛽𝛩3 + 𝐶 = 0,        (3.2) 

where 𝐶 is a constant of integration. 

Step 1: Start with the given 

PDE: 

𝐹(𝑢, 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑥𝑥 , … ) = 0 

 

Step 2: Apply the traveling wave 

transformation 

𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝑤ℎ𝑒𝑟𝑒 𝜉 = 𝑥 − 𝑣𝑡 

 

 

Step 4: Taking series 

expansion of the ODE 

Step 3: Convert PDE to ODE via 

traveling wave transformation 

Step 5: Balance the terms and 

solve for unknown coefficients  

Step 7: obtained solution 

Step 6: Substitute the constants 

into the sub-equation and 

construct  𝑢(𝜉) for the PDE 
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Balancing the highest order linear and nonlinear terms appearing in Eq (3.2), we achieved 𝑀 = 1. 

Therefore, we find the following: 

𝛩 = 𝜆0 + 𝜆1𝑁 +
𝑞1

𝑁
.         (3.3) 

Then, by setting the coefficients of this polynomial equal to zero, a system of linear algebraic 

equations is formed, and the following set is obtained as its solution: 

Set-I: 𝐶 = 0, 𝑐 = −
4𝑘

4𝜇0𝜇2−𝜇1
2−2

, 𝜆0 = 𝜇1 (±√
6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

),  

                         𝜆1 = 0, 𝑞1 = 2𝜇0 (±√
6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

). 

Set-II: 𝐶 = 0, 𝑐 = −
4𝑘

4𝜇0𝜇2−𝜇1
2−2

, 𝜆0 =
6𝑘𝜇1

(4𝜇0𝜇2−𝜇1
2−2)𝛽(±√

6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

)

, 

                         𝜆1 = 2𝜇2 (±√
6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

),  𝑞1 = 0. 

Set-III: 𝐶 = −
96𝑘2𝜇1𝜇2𝜇0

𝛽(8𝜇0𝜇2+𝜇1
2+2)

2
(±√(

−6𝑘

8𝛽𝜇0𝜇2+𝛽𝜇1
2+2𝛽

))

,   𝑐 =
4𝑘

8𝜇0𝜇2+𝜇1
2+2

 , 

                         𝜆0 = −
6𝑘𝜇1

(8𝜇0𝜇2+𝜇1
2+2)𝛽(±√(

−6𝑘

8𝛽𝜇0𝜇2+𝛽𝜇1
2+2𝛽

))

, 

                         𝜆1 = 2𝜇2(±√(
−6𝑘

8𝛽𝜇0𝜇2+𝛽𝜇1
2+2𝛽

)), 

                         𝑞1 = −
12𝑘𝜇0

(8𝜇0𝜇2+𝜇1
2+2)𝛽(±(√(

−6𝑘

8𝛽𝜇0𝜇2+𝛽𝜇1
2+2𝛽

)))

. 

Substituting the above values of Set-I in (3.3), then we achieve the following: 

Θ = [𝜇1 (±√
6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

) + 2𝜇0 (±√
6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

)] ×
1

𝑁
.    (3.4) 

If 𝜇0 = 0.5, 𝜇1 = 0.0, and 𝜇2 = 0.5, then Eq (3.4) gives the following: 

Θ1 = ±√
6𝑘

−𝛽
×

1

sec(𝜉)+tan(𝜉)
;         (3.5) 

Θ2 = ±√
6𝑘

−𝛽
×

1

csc(𝜉)−cot(𝜉)
;         (3.6) 
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Θ3 = ±√
6𝑘

−𝛽
×

1

sec(𝜉)−tan(𝜉)
;         (3.7) 

Θ4 = ±√
6𝑘

−𝛽
×

1

csc(𝜉)+cot(𝜉)
.         (3.8) 

If 𝜇0 = ±1, 𝜇1 = 0.0, and 𝜇2 = ±1, then Eq (3.4) gives the following: 

Θ5 = 2 [±√
6𝑘

𝛽
] ×

1

tan(𝜉)
;         (3.9) 

Θ6 = 2 [±√
6𝑘

𝛽
] ×

1

cot(𝜉)
.         (3.10) 

If 𝜇0 = 0.0, 𝜇1 = 1.0, and 𝜇2 = −1.0, then Eq (3.4) gives the following: 

Θ7 = ±√
6𝑘

−3𝛽
×

1
1

2
(1+𝑡𝑎𝑛ℎ(

1

2
(𝜉))

.        (3.11) 

