
Research article

Generalized weighted composition operators mapping into analytic tent spaces and its closure in the Korenblum space

Xiangling Zhu¹, Rong Yang² and Songxiao Li^{3,*}

¹ University of Electronic Science and Technology of China, Zhongshan Institute, 528402, Zhongshan, Guangdong, China

² Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China

³ Department of Mathematics, Shantou University, Shantou 515063, Guangdong, China

* **Correspondence:** Email: jyulsx@163.com.

Abstract: This paper investigates the boundedness and compactness of generalized weighted composition operators on the closure of analytic tent spaces within the Korenblum space. It further analyzes the boundedness, compactness, and essential norm of these operators when acting from the Korenblum space to analytic tent spaces.

Keywords: Korenblum space; tent space; weighted composition operator; closure

Mathematics Subject Classification: 30H99, 47B38

1. Introduction

Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk, and $H(\mathbb{D})$ the set of all analytic functions on \mathbb{D} . For $\beta > 0$, the Korenblum space H_β^∞ comprises $f \in H(\mathbb{D})$ with finite norm

$$\|f\|_{H_\beta^\infty} := \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |f(z)|,$$

forming a Banach space under this norm. Its closed subspace, the little Korenblum space $H_{\beta,0}^\infty$, consists of $f \in H(\mathbb{D})$ satisfying

$$\lim_{|z| \rightarrow 1^-} (1 - |z|^2)^\beta |f(z)| = 0.$$

These are also termed Bers-type and little Bers-type spaces, respectively (see [8, 15]). A function f belongs to the Bloch-type space \mathcal{B}^β if its derivative $f' \in H_\beta^\infty$. When $\beta = 1$, \mathcal{B}^β reduces to the classical Bloch space \mathcal{B} .

Let $\zeta > \frac{1}{2}$ and $\eta \in \mathbb{T}$ (the boundary of \mathbb{D}). The non-tangential approach region $\Gamma_\zeta(\eta)$ is defined by

$$\Gamma(\eta) := \Gamma_\zeta(\eta) = \left\{ z \in \mathbb{D} : |z - \eta| < \zeta(1 - |z|^2) \right\}.$$

For $0 < p, q < \infty$ and $\alpha > -2$, the tent space $T_p^q(\alpha)$ consists of all measurable functions f on \mathbb{D} satisfying

$$\|f\|_{T_p^q(\alpha)}^q := \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |f(z)|^p (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty.$$

In $\Gamma_\zeta(\eta)$, we omit the aperture ζ from the notation. For any two choices of ζ , the resulting spaces possess equivalent quasi-norms. Tent spaces, first introduced by Coifman, Meyer, and Stein [4], serve as a framework in harmonic analysis. They unify the study of fundamental function spaces, such as Hardy spaces and Bergman spaces. The analytic tent space $AT_p^q(\alpha)$ is defined as the intersection $T_p^q(\alpha) \cap H(\mathbb{D})$. Notably, when $q = p$, this recovers the weighted Bergman space: $AT_p^p(\alpha) = A_{\alpha+1}^p$. This establishes a critical connection between tent spaces and classical function spaces.

Let \mathbb{N} be the set of positive integers and $S(\mathbb{D})$ the collection of all analytic self-maps of \mathbb{D} . For a $\varphi \in S(\mathbb{D})$, $n \in \mathbb{N}$, and $u \in H(\mathbb{D})$, the generalized weighted composition operator (weighted differentiation composition operator) $D_{\varphi,u}^n$ is defined by

$$(D_{\varphi,u}^n f)(z) = u(z) \cdot f^{(n)}(\varphi(z)), \quad z \in \mathbb{D},$$

where $f^{(n)}$ is the n -th derivative of f . This operator was first introduced by the first author in [18]. For more insights and results about generalized weighted composition operators, one can refer to the references [11–13, 18–22]. When $n = 0$, $D_{\varphi,u}^0$ reduces to the classical weighted composition operator uC_φ ; with $u = 1$, it becomes the composition operator C_φ . For composition/weighted composition operator studies on Korenblum spaces, see [5, 7, 8, 15]. As Korenblum spaces are limit cases of weighted Bergman spaces, we naturally consider operators between H_β^∞ and A_α^p (or $AT_p^p(\alpha)$). Thus, this work's primary aim is to investigate the operator $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ when $0 < q \leq p < \infty$.

Let X be a linear subspace of the normed space Y , and denote by $C_Y(X)$ the closure of X with respect to the Y -norm topology. In [1], Anderson et al. posed an open question about the closure of the H^∞ space within the Bloch space. Later, Ghatage and Zheng [6] investigated the closure of the $BMOA$ space in the Bloch space. Using the established result that H_β^∞ is identical to the space $\mathcal{B}^{\beta+1}$, the following theorem was proved in [3].

Theorem A *Let $0 < p, q, \beta < \infty$ and $\alpha > -2$. The following statements hold.*

- (i) *If $\beta < \frac{\alpha+2}{p}$, then $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) = H_\beta^\infty$.*
- (ii) *If $\beta \geq \frac{\alpha+2}{p} + \frac{1}{q}$, then $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) = H_{\beta,0}^\infty$.*
- (iii) *Let $\frac{\alpha+2}{p} \leq \beta < \frac{\alpha+2}{p} + \frac{1}{q}$, $p \geq 1$ and $f \in H_\beta^\infty$. Then $f \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ if and only if for any $\epsilon > 0$,*

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_\epsilon^\beta(f)} (1 - |z|^2)^{\alpha - p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty.$$

Here

$$\Omega_\epsilon^\beta(f) = \left\{ z \in \mathbb{D} : |f(z)|(1 - |z|^2)^\beta \geq \epsilon \right\}.$$

In [2], Aulaskari and Zhao studied composition operators that map from the Bloch space \mathcal{B} into the closure of specific Möbius-invariant subspaces within \mathcal{B} . In [10], Qian and Li investigated composition operators from the logarithmic Bloch space \mathcal{B}_{\log} to the \mathcal{B}_{\log} -norm closure of Dirichlet-type spaces \mathcal{D}_{α}^2 . It should be emphasized that, in the existing literature, there is no research on generalized weighted composition operators (or even weighted composition operators) acting on norm closures of function spaces. This gap motivates us to study such operator classes on $C_Y(X)$ -type structures. The second objective of this work is to investigate the operator $D_{\varphi,u}^n$ as a mapping from $H_{\beta}^{\infty}(H_{\beta,0}^{\infty})$ to $C_{H_{\beta}^{\infty}}(AT_p^q(\alpha) \cap H_{\beta}^{\infty})$, and also as a mapping from $C_{H_{\beta}^{\infty}}(AT_p^q(\alpha) \cap H_{\beta}^{\infty})$ to itself.

