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1. Introduction

Let D c C be the open unit disk, and H(D) the set of all analytic functions on D. For g > 0, the
Korenblum space H;* comprises f € H(D) with finite norm

Ifllis == sup(l ~ Y1 (@)l
zeD

forming a Banach space under this norm. Its closed subspace, the little Korenblum space HEO, consists
of f € H(D) satisfying
|z1|1311—(1 — 12PY1f @) = 0.

These are also termed Bers-type and little Bers-type spaces, respectively (see [8, 15]). A function f
belongs to the Bloch-type space B if its derivative f’ € Hy. When g = 1, BP reduces to the classical
Bloch space 8.
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Let ¢ > % and n7 € T (the boundary of D). The non-tangential approach region I';(1) is defined by

T(p) =Ty = {zeD:lz—nl < {0 - P}

For 0 < p,q < oo and @ > -2, the tent space T,(e) consists of all measurable functions f on D
satisfying

1= [( [ ra-eerao) <o
b T \JI'(m)

In T's(7), we omit the aperture { from the notation. For any two choices of ¢, the resulting spaces
possess equivalent quasi-norms. Tent spaces, first introduced by Coifman, Meyer, and Stein [4], serve
as a framework in harmonic analysis. They unify the study of fundamental function spaces, such
as Hardy spaces and Bergman spaces. The analytic tent space AT () is defined as the intersection
T,(a) N H(D). Notably, when ¢ = p, this recovers the weighted Bergman space: AT} (a) = A” . This
establishes a critical connection between tent spaces and classical function spaces.

Let N be the set of positive integers and S (D) the collection of all analytic self-maps of D. Fora ¢ €
S(D), n € N, and u € H(D), the generalized weighted composition operator (weighted differentiation
composition operator) Dy, is defined by

(D}, @) =u@) - f"(e(), ze€D,

where f™ is the n-th derivative of f. This operator was first introduced by the first author in [18].
For more insights and results about generalized weighted composition operators, one can refer to the
references [11-13, 18-22]. When n = 0, Dg’u reduces to the classical weighted composition operator
uCy; with u = 1, it becomes the composition operator C,. For composition/weighted composition
operator studies on Korenblum spaces, see [5,7,8,15]. As Korenblum spaces are limit cases of weighted
Bergman spaces, we naturally consider operators between Hg," and A% (or AT,’; (@)). Thus, this work’s
primary aim is to investigate the operator D, : Hy” — AT} (@) when 0 < g < p < .

Let X be a linear subspace of the normed space Y, and denote by Cy(X) the closure of X with
respect to the Y-norm topology. In [1], Anderson et al. posed an open question about the closure of
the H* space within the Bloch space. Later, Ghatage and Zheng [6] investigated the closure of the
BMOA space in the Bloch space. Using the established result that H;° is identical to the space B
the following theorem was proved in [3].

Theorem A Let 0 < p,q,B < oo and a > =2. The following statements hold.
(i) If B < “sz, then Cp=(ATj() N HY) = Hy.
(i) If B = 2 + ., then Cuz (ATj () N HY) = Hp,
(iii) Let O‘sz <pB< % +i p>landfe Hp. Then f € CHF(ATZ(Q) N Hy) if and only if for any

5;
e€>0, ,
f ( f a —|z|2>“—"ﬁdA<z>) dn < co.
T \JTmn(f)

Q(f) =z €D If@IA - Y > €.

Here
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In [2], Aulaskari and Zhao studied composition operators that map from the Bloch space 8 into the
closure of specific Mobius-invariant subspaces within 8. In [10], Qian and Li investigated composition
operators from the logarithmic Bloch space By, to the Bjo,-norm closure of Dirichlet-type spaces D2
It should be emphasized that, in the existing literature, there is no research on generalized weighted
composition operators (or even weighted composition operators) acting on norm closures of function
spaces. This gap motivates us to study such operator classes on Cy(X)-type structures. The second
objective of this work is to investigate the operator D , as a mapping from Hy(Hg)) to CH;o (AT} (@) N
H;"), and also as a mapping from CH;o (ATg(a) N HE") to itself.