If 𝜇0 = 1.0, 𝜇1 = 0.0, and 𝜇2 = −1.0, then Eq (3.4) gives the following: 

Θ8 = 2 [±√
𝑘

−𝛽
] ×

1

tanh(𝜉)
;         (3.12) 

Θ9 = 2 [±√
𝑘

−𝛽
] ×

1

coth(𝜉)
.         (3.13) 

If 𝜇0 = 0.5, 𝜇1 = 0.0, and 𝜇2 = −0.5, then Eq (3.4) gives the following: 

Θ10 = ±√
2𝑘

−𝛽
×

1

tanh(𝜉)±sech(𝜉)
;       (3.14) 

Θ11 = ±√
2𝑘

−𝛽
×

1

coth(𝜉)±csch(𝜉)
.        (3.15) 

Substituting the above values of Set-II in Eq (3.3), then we achieve the following: 

Θ =
6𝑘𝜇1

(4𝜇0𝜇2−𝜇1
2−2)𝛽(±√

6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

)

+ 2𝜇2 (±√
6𝑘

4𝛽𝜇0𝜇2−𝛽𝜇1
2−2𝛽

) × 𝑁.    (3.16) 

If 𝜇0 = 0.5, 𝜇1 = 0.0, and 𝜇2 = 0.5, then Eq (3.16) gives the following: 

Θ12 = ±√
6𝑘

−𝛽
× sec(𝜉) + tan(𝜉) ;        (3.17) 

Θ13 = ±√
6𝑘

−𝛽
× csc(𝜉) − cot(𝜉) ;        (3.18) 

Θ14 = ±√
6𝑘

−𝛽
× sec(𝜉) − tan(𝜉) ;        (3.19) 

Θ15 = ±√
6𝑘

−𝛽
× csc(𝜉) + cot(𝜉).        (3.20) 
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If 𝜇0 = ±1, 𝜇1 = 0.0, and 𝜇2 = ±1, then Eq (3.16) gives the following: 

Θ16 = 2 [±√
3𝑘

𝛽
] × tan(𝜉) ;        (3.21) 

Θ17 = 2 [±√
2𝑘

𝛽
] × cot(𝜉).        (3.22) 

If 𝜇0 = 0.0, 𝜇1 = 1.0, and 𝜇2 = −1.0, then Eq (3.16) gives the following: 

Θ18 = ±√
6𝑘

−3𝛽±√
2𝑘

−𝛽

− 2(±√
2𝑘

−𝛽
×

1

2
(1 + 𝑡𝑎𝑛ℎ (

1

2
(𝜉)).    (3.23) 

If 𝜇0 = 1.0, 𝜇1 = 0.0, and 𝜇2 = −1.0, then Eq (3.16) gives the following: 

Θ19 = −2 [±√
𝑘

−𝛽
] × tanh(𝜉) ;       (3.24) 

Θ20 = −2 [±√
𝑘

−𝛽
] × cot ℎ(𝜉).       (3.25) 

If 𝜇0 = 0.5, 𝜇1 = 0.0, and 𝜇2 = −0.5, then Eq (3.16) gives the following: 

Θ21 = − (±√
2𝑘

−𝛽
) × (tanh(𝜉) ± sech(𝜉));       (3.26) 

Θ22 = −(±√
2𝑘

−𝛽
) × (coth(𝜉) ± csch(𝜉)).       (3.27) 

Substituting the above values of Set-III in Eq (3.3), then we achieve the following: 

Θ = −
6𝑘𝜇1

(8𝜇0𝜇2 + 𝜇1
2 + 2)𝛽 (±√(

−6𝑘
8𝛽𝜇0𝜇2 + 𝛽𝜇1

2 + 2𝛽
))

+ 

2𝜇2 (±√(
−6𝑘

8𝛽𝜇0𝜇2+𝛽𝜇1
2+2𝛽

)) × 𝑁 −
12𝑘𝜇0

(8𝜇0𝜇2+𝜇1
2+2)𝛽(±(√(

−6𝑘

8𝛽𝜇0𝜇2+𝛽𝜇1
2+2𝛽

)))

×
1

𝑁
.    (3.28) 

If 𝜇0 = 0.5, 𝜇1 = 0.0, and 𝜇2 = 0.5, then Eq (3.28) gives the following: 

Θ23 = ±√
−3𝑘

2𝛽
× (sec(𝜉) + tan(𝜉)) − (

6𝑘

4𝛽±√
−3𝑘

2𝛽

) ×
1

sec(𝜉)+tan(𝜉)
;     (3.29) 