In this paper, we establish characterizations for the boundedness, compactness, and essential norm of the operator $D_{\varphi,u}^n : H_{\beta}^{\infty} \rightarrow AT_p^q(\alpha)$. Furthermore, we study the boundedness and compactness of the operator $D_{\varphi,u}^n : H_{\beta}^{\infty}(H_{\beta,0}^{\infty}) \rightarrow C_{H_{\beta}^{\infty}}(AT_p^q(\alpha) \cap H_{\beta}^{\infty})$ and the compactness of the operator $D_{\varphi,u}^n : C_{H_{\beta}^{\infty}}(AT_p^q(\alpha) \cap H_{\beta}^{\infty}) \rightarrow C_{H_{\beta}^{\infty}}(AT_p^q(\alpha) \cap H_{\beta}^{\infty})$.

Throughout this paper, we assert that $E \lesssim F$ if there exists a constant C such that $E \leq CF$. The notation $E \asymp F$ signifies that both $E \lesssim F$ and $F \lesssim E$.

2. Boundedness, compactness, and essential norm of $D_{\varphi,u}^n : H_{\beta}^{\infty} \rightarrow AT_p^q(\alpha)$

In this section, we investigate the boundedness, compactness, and essential norm of the operator $D_{\varphi,u}^n : H_{\beta}^{\infty} \rightarrow AT_p^q(\alpha)$.

The following lemma, which will play a crucial role in the proof of our main theorem, may be found in [9, Lemma 3.1].

Lemma 2.1. *Let $0 < \tau < \infty$, $1 < \lambda < \infty$, and $e^{-\tau/\lambda} \leq r_0 < 1$. Then there is a positive constant C , depending only on λ , τ and r_0 , such that*

$$\sum_{j=1}^{\infty} \lambda^{j\lambda\tau} r^{\lambda^{j+1}} \geq \frac{C}{(1-r^2)^{\lambda\tau}}$$

for all $r_0 \leq r < 1$.

Based on the well-established result that $H_{\beta}^{\infty} = \mathcal{B}^{\beta+1}$, and making use of the higher-order derivatives characterization of the Bloch type space (as detailed in [17]), we get the following result.

Lemma 2.2. *Let $\beta > 0$, $n \in \mathbb{N}$, and $f \in H(\mathbb{D})$. Then $f \in H_{\beta}^{\infty}$ if and only if*

$$\sup_{z \in \mathbb{D}} (1-|z|^2)^{n+\beta} |f^{(n)}(z)| < \infty.$$

Moreover, $\|f\|_{H_{\beta}^{\infty}}$ is equivalent to $\|f\|_{H_{\beta}^{\infty,n}}$. Here,

$$\|f\|_{H_{\beta}^{\infty,n}} = \sum_{j=0}^{n-1} |f^{(j)}(0)| + \sup_{z \in \mathbb{D}} (1-|z|^2)^{n+\beta} |f^{(n)}(z)|.$$

Theorem 2.3. *Let $0 < \beta < \infty$, $0 < q \leq p < \infty$, $n \in \mathbb{N} \cup \{0\}$, $\alpha > -2$, $u \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then $D_{\varphi,u}^n : H_{\beta}^{\infty} \rightarrow AT_p^q(\alpha)$ is bounded if and only if*

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^{\alpha} dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty. \quad (2.1)$$

Proof. First, we assume that (2.1) holds. Let $f \in H_\beta^\infty$. Using Lemma 2.2, we obtain

$$\begin{aligned} & \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |(D_{\varphi,u}^n f)(z)|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &= \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |u(z)|^p |f^{(n)}(\varphi(z))|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &\lesssim \|f\|_{H_\beta^{\infty,n}}^q \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty, \end{aligned}$$

which implies that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is bounded.

Conversely, assume that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is bounded. For each $0 \leq \theta < 2\pi$ and $0 < t \leq 1$, set

$$g_{\theta,t}(z) = \sum_{j=0}^{\infty} 2^{j\beta} (te^{i\theta})^{2^j} z^{2^j}, \quad z \in \mathbb{D}. \quad (2.2)$$

From [14, Lemma 2], we see that $g_{\theta,t} \in H_\beta^\infty$ and $\|g_{\theta,t}\|_{H_\beta^\infty} \lesssim 1$ are independent of θ and t . For simplicity, denote $g_{\theta,1}$ by g_θ . Using Fubini's theorem, Minkowski's inequality, and the assumption that $\frac{p}{q} \geq 1$, we get

$$\begin{aligned} 1 &\gtrsim \int_0^{2\pi} \|D_{\varphi,u}^n g_\theta\|_{AT_p^q(\alpha)}^q \frac{d\theta}{2\pi} \\ &\asymp \int_0^{2\pi} \left(\int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |(D_{\varphi,u}^n g_\theta)(z)|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \right) \frac{d\theta}{2\pi} \\ &= \int_0^{2\pi} \left(\int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |u(z)|^p |g_\theta^{(n)}(\varphi(z))|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \right) \frac{d\theta}{2\pi} \\ &= \int_{\mathbb{T}} \left(\int_0^{2\pi} \left(\int_{\Gamma(\eta)} |u(z)|^p |g_\theta^{(n)}(\varphi(z))|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} \frac{d\theta}{2\pi} \right) |d\eta| \\ &\geq \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} \left(\int_0^{2\pi} |u(z)|^q |g_\theta^{(n)}(\varphi(z))|^q \frac{d\theta}{2\pi} \right)^{\frac{p}{q}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &= \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |u(z)|^p \left(\int_0^{2\pi} |g_\theta^{(n)}(\varphi(z))|^q \frac{d\theta}{2\pi} \right)^{\frac{p}{q}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|. \end{aligned}$$