In this paper, we establish characterizations for the boundedness, compactness, and essential norm
of the operator D, : Hy — AT} (). Furthermore, we study the boundedness and compactness
of the operator D, : H;"(HEO) - CH;’ (ATZ(a) N Hg") and the compactness of the operator Dy, :
CH;(ATZ(Q) NH) — CHEo(ATg(a) NH).

Throughout this paper, we assert that E < F if there exists a constant C such that £ < CF. The
notation E =< F signifies thatboth £ < Fand F < E.

2. Boundedness, compactness, and essential norm of Dy, : Hﬁ,"" — ATZ(a/)

In this section, we investigate the boundedness, compactness, and essential norm of the operator
D, :Hy — AT ).

The following lemma, which will play a crucial role in the proof of our main theorem, may be found
in [9, Lemma 3.1].

Lemma 2.1. Let 0 < 7 < 00, 1 < A < o0, and e™* < ry < 1. Then there is a positive constant C,
depending only on A, T and ry, such that

i/lj/l‘rr/lj“ > c
— (1 — r2)/l‘r
forallrg <r< 1.

Based on the well-established result that H;® = $P*!, and making use of the higher-order derivatives
characterization of the Bloch type space (as detailed in [17]), we get the following result.

Lemma 2.2. Let3>0,neN, and f € HD). Then f € Hp if and only if

Sug(l ~ 121 < 0.
Z&

Moreover, ||f||H/;o is equivalent to ||f||H;o.n. Here,

n—1
1l = > 1FPO)] + sup(l = 2P (2)l.
j=0

zeD

Theorem 2.3. Let0 < <0, 0<g<p<oo,neNU{0}, a> -2, uec HD)and ¢ € S(D). Then
Dy, Hy — AT}(a) is bounded if and only if

: :
fT (fn = |Z:<(zz>)||2>p<"+ﬁ>(1 - 'Z'z)a‘“@) | < eo. @1
n
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Proof. First, we assume that (2.1) holds. Let f € Hp. Using Lemma 2.2, we obtain

f ( f DA - |z|2>adA<z>)" il
T \JI'(m)

= f ( f @1 (@) —IZIZ)“dA(Z))p |dnl
T \Jr@y)

q

p
S fT ( fr . (1_|Z‘((j))|'2)p(n+ﬁ)< 1 )"dA(z)) ldn] < oo,
n

which implies that Dy, : H;" — ATZ(a) is bounded.

Conversely, assume that Dj, , Hg’ - AT,’f(a) is bounded. Foreach0 <0 <2rand 0 <t < 1, set

20,0 = Y 2", zeD.

J=0

(2.2)

From [14, Lemma 2], we see that gg, € H[‘;" and ||ga.| H < 1 are independent of 6 and ¢. For simplicity,

denote gy by gy. Using Fubini’s theorem, Minkowski’s inequality, and the assumption that § >1,we

get

21 . d9

z do
f (DL, 80 (1 - |z|2)“dA(z>) Idnl] -
TG n

2 %
f [ f f @180 ()P (1 = |2*)*dA(2) Idnl)
0 T \JI'()

2 9

= f f f @182 (@@)IP(1 - 1z2)dA(z) 2—)Idn|

T ()

271 - d@ 2

> f f f u(z)lg! (w(z))lqz—) ~ Il )"dA(z)J \dn|

T\ Jrep \Jo 4

e do\’ > :

= f f |u<z)|f’( f g (so(z»rfz—) (1 - 1z*)?dA) | ldn.

T\ Jrom) 0 4

Using the following inequality (see [23] or [9, Lemma F])

SRS

n—1 ;

. 21 .
| |(2’—k)2—', neN, jeN, 2/ >n,
~ n!

we have

oo n—1 4
rl(zj _ k)z]ﬁw(Z)Z nel€)2 2_
T

Jj=[log, n] k=0

dg 27
f Ig(")(so(z))lqz— > f
0 T 0
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a

S n—1 2 2
j 2ji 2(2/-
x> [H(zf—k)] 2P ()P
Jj=[log, n] \ k=0
q
o] 2
2| 2 22f(”*ﬁ>|<,o<z)|2<2"‘">] :
Jj=[log, n]

where [x] = inf{n e N : n > x}.

