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Abstract: This paper investigated the existence and nonexistence of traveling wave solutions for a
nonlocal dispersal influenza transmission model with human mobility. We established the existence of
nonnegative entire solutions by combining the upper-lower solution method with Schauder’s fixed point
theorem. Appropriate Lyapunov functionals were constructed to determine the asymptotic behavior of
solutions at +co. Due to the influence of the nonlocal dispersal operator, the asymptotic behavior
at —oo for the critical wave speed could not be directly established via the Hartman-Grobman theorem.
Through careful analysis of the wave equation, we overcame this difficulty and established the desired
asymptotic properties. Finally, we used numerical simulations to verify the existence of the traveling
wave solution, and compared the effects of the nonlocal dispersal pattern and the local dispersal pattern
on the wave speed.
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1. Introduction

Contact behavior is a critical determinant in influenza transmission dynamics. As infectious
diseases propagate, human populations naturally adapt by modifying their mobility patterns to
mitigate infection risks (e.g., Balinska and Rizzo [3]). In 2012, Wang [21] introduced a novel
mathematical framework that incorporates adaptive mobility behaviors into epidemic modeling. This
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framework is described by the following system of ordinary differential equations:

ds _ _ _ pmS1
a = N uS =T

sl .

dm __ _ _ _al
di —m(b am 1+h1)’

where S and I represent the densities of susceptible and infected individuals at time ¢; respectively; m
denotes the intensity of population mobility at time ¢, and parameters A, u, 8, m, h,y, a, b are all positive
constants. According to [21], (1.1) admits three equilibria: a semi-trivial equilibrium E, = (L—\, 0, 0)

(corresponding to the absence of population movement), a disease-free equilibrium E; = (%, 0, g), and
an endemic equilibrium E* = (§*, I*, m"), where
. a(u+y)(1 + hI*)? . b+ bh-ao)I
= b m = —’
B(b+ (bh — a)I*) a(l + hiI*)

and I* satisfies

(u + y)aph* + bph — aP)I* + ((u + y)2ahu + bB) — B(bh — ) I'
+auy — ABb + ap® = 0.

The basic reproduction number of (1.1) is

ABb
Ry = ————,
palp +y)
which plays a critical role in influenza transmission dynamics. Wang [21] proved that E; is globally
asymptotically stable when R, < 1, while the unique positive equilibrium E* is asymptotically stable
when Ry, > 1. Subsequently, Cai and Wang [4] proved that E* is globally asymptotically stable for
Ry > 1 by constructing an appropriate Lyapunov functional.

When modeling the influence of population spatial dispersal on disease transmission, researchers
typically employ diffusion equations—such as reaction-diffusion and discrete diffusion models—to
characterize epidemic dynamics (e.g., [1, 14, 16,20,22,24,28-30]). It is now established that nonlocal
dispersal operators provide a more effective framework for capturing long-range species dispersal,
including human mobility (Andreu-Vaillo et al. [2]; Fife [6]). Consequently, nonlocal dispersal models
have attracted growing research interest, with significant advances documented in [5,10,27] and related
references.

Traveling wave solutions represent a distinct class of entire solutions characterized by constant
propagation speed and invariant profiles during propagation. This concept originates from the seminal
works of Fisher [7] and Kolmogorov et al. [11] on reaction-diffusion equations. In particular, the study
of traveling wave solutions in nonlocal dispersal systems has stimulated significant research in recent
years, one can see [5,26,27,32].

Motivated by [2,4,16,21], we propose the following mobility-dependent epidemic model:

LmS 1
=d - A—uS ———,
0,5 1 (JxS =-8)+ uS T 7
mS 1
G,Izdz(J*I—I)+1ﬁ+hl—(p+y)l, (1.2)
al
a,m:d3(J*m—m)+m(b—am— 1+h1)’
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where S (¢, x) and I(z, x) denote the densities of susceptible and infected individuals at time # > 0 and
location x € R, respectively, and m(¢, x) represents the population movement intensity, defined as the
time spent in public places per unit time. The positive constants d;, d,, ds are dispersal coeflicients.
The nonlocal dispersal operator J * - — - is given by

(Jxw—w)(t,x) = f J(x —yw(t,y)dy — w(t, x),

R

where the kernel function J(-) satisfies:

J) JeC'R), J(x) = J(=x) >0, fR J(y)dy = 1, and J satisfies the decay bounds:

f J(x)e™dx < oo for any 1A € (0, o) and f | (x)ldx < oo.
R R

It is well-known that the combination of upper-lower solutions with Schauder’s fixed point
theorem is an established method for proving the existence of traveling wave solutions in diffusive
systems. This approach has been successfully applied to reaction-diffusion systems [1, 14,22, 24],
discrete systems [18, 29], and nonlocal dispersal systems [5, 9, 15, 27, 31, 32]. To establish the
existence of traveling wave solutions for system (1.2), we implement the following procedure: (i)
Auxiliary truncated problem: Construct an auxiliary truncated system and prove the existence of
nonnegative solutions using upper-lower solutions coupled with Schauder’s fixed point theorem. (ii)
Asymptotic behavior at +oco: Establish the boundedness of the solution and apply Lyapunov
functionals [12,29, 32] to demonstrate that solutions converge to the disease-free equilibrium E; and
endemic equilibrium E* as & — +o00. (ii1) Asymptotic behavior at —co: Due to the nonhomogeneous
nature of the dispersal operator, the Hartman-Grobman theorem [17] cannot be directly applied to
determine behavior as & — —oo at critical wave speed. We overcome this by performing a delicate
analysis of the wave equation’s specific form, rigorously establishing the asymptotic behavior when
¢ = c¢.. (iv) Nonexistence: Using asymptotic propagation theory [13], we rigorously demonstrate the
nonexistence of traveling wave solutions for Ry > 1 with 0 < ¢ < ¢,, and for Ry < 1 with ¢ > 0.

This study significantly advances spatial epidemiology through three key innovations: (1)
Developing a mobility-dependent influenza model with nonlocal dispersal that accurately captures
modern transmission dynamics—particularly human behavioral adaptations like contact reduction
during outbreaks—where classical diffusion models fail due to their fixed-contact assumption. (2)
Providing a complete theoretical characterization of traveling waves, including rigorous existence
proofs for epidemic waves with speeds ¢ > ¢, and establishing critical nonexistence results
for0 < ¢ <c¢,,Ry > 1and c > 0,Ry < 1. (3)When the kernel function is Gaussian, we derive the
relationship between the minimum wave speed and the decay rate of the kernel function, accompanied
by numerical verification. These advances bridge theory-practice gaps in epidemic modeling, while
our extensible framework provides a transferable toolkit for analyzing wave propagation in spatially
structured populations across diseases.