Using the following inequality (see [23] or [9, Lemma F])

$$\prod_{k=0}^{n-1} (2^j - k) \geq \frac{2^{nj}}{n!}, \quad n \in \mathbb{N}, \quad j \in \mathbb{N}, \quad 2^j \geq n,$$

we have

$$\int_0^{2\pi} |g_\theta^{(n)}(\varphi(z))|^q \frac{d\theta}{2\pi} \geq \int_0^{2\pi} \left| \sum_{j \geq \lceil \log_2 n \rceil}^{\infty} \prod_{k=0}^{n-1} (2^j - k) 2^{j\beta} \varphi(z)^{2^j - n} e^{i\theta 2^j} \right|^q \frac{d\theta}{2\pi}$$

$$\begin{aligned}
&\gtrsim \left(\sum_{j \geq [\log_2 n]}^{\infty} \left(\prod_{k=0}^{n-1} (2^j - k) \right)^2 2^{2j\beta} |\varphi(z)|^{2(2^j - n)} \right)^{\frac{q}{2}} \\
&\gtrsim \left(\sum_{j \geq [\log_2 n]}^{\infty} 2^{2j(n+\beta)} |\varphi(z)|^{2(2^j - n)} \right)^{\frac{q}{2}},
\end{aligned}$$

where $[x] = \inf\{n \in \mathbb{N} : n \geq x\}$.

Using Lemma 2.1 with the choice $r_0 = e^{-\tau/2}$, we deduce the existence of a positive constant C , depending only on τ and n , such that for all z satisfying $e^{-\tau/2} \leq |\varphi(z)| < 1$, the inequality

$$\sum_{j=1}^{\infty} 2^{2j(n+\beta)} |\varphi(z)|^{2^{j+1}} \geq \frac{C}{(1 - |\varphi(z)|^2)^{2(n+\beta)}}$$

holds. Given $n + \beta > 0$, there exists a $\varrho \in [e^{-\tau/2}, 1)$ for all $|\varphi(z)| \in [\varrho, 1)$, the partial sum satisfies

$$\sum_{1 \leq j < [\log_2 n]} 2^{2j(n+\beta)} |\varphi(z)|^{2^{j+1}} \leq \frac{C}{2(1 - |\varphi(z)|^2)^{2(n+\beta)}}.$$

Hence, for all $|\varphi(z)| \in [\varrho, 1)$,

$$\sum_{j \geq [\log_2 n]}^{\infty} 2^{2j(n+\beta)} |\varphi(z)|^{2(2^j - n)} \geq \frac{C}{2(1 - |\varphi(z)|^2)^{2(n+\beta)}},$$

which implies that

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \geq \varrho\}} \frac{|u(z)|^p}{(1 - |\varphi(z)|^2)^{p(n+\beta)}} (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \lesssim 1.$$

Noting that $u \in AT_p^q(\alpha)$, we obtain

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| < \varrho\}} \frac{|u(z)|^p}{(1 - |\varphi(z)|^2)^{p(n+\beta)}} (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \lesssim \|u\|_{AT_p^q(\alpha)}^q.$$

Therefore,

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} \frac{|u(z)|^p}{(1 - |\varphi(z)|^2)^{p(n+\beta)}} (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty.$$

The proof is complete. \square

From Theorem 2.3 and the fact that $AT_p^p(\alpha) = A_{\alpha+1}^p$, we immediately obtain the following corollary.

Corollary 2.4. *Let $0 < p, \beta < \infty$, $n \in \mathbb{N} \cup \{0\}$, $\alpha > -1$, $u \in H(\mathbb{D})$, and $\varphi \in S(\mathbb{D})$. Then $D_{\varphi, u}^n : H_{\beta}^{\infty} \rightarrow A_{\alpha}^p$ is bounded if and only if*

$$\int_{\mathbb{D}} \frac{|u(z)|^p}{(1 - |\varphi(z)|^2)^{p(n+\beta)}} (1 - |z|^2)^\alpha dA(z) < \infty.$$

Next, we consider the compactness and essential norm of the operator $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$. For a bounded linear operator $T : X \rightarrow Y$ between Banach spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$, recall that the essential norm is given by the infimum

$$\|T\|_{e,X \rightarrow Y} = \inf_K \{\|T - K\|_{X \rightarrow Y} : K \in \mathcal{K}(X, Y)\},$$

where $\mathcal{K}(X, Y)$ denotes the space of compact operators from X to Y . It is clear that T is compact if and only if $\|T\|_{e,X \rightarrow Y} = 0$.

For each $m \in \mathbb{N}$, define

$$h_{\theta,t}^m(z) = z^m g_{\theta,t}(z),$$

where $g_{\theta,t}$ denotes the test function specified in (2.2). Given that the inclusion $z^m H_{\beta,0}^\infty \subseteq H_{\beta,0}^\infty$, it follows that the family $\{h_{\theta,t}^m\}_{m \in \mathbb{N}}$ is contained within $H_{\beta,0}^\infty$. Furthermore, the H_β^∞ -norm $\|h_{\theta,t}^m\|_{H_\beta^\infty}$ is uniformly bounded with respect to θ , t , and m . Using Lemma 4 in [14], for every bounded linear functional $\Lambda \in (H_\beta^\infty)^*$, we get

$$\sup_{\theta,t} |\Lambda(h_{\theta,t}^m)| \rightarrow 0 \quad \text{as } m \rightarrow \infty.$$

This establishes the weak convergence of the sequence $\{h_{\theta,t}^m\}_{m \in \mathbb{N}}$ to 0 in H_β^∞ . Using the complete continuity property of compact operators, the subsequent lemma is derived. The detailed proof is omitted for conciseness.