Using Lemma 2.1 with the choice ry = e /2

, we deduce the existence of a positive constant C,

depending only on 7 and n, such that for all z satisfying e ™/? < |¢(z)| < 1, the inequality
i - C
22im+B)) ()P ! >
; PO = T e

holds. Given n + 8 > 0, there exists a o € [e~™/2, 1) for all |¢(z)| € [0, 1), the partial sum satisfies

22j(n+p) v _
S TR e DR

1<j<[log, n]

Hence, for all |p(2)| € [0, 1),

[

. ) C
22](”+ﬁ)|‘p(z)|2(2/—n) > ’
jz[l;g2 nl 2(1 — |p(z)[?)2+B)

which implies that

lu(2)l” ) )
(1 =1z")*dAz)| ldnl < 1.
fT (fr(mmuga(znzg} (1 = lp(z)[)rsh)

Noting that u € AT} (@), we obtain

i) (1 ~ KPP aA) i <
T \Jrantieei<a (1 = lp@IH)PeH) )

lu(z)I . 7
fT (Ln) (1- Iw(z)lz)mnw)(l — 12 dA(Z)) ldn| < co.

Therefore,

The proof is complete.
]

From Theorem 2.3 and the fact that AT) (a) = A?, |, we immediately obtain the following corollary.

Corollary 2.4. Let0 < p,f < co,n € NU{0}, @ > -1, u € H(D), and ¢ € S(D). Then D, : Hg’ — Al
is bounded if and only if

u@)l .
fD T le@pyaa (|~ D dAR) < eo.
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Next, we consider the compactness and essential norm of the operator D, : Hy' — AT} (a). For
a bounded linear operator 7 : X — Y between Banach spaces (X, || - ||x) and (Y] - ||ly), recall that the
essential norm is given by the infimum

1Tl x—y = i?{f{llT - Kllx-y : K € K(X, Y)}’

where K (X, Y) denotes the space of compact operators from X to Y. It is clear that T is compact if and
only if [|T]lex-y = 0.
For each m € N, define
hy'(2) = 7" gg.4(2),

where gy, denotes the test function specified in (2.2). Given that the inclusion z’"H © C H°° , it follows
that the family {h’” }men 18 contained within H°° . Furthermore, the H°°—n0rm ||h Al H 1s uniformly
bounded with respect to 6, ¢, and m. Using Lemma 4 in [14], for every bounded hnear functional
A € (H;") , we get

sup|A(hy )l — 0 as m — oo.

0.t

This establishes the weak convergence of the sequence {/} }ney to 0 in Hp. Using the complete
continuity property of compact operators, the subsequent lemma is derived. The detailed proof is
omitted for conciseness.

Lemma 2.5. Let 0 < < 00,0 < g < p < oo, @ >-2. For any compact operator T : Hp — AT} (@), it
holds that
lim sup ”Thgt”ATq(a) =0,

m—oo 91,

where the supremum is taken over all 0 < 0 <2mand 0 <t < 1.

The following compactness criterion holds for the operator Dy, mapping from Hy’ to AT} (a), as
established in [5, Proposition 3.11].

Lemma 2.6. Let0 < 8 <00, 0<g<p<oo,neNU{0}, a>-2 ue HD) and ¢ € S(D) such
that Dy, : Hy — AT} (a) is bounded. Then Dy, Hy — AT () is compact if and only if for every
bounded sequence {f;} in Hy' that converges to 0 uniformly on compact subsets of D, we have

B 1D, largior = 0.

Theorem 2.7. Let0 < f <00, 0<g<p<oo,ne NU{0}, @ > -2, uec HD) and ¢ € S(D). Suppose

that Dy, : HY — ATj(a) is bounded. Then it holds that

1D,

| ju@)P ) ’
Ml e e, < limsu f(f (1 -1zI)*dA@)| ldnl. (2.3)
Pl eHg ATy (@) r—1 P rapntieosr (1= lp@)P)Pets 7

Proof. First, we establish the upper bounds in (2.3). Consider an arbitrary positive integer j and a
function f € H(D). Define the linear operator C; by