The rest of this paper is organized as follows. In Section 2, we give the preliminaries and main
results of this paper. In Section 3, we prove the existence and nonexistence of traveling wave
solutions of (1.2). In Section 4, we perform numerical simulations to confirm the existence of
traveling wave solutions and to investigate how nonlocal and local dispersal patterns influence the
wave speed. Concluding perspectives appear in Section 5.
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2. Preliminaries and main results

In this section, the preliminaries and main results are given. Let

S(t,x) = §(&), 1(t, x) = 1(§), m(t, x) = m(£)

with € = x + ct, then the wave equation corresponding to system (1.2) is as follows:

cS'E=di(JxSE-SE)+A—-uSE) - ﬁm(lg,jil(g)l(f),

cl'(€) = dy (J % 1(€) = 1(£)) + UL — (u+ p)I(£), 2.1)
oH©) =y <€)~ )+ 6 - 2)

We intend to find solutions (S (€), I(£), m(&)) of (2.1), which are nonnegative and satisfy the following
boundary conditions:

A b
(S (—OO)’ I(—OO), m(—OO)) = (_’ 07 _) ) (22)
M a

and
(S (+00), [(+0), m(+0)) = (S*, I, m"). (2.3)

The linearized characteristic equation of I at the disease-free equilibrium E| is

A, c) = dsz(y)(e_Ay —1dy —cAd+ 'B—Ab —(u+7y)=0.
R Ha

By a similar analysis in [5, 12], we can get the following results.

Lemma 2.1. Assume Ry = " f (;\fy) > 1. Then, there exists a positive pair of (A, c.) such that
0A(A,, c.)
A ﬂ*, %) = 0’ - = 0’
(As, €.) i

where c, can be defined as

Cy = inf{1 [dz (f J(x)e Mdx — 1) + '@ —(u+vy)
A R ua

3

(i) if ¢ > c., the equation A(A, c) = 0 has two positive roots 11 = A1(c) < Ay(c) = A, and

Furthermore,

<0, 1€ (4, 4),

AR, C){ >0, 1€ (0,1,) U (1, +00);

(ii) if 0 < ¢ < ¢, we have A(A,c) > 0 for any 1 > 0.
Subsequently, we present the main results of this paper.

Theorem 2.1. Suppose (J) holds.

AIMS Mathematics Volume 10, Issue 9, 21422-21451.



21426

(i) If Ry > 1, then for any ¢ > c., the system (1.2) admits a positive and bounded traveling wave
solution (S (¢), 1(£), m(€)) satisfying (2.2) and (2.3).
(ii) If Ry > 1,0 < ¢ < ¢, or Ry < 1,c > 0, there exist no nontrivial traveling wave solutions

(S (&), 1(&), m(€)) of system (1.2) satisfying (2.2) and (2.3).

Remark 2.1. (i) Note that in (1.2), we assume that S, I, and m share the same dispersal kernel
function J(-) merely for convenience, while in reality they can be assigned distinct kernel
functions Jy, J,, and J5 respectively, provided each satisfies condition (J).

(i1) For the critical wave speed case, the existence of traveling wave solutions can also be proven by
constructing upper-lower solutions (see [5]), but this requires the kernel function to have compact
support.

Next, taking the Gaussian kernel as an example, we consider the influence of the kernel function’s
decay rate on the minimal wave speed.

Theorem 2.2. Let J(x) = fe‘lx2 with f = Vl/n. The minimal wave speed c. satisfies:

dy(e = 1)+ 52— (u+y)
Ci = s

2VIz*

where 7" is the unique solution to the equation:

/%b_(ﬂ"'?’)—dz

‘2z—-1) =
ez-1) 4

, 2€ (0, 00).

3. Proof of the main results

In this section, we first investigate the existence of traveling wave solutions by employing the
method of upper-lower solutions combined with Schauder’s fixed-point theorem. Then, by the
asymptotic propagation theory, we prove the nonexistence of traveling wave solutions.

3.1. The case: Ry > 1 and ¢ > c,

This section focuses on the supercritical wave speed case, where we begin by constructing
appropriate upper-lower solutions.

Lemma 3.1. S.(¢) = % satisfies

eSO =di (J*5.E) -S4+ A—puS (&)

Lemma 3.2. The function I,(£) = min {e”‘f . (ﬂfﬁfy) - 1)} satisfies

BAL L&)

Cli(f) > d2 (] * I+(§) - I+(§)) + 'u_a 1+ hl+(§)

= (W + L&), (3.1

where & # L In [%( BAb - _ 1)] = & and I'.(&,+) < I(&-).

Ha(u+y)
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Proof. When & < &, we have [,.(¢) = e"'¢. By the definition of A, it follows that

Ab
[dz f J(f - y)e_l‘(g_y)dy - d2 — C/ll + ﬂ— — (/_[ + ’y) e/llf = ()’
R ua

which implies

BAD

CIL(E) = dy fR I = e dy = L)+ S0 ~ o DL

Moreover, this leads to the inequality:

BAD  L.(§)

Cli(f) > d2 (] * I+(§) - I+(§)) + 'u_al + hI+(§)

= (W +VIL(E).

For & > &, 1,(¢) = % (# f(;\fy) - 1) is a constant. Substituting this into the expression yields:

BAb  1.(8)

S 14l  WHIRE =0

Thus, we obtain

,BAb L@
clL(6) = B D L)
This implies that
AL I,
IE) > dy (@ - L@+ PR O e,

‘ua 1+ hl(€)

This completes the proof.

Lemma 3.3. m,(¢) = g satisfies

em’ (&) = d3 (J % mo(§) — m(§)) + my(§) (b — am,(§)) .

Lemma 3.4. There exist constants 6 > 0 and p > 1 such that the function

3 A ot Aah
S_(f)—maX{ﬂ pe ,ahwbﬁ}

satisfies the inequality

Bm.(&)S (§)L.(£)
L+hl ()

eSLE <di (J*S() =S+ A-puS_(§) -

forall € # §In (280 5) = &, with the condition S” (2+) 2 S'(&,-).

Proof. Select 6 € (0, A;) satisfying

d; fJ(y)e_gydy —dy+cO+u>0.
R

(3.2)
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Fix this 0 and choose sufficiently large p; > L—\ such that % < pe®!. Define

_ ABb
P ua(d, fR J()e dy —di + cO + )

+p + 1,

which ensures &, < &;.