Lemma 2.5. *Let $0 < \beta < \infty$, $0 < q \leq p < \infty$, $\alpha > -2$. For any compact operator $T : H_\beta^\infty \rightarrow AT_p^q(\alpha)$, it holds that*

$$\lim_{m \rightarrow \infty} \sup_{\theta,t} \|T h_{\theta,t}^m\|_{AT_p^q(\alpha)} = 0,$$

where the supremum is taken over all $0 \leq \theta < 2\pi$ and $0 < t < 1$.

The following compactness criterion holds for the operator $D_{\varphi,u}^n$ mapping from H_β^∞ to $AT_p^q(\alpha)$, as established in [5, Proposition 3.11].

Lemma 2.6. *Let $0 < \beta < \infty$, $0 < q \leq p < \infty$, $n \in \mathbb{N} \cup \{0\}$, $\alpha > -2$, $u \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$ such that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is bounded. Then $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is compact if and only if for every bounded sequence $\{f_j\}$ in H_β^∞ that converges to 0 uniformly on compact subsets of \mathbb{D} , we have*

$$\lim_{j \rightarrow \infty} \|D_{\varphi,u}^n f_j\|_{AT_p^q(\alpha)} = 0.$$

Theorem 2.7. *Let $0 < \beta < \infty$, $0 < q \leq p < \infty$, $n \in \mathbb{N} \cup \{0\}$, $\alpha > -2$, $u \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Suppose that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is bounded. Then it holds that*

$$\|D_{\varphi,u}^n\|_{e,H_\beta^\infty \rightarrow AT_p^q(\alpha)}^q \asymp \limsup_{r \rightarrow 1} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| > r\}} \frac{|u(z)|^p}{(1 - |\varphi(z)|^2)^{p(n+\beta)}} (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|. \quad (2.3)$$

Proof. First, we establish the upper bounds in (2.3). Consider an arbitrary positive integer j and a function $f \in H(\mathbb{D})$. Define the linear operator C_j by

$$C_j f(z) = f\left(\frac{jz}{j+1}\right).$$

It is easy to check that C_j is bounded on the space H_β^∞ . Now, using Lemma 2.6 with the constant function $u \equiv 1$ and the analytic self-map $\varphi(z) = \frac{z}{j+1}$ of \mathbb{D} , we deduce that C_j is compact on H_β^∞ . So,

$$\begin{aligned} \|D_{\varphi,u}^n\|_{e,H_\beta^\infty \rightarrow AT_p^q(\alpha)} &\leq \liminf_{j \rightarrow \infty} \|D_{\varphi,u}^n - D_{\varphi,u}^n C_j\| \\ &= \liminf_{j \rightarrow \infty} \sup_{\|f\|_{H_\beta^\infty} \leq 1} \|D_{\varphi,u}^n(id - C_j)f\|_{AT_p^q(\alpha)}, \end{aligned}$$

where id denotes the identity operator on H_β^∞ . Fix a positive integer j and an $f \in H_\beta^\infty$ with $\|f\|_{H_\beta^\infty} \leq 1$, we have

$$\begin{aligned} &\|D_{\varphi,u}^n(id - C_j)f\|_{AT_p^q(\alpha)}^q \\ &\lesssim \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \geq r\}} |u(z)|^p \left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right|^p (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &\quad + \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \leq r\}} |u(z)|^p \left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right|^p (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \end{aligned}$$

for any $r \in (0, 1)$. By Lemma 2.2, we deduce that

$$\left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right| \leq C \cdot \frac{\|f\|_{H_\beta^\infty}}{(1 - |\varphi(z)|^2)^{n+\beta}},$$

where C denotes a positive constant dependent only on n and β . This implies that, for any $r \in (0, 1)$,

$$\begin{aligned} &\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \geq r\}} |u(z)|^p \left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right|^p (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &\leq C \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \geq r\}} \frac{|u(z)|^p}{(1 - |\varphi(z)|^2)^{p(n+\beta)}} (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|. \end{aligned}$$

It should be noted that this estimate is independent of j .

We now proceed to establish the following limit for an arbitrary $r \in (0, 1)$:

$$\lim_{j \rightarrow \infty} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \leq r\}} |u(z)|^p \left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right|^p (1 - |z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| = 0.$$

Let $\rho = \varphi(z)$ and denote the radial segment by $\left[\frac{j\rho}{j+1}, \rho \right]$. By integrating $f^{(n+1)}$ along this segment, we have

$$\left| f^{(n)}(\rho) - f^{(n)}\left(\frac{j\rho}{j+1}\right) \right| \leq \frac{|\rho|}{j+1} \cdot |f^{(n+1)}(\xi(\rho))|$$

for some intermediate point $\xi(\rho) \in \left[\frac{j\rho}{j+1}, \rho \right]$. Applying Cauchy's integral estimate to $f^{(n+1)}$ on the circle centered at $\xi(\rho)$ with radius $R \in (0, 1 - r)$, we obtain

$$|f^{(n+1)}(\xi(\rho))| \leq \frac{1}{R} \max_{|\zeta|=R+r} |f^{(n)}(\zeta)|.$$

Hence,

$$\begin{aligned} & \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \leq r\}} |u(z)|^p \left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ & \lesssim \frac{r^q}{R^q(j+1)^q} \frac{1}{[1-(R+r)^2]^{q(n+\beta)}} \|u\|_{AT_p^q(\alpha)}^q. \end{aligned}$$

By the assumption, we see that $u \in AT_p^q(\alpha)$. Hence,

$$\lim_{j \rightarrow \infty} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| \leq r\}} |u(z)|^p \left| f^{(n)}(\varphi(z)) - f^{(n)}\left(\frac{j\varphi(z)}{j+1}\right) \right|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| = 0.$$

Therefore,

$$\|D_{\varphi,u}^n\|_{e,H_\beta^\infty \rightarrow AT_p^q(\alpha)}^q \lesssim \limsup_{r \rightarrow 1} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| > r\}} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|.$$