Θ24 = ±√
−3𝑘

2𝛽
× (csc(𝜉) − cot(𝜉)) − (

6𝑘

4𝛽±√
−3𝑘

2𝛽

) ×
1

csc(𝜉)−cot(𝜉)
;     (3.30) 
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Θ25 = ±√
−3𝑘

2𝛽
× (sec(𝜉) − tan(𝜉)) − (

6𝑘

4𝛽±√
−3𝑘

2𝛽

) ×
1

sec(𝜉)−tan(𝜉)
;     (3.31) 

Θ26 = ±√
−3𝑘

2𝛽
× (csc(𝜉) + cot(𝜉)) − (

6𝑘

4𝛽±√
−3𝑘

2𝛽

) ×
1

csc(𝜉)+cot(𝜉)
.     (3.32) 

If 𝜇0 = ±1, 𝜇1 = 0.0, and 𝜇2 = ±1, then Eq (3.28) gives the following: 

Θ27 = 2 [±√
−6𝑘

10𝛽
] × (tan(𝜉)) − (

12𝑘

10𝛽(±√
−6𝑘

10𝛽

) ×
1

tan(𝜉)
;      (3.33) 

Θ28 = 2 [±√
−6𝑘

10𝛽
] × (cot(𝜉)) − (

12𝑘

10𝛽(±√
−6𝑘

10𝛽

) ×
1

cot(𝜉)
.      (3.34) 

If 𝜇0 = 0.0, 𝜇1 = 1.0, and 𝜇2 = −1.0, then Eq (3.28) gives the following: 

Θ29 = ±√
6𝑘

3𝛽(±√
−6𝑘

3𝛽
)

− 2(±√
−6𝑘

3𝛽
) ×

1

2
(1 + 𝑡𝑎𝑛ℎ (

1

2
(𝜉)).     (3.35) 

If 𝜇0 = 1.0, 𝜇1 = 0.0, and 𝜇2 = −1.0, then Eq (3.28) gives the following: 

Θ30 = −2 [±√
𝑘

𝛽
] × tanh(𝜉) − (

12𝑘

−6𝛽(±√
𝑘

𝛽

) ×
1

tanh(𝜉)
;      (3.36) 

Θ31 = −2 [±√
𝑘

𝛽
] × coth(𝜉) − (

12𝑘

−6𝛽(±√
𝑘

𝛽

) ×
1

coth(𝜉)
.      (3.37) 

4. Graphical representation 

To make effective use of graphical representations, it is important to comprehend different types 

of graphs, such as 2D, 3D, contour, cyclic, and full graphs. Specifically, in the study of nonlinear 

partial differential equations, 2D, 3D, and contour plots play crucial roles in visualizing, analyzing, 

and understanding the behavior of soliton solutions. In this section, we focus on these three graph 

types, and emphasize their importance and relevance in soliton analysis. Additionally, we compare 

the outcomes obtained through our proposed methods with those from existing techniques applied to 

the same equations, thus highlighting the enhanced accuracy of our results. 

 The presented graphs visually depict the solutions of the SMCH equation for various 

parameter settings. Figure 1 represents the 2D  for different fractional orders (α = 0.4, 0.5, 0.6, 0.8, 

and 0.9), 3D, and contour profiles for the multi-soliton shaped solution of Eq (3.7) for the different 

parameter values 𝑘 = 0.001 , 𝑙 = 0.002 , 𝑐 = 0.003 , 𝑤0 = 0.05 , 𝑤1 = 0.00 , 𝑤2 = 0.05 , 𝑟1 =

0.02, 𝛽 = 4, 𝛼 = 0.7, and 𝑡 = 10. A multi-soliton-shaped solution describes the interaction of 

multiple solitary waves, each retaining its shape and speed after collision, which reflects the 
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integrability and stability of the underlying nonlinear system. 

 

Figure 1. 2D, 3D, and contour profiles for the multi-soliton shaped solution of Eq (3.7) 

are obtained for certain values of 𝑘 = 0.001, 𝑙 = 0.002, 𝑐 = 0.003, 𝑤0 = 0.05, 𝑤1 =

0.00, 𝑤2 = 0.05, 𝑟1 = 0.02, 𝛽 = 4, and 𝑡 = 10, thus showing its smooth transition 

and propagation over space and time. 