For ¢ > &, the function S _(£) = ;4% is constant. It suffices to confirm that

ﬁbS—(é)-

¢SLE <di (J*S () =S+ A—puS_(&) - T

Since
Aah Bb Aah

—y— 2. 0,
K ahu +bB ah ahu+ b

the inequality holds, thereby verifying (3.2).
For & < &, we have S_(¢) = % — pe® and I, (¢) = eY¢. Direct computation yields:

Bm.(£)S _(E)I.(£)

di (J*S_(5) =85 —cSLEO +A—puS_(§) -

1+, (&)
€
— -0y gy o _ BB (A _ | €
=(d, LJ(y)e Ydy — dy + c6 + pwpe p (,u pe ) T3 ol
Ab
>(d, fJ(y)e_gydy —d, + 0 + ppe” — 'B—eﬂlf
R Ha
b Ab
>(d, fJ(y)e‘gydy —di + ¢+ p) AB % _ B o
R pa(d, fR J)e dy — dy + c6 + ) Ha

=0.
This confirms that (3.2) is satisfied.
Lemma 3.5. There exist constants 0 > 0 and p > 1 such that the function
m_(¢) = max {Z - pe’, O}
satisfies the inequality

em’(§) < ds f J(& = y)m_(y)dy — dsm_(&) + m_(£) (b —am_(§) -

R

ol (é) )
L+ @)’

forall ¢ # %ln ﬁ% := &3, with the condition m’ (&3+) > m! (&3-).
Proof. Select § € (0,1;) and p > p; > £ such that £ < 5% and the inequality
o ~ _ ba -
(dy | JO)ePdy—-ds+cO+b)p———ap” >0
R a

holds. This guarantees &; < &;.

(3.3)
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For & > &;, the function m_(£) = 0 is constant, so (3.3) is trivially satisfied.

For & < &, we have m_(¢) = 2 - pe and I,(¢) = eV, Substituting into the left-hand side of (3.3)
yields:

, al, (&)
d = y)m-)dy = dsm_(€) - @b =am-(&) =
3fRJ(§ Ym-()dy = dsm_(&) = em” (&) + m (5)( &) = L@

apei 0%

~2 20¢
—ap-e + ———
v 1 + hehé

>(d f J0)edy — dy + ¢ + bype’ — 22 et
e - ¢ e — ——
. R Yo P a 1+ heté

>

) b i
(s f J)e ®dy — dy + cb + b)j — 7“ - aﬁz] o
R

>0.

This confirms that (3.3) holds.

Lemma 3.6. Suppose 0 < n < min{d, — 1,60, A,,60}. There exists a constant M > 1 such that the
function

I_(¢) = max {e"(1 — Me™),0}

satisfies the inequality

BS _(E)m_(&)I_(€)
1+ hi_(¢)

cI’(§) <L I”(§) + =+ V() (3.4)

forall ¢ %ln % := &4, with the condition I’ (&4+) > I ({4-).

Proof. Choose M, such that Tl7lnML1 + 1 =&, set M > M,, and satisfy 1_(¢) < % For & > &,, the
function /_(¢) = 0 is constant, so (3.4) is trivially satisfied.

For & < & < tlng- + 1 =&, we have I_(¢) = (1 — Me™) and S_(¢) =  — pe*. Using the

inequality 1 — Al < ﬁ for |I] < % and the relation

ff(f — e (1 - Me™)dy < ff(f =N ()dy,

R R

it suffices to verify:

c [/lleﬁ‘f - M4, + n)eu””)f]

<d, f JE =) - eY)dy + Md, f JE = y) [ = e gy

R R

— (u+ y)eME + M(u + y)e e +I3(é —ﬁeéf) (é _peﬁf) oMé (1 _ Me"f) (1 — hehé (1 _ Me”f)).
a 7
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It follows from A(A,, ¢) = 0 that we need to prove

bA bA
— MAQA; +1,c)e™ + B| — —he''s + — Mhe T ¢
au au
— b_peﬂ-f + b£ Me9mé 4 b_p he+E _ b_P MO+
a a a a
— p_Aeé‘f + %Me(éﬂi)f + l&he(é-i-/l])f _ %Mhe(é+n+/ll)€:
H H M u

+ /5 0 e(é+9)§ _ ﬁ 0 M e(é+9+q)§ _ ’5 ph e(§+9”‘)§ + /5 0 Mh e(?)+9+n+/11).§-‘ > 0.

Since 6 < min{A,, 6, 8} and A(; + n,c) < 0, we can choose sufficiently large M to ensure the inequality
holds for all £ < &,. O

For ®(&) = (¢(£), 2(&), ¢3(£)) € C(R,R?), define the Banach space as follows
B,(R.R?) = {®() € CR,R?) : |®()], < +o},

where the norm is defined as
[D(£)], = max {Sup{|¢1(§)le‘“"f'}, supi|¢(£)le ™), sup{|¢3(§)|e—#'f'}},
geR £eR £eR

with u > 0 small enough. Define the set
F={S.1,m) € BRR) [(S-,Tym.) < (S, 1,m) < (S4, Iy,

For (S,1,m) € I" and r > 0, define

S I
HI(S, L, m)(E) = dJ % S(©) — diS (@) + rS (@) + A — S (&) ‘%,
S I
HoS, Lm)(©) = dod * [(€) — dol(€) + FI(E) + ﬁﬁm—}fg@@ (DI - DI, 3.5)
Ho(L,m)(©) = dsJ * m(&) — dsm(@) + rm(&) + m(é) (b — am(€) - %) _ dym(®).

It is easy to see that H, is decreasing in I and m, H, is increasing in S and m, and Hj is decreasing
in /. Choose r > 0 such that H, is increasing in S > 0, H, is increasing in / > 0, and Hj; is increasing
inm > 0.

Define the operator F = (Fy, F», F3) : T — C(R,R?) as

Fi(S,1, m)(§)=% f ecTOH (S, 1, m)(n)dn,

Fx(S,1,m)(¢)= % f e<TOHN (S, 1, m)(n)dn,
1 P

Fy(Lm)€)=~ f e O Hy (1, m)(n)dn,

AIMS Mathematics Volume 10, Issue 9, 21422-21451.
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Lemma3.7. F: T —>1T.

Proof. For any (S, 1,m) € I', one needs to prove that

A
S_(&) < Fi(S,I,m)(¢) < ;,1—(5) < Fo(S,1,m)(&) < 1.(8),

and
b

a

m_(&) < F3(S,1,m)(¢) <

for any &£ € R.
For F (S, I, m)(€), it follows from the monotonicity of H; that

Fy(S-, L,m)(é) < Fi(S, I,m)(&) < Fi(S4, ,m_)(¢), &eR.

Thus, it suffices to verify that

A
S—(f) S FI(S—’I+am+)(§:) S Fl(S+aI—am—)(§) S ;’ é: € R

It follows from Lemma 3.4 that
Fi(S_,1.,m.)&)

1 ) r
! f CETOH (S L, m)(n)dn
CJ_x

z% f( e (S () + S _()dn
=5_(&)

for any €. According to Lemma 3.1, there holds
F] (S+’ I—’ m—)(é:)

1 ) r
:—f( ez(n_f)Hl(S+’I—’ m—)(n)dn

CJ_w
s% f e (cS () + 1S+ (m)dn
=5 .(&).

for any £. Thus, (3.6) holds.
For F,(S, I, m)(¢), by the monotonicity of H,,we need to get that

1.(§) < Fo(S—, I.,m_)(&) < Fo(S ., L., m.)(é) < 1.(£), & € R.