We now establish the lower bounds in (2.3). First, observe that the norm $\|h_{\theta,t}^m\|_{H_\beta^\infty}$ is uniformly bounded with respect to θ, t and m . For an arbitrary compact operator $K : H_\beta^\infty \rightarrow AT_p^q(\alpha)$, we get

$$\|D_{\varphi,u}^n - K\| \gtrsim \|(D_{\varphi,u}^n - K)h_{\theta,t}^m\|_{AT_p^q(\alpha)} \geq \|D_{\varphi,u}^n h_{\theta,t}^m\|_{AT_p^q(\alpha)} - \|Kh_{\theta,t}^m\|_{AT_p^q(\alpha)}$$

valid for all θ, t and m . By Fatou's lemma we have that

$$\begin{aligned} & \sup_{\theta,t} \|D_{\varphi,u}^n h_{\theta,t}^m\|_{AT_p^q(\alpha)}^q \\ & \geq \liminf_{t \rightarrow 1} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta)} |u(z)|^p |(h_{\theta,t}^m)^{(n)}(\varphi(z))|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \\ & \geq \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| > r\}} |u(z)|^p |\varphi(z)|^{pm} |g_\theta^{(n)}(\varphi(z))|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \end{aligned}$$

for any $r \in (0, 1)$. By integrating these inequalities with respect to θ from 0 to 2π , using Fubini's theorem and Minkowski's inequality, we get

$$\begin{aligned} & \int_0^{2\pi} \sup_{\theta,t} \|D_{\varphi,u}^n h_{\theta,t}^m\|_{AT_p^q(\alpha)}^q \frac{d\theta}{2\pi} \\ & \geq \int_{\mathbb{T}} \int_0^{2\pi} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| > r\}} |u(z)|^p |\varphi(z)|^{pm} |g_\theta^{(n)}(\varphi(z))|^p (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} \frac{d\theta}{2\pi} |d\eta| \\ & \geq \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)| > r\}} |u(z)|^p |\varphi(z)|^{pm} \left(\int_0^{2\pi} |g_\theta^{(n)}(\varphi(z))|^q \frac{d\theta}{2\pi} \right)^{\frac{p}{q}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|. \end{aligned}$$

From the proof of Theorem 2.3, for an arbitrary $z \in \mathbb{D}$ satisfying $|\varphi(z)| \geq \varrho$, we have

$$\int_0^{2\pi} |g_\theta^{(n)}(\varphi(z))|^q \frac{d\theta}{2\pi} \gtrsim \frac{1}{(1-|\varphi(z)|^2)^{q(n+\beta)}}.$$

Hence,

$$\begin{aligned} & \int_0^{2\pi} \sup_{\theta,t} \|D_{\varphi,u}^n g_{\theta,t}^m\|_{AT_p^q(\alpha)}^q \frac{d\theta}{2\pi} \\ & \gtrsim \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)|>r\}} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| \end{aligned}$$

for any $r \in (\varrho, 1)$. Letting $r \rightarrow 1$, we get

$$\begin{aligned} & \int_0^{2\pi} \sup_{\theta,t} \|D_{\varphi,u}^n g_{\theta,t}^m\|_{AT_p^q(\alpha)}^q \frac{d\theta}{2\pi} \\ & \gtrsim \limsup_{r \rightarrow 1} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)|>r\}} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|. \end{aligned}$$

It is worthy of note that this estimate does not depend on m . In light of Lemma 2.5, for an arbitrary compact operator $K : H_\beta^\infty \rightarrow AT_p^q(\alpha)$, we obtain

$$\lim_{m \rightarrow \infty} \sup_{\theta,t} \|Kh_{\theta,t}^m\|_{AT_p^q(\alpha)} = 0.$$

Therefore,

$$\|D_{\varphi,u}^n\|_{e,H_\beta^\infty \rightarrow AT_p^q(\alpha)}^q \gtrsim \limsup_{r \rightarrow 1} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)|>r\}} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta|.$$

The proof is complete. \square

From the last theorem, we immediately get the following corollary.

Corollary 2.8. *Let $0 < \beta < \infty$, $0 < q \leq p < \infty$, $n \in \mathbb{N} \cup \{0\}$, $\alpha > -2$, $u \in H(\mathbb{D})$, and $\varphi \in S(\mathbb{D})$ such that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is bounded. Then $D_{\varphi,u}^n : H_\beta^\infty \rightarrow AT_p^q(\alpha)$ is compact if and only if*

$$\limsup_{r \rightarrow 1} \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi(z)|>r\}} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) \right)^{\frac{q}{p}} |d\eta| = 0.$$

From Theorem 2.7, Corollary 2.8 and the fact that $AT_p^p(\alpha) = A_{\alpha+1}^p$, we also have the following corollary.

Corollary 2.9. *Let $0 < p, \beta < \infty$, $n \in \mathbb{N} \cup \{0\}$, $\alpha > -1$, $u \in H(\mathbb{D})$, and $\varphi \in S(\mathbb{D})$. Then the following statements hold.*

(i) *Suppose that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow A_\alpha^p$ is bounded. Then it holds that*

$$\|D_{\varphi,u}^n\|_{e,H_\beta^\infty \rightarrow A_\alpha^p}^p \asymp \limsup_{r \rightarrow 1} \int_{|\varphi(z)|>r} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z).$$

(ii) *The operator $D_{\varphi,u}^n : H_\beta^\infty \rightarrow A_\alpha^p$ is compact if and only if $D_{\varphi,u}^n : H_\beta^\infty \rightarrow A_\alpha^p$ is bounded and*

$$\limsup_{r \rightarrow 1} \int_{|\varphi(z)|>r} \frac{|u(z)|^p}{(1-|\varphi(z)|^2)^{p(n+\beta)}} (1-|z|^2)^\alpha dA(z) = 0.$$

3. Boundedness and compactness of $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$

In this section, we study the boundedness and compactness of $D_{\varphi,u}^n : H_\beta^\infty(H_{\beta,0}^\infty) \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ and $D_{\varphi,u}^n : C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$.