Figure 2 represents 2D for different fractional orders (α = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D, and 

contour profiles for the bright and dark soliton shaped solutions of Eq (3.9) for the different 

parameter values 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 1.0, 𝑤1 = 0.0, 𝑤2 = −1.0, 𝑟1 = 0.2, 𝛽 = 2, 

𝛼 = 0.5, and 𝑡 = 10. Bright solitons are localized, peak-shaped waves that arise in systems with 

focusing nonlinearity, thereby concentrating energy in a narrow region without a constant 

background, and are observed in various physical contexts such as optical fibers, water waves, 

plasmas, and Bose-Einstein condensates. A dark soliton-shaped solution features a localized drop in 

intensity or amplitude against a continuous wave background, typically arising in systems with 

defocusing nonlinearity, and is characterized by a phase shift across the soliton. Bright and dark 

solitons are unique wave solutions important for fluid dynamics because they exhibit stable, 

self-reinforcing structures capable of travelling great distances without changing the shape. 
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Figure 2. 2D, 3D, and contour profiles for the bright and dark soliton-shaped solutions of 

Eq (3.9) is obtained for certain values of 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 1.0, 𝑤1 =

0.0 , 𝑤2 = −1.0 , 𝑟1 = 0.2 , 𝛽 = 2 , 𝛼 = .5 , and 𝑡 = 10 , thus showing its smooth 

transition and propagation over space and time. 

Figure 3 represents the 2D for different fractional orders (α = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D, 

and contour profiles for the bright multi-soliton-shaped solution of Eq (3.23) for the different 

parameter values 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 0.0, 𝑤1 = 1.0, 𝑤2 = −1.0, 𝑟1 = 0.2, 𝛽 = 2, 

𝛼 = 0.7, and 𝑡 = 10. A bright multi-soliton-shaped solution consists of multiple localized wave 

peaks that maintain their shape, speed, and amplitude during interactions, which typically occur in 

systems with focusing nonlinearity and demonstrate the coherence and stability of bright soliton 

dynamics. 

Figure 4 represents the 2D for different fractional orders (α = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D, 

and contour profiles for the plane wave soliton solution of Eq (3.26) for the different parameter 

values 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 0.5, 𝑤1 = 0.0, 𝑤2 = −0.5, 𝑟1 = 0.2, 𝛽 = 2, 𝛼 = 0.5, 

and 𝑡 = 10. A plane wave soliton solution is characterized by a uniform amplitude and phase, 

non-decaying background, and evenly distributed energy, thus serving as a foundational structure to 

analyze soliton formation, modulation, and stability in nonlinear systems. 

Figure 5 represents the 2D for different fractional orders (α = 0.4, 0.5, 0.6, 0.8, and 0.9), 3D, 

and contour profiles for the dark soliton solution of Eq (3.36) for the different parameter values =

0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 0.5, 𝑤1 = 0.0, 𝑤2 = 0.5, 𝑟1 = 0.2, 𝛽 = 2, 𝛼 = 0.8, and 𝑡 = 10. 

 



21544 

AIMS Mathematics  Volume 10, Issue 9, 21533–21548. 

 

Figure 3. 2D, 3D, and contour profiles for the bright multi-soliton-shaped solution of Eq 

(3.23) is obtained for certain values of 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 0.0, 𝑤1 = 1.0, 

𝑤2 = −1.0, 𝑟1 = 0.2, 𝛽 = 2, 𝛼 = 0.7, and 𝑡 = 10, thus showing its smooth transition 

and propagation over space and time. 

 

Figure 4. 2D, 3D, and contour profiles for the plane wave soliton solution of Eq (3.26) is 

obtained for certain values of 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 0.5, 𝑤1 = 0.0, 𝑤2 =

−0.5, 𝑟1 = 0.2, 𝛽 = 2, 𝛼 = 0.5, and 𝑡 = 10, thus showing its smooth transition and 

propagation over space and time. 
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Figure 5. 2D, 3D, and contour profiles for the dark soliton solution of Eq (3.36) is 

obtained for certain values of 𝑘 = 0.1, 𝑙 = 0.2, 𝑐 = 0.3, 𝑤0 = 0.5, 𝑤1 = 0.0, 𝑤2 =

0.5, 𝑟1 = 0.2, 𝛽 = 2, 𝛼 = 0.8, and 𝑡 = 10, thus showing its smooth transition and 

propagation over space and time. 

5. Comparison 

This study explores a comparative analysis of solutions derived from the modified S-expansion 

method, the modified simple equation method [12], and the exp(−ϕ(η))-expansion method [13], 

thereby focusing on their application to the SMCH equation. Each of these methods is a version of 

the modified simple equation method, and the exp(−ϕ(η))-expansion method serves as a distinct 

approach in mathematical physics, thereby offering unique features and advantages. 