By Lemma 3.6, there holds

FZ(S—a I—’ m—)(é‘:)

(3.6)

(3.7)
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:%ff ecOHN(S _, I, m_)(n)dn
Z%f e (el () + rl-()dn
=1_(¢)

for any £. In view of Lemma 3.2, one has

Fr(S 4, 1, m.) (&)

1 N r
:—f e;(n_f)FZ(S+’I+’ m+)(77)d77

c

c

:I+(§)

1 r
<- f e (el () + rl,.()dn

for any &. Thus, (3.7) holds.
For F5(S, I, m)(¢), by the monotonicity of Hs, one needs to prove that

b
m(§) < F3(L.,m_)(&) < F3(I.,m,)(&) < —.& € R.

It follows from Lemma 3.5 that

F3(I,m-)(&)

1 ) r
=~ f O (L, m_)(n)dn
CJ-x

> f ST e () + rm_(n)dn
m(©),

for any £. By Lemma 3.3, one has

F3(1-,m.)(&)

1 : r
=—f\, eI (I, m,)(mdn
CJ-w

s% f\, e (em!, () + rm.(n))dn
=m. (&)

for any £. Hence, (3.8) holds. This completes the proof.

Lemma 3.8. The operator F : T' — T is completely continuous in B,(R, R?) under the norm | - |-

(3.8)

AIMS Mathematics Volume 10, Issue 9, 21422-21451.



21433

Proof. For any ®; = (S4,1;,m;) and ®, = (S,, 1,,m,) € I, one has

and

BSiLim;  BS2Lm,
1 + hi, 1+ hl,

AD 28b A
P p e s s PRy~
ua ha hu

Ie_“lflf-](f—ﬂ)h(n)dﬂﬁ f](g—n)h(n)e‘#nleulmfldnS fj(n)eylnldmmw
R R R

It then follows that

eHENE (S 1, Iy, m)(E) — Fi(S2, I, mo)(©)|

1 _ > p 2Bb ADb 28A
<L f o [(r—u+d1+ A )|Sl—Sz|(77)+ﬂ'u—a|11—12|(77)+£—ﬂ|m1—m2|(77) dn

“ha

c —00
1 L
+Ee_"|§|f e f)‘ff(f—'])hgl—Szl(ﬂ)d’]
—00 R

Note that
£ e - c
f £ 1)1l i gy < ’
—oo r—cu
and
f ef(ﬂ—é:)dn < E
—eo r
Thus,
|[F (S, I1,my) — F(S2, L, mo)l,
1 28b Ab 2N,
< r—p+ pb | BAD | NP +d, +d, fJ(n)e“'”'dn |D; — Dy,
r—cu ha ua hu R
=MDy - CI)2|,1-
Hence,

sup [F1(S 1, 11, m)(&) — F1(S 2, b, my)(é)| e < M| — Dy,
£eR

Similarly, one can find M,, M3 such that

sup [Fo(S 1, I, mi)(&) — Fa(S 2, L, ma)(é) e < My|®;) — @),
£eR

sup [F3(11, my)(€) — F5(L, my)(é)| e < M;|®; — D,y
£eR

Therefore, F : I' — T is continuous.

AIMS Mathematics Volume 10, Issue 9, 21422-21451.
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In the following, we prove that F is a compact operator. It is easy to see that the
derivatives [ Z£F\(S.1,m)(@)] . ‘%FZ(S,I, m)(f)'“, and 'd%F3(S,I, m)(€), are bounded.  This
boundedness implies that F(I') is uniformly bounded and equicontinuous with respect to the
norm | - |,.

Further, for any n € N, define the operator F" = (FY{, F}, F%) as follows:

F(Sa Ia m)(—n), 'f € (—OO, _n],
FVI(S’I’ m)(éj) = F(S’I’ m)(f)’ f € [_n’ l’l],
F(S,I,m)(n), &€ [n,+00).

It is clear that F" : ' — B,(R,R%) is continuous. Moreover, F"(I') is uniformly bounded and
equicontinuous with respect to the norm | - |,. By the Arzela—Ascoli theorem, F" : I' — B, (R, R¥*)isa
compact operator.

Since the bound

1 r 2B8b Ab 2B6A
quJnm@»s—eﬂﬂjfeimﬂ<r—u+2a+—ﬁasmy+5—4m»wf¥mw>dn
c oo ha ua hu
holds, we deduce that
28b A BAb1 Ab 2bBA
IF\(S.Lm)@)| < (r—p+2d + PN L BAPL( BAD N 2B
r—cu ha u  upa h\ua(u+vy) ahu

This leads to the estimate

F{(S, 1,m)&) — Fi(S, 1,m)@)|,
Fi(S, 1, m)(&) = Fi(S, I, m)(&)] ¥

=Ssup
£eR

= sup Fi(S,I,m)(€) — Fi(S, I, m)(€)| e

&e(—o0,—n]U[n,+00)

<2Mse™ — 0 asn— +oo.

Similarly, we obtain

F3(8, 1,m)(@) = Fx(S, Lm)©)], = 0 asn — +oo,

Fi(I,m)(¢) — Fx(, m)(§)|# — 0 asn— +oo.

Thus, the convergence
|F"(S,1,m)(&) — F(S,I,m)(&)|, >0 asn— +o

is established. Consequently, the sequence {F"}’ converges to F with respect to the norm | - |,.
Therefore, F is compact in B, (R, R?) under the norm | - |- This completes the proof. O
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Note that I" is a bounded and closed convex set in B, (R, R?), and it follows from Schauder’s fixed
point theorem that there exists (S (-), I(:), m(-)) € I" such that

(§(6).1(6),m(&)) = F(S,1,m)(&), &eR.

Furthermore, (S, I, m) satisfies the system (2.1) and

A b
S-(£) <8¢ < ;J—(f) < 1) < L&), m_(§) = m(&) < —. (3.9)

For any nonnegative solution (S, I, m) of the system (2.1), §, S’, I, I'’, m, and m’ are all uniformly
bounded and continuously differentiable. By (3.9), it is easy to verify that (2.2) holds. First, we assert

tM%ﬁ%_S@%@30<K8§ (255 - 1),0 < m(&) < &, V¢ € R. Indeed, if some £ € R exists

so that S (&) = u A 'then S’(&)) > 0. The first equation of system (2.1) gives that

BS (EDmEDI(E)

T hlE) O

d f JONS @ —y) - SE)dy +
R

a contradiction. Thus, S(£) < %, V¢ € R. Similarly, we can also prove that m(¢) < 2, V¢ € R.