Theorem 3.1. *Let $n \in \mathbb{N} \cup \{0\}$, $0 < q, \beta < \infty$, $1 \leq p < \infty$, $\alpha > -2$ such that $\frac{\alpha+2}{p} \leq \beta < \frac{\alpha+2}{p} + \frac{1}{q}$. Let $u \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded if and only if for any $\epsilon > 0$,*

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi_\beta^{u,n}(z)| \geq \epsilon\}} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty. \quad (3.1)$$

Here

$$\varphi_\beta^{u,n}(z) := \frac{u(z)(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^{n+\beta}}.$$

Proof. First, we assume that (3.1) holds. Let $f \in H_\beta^\infty$. Consider the following inequality for the operator $D_{\varphi,u}^n$:

$$\begin{aligned} |(D_{\varphi,u}^n f)(z)| (1 - |z|^2)^\beta &= |f^{(n)}(\varphi(z))| (1 - |\varphi(z)|^2)^{n+\beta} |\varphi_\beta^{u,n}(z)| \\ &\leq \|f\|_{H_\beta^{\infty,n}} |\varphi_\beta^{u,n}(z)|. \end{aligned}$$

For an arbitrary $\delta > 0$, if the inequality

$$|(D_{\varphi,u}^n f)(z)| (1 - |z|^2)^\beta > \delta$$

holds, then it must be that

$$|\varphi_\beta^{u,n}(z)| \geq \epsilon, \quad \text{where } \epsilon := \frac{\delta}{\|f\|_{H_\beta^{\infty,n}}}.$$

Therefore,

$$\begin{aligned} &\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_\delta^\beta(D_{\varphi,u}^n f)} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &\lesssim \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi_\beta^{u,n}(z)| \geq \epsilon\}} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty. \end{aligned}$$

Using Theorem A, one deduces that $D_{\varphi,u}^n f \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$. Consequently, $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded and

$$\|D_{\varphi,u}^n f\|_{C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)} \leq C \|f\|_{H_\beta^\infty}$$

holds for some constant $C > 0$ independent of f .

Conversely, assume that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded. By Theorem 2.5 in [16], there exist functions $f_1, f_2 \in H_\beta^\infty$ satisfying the inequality

$$|f_1(z)| + |f_2(z)| \geq \frac{1}{(1 - |z|^2)^\beta}, \quad z \in \mathbb{D}.$$

Define $g_1(z) := f_1(z) - zf_1(0)$ and $g_2(z) := f_2(z) - zf_2(0)$. Utilizing the asymptotic relation

$$(1 - |z|^2)^{\beta+1} |f'(z)| + |f(0)| \asymp (1 - |z|^2)^\beta |f(z)|,$$

we deduce that $g_1, g_2 \in H_\beta^\infty$ and

$$|g'_1(z)| + |g'_2(z)| \geq \frac{1}{(1 - |z|^2)^{\beta+1}}, \quad z \in \mathbb{D}.$$

According to this rule, it can be deduced that there exist $h_1, h_2 \in H_\beta^\infty$ satisfying the inequality

$$|h_1^{(n)}(z)| + |h_2^{(n)}(z)| \geq \frac{1}{(1 - |z|^2)^{n+\beta}}, \quad z \in \mathbb{D}.$$

By assumption, we have that $D_{\varphi,u}^n h_1, D_{\varphi,u}^n h_2 \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$. Thus, for an arbitrarily $\epsilon > 0$, applying Theorem A yields the integrability conditions

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_{\epsilon/2}^\beta(D_{\varphi,u}^n h_1)} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{q/p} |d\eta| < \infty$$

and

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_{\epsilon/2}^\beta(D_{\varphi,u}^n h_2))} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{q/p} |d\eta| < \infty.$$

Furthermore, in the case where $|\varphi_\beta^{u,n}(z)| \geq \epsilon$, we obtain

$$\begin{aligned} & \left(|(D_{\varphi,u}^n h_1)(z)| + |(D_{\varphi,u}^n h_2)(z)| \right) (1 - |z|^2)^\beta \\ &= \left(|h_1^{(n)}(\varphi(z))| + |h_2^{(n)}(\varphi(z))| \right) \|u(z)\| (1 - |z|^2)^\beta \\ &\geq \frac{\|u(z)\| (1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^{n+\beta}} \geq \epsilon, \end{aligned}$$

which implies that at least one of the following two inequalities holds:

$$|(D_{\varphi,u}^n h_1)(z)| (1 - |z|^2)^\beta \geq \frac{\epsilon}{2}$$

or

$$|(D_{\varphi,u}^n h_2)(z)| (1 - |z|^2)^\beta \geq \frac{\epsilon}{2}.$$

Therefore, for any $\epsilon > 0$,

$$\begin{aligned} & \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi_\beta^{u,n}(z)| \geq \epsilon\}} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| \\ & \leq \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_{\epsilon/2}^\beta(D_{\varphi,u}^n h_1))} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| \\ & \quad + \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_{\epsilon/2}^\beta(D_{\varphi,u}^n h_2))} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| \\ & < \infty. \end{aligned}$$

The proof is complete. \square

Theorem 3.2. Let $n \in \mathbb{N} \cup \{0\}$, $0 < q, \beta < \infty$, $1 \leq p < \infty$, $\alpha > -2$ such that $\frac{\alpha+2}{p} \leq \beta < \frac{\alpha+2}{p} + \frac{1}{q}$. Let $u \in H(\mathbb{D})$ and $\varphi \in S(\mathbb{D})$. Then $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded if and only if $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ and

$$\sup_{z \in \mathbb{D}} |\varphi_\beta^{u,n}(z)| < \infty.$$

Proof. Suppose that $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ and

$$\sup_{z \in \mathbb{D}} |\varphi_\beta^{u,n}(z)| \leq C < \infty.$$

Consider a function $f \in H_{\beta,0}^\infty$. For an arbitrary $\epsilon > 0$, there exists a constant r ($0 < r < 1$) such that the estimate

$$|f^{(n)}(z)|(1 - |z|^2)^{n+\beta} < \frac{\epsilon}{C}$$

is satisfied whenever $|z| > r$. Let $z \in \Omega_\epsilon^\beta(D_{\varphi,u}^n f)$. Then,

$$\begin{aligned} \epsilon &\leq |(D_{\varphi,u}^n f)(z)|(1 - |z|^2)^\beta \\ &= |f^{(n)}(\varphi(z))|(1 - |\varphi(z)|^2)^{n+\beta} \frac{|u(z)|(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^{n+\beta}} \\ &\leq C |f^{(n)}(\varphi(z))|(1 - |\varphi(z)|^2)^{n+\beta}. \end{aligned}$$