C,f) = f(i)

j+1
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It is easy to check that C; is bounded on the space H;'. Now, using Lemma 2.6 with the constant
function u = 1 and the analytic self-map ¢(z) = J% of D, we deduce that C; is compact on H;’. So,

||DZ,M||e,H;0—>AT,‘§(a) < lim inf||D” - Dy Cill

= liminf sup ||D;,u(id - Cj)f”ATg(a)’

Joeo w0 <1
”f“Hﬁ

where id denotes the identity operator on H’. Fix a positive integer j and an f € Hy’ with || f]] Hy S 1,

we have
\D;,(id — CHfIl’

AT} (@)

< f ( f U
T L(N{le(z)|>r}

(1- IZIZ)“dA(z)) \dnl

FO@) - ™ (’ *”(Z))

+ [ ( [ WP |fP() - £ ("”(Z)) (1- |z|2>f’dA<z))" |
T \Jrmn(e@i<r 1
for any r € (0, 1). By Lemma 2.2, we deduce that
) (n) JSD(Z)) . 1 1l
fe@) - f ( 1 TP

where C denotes a positive constant dependent only on n and . This implies that, for any r € (0, 1),

f ( f lu(2)I”
T \Jrmniig@zr)

|u(2)I” a
Scﬁ(ﬁ(n)m{w@)grl (1 _ |€0(Z)|2)p(n+ﬁ)(1 - |Z|2) dA(Z)) |d77|

It should be noted that this estimate is independent of ;.
We now proceed to establish the following limit for an arbitrary » € (0, 1):

lim ( f lu(z)”
= Jr \Jrmnliei<r

Let p = ¢(z) and denote the radial segment by [J T p] By integrating f"*" along this segment, we
have

(1- Izlz)"dA(z))p il

FP(e(2)) - f“”( ‘p(Z))

FP(e(2)) - £ (’ "”(Z))

(1 - 12" dA(Z)),, dl =

| ER))|

YRy
P

]+1

for some intermediate point £(p) € [ e p] Applying Cauchy’s integral estimate to "V on the circle
centered at £(p) with radius R € (0, 1 — r), we obtain

(n+1) l (1)
P D] < % max [FQ.
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Hence,
4q
f f W@P [ @) - £ "”(Z) (1 - A 1dn
T \Jrapniie@isr +1
r? 1
- el
Ri(j+ 1)7[1 — (R + r)?]90+h (@'
By the assumption, we see that u € ATZ(a/). Hence,
i f W@P [ ) - £ ""(Z) (1 = 1 dA) 1yl =
= Jr \Jrmnieeisr +1

Therefore,

q

lu(z)|? ) ’
1Dy, . . < limsu f(f (1 =1zI")*dA(z)] ldnl.
U roniie@sr (1= lp@))PeD 7

We now establish the lower bounds in (2.3). First, observe that the norm ||hgft||H;o is uniformly

bounded with respect to 6, f and m. For an arbitrary compact operator K : H" — AT} (), we get
D%, K| 2 DL, — KR arsier = 1D e arsw — 1K R lazace
valid for all 6, t and m. By Fatou’s lemma we have that

sup Dy, ]I}
by Mard(a)

Zlimilnf f ( f Iu(z)l"I(h'e'ff)(”’(so(z))l”(1—Izlz)“dA(z))pIdnl
= T \JT()

q

> f ( f WP @I @)1 - [ )“dA(z)) |
Tmnfle)>r}

for any r € (0,1). By integrating these inequalities with respect to 6 from O to 2w, using Fubini’s
theorem and Minkowski’s inequality, we get

27
i do
f SUp DL gy 5

27 %dg
f f ( f |u<z)|f’|so<z)|f’m|g(")(¢(z>)v’(1—|z|2)“dA<z)) >l
Tmnile@)>r} T

40\ Z
> f [ f |u(z>|f’|go<z>|f’m( f |g("><so(z>)|q2—) (1—|z|2)“dA(Z)] dn.
T\ Jrampnile@)l>r) 0 0

From the proof of Theorem 2.3, for an arbitrary z € D satisfying |¢(z)| > o, we have

fQﬂ
0

AIMS Mathematics Volume 10, Issue 9, 21452-21467.
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Hence,
271 dé’
Dn m 19
fo SEZP || ga,uge,t”ATg(a) 27I'

q
lu(2)|” 2 ’
2 (1 =1z2)"dA)| ldnl
fT (frm)nugo(z)lw} (1 = lp@))re+P
for any r € (o, 1). Letting r — 1, we get