Additionally, if there exists & € R such that I(&;) = 0, then I'(&;) = 0 and (J = I — I)(&) > 0, and
the equality holds if, and only if, / = 0. Furthermore, / has a nontrivial nonnegative continuous lower
solution. Thus, I(¢) > 0, V¢ € R. Similarly, m(¢) > 0, V€ € R.

Next, similar to [27], we can get the following lemma.

Lemma 3.9. Let 0 < ¢| < ¢, be given and (S, I, m) be a solution of system (2.1) with speed c € [c, c3].
Thus, there is T > 0 such that if I(§) < 7 for § € R, then I'(¢) > 0.

Next, we complete the proof of Theorem 2.1 (i) for Ry > 1 and ¢ > c..

Proof of Theorem 2.1 (i) for Ry > 1 and ¢ > c.. From the above discussion, we only need to prove
that (S, 7, m) satisfies the boundary condition (2.3). Below, we prove it by constructing a suitable
Lyapunov functional V(S,1,m)(&). Recall that V(S,I,m) is a Liapunov functional on Ri L 1f Vs

continuous on Ri, and dv<+;n)(g) < 0 for any (S,I,m) € Ri . (see the definition in [8, Page 316]). Let

(o)

+00 Y
S =y-1-Iny, a(y)= f J()dx, ax(y) = f J(x)dx.
) _
Then, lim a;(y) =0, lim a@,(y) = 0 from the assumption (J). Set
y—+00 y——00

V(S I,m)(§) = cVi(S, I, m)(&) + di11S"Ui(S)(E) + dol” Us(1)(§) + dstom” Us(m)(§), (3.10)

Vi(S, Lm)(¢) = 71S f(S(f)) f(l@) zm*f(mnf)),

U1<S><§>:f0 1(y>f(S(§ y))d —f 2<y>f(5(f y))dy,
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. I
+00 0 _
wmwhl:awvﬁg’ﬁ@ faﬂﬁ“ifn@

(o9

+00 I 0 (€ —
wm@=£ mmd@'ﬂ@—famvﬂfwy%

and
BA( + hI")

ap
Due to the boundedness of S (¢), I(£), and m(¢), we have that V (&), U,(¢), and Us(¢) are well-defined

and bounded from below. According to the construction of the lower solution, there is a & < 0 such
that 1(£) > e"¢ (1 — Me”‘f) > 0 for any & < & < 0. Fix & € R, and there exists C; > 0 such that

+oo I
L 1@vﬂfyﬂy
£o 00
- [ aor (2o [ o (K2
0 &-&o
£o
sﬁgamv(@)ﬂy

+00
+ f a1 (y) (% — 1+l —In(1 - Me™™) - 2,6 - y))dy
3

&—&o
< 4+ 0.

T1:1+h1*, Ty =

Let C; = Ser[r;a}r);) f((s)) > 0, then

] 0
‘faxv(@)ﬂ@<j"m@Q@<ﬂn

(%Y (%)

Thus, U,(&) i1s well-defined. It is easy to see that C; is bounded from below when ¢ is large enough.
Therefore, the Lyapunov functional V(S, I, m)(¢) is well-defined and bounded from below when & is
large enough. According to

day(y) _()mmo
dy_

1
=J(), @1(0) = a,(0) = 5,

one can get

av, _ SE-yy ., d [° SE—y)
= cﬁf lud ) -2 | zwd )y

S S
- [ wog| i*”}i—f‘zwrgd )
e S S
- [T oo E (s [ w22
O [ sy (SE
-1(52)- [0 (32
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Similarly, one has

dU, 1(é) i (£ -y)
a f(l*)—[mf()f( )y,

dU, m(¢) oo m€ —y)
s f(m*)‘fm W( )

Therefore, we have

dVv
T (1 _ —)(cS @) + (1 - —)(cl @) + 12 (1 - —)(cm ©)
+ d]T]S*@ + dzl*@ + dgsz*dU3

dé dé dé
:Tl(l_f)[dlu*s-sn/\—ﬂs —ﬁsml]

S 1+ hl
r ﬁSmI

+n(1—m;*)[dsu*m—m”m(b‘“m_ : |

1+ hl
dU dU dU
+d1T15* 1 dzl*—z +d37'2m*—3
dé dé dé
S BS*m*I* BSml
=1 [1-= * —uS —
Tl( S)(“S Y T 1+h1)

N 1__ 7 BSm ,BSm
1 1+hl  1+hl

N 1 m* .y al” al
- —|ml|am —am —
i m a 1 + hl* a 1+ hi

S* dU
+dm(1——)(J*S S)+d7S —
dé
I dU,
|1 —=|JxI-D+d]"—=
+ 2( )( ) +dy 2
* d
+d3T2( —ﬁ)(J*m m)+al3‘r2mﬂ
m dé
=TS = S*) s BS*m'I*  BSmI _ S*BS*m'I" +,8S*ml
B S 1+hl* 1+hl S 1+hl* 1+h
BSm(I—1%)  BS*m*(I - I) vy Toa(m—m*)(I - I*)
- —Tam—-m")" —
1+ hl 1 + hl* (1 + hD)(1 + hI*)
* d
+dm(l—S )(J*S S)+di7 S — Ui
dé
I . dU,
1= =|JxI-1+d,]'—=
+ z( )( ) +d> 4
+ds7y (1 - i) (J xm—m) + dytom” %
m dé
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I:B] + 32 + B3 + B4,

where

g TS =S (,BS*m*I* _pSmi_S*pSmT ,BS*mI)
S 1 + hl* 1+hl S 1+hI* 1+ hl
N BSm(l —T7) B BS*m (I -1T7) — (= m') — Ta(m —m*)( — I7)
1+hi 1+ hl* (1 +hD(1 + hI?)
(S — S o RS =SPml BU-IVhS'm’
- S nalm =) = S DA + A (L D+ Rl

A

B(E=87)m—m)T -1
1 +hi

—BES =SH)(m—m")I" -

A(5-S")

1+hi

BB A

Since e by Young’s inequality with €, we have

—BI*(S - S*)m-m*) <pI

€S — S*)? N (m - m*)2
2 2€ ’

and for p € R,

A—S* =T % p 2-p
B -8 )a=1)m m><ew(bﬁ)(,_,*)z+&(b_ﬁ) —

1+ hl  2u \ahu 2eu \ahu

Then

WL+ hIS =S BAa(l + hI)m —m*)?  Pum*I*(S — S*)?
- A - ap - A
B bB*S*m*(I — I')*h N efI* (S — S*)? N BI*(m — m*)?
au(l + hl*) 2 2€

eAB [ bR\ o BA BBV v
*a(@) “"“@(@) o= m)

B <

[,,2 1 hI* * [ T

V bB2S *m* E'B(‘zTﬁ”)p](I—l*)z

au(l + hl*) 2u

pna(l +hry e BA(Z)

2
au 2e 2eu (m = m’)".

