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Abstract: The quotient hyperfield is a landmark on the borderline of fields and hyperfields. In this 

paper, which is the second part of our previously published paper, all the hyperfields of order 7 are 

constructed, enumerated, and presented. While doing so, an important family of 7-element canonical 

hypergroups was revealed. The study of these hyperfields proved the existence of both quotient and 

non-quotient ones among them. Their construction became feasible because it is based on a new 

definition of the hyperfield with less axioms, which is introduced in this paper following our proof that 

the axiom of reversibility can derive from the remaining axioms of the hyperfield. Hence, the 

processing power needed for a computer to test whether a structure is a hyperfield or not, is much less. 

This paper also presents properties and provides examples of skew hyperfields, strongly canonical 

hyperfields/hyperrings, and superiorly canonical hyperfields/hyperrings that wrap up and complete the 

previously published first part’s conclusions and results. 
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1. Introduction 

This paper is the succession of our previous paper [1], and, as such refers to the detailed 

introduction of [1] when introducing the topics. As described, hypercompositional Αlgebra began its 

existence in mathematics with the hypergroup, which was introduced by F. Marty in 1934 [2], and 

advanced with the hyperfield, which was introduced in 1956 by M. Krasner [3]. 
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The basic concept in hypercompositional Algebra is the hypercomposition. A hypercomposition 

or a hyperoperation over a non-empty set is a mapping from the cartesian product ΕΕ into the power 

set P(E) of Ε. A hypergroup is a non-empty set Ε enriched with a hypercomposition “∙” which satisfies 

the following two axioms: 

(i) The axiom of associativity: 

( ) ( )  =  a b c a b c , for all , , a b c E . 

(ii) The axiom of reproductivity: 

 =  =a E E a E , for all a E . 

Papers [4,5] present, in detail, that the group is defined with exactly the same axioms as above. 

Namely, a group is a non-empty set E that is enriched with a composition (i.e., a mapping from the 

cartesian product Ε  Ε into the set E) that satisfies axioms (i) and (ii). 

If “ ” is an internal composition on a set E and A, B are subsets of E, and AB signifies the set 

( ) ,  a b a b A B|  while if “  ” is a hypercomposition, then AB is the union
( , ) 


a b A B

a b . Ab and 

aB have the same meaning as  A b  and   a B , respectively. In general, the singleton  a  is 

identified with its member a . 

Theorem 1. If either =A  or =B , then =AB . 

Theorem 1, together with the two axioms of the hypergroup, yields the following theorem: 

Theorem 2. [5,6] The result of the hypercomposition of any two elements in a hypergroup is always 

non-void. 

Definition 1. [3,7] A hyperfield is an algebraic structure ( ), ,+ H  where H is a non-empty set, “·” is 

a composition on H, and “+” is a hypercomposition on H, which satisfies the axioms: 

I. Multiplicative axiom 

 * 0= H H  where ( )*,H  is a multiplicative group and 0 is a bilaterally absorbing 

element of H, i.e., 0 0 0 =  =a a , for all .a H  

II. Additive axioms 

i. Associativity: 

 ( ) ( )+ + = + +a b c a b c , for all , , a b c H . 

ii. Commutativity: 

 + = +a b b a , for all , a b H . 

iii. For every a H , there exists one and only one a H  such that 0 . +a a  a  is 

written −a  and called the opposite of a ; moreover, instead of ( )+ −a b , we write 

−a b . 

iv. Reversibility: 

 If  +a b c , then  −c a b . 
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III. Distributive axiom 

( ) ( ), + =  +  +  =  + a b c a b a c b c a b a c a , for all , , a b c H . 

If the multiplicative axiom I is replaced by the axiom: 

I.  * 0= H H  where ( )*,H  is a multiplicative semigroup and 0 is a bilaterally absorbing 

element of H, 

then a more general structure is obtained which is called hyperring [7]. 

2. The minimization of the axiomatic framework that defines the hyperfields 

Numerous papers have been published regarding the above two hypercompositional structures, 

as noted in [1]. Some of the most recent works, most of which were published after [1], are those cited 

in [8–22]. All these papers adopt the definition of a hyperfield as it was originally introduced by M. 

Krasner, namely the one given in Definition 1. However, the attempts to enumerate the hyperfields 

quickly led to bigger cardinalities that were difficult to handle by the computational capabilities of our 

computers. Hence, we decided to reconsider the independence of the axioms in the hope of restricting 

their number. This was achieved, as demonstrated below. 

Theorem 3. [4,23] A non-empty set H enriched with the additive axioms II is a hypergroup. 