2
do
D' " q —_—
fo S;Ttp“ <p,ug9,t||ATZ((1)27T

> lim sup f ( f Iu(z)|2” (- IZIZ)“dA(Z))p anl
=1 JT \Jrapnigesn (1= le@)P)Peh

It is worthy of note that this estimate does not depend on m. In light of Lemma 2.5, for an arbitrary
compact operator K : Hy® — AT} (a), we obtain

4

lim sup [|K7g |l o740 = 0.
m—-0oo 9,[

Therefore,
q
) lu(z)l? 2 ’
(1248 2 lim Supf(f (1 = 21")*dA(z)| ldnl.
Pl Hy = AT (@) -1 JT \Jramngesn (1= 1e@)2)re+?
The proof is complete. O

From the last theorem, we immediately get the following corollary.
Corollary 2.8. Let0 < <00, 0<g<p<oo,neNU{0}, « > -2, u e HD), and ¢ € S(D) such
that Dy, : H — AT}(a) is bounded. Then D', , Hy — AT} () is compact if and only if

o

q
i lu(z)l? ) 3
lim su f(f (1 = Il )“dA(z)) dn] = 0.
r=1 P T \Jrmnieersn (1 = le(@))Pes) n

From Theorem 2.7, Corollary 2.8 and the fact that AT};7 () = Ai 1> We also have the following
corollary.

Corollary 2.9. Let 0 < p,f < oo, n e NU{0}, @ > -1, u € H(D), and ¢ € S(D). Then the following
statements hold.
(i) Suppose that D}, , : HBOO — A” is bounded. Then it holds that

DL ., = limsup f WOR (|~ pyraac).
ety =4 eoir (1~ [p@PP)

r—1

(ii) The operator Dy, : Hp — Al is compact if and only if Dy, Hy — AL is bounded and

i lu(z)l? )
lim su f |~ ) dA) = 0.
o wopr (1= Igo(z)lz)p(nﬂf)( (2)
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3. Boundedness and compactness of Dy, : H/‘;’ — CH; (AT ,‘f(oz) N HE")

In this section, we study the boundedness and compactness of D}, , : H;(H;fo) — CH;o (ATg(a)ﬂH;")
and D, : CHEO(ATZ(Q’) N HE") — CHEO(ATZ(Q) N Hg’).
Theorem 3.1. Letn e NU{0}, 0 < ¢g,8< 00, 1 < p < o0, a > —2suchthat“7+2 <pB< C’pﬁ + }1 Let
ue HD)and ¢ € S(D). Then Dy, : Hgf’ — CH;(ATZ(Q) N H[‘;") is bounded if and only if for any € > 0,

q

f{f (1 = [27)*dAz) | ldn| < co. (3.1
T \JTmNllgg" @)lze)

u(2)(1 = |z

(1 = lp@)P)y#

Proof. First, we assume that (3.1) holds. Let f € Hg. Consider the following inequality for the
operator D :

Here
¢y (2) =

(D I = 2P =l @@ = [Pl )
<l ).

For an arbitrary ¢ > 0, if the inequality

(D}, NI =12V > 6

holds, then it must be that
1)

Al

lpg" ()| > €,  where € :=

Therefore,

q
P
f ( f (1—|z|2)“—PﬁdA<z>) |
T \JTNL(DL,.f)

Sf{f (1 —Izlz)“_pﬁdA(Z)) ldn| < co.
T (JIrmniies” @lzel

Using Theorem A, one deduces that D, f € CHZQ(ATg(a) N Hy). Consequently, Dj, : HS —
Chy (AT} (a) N H) is bounded and

||Dg,uf||cH/§o(ATg(a)nH;) < C||f||H;;°

holds for some constant C > 0 independent of f.
Conversely, assume that Dy, : Hﬁ"o - CHEo(ATg(a) N HE") is bounded. By Theorem 2.5 in [16],
there exist functions fi, f, € Hy satisfying the inequality

/i@ + /(2] = zeD.