Choose ¢ sufficiently small and an appropriate p such that

p
AR+ pum B BES B ()
A 2 7 au(l + hI¥) 2u
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and
-p

BAa(l +hl")  Pul’ - BA(L)

au 2eu
Thus, By < 0, and then,

S* duU
By =dyry (1= |(J+5 ~ S)+dy7 S —
dé

S+ .dU

:dm Jx8 =8 = (xS - S)+S* d—fl]

S T

_dm, f J)S €~y dy=S - f J@)S(f—y)dy]

+dir|ST+S f(S(g)) S*fMJ(y)f(S(g y)) y]
:lels*f J(y)(S(g ) S(fs_y)—lnS;é:)) dy

_lels*f J(Y)f( €= y))

[Se]

=d1T1S*f J(y)(S(é: y)—l—lns(i,:y))d
_leIS*f J(y)(S(f y) l—lnS(gs_y))d

~ams | J(y)f( i y))

[Se]

:—lelS*f+ooJ(y)f( (g y)) _0.

[oe]

Similarly,

Bg:—a’zl*fmj(y)f(l(g y)) <0,

o0

and

By = —dytym’ f o) f(m(fm_ Y )) dy < 0.

(o)

Therefore, ‘é—‘g < 0, which implies that V is monotonically decreasing in & and has a lower bound.

In the following, we will use the properties of the Lyapunov functional V to describe the asymptotic
behavior of the traveling wave solution (S, 7, m) as it approaches positive infinity. Now, we choose an
increasing sequence {&,},>0 such that &, — +co as n — +o0, and let

Sn(&) = S(E + Enz0, In(&) = I(& + &n)nz0, Mn(§) = m(& + En)nzo-

Since S, I,, and m, are uniformly bounded in C'!(R), by passing to a subsequence, we can assume
that S, I,, and m, converge to nonnegative functions S ,., /1, and m,., respectively. Furthermore,
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for sufficiently large n, there exists a constant C; such that
Ci < V(Sy, I, my)(&) = V(S, [, m)(& + &) < V(S,I,m)(&).

Therefore, there exists v € R such that for any ¢ € R, lim, ;o V(S,, 1, m,)(€) = v. By (3.10) and
Lebesgue’s dominated convergence theorem, there is

m V(S Lo, mp)(€) = V(S 4o, Lioo, M1)(E), € € R.

Thus, V(S 100, 100, Mieo)(€) = v. On the other hand, é_‘é = 0 if and only if S(¢) = S*, I(§) = I,
m(&) = m*. Therefore, ’

S(400) =87, I(+00) = I", m(+00) = m".
This completes the proof. O

3.2. The case: Ry > 1 and c = c.,

This section establishes the existence of traveling wave solutions with the critical wave speed
through a limiting argument approach. It should be noted that since the construction of upper-lower
solutions for ¢ > c. depends on the selection of ¢, the asymptotic behavior at & — —co requires
separate analysis.

Proof of Theorem 2.1 (i) for Ry > 1 and ¢ = c,. Let ¢, C (c.,c. + 1] be a decreasing sequence such
that lim ¢, = c.. There exists a traveling wave solution (S,(-), I,(-), m,(-)) with wave speed c,,

satisfying (2.1)~(2.3). From Lemma 3.9, we get that for any (S,(-), I,(-), m(-)) of system (2.1) with
speed ¢, € (c., ¢, + 1], there exists 6 > 0 such that I} (£) > 0 as [,,(€) < 6 for any ¢ € R. Now, we prove
that there exists a subsequence of (S, I,,m,) that converges to (S(x + c.t), I(x + c.t),m(x + c.t)),
which satisfies (2.1). By the Arzela-Ascoli theorem and selecting a diagonal subsequence, we can find
a subsequence of (S,,1,,m,), still denoted as (S,,1,,m,), such that (S,,I,,m,) and (S,,I,, m))
uniformly converge to (S, /,m) and (S’,I’,m") on each bounded interval. By the Lebesgue dominated
convergence theorem, we obtain lim J S, =J=*S, lim J«1I, =J I, lim Jx*m, = J*m on each

n—+oo n—-+oo n—+oo

bounded interval. Therefore, (S, I, m) satisfies (2.1). For ¢ = c,, the Lyapunov functional constructed

with ¢ > ¢, can also be used to prove the boundary conditions of the traveling wave solution at +co.

Therefore, for ¢ = c,, we can also obtain flim S =87, Sclim 1¢¢) =T, SClim m(€) = m*. By the
—+00 E—+00 §—+00

choice of ¢ (similar to [27, Theorem 3.19]); we get
10) =6, I(£) <6,I'(¢) >0, for & < 0. (3.11)

Thus, the limit I(—o0) := glim 1(¢) exists and I(—o0) € [0,0). If I(-o0) > 0, then because the

system (1.1) admits a unique endemic equilibrium E*, there is I(—o0) = I* > 6. A contradiction

happens because /(—o0) < . This implies that /(—co0) = 0.

Next, we prove that Sclim S = % If S < S, then there exist sequences {x,} and {y,} with

Xp, Yo — —00 as n — +oo such that

lim S(x,) =8, lim S(y) =S5, S'(x,) =S"(v) = 0.
n—+00

n—+oo
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By the Fatou lemma, there is

liminf J * S (x,) > S, limsupJ*S(y,) <S.

n—+oo N—>400

In the S -equation of (2.1), set & = x,, and & = y,, respectively. Since flim I1(¢) = 0, letting n — +oo, it
follows that

A—-uS <0,
A—uS >0.

Therefore, § < L—‘ < §, which contradicts the assumption. Hence, the limit flim S (€) exists. Taking
¢ — —oo in the first equation of (2.1), we obtain flim S = %

Finally, we prove étlim m(&) = 2. Indeed, we only need to show lifm infm(§) :=m™ = ’5’. There exist

a

a sequence {£;} satisfying & — —oo as n — +oo so that
m'(&) =0, m&) > m™ as n— +oo.

According to the m-equation of (2.1), one has

. . al(g,)
O0=cam'(&)=d J s —ydy —d . b - - —.
c.m'(€) = ds fR OIm(E; = y)dy = dsm(E,) + m(fn)( (&) = f;;))
Taking n — oo, one has
dsm”~ —m (b—am™) = d; lim f](y)m(fz —y)dy > dzm™,
n—oo R
that is,
m (b—am™) <0.
Hence, either m™ = 0 or m~ > § happen. If m~ > 7, the conclusion holds. If m~ = 0, it follows
from [32, Corollary 3.15 (c)] that
b

lim m(¢) = —.