This inequality directly implies $|\varphi(z)| \leq r$. Hence,

$$\epsilon \leq |f^{(n)}(\varphi(z))| |u(z)|(1 - |z|^2)^\beta \leq \frac{\|f\|_{H_\beta^{\infty,n}}}{(1 - r^2)^{n+\beta}} |u(z)|(1 - |z|^2)^\beta.$$

Let $\delta = \frac{\epsilon(1-r^2)^{n+\beta}}{\|f\|_{H_\beta^{\infty,n}}}$. Then $|u(z)|(1 - |z|^2)^\beta \geq \delta$. Therefore,

$$\Omega_\epsilon^\beta(D_{\varphi,u}^n f) \subseteq \Omega_\delta^\beta(u).$$

By the fact that $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$, we get

$$\begin{aligned} &\int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_\epsilon^\beta(D_{\varphi,u}^n f)} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| \\ &\leq \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_\delta^\beta(u)} (1 - |z|^2)^{\alpha-p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty. \end{aligned}$$

An application of Theorem A yields that $D_{\varphi,u}^n f \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$. Consequently, the operator $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded, as desired.

Conversely, suppose the operator $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded. Consider the function $f(z) = z^n$, which belongs to $H_{\beta,0}^\infty$. By the boundedness of $D_{\varphi,u}^n$, we have

$$u = D_{\varphi,u}^n f \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty).$$

Since $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is a subspace of H_β^∞ , the boundedness of $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ immediately implies its boundedness as an operator from $H_{\beta,0}^\infty$ to H_β^∞ .

For an arbitrary $a \in \mathbb{D}$, consider the test function

$$f_a(z) = \frac{1 - |a|^2}{(1 - \bar{a}z)^{\beta+1}}, \quad z \in \mathbb{D},$$

which is in the space H_β^∞ . Using the fact that $u \in H_\beta^\infty$, after a calculation, we see that $\sup_{z \in \mathbb{D}} |\varphi_\beta^{u,n}(z)| < \infty$. The proof is complete. \square

The boundedness of the operator $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ always implies that $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$. Consequently, throughout the remainder of this work, we shall assume $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$.

Theorem 3.3. *Let $n \in \mathbb{N} \cup \{0\}$, $0 < q, \beta < \infty$, $1 \leq p < \infty$, $\alpha > -2$ such that $\frac{\alpha+2}{p} \leq \beta < \frac{\alpha+2}{p} + \frac{1}{q}$. Let $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ and $\varphi \in S(\mathbb{D})$. Then the following statements are equivalent.*

- (i) $D_{\varphi,u}^n : H_\beta^\infty \rightarrow H_\beta^\infty$ is compact.
- (ii) $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow H_\beta^\infty$ is compact.
- (iii)

$$\lim_{|\varphi(z)| \rightarrow 1} |\varphi_\beta^{u,n}(z)| = 0. \quad (3.2)$$

- (iv) $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact.
- (v) $D_{\varphi,u}^n : C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact.
- (vi) $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii). The proof is similar to the proof of Theorem 2.3 in [20]. For the sake of conciseness, we omit the details.

(iii) \Rightarrow (iv). By hypothesis, there exists a real number $r \in (0, 1)$ such that for all w , the inequality

$$|\varphi_\beta^{u,n}(w)| < \frac{\epsilon}{2}$$

holds whenever $|\varphi(w)| \geq r$. Let $z \in \mathbb{D}$ satisfy $|\varphi_\beta^{u,n}(z)| \geq \epsilon$. This implies that $|\varphi(z)| < r$. Hence,

$$\epsilon \leq |\varphi_\beta^{u,n}(z)| \leq \frac{|u(z)|(1 - |z|^2)^\beta}{(1 - r^2)^{n+\beta}},$$

which implies that

$$\epsilon(1 - r^2)^{n+\beta} \leq |u(z)|(1 - |z|^2)^\beta.$$

Let $\delta = \epsilon(1 - r^2)^{n+\beta}$. Then $z \in \Omega_\delta^\beta(u)$. Given that $u \in C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$, by Theorem A, it follows that

$$\begin{aligned} & \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \{|\varphi_\beta^{u,n}(z)| \geq \epsilon\}} (1 - |z|^2)^{\alpha - p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| \\ & \lesssim \int_{\mathbb{T}} \left(\int_{\Gamma(\eta) \cap \Omega_\delta^\beta(u)} (1 - |z|^2)^{\alpha - p\beta} dA(z) \right)^{\frac{q}{p}} |d\eta| < \infty, \end{aligned}$$

which implies that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded by Theorem 3.1. In addition, we have that $D_{\varphi,u}^n : H_\beta^\infty \rightarrow H_\beta^\infty$ is compact. Combining these two results, the compactness of the operator $D_{\varphi,u}^n : H_\beta^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ follows.

(iv) \Rightarrow (v). Given the inclusion

$$C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \subseteq H_\beta^\infty,$$

by the assumption it follows that $D_{\varphi,u}^n : C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact.

(v) \Rightarrow (vi). Suppose $D_{\varphi,u}^n : C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact. Since $H_{\beta,0}^\infty$ is the closure of all polynomials in H_β^∞ and the space $AT_p^q(\alpha)$ contains all polynomials, we obtain that $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact.

(vi) \Rightarrow (ii). Assume that the operator $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is compact. Then $D_{\varphi,u}^n : H_{\beta,0}^\infty \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ is bounded. Since $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \subseteq H_\beta^\infty$, it follows that $D_{\varphi,u}^n$ is compact from $H_{\beta,0}^\infty$ to H_β^∞ . The proof is complete. \square

Remark 3.4. From the above conclusions, we see that the boundedness of $D_{\varphi,u}^n : C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty) \rightarrow C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ has not been resolved. At present, we have no idea to solve this problem. This is left as an open problem for interested readers.

Open Problem. How to characterize those generalized weighted composition operators that are bounded on $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$?