_t
(1~ Py’

AIMS Mathematics Volume 10, Issue 9, 21452-21467.
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Define g,(z) := fi(2) — zf1(0) and g-(z) := f>2(2) — z/>(0). Utilizing the asymptotic relation

(1 = PP @I+ 1)) < A = 2P f ),
we deduce that g1, g, € H;° and

g7 + g5 = z € D.

1
(1= [zt

According to this rule, it can be deduced that there exist A, h; € Hy® satisfying the inequality

K@) + 11 (@) = zeD.

1
(1= [zPmE
By assumption, we have that D” hl,D e € CHoo(ATq(a) N HB"“). Thus, for an arbitrarily € > 0,
applying Theorem A yields the mtegrablhty condltlons

q/p

f [ f (1 - [zP)* P dAz)| ldnl < oo
TN, 5 (Dl 1)

and
q/p

f ( f (1 -z dAR)| ldnl < oo.
TR, 5 (Dl o))

Furthermore, in the case where Igoﬁ (2)| = €, we obtain

(1L, a)@) + (DL )@1)(A = 22

=(In" (@) + 15" (DIl = |2

@I~ 217y S
2 T s = ©
(1 = le(2)I*)
which implies that at least one of the following two inequalities holds:

(DL A@I1 =Y >

or .
(D}, )1 = 2P > 3

Therefore, for any € > 0,

q
14
[ {1 |z|2)“-PﬁdA(z>] dn
Tapni Isa};"(z)l>e

[ f (1 —|z7»H)> PP dA(z)] |dn|
T \Irmnl (0 ,h)

o

kA
P

f ( [ a —|z|2>“-PﬁdA<z>) |
T\ JrmnQf (D} ,h))

The proof is complete. O

+
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Theorem 3.2. Letn e NU{0}, 0 < ¢, < 00,1 < p < o0, @ > —2suchthat“7f2 <B < “’%2+$.
Let u € HD) and ¢ € S(D). Then Dg, : HEO - C Hﬁoo(ATg(a) N Hﬁ‘x’) is bounded if and only if
ue C’Hﬁoo(ATg(a) N Hﬁ‘x’) and

sup " (@) < oo,
zeD

Proof. Suppose that u € Chy (AT} (@) N HY’) and

sup gt (| < C < oo,
zeD

Consider a function f € HE"O. For an arbitrary € > 0, there exists a constant r (0 < r < 1) such that the
estimate

PPN = kP < 2
is satisfied whenever |z| > r. Let z € Qf(DgM f). Then,
e <|(D}, NI = [z
u(2)I(1 = |z*)°
— (1) 1 _ 2\n+B 1A L T
|/ (DI = le(2)]7) (1 - [G@R)

<CIf " (@@ = lp)P)".

This inequality directly implies |¢(z)| < r. Hence,

1l
e <IF (@U@ = 2P < (l_im(zn(l 1P

r2)n+,8

Leto = ffllfi’?}":ﬁ. Then |u(2)|(1 — |z|*)? > 6. Therefore,
J 1| g0
B

QD) S Aw).

By the fact that u € Cpy (AT} (a) N HY), we get

f ( f (1—|z|2>“-pﬂdA<z>] dn|
T \JTinQL (DL, f)

q
P
Sf(f (1- Ile)a_pﬁdA(z)) ldn| < oo.
T \Jrapnw

An application of Theorem A yields that D, f € CHZ“ (AT (@) N Hy). Consequently, the operator
Dy, : Hgy — Cys (AT} (@) N H) is bounded, as desired.
Conversely, suppose the operator D, : Hyjy — CHEC(AT;,’(Q) N Hy) is bounded. Consider the

function f(z) = 7", which belongs to H;f’o. By the boundedness of ngu, we have

u=D.,f € Cyz(AT(a) N H).
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Since CH;o (AT (@) N Hp) is a subspace of Hy, the boundedness of Dy, : Hjy — CH;o(ATI‘Z(a) N Hy)
immediately implies its boundedness as an operator from Hy, to Hp.
For an arbitrary a € D, consider the test function

1 —lal?
a = = € D7
Ja(2) T
which is in the space H’. Using the fact that u € H, after a calculation, we see that sup_, Igog’”(z)l <
co. The proof is complete. O

The boundedness of the operator Dy, H;f’o — CH;(ATZ(Q) N H;") always implies that
u € CH;o(AT,‘Z(a) N Hp). Consequently, throughout the remainder of this work, we shall assume
ue CH;O(AT;Z(CL’) N HEO)

Theorem 3.3. Letn € NU {0}, 0 < ¢,8 < 0o, 1 < p < 0o, @ > =2 such that 2 < B < %+é. Let
ueC H (ATZ(O/) N H[‘;") and ¢ € S (D). Then the following statements are equivalent.