§o—o0 a
This completes the proof. m|

3.3. The case: Ry > 1and 0 < ¢ < c,

In this section, we show the nonexistence of traveling wave solutions for Ry > 1 and 0 < ¢ < c..
Before proceeding with this task, we first present the propagation properties concerning the single
Kolmogorov—Petrovsky—Piskunov equation (hereafter referred to as the KPP equation). Consider

o

WD — g(J % w(t, x) — w(t,x)) + f(w), t>0,xeR, 3.12)
w(0, x) = wo(x), x€R, '

where d > 0, J satisfies (J), and f € C'[0, o0) satisfying f(0) = f(M) = 0, f(w) > 0 for w € (0, M),
and f(u)/u is decreasing in u € [0, M] with M > 0. It follows [13] that the following result holds.
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Lemma 3.10. Equation (3.12) admits a spreading speed c in the sense that for any wy € C(R,R.)
with wy £ 0, one has
liminf inf (w(t, x;wo) — M) =0, Ve < ¢]

t—oo  |x|<ct
and
lim sup sup w(t, x; wp) = 0, Yec > cj,

t—>oo  |x|>ct

where w(t, x; wy) is the solution of (3.12) with initial value w(0, x; wg) = wo(x). Furthermore,

s oo

Proof of Theorem 2.1 (ii) for Ry > 1 and 0 < ¢ < c.. Assume there exists ¢; € (0, c,) such that (2.1)-
(2.3) admits a nontrivial bounded positive solution (S (x+c;?), [(x+c 1), m(x+c;1)). By (2.2) and (2.3),
we choose M, > 0 sufficiently large such that for any & < —M,,

é—eSS(§)<£, é—eSm(§)<é.
u Hu a a

Then, for & < -M.,

AL - (2 - 9@

1 + hi(&)

cl'(§) 2 dr(J +1(§) - I(§) + = (W +YIE). (3.13)

Based on the boundedness, there exists a sufficiently large positive constant / such that

BLE  _ fmESEOIE)
[1+RIO ~  1+hIE)

, E>-M..

This is equivalent to

1
T+ h@] <m(&)S (&), £ 2 —M..

When [ is sufficiently large, the above inequality holds. Therefore,

1
@) 2 dr (T 1E) - 1) + % @A DI©), £2 ~M,. (3.14)
Define (A )(b )
. B 2 €)a—€)v 1 ABb
g(u) = inf (1 n hv)l"'] , for any v € (l/t, Z (m - 1)) . (315)

According to (3.13)—(3.15), u(t, x) = I(x + ct) satisfies

ot

ML) 0 (J o ult, %) — ult, 1)) + g (e, x)) — ( + )t x), x R, 1> 0,
u(0,x) = I(x) >0, x e R.

By the comparison principle, u(t, x) is an upper solution of the following initial value problem:

ot

owl, %) =d, (J xw(t,x) — w(t,x)) + g w(t,x)) — (u+yw(t,x), xeR, t>0,
w(0,x) =1I(x) >0, x e R.
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Applying the asymptotic propagation theory ( Lemma 3.10) with d = d,, f(w) = g(w) — (u+y)w, there
exists c¢; that
lim inf w(z, x) > 0, V¢ € (0, c)),

t—+o0 |x|<Ct

c::inf{l[dz(fJ(x)e—“dx—1)+,8(§—e)(é—e)—(y+y)}.
20 | A R u a

Since lim._,o ¢} = c,, one can take € satisfying ¢; < ¢;. Choose ¢ € (cy,c.) and set x = —¢t. Then,
lim inf u(¢, —¢t) > 0. On the other hand, u(z, —¢t) = I((c; — ¢)t) — 0 as t — +oo, which leads to a

t—+00

contradiction. This completes the proof. O

where

3.4. The case: Ry < 1 andc >0

In this section, we prove the nonexistence of traveling wave solutions for Ry < 1 and ¢ > 0.

Proof of Theorem 2.1 (ii) for Ry < 1 and ¢ > 0. Assume that there exists such a nontrivial positive
solution (S (x + ct), I(x + ct), m(x + ct)) of system (2.1). We have

A b
S < ; m(€) < o 1) >0, E€R.

Then,

BSOMEIE) _

cl'(§) =dr (J = 1(6) - 1)) + T+ hl@)

(1 +IE)

Ab
< dy (J * 1(€) — 1)) + ﬁ“—al@ (IO,

Thus, u(t, x) = I(x + ct) satifies

du(t, x)
ot
u(0,x)=1(x) >0, xeR.

Ab
Sdz(J*u—u)(t,x)+'8'u—au(t,x)—(u+y)u(t,x), xeR, >0,

Let wy = sup I(£), then wy > 0. We consider the following initial value problem

éeR
dw _ BAb _
T w(t) = (u + y)w(D), (3.16)
w(0) = wy

By the comparison principle,
0 < I(t,x) < woe", t >0,

where A = ﬁ% — (u + 7). Since Ry = #ﬁAb 5 < 1, we have A < 0. Therefore, it follows form (3.16) that

a(u+

1(¢) = 0 for any € € R, which contradicts (2.3). This completes the proof. O
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Proof of Theorem 2.2. Substitute the Gaussian kernel J(x) into the integral:

f J(x)e ¥ dx = eV,

R

The formula for ¢, becomes:

1 A
C. = inf{— [d2 (eﬁz/(‘”) - 1) + BAD (U+7)
A ua

2

>0
dy o A2 /(4] B2 —(u+y) . .
Define g(1) = Z(e"/®" — 1) + ““———. To find the infimum, compute the derivative:
BAb
o _ b ey A2 g Yo~ W Y)
g(/l)—g/le —ﬁ(e —1)—7.

Setting g’(1) = 0 leads to:
A Ab
e (X 1) b= PR iy =0,
21 ua
Letz = A%/(4]) and B = ’%b — (U +7y) — d,. The equation simplifies to:
B
‘2z-1)= —.
e(2z-1) 4

The function A(z) = e*(2z — 1) is strictly increasing for z > 0 with 2(0) = -1 < d—32 and h(z) — +oo as
7 — +00. Thus, there exists a unique solution z* > 0. Substituting A* = 2 VIz* back into g(1) yields:

dy(e = 1)+ 52— (u+y)
C, = .
2z

This ends the proof. O
4. Numerical experiments

In this section, we present numerical simulations to validate our theoretical findings on traveling
wave solutions. The time and space unit is taken as day and km, respectively.
The parameters are fixed in Table 1. Inspired by [25], we set

J1(x) = Jo(x) = J3(x) = J(x) = M,

e
T
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Table 1. List of parameters.