Islam et al. [13] applied the modified simple equation method to the SMCH equation, and 

obtained eight solutions under specific parameter conditions (See Appendix I). In contrast, our study 

utilized the modified S-expansion method, which yielded 31 distinct solutions characterized by 

hyperbolic, trigonometric, and exponential functions. These solutions significantly differ from those 

documented by Islam et al [13]. 

Meanwhile, Ali [12] explored the SMCH equation using the exp(−ϕ(η))-expansion method, and 

identified only five solutions (See Appendix II). However, by employing the modified S-expansion 

method, we derived a more extensive set of 31 solutions, once again expressed through hyperbolic, 

trigonometric, and exponential functions. 

This comparative analysis underscores the diversity and scope of solutions each method can 

achieve, thus highlighting the modified S-expansion method’s capacity to uncover a broader array of 

solutions for the SMCH equation. 
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6. Conclusions 

This study unveiled a diverse and comprehensive collection of exact soliton 

solutions—including dark, bright, kink, anti-kink, and periodic solitons—that capture distinct 

features of solitary wave phenomena. The behavior and structure of these solutions were 

meticulously visualized through detailed 2D, 3D, and contour plots across both real and imaginary 

components, which revealed how various parameters influence their evolution and propagation. One 

of the hallmark strengths of the employed modified S-expansion method lies in its computational 

efficiency, which enables the swift derivation of exact solutions with significantly reduced 

complexity compared to traditional methods. In a comparative context, Islam et al. [13] employed the 

modified simple equation method to analyze the SMCH equation, and obtained eight specific 

solutions under constrained parameter conditions. Conversely, our study—through the modified 

S-expansion method—yielded a much broader set of 31 exact solutions involving hyperbolic, 

trigonometric, and exponential forms, and demonstrated a clear enhancement in solution diversity 

and scope. Likewise, Ali [12] applied the exp(−ϕ(η))-expansion method and derived only five 

solutions, whereas our approach consistently produced a more comprehensive family of 31 solutions 

under the same equation, further reinforcing the robustness and versatility of the modified 

S-expansion method. These outcomes accentuate the theoretical significance of the proposed 

approach and significantly improve its effectiveness in addressing real-world nonlinear phenomena. 

Looking ahead, this work opens promising avenues, including extending the methods to 

higher-dimensional systems, integrating machine learning and numerical simulations for an 

improved accuracy, and exploring the soliton stability and parameter sensitivity. Experimental 

validation in optical fibers, plasma, or fluid systems could further confirm the real-world relevance 

and impact of these findings. 
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Appendix 

Appendix I. The list of solutions to the SMCH equation that was examined using the approach 

(Islam et al. [13]) is presented in this part and is organized as follows: 

Θ(1,2) = ±
𝑖√3(𝑤−2𝑘)

√𝛽
  

cot(
√(𝑤−2𝑘)𝜉

√2𝑘
).        (A1.1) 

Θ(3,4) = ±
𝑖√3(𝑤−2𝑘)

√𝛽
  

tan(
√(𝑤−2𝑘)𝜉

√2𝑘
).        (A1.2) 

Θ(5,6) = ±
𝑖√3(2𝑘−𝑤)

√𝛽
  

coth(
√(2𝑘−𝑤)𝜉

√2𝑘
).        (A1.3) 

Θ(7,8) = ±
𝑖√3(2𝑘−𝑤)

√𝛽
  

tanh(
√(2𝑘−𝑤)𝜉

√2𝑘
).        (A1.4) 

Appendix II. The list of solutions to the SMCH equation that was examined using the approach (Ali 

et al. [12]) is presented in this part and is organized as follows: 

Θ1 = 𝑎0 −
2µ√6

−√𝜆2−4µ tanh(
√𝜆2−4µ

2
(𝜉+𝑐1) −𝑎0)

.       (A2.1) 

Θ2 = 𝑎0 −
2µ√6

√−𝜆2+4µ tan(
√−𝜆2+4µ

2
(𝜉+𝑐1) −𝑎0)

.       (A2.2) 

Θ3 = 𝑎0 −
𝜆√6

𝑒𝑥𝑝((𝜉+𝑐1)𝜆 −1)
.          (A2.3) 

Θ4 = 𝑎0 −
√6(𝜉+𝑐1)𝜆2

(2(𝜉+𝑐1)𝜆 +2)
.         (A2.4) 

Θ5 = 𝑎0 −
√6

(𝜉+𝑐1)
.          (A2.5) 
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