(i) Dg,u : H/;’" — H;" is compact.
(ii) Dy, : Hgy — Hp is compact.
(iii)

lim gl (2)] = 0. (3.2)

le(z)|—1

o.u

(v) D" - CHEo(ATg(a) NHF) — CHEo(ATg(a) N Hy’) is compact.

o,u
(vi) Dy, : Hi, > C H (AT (@) N H) is compact.

(iv) D}, : Hy — CH/;o(ATg(a) N Hp) is compact.

Proof. (i) & (ii) & (iii). The proof is similar to the proof of Theorem 2.3 in [20]. For the sake of
conciseness, we omit the details.
(iii) = (iv). By hypothesis, there exists a real number r € (0, 1) such that for all w, the inequality

u,n €
ey < €
")l < 5

holds whenever |p(w)| > r. Let z € D satisfy |<pg’"(z)| > €. This implies that |¢(z)| < r. Hence,

u@I(1 = |21

€ <lp," (@) < TSR

which implies that
(1 = )" < Ju@I(1 = Y.

Let6 = e(1 —r*)"#. Thenz € Q’;(u). Given that u € Cyy (AT (@) N HY), by Theorem A, it follows that

f [ f (1—|z|2)"‘pﬁdA(z)) |dn|
T\ Jrmnligy" @)lze)

9
P
S f ( f (1 —Izlz)""’ﬁdA(z)) dn] < o0,
T \Jrmnew)
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which implies that D, : Hg’ - CH;(AT,Z(O/) N Hg’) is bounded by Theorem 3.1. In addition, we
have that D¢, : H — H is compact. Combining these two results, the compactness of the operator
Dy, :HY — CH;o(ATg(a) N Hy’) follows.

(iv) = (v). Given the inclusion

Cuz(AT() N H) C H,

by the assumption it follows that D, , : Chy (AT, )N Hy) — Cy=(AT )N H) is compact.

(v) = (vi). Suppose D}, : CH;o(ATg(a) N Hy) — CH/;o(AT;’(a) N Hy’) is compact. Since Hy, is
the closure of all polynomials in Hy’ and the space AT () contains all polynomials, we obtain that
D, : Hgy = Cu (AT} (@) N H) is compact.

(vi) = (ii). Assume that the operator Dy, : HE’O — CH;}"(ATZ(“) N HEO) is compact. Then Dy, :
Hg\, — Cy (AT} (a@)N H) is bounded. Since Chy (AT} (@)N Hy) € H, it follows that D}, , is compact
from Hyj, to Hy. The proof is complete.

O

Remark 3.4. From the above conclusions, we see that the boundedness of Dy, , : C H (AT} ()N Hp) -
CHEo (AT (@) N Hy) has not been resolved. At present, we have no idea to solve this problem. This is

left as an open problem for interested readers.

Open Problem. How to characterize those generalized weighted composition operators that are
bounded on Chy (AT} (@) N HP)?

Remark 3.5. From the above results and the identity AT} () = A’ |, we directly derive the

a+1’
corresponding results for C Hy ALnH 3 ). To maintain conciseness, we omit the details.

4. Conclusions

This paper focuses on exploring the boundedness, compactness, and essential norm of the
generalized weighted composition operator Dy, from the Korenblum space A into the analytic tent
space AT} (). Furthermore, the paper also analyzes the boundedness and compactness of the operator
Dy, from H;’ into the space CH;" (AT;’(oz) N Hl‘;"), the closure of the analytic tent space within the
Korenblum space. We also pointed out that the boundedness of D}, , on the space CH; (AT} (@) N HY)
itself remains open.
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