Parameter  Definition Value References
d; Dispersal coefficient of susceptible individuals 0.2 Day™! [19]

d, Dispersal coefficient of infected individuals 0.3 Day‘1 [19]

d; Dispersal coefficient of the intensity of 0.1 Day™! [19]

population mobility

A Input rate of susceptible individuals 0.5 (km*Day)"! [21]

u Output rate of susceptible individuals 0.05 Day™! Assumed
Yy Recovery from infection 0.2 Day™! [21]

a Input rate of the intensity of population mobility 1 km*Day™! [21]

b Behavioral response dynamics 2 Day™! [21]

a Risk-sensitive mobility 0.1 km*Day™! [21]

h Saturation of incidence 0.01 km? [21]

B Infection rate 0.025 km*Day™!  Assumed

In this setting, the disease-free equilibrium is E;

= (10,0, 2), and the endemic equilibrium is E* =

(5.295,0.941,1.907). The basic reproduction number is computed as Ry = 2, and the corresponding
minimal wave speed is ¢, = 0.6268. For numerical simulations of the traveling wave solutions to
system (1.2), we consider a finite spatial domain [—-L, L] with L = 200, and impose Neumann boundary
conditions at both ends:

T =dy f Ji(x =) (1,3) = S, )y + A = S (1, x) = PHETEIEED,
5“”) = dy [} Jo(x = V)U,y) = 12, x))dy + ZEBCICD ) 1oy [(1, x), (4.1)
3’"“") = ds [} J30x = »)0m(t,y) = mt, x)dy + m(t, x) (b = am(1, x) - 22),

where ¢ > 0 and x € (=200, 200).

To discretize system (4.1), we define the temporal and spatial grids with parameters 7 = 200,
N =2801,s=T/(N—-1), M =401, f = 200/(M — 1), initializing at ¢, = 0 and xo = —200. The grid
points are generated viat;; =t; + s for j=1,2,..., N — 1 (temporal discretization) and x;.; = x; + f
fori=1,2,..., M (spatial discretization). Using the notation u{ = u(t;, x;) where u represents S, I, or
m, we obtain

6ugtx) , u; + O(S)
Zu(t,x _2’4',-/_ i
Tt = L+ O(f),
and then system (4.1) has the following difference equation:
sft-s] j i pmlST
=dy 25 TG = 0)ST - S+ A - ps] - ZEL
1/+| .' '

(4.2)

L= S IFG - ST -SHH S e, j21,2<i0 <800,
j+l ;

My Y TG = S - {>+m{(b—am{—“”'j~)-

1+hl/

The discretization of the boundary conditions can be formulated as follows:

uG+1,00=u(+1,Du(+1,)=u(G+ LM -1,u=S,Im, j>1.
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Now we take the following initial value to show the existence of the traveling wave solution of discrete
system (4.2),

S:{ 10, 1<;7<501 I:{ 0, 1<,;<501 m:{ 2, 1<;<501
5295, 502 < ;<601 ° 0.941, 502 < ;<601 ° 1.907, 502 < j<601

4.3)
Using the initial conditions specified in (4.3), we present numerical simulations of system (4.2) in
Figure 1. The solution profiles shown in Figure 1 demonstrate characteristics consistent with traveling
wave solutions.

9 st
8
8
75
7 o
[
7
6
6.5 6F
5
y 200 (I ¢
200 55 5r
-100
0 5
100 50 ) 4 L L L L L L L
Location x 200 O Time t -200  -150 -100 -50 0 50 100 150 200
Loction x
18

——t=40
=80

14+ —t=120
12 ——— =160

06

04+

-200

100 02 02k
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—-— ——l
< |

100 . 0 -
Location x 200 O Time t -200 -150 -100 -50 0 50 100 150 200
Loction x

198 -

—
m—

1.96 -

194+

192+

188+

186 -

100 184+
0
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Location x 200 0 Time t -200  -150  -100 -50 0 50 100 150 200

Loction x

Figure 1. The spread of S, I, and m.
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Below we compare the differences between local and nonlocal dispersal. We now replace the
nonlocal dispersal operator J * u in system (1.2) with the local dispersal operator Au, resulting in
system (1.2). We have

oS (t,x) 82 S(t X) Lm(t,x)S (t,x)1(t,x)
o = Ao + A S x) — e

atx) _ 8%1(t,x) Bm(t,x)S (t,x)1(t,x)

- =d o2 + e - (u+y)I(t, x), t>0,xeR. 4.4)
om(t,x) _ 8% m(l X) al(t,x)

= =ds + m(t, x) (b am(t, x) — 1+hm,x)) ,

According to the computational results, the minimal wave speed for system (4.4) is ¢, = 0.548. This
suggests that the nonlocal dispersal mechanism accelerates the spread, as also illustrated in Figure 2.
However, when the kernel function is specified as J(x) = #e‘xz , the minimal wave speed increases to
¢, = 0.3134, indicating that the nonlocal dispersal in this case slows down the propagation , which is
consistent with the observation in Figure 3. These results suggest that the propagation speed decreases
when the kernel function exhibits faster decay in its tail, and increases when the decay is slower. This
is exactly what is described in Theorem 2.2.

10 \ 2
1 = Laplace diffusion
R Laplace diffusion —Nonlocal dispersal
—Nonlocal dispersal 15F
8 +
w 7 = 1
v
6
05+
4 ; ) 0 iofi J
-200 -100 0 100 200 -200 -100 0 100 200
X X

2
"""" Laplace diffusion
195 — Nonlocal dispersal
E 19
1.85
1.8 ) ' '
-200 -100 0 100 200

Figure 2. Nonlocal dispersal VS Local dispersal with J(x) = #\F e,
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10 2
gL | Laplace diffusion = Laplace diffusion
——Nonlocal dispersal 15l — Nonlocal dispersal
8 E
w 7 -1
6 H
At 0.5
5
4 0 i
-200 -100 0 100 200 -200 -100 0 100 200

1.95¢
= Laplace diffusion
—Nonlocal dispersal
E 19
1.85¢
1.8 : ' '
-200 -100 0 100 200

2

Figure 3. Nonlocal dispersal VS Local dispersal with J(x) = #e"‘ .

5. Conclusions

Classical nonlocal dispersal epidemic models (see, e.g., [12, 19, 23, 26]) typically assume fixed
contact rates, overlooking voluntary contact reduction behaviors in response to mobility-linked
epidemic risks. To address this gap, we develop a mobility-dependent epidemic model that explicitly
incorporates human behavioral responses in influenza transmission dynamics. Our primary
contributions establish rigorous mathematical criteria for the existence and nonexistence of traveling
wave solutions, which capture essential disease invasion patterns. Crucially, our analytical framework
and theoretical results remain applicable to general nonlocal dispersal epidemic models beyond this
specific formulation. Furthermore, we employ comprehensive numerical simulations to quantify how
nonlocal and local dispersal patterns modulate wave propagation speeds. These integrated advances
bridge critical theoretical gaps in spatial epidemiology while providing practical tools for predicting
and controlling geographically spreading diseases.
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