Remark 3.5. From the above results and the identity $AT_p^p(\alpha) = A_{\alpha+1}^p$, we directly derive the corresponding results for $C_{H_\beta^\infty}(A_\alpha^p \cap H_\beta^\infty)$. To maintain conciseness, we omit the details.

4. Conclusions

This paper focuses on exploring the boundedness, compactness, and essential norm of the generalized weighted composition operator $D_{\varphi,u}^n$ from the Korenblum space H_β^∞ into the analytic tent space $AT_q^p(\alpha)$. Furthermore, the paper also analyzes the boundedness and compactness of the operator $D_{\varphi,u}^n$ from H_β^∞ into the space $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$, the closure of the analytic tent space within the Korenblum space. We also pointed out that the boundedness of $D_{\varphi,u}^n$ on the space $C_{H_\beta^\infty}(AT_p^q(\alpha) \cap H_\beta^\infty)$ itself remains open.

Author contributions

Xiangling Zhu, Rong Yang and Songxiao Li: Contributed to the conceptualization, visualization, resources, writing—review and editing, formal analysis, project administration, validation, and investigation; Xiangling Zhu: Secured funding. All authors declare that they have contributed equally to this paper. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The first author is supported by GuangDong Basic and Applied Basic Research Foundation (No. 2023A1515010614).

Conflict of interest

The authors declare no competing interests.

References

1. J. Anderson, J. Clunie, C. Pommerenke, On Bloch functions and normal functions, *J. Reine Angew. Math.*, **270** (1974), 12–37. <https://doi.org/10.1515/crll.1974.270.12>
2. R. Aulaskari, R. Zhao, Composition operators and closures of some Möbius invariant spaces in the Bloch space, *Math. Scand.*, **107** (2010), 139–149. <https://doi.org/10.7146/math.scand.a-15147>
3. J. Chen, Closures of holomorphic tent spaces in weighted Bloch spaces, *Complex Anal. Oper. Theory*, **17** (2023), 87. <https://doi.org/10.1007/s11785-023-01389-x>
4. P. Coifman, Y. Meyer, E. Stein, Some new function spaces and their applications to harmonic analysis, *J. Funct. Anal.*, **62** (1985), 304–335. [https://doi.org/10.1016/0022-1236\(85\)90007-2](https://doi.org/10.1016/0022-1236(85)90007-2)
5. C. Cowen, B. MacCluer, *Composition operators on spaces of analytic functions*, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
6. P. Ghatage, D. Zheng, Analytic functions of bounded mean oscillation and the Bloch space, *Integr. Equat. Oper. Th.*, **17** (1993), 501–515. <https://doi.org/10.1007/BF01200391>
7. E. Gómez-Orts, Weighted composition operators on Korenblum type spaces of analytic functions, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM*, **114** (2020), 199. <https://doi.org/10.1007/s13398-020-00924-1>
8. W. He, L. Jiang, Composition operator on Bers-type spaces, *Acta Math. Sci. (Engl. Ed.)*, **22** (2002), 404–412. [https://doi.org/10.1016/S0252-9602\(17\)30310-7](https://doi.org/10.1016/S0252-9602(17)30310-7)
9. F. Pérez-González, J. Rättyä, Forelli–Rudin estimates, Carleson measures and $F(p, q, s)$ -functions, *J. Math. Anal. Appl.*, **315** (2006), 394–414. <https://doi.org/10.1016/j.jmaa.2005.10.034>
10. R. Qian, S. Li, Composition operators and closures of Dirichlet type spaces \mathcal{D}_α in the logarithmic Bloch space, *Indag. Math. (N.S.)*, **29** (2018), 1432–1440.
11. S. Stević, Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, *Appl. Math. Comput.*, **211** (2009), 222–233. <https://doi.org/10.1016/j.amc.2009.01.061>
12. S. Stević, Weighted differentiation composition operators from the mixed-norm space to the n th weighted-type space on the unit disk, *Abstr. Appl. Anal.*, **2010** (2010), 246287. <https://doi.org/10.1155/2010/246287>
13. S. Stević, Weighted differentiation composition operators from H^∞ and Bloch spaces to n th weighted-type spaces on the unit disk, *Appl. Math. Comput.*, **216** (2010), 3634–3641. <https://doi.org/10.1016/j.amc.2010.05.014>

14. S. Ueki, Weighted composition operators acting between the N_p -space and the weighted-type space H_α^∞ , *Indag. Math. (N.S.)*, **23** (2012), 243–255.

15. M. Wang, Y. Liu, Weighted composition operators between Bers-type spaces, *Acta Math. Sci. (Chinese Ed.)*, **27** (2007), 665–671.

16. C. Yang, W. Xu, Spaces with normal weights and Hadamard gap series, *Arch. Math. (Basel)*, **96** (2011), 151–160. <https://doi.org/10.1007/s00013-011-0223-8>

17. K. Zhu, Bloch type spaces of analytic functions, *Rocky Mountain J. Math.*, **23** (1993), 1143–1177. <https://doi.org/10.1216/rmjmath/1181072549>

18. X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space, *Integr. Transf. Spec. F.*, **18** (2007), 223–231. <https://doi.org/10.1080/10652460701210250>

19. X. Zhu, Generalized weighted composition operators on weighted Bergman spaces, *Numer. Funct. Anal. Opt.*, **30** (2009), 881–893. <https://doi.org/10.1080/01630560903123163>

20. X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, *Filomat*, **26** (2012), 1163–1169. <https://doi.org/10.2298/FIL1206163Z>

21. X. Zhu, Essential norm of generalized weighted composition operators on Bloch-type spaces, *Appl. Math. Comput.*, **274** (2016), 133–142. <https://doi.org/10.1016/j.amc.2015.10.061>

22. X. Zhu, Q. Hu, D. Qu, Polynomial differentiation composition operators from Besov-type spaces into Bloch-type spaces, *Math. Methods Appl. Sci.*, **47** (2024), 147–168. <https://doi.org/10.1002/mma.9647>

23. A. Zygmund, *Trigonometric Series*, Cambridge Univ. Press, London, 1959.

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)