Proof. Associativity holds. Next, observe that a+b≠ for every a, bH. Indeed, if a+b=, then 

( ) ( )+ − = + − =− =a b b a b b b , which would imply a, a contradiction. Thus, for every a, bH 

there exists xH such that xb−a or; equivalently, by reversibility, ba+x. Therefore, H⊆a+H . 

Moreover, it is clear that a+H⊆H . Consequently, a+H=H . Hence, reproductivity is also valid. Thus, 

H is a hypergroup. □ 

The special hypergroup of the hyperfield was named the canonical hypergroup by J. Mittas who 

studied it in depth and presented his research results through a multitude of papers (e.g., [23–25]). 

Theorem 4. [26] In a hyperfield H, the equality 0+ =a a  holds for all a in H. 

Given that the proof of this theorem relies solely on the additive axioms II of the hyperfield, the 

conclusion remains valid for the canonical hypergroups as well. 

Theorem 5. In a canonical hypergroup H, the axiom of reversibility is equivalent to the validity of the 

equality 

( )− + = − −a b a b  

for all a,b in H. 

Proof. Suppose that the equality ( )− + = − −a b a b  is valid for all a,b in H. If ab+c, then equivalently, 

we have that 

( )0 − +a b c  or ( )0 + − −a b c  or ( )0 − −a b c . 
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Therefore, ca−b, so the reversibility holds. Vice versa now. Suppose that the reversibility holds, 

and ( )− +w a b . Then, ( )0 + +w a b . Applying the associativity and the reversibility, we have:  

( ) ( )0 0 + +   + + −  +  − −w a b w a b b w a w a b . 

Thus, ( )− +  − −a b a b . Next, suppose that − −w a b . Then, we have the sequence of 

implications: 

( ) ( ) ( )0 0− −  −  +   + +   + +  − +w a b a w b w b a w b a w a b . 

Thus, ( )− −  − +a b a b . Therefore, ( )− + = − −a b a b . □ 

In the hyperfields, due to distributivity, the equality ( )− + = − −a b a b  is always valid. Therefore, 

Theorem 5 simplifies the axiomatic structure of hyperfields, as the reversibility property in the additive 

axioms can be derived from the remaining axioms. Hence, we have the following Definition: 

Definition 2. A hyperfield is an algebraic structure ( ), ,+ H , where H is a non-empty set, “·” is a 

composition on H, and “+” is a hypercomposition on H that satisfies the axioms: 

I. Multiplicative axiom 

 * 0=H H , where ( )*,H  is a multiplicative group and 0 is a bilaterally absorbing 

element of H, i.e., 0 0 0 =  =a a , for all .a H  

II. Additive axioms 

i. Associativity: 

 ( ) ( )+ + = + +a b c a b c , for all , , a b c H . 

ii. Commutativity: 

 + = +a b b a , for all , a b H . 

iii. For every a H , there exists one and only one a H  such that 0 . +a a  a  is 

written −a  and called the opposite of a ; moreover, instead of ( )+ −a b , we write 

−a b . 

III. Distributive axiom 

( ) ( ), + =  +  +  =  + a b c a b a c b c a b a c a ,  for all , , a b c H . 

The elimination of one redundant axiom (reversibility) makes the verification that a structure is a 

hyperfield more concise with proofs that do not include extra or unnecessary steps, which facilitates 

the development of computer packages capable of performing it with reduced computational resources. 

Thus, based on the above definition, it was feasible to enumerate the hyperfields of order 7 and present 

the 277 non-isomorphic hyperfields in this paper’s last Section. The notation used is 
7 , 1 277 kHF k  

where 1

7HF  is the field Z7. 

Special notation: In the following pages, in addition to the typical algebraic notations, we use Krasner’s 

notation for the complement and the difference [27]. Thus, AB denotes the set of elements that are in 

A, but not in B. If K is a field or a hyperfield then, K* denotes the set K{0}. 
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3. The skew hyperfield 

The term division rings, also called skew fields, is used to define nontrivial rings in which every 

nonzero element has a multiplicative inverse. Historically, division rings were sometimes referred to 

as fields, while fields were called "commutative fields". Krasner defined the hyperfield considering 

that its multiplicative group is not necessarily commutative [3,7]. However, in the relevant 

bibliography, the term hyperfield is used, almost from the very first time, to indicate that its 

multiplicative group is commutative. Consequently, it is necessary to introduce the term "skew 

hyperfield" in order to refer to hypercompositional structures that are analogous to skew fields. The 

constructions of hyperfields given in [26,28] enrich a multiplicative group, which need not be 

commutative, with a hypercomposition. Thus, we have the following three classes of skew hyperfields: 

Theorem 6. Let G be a multiplicative group and 0 a bilaterally absorbing element, that is 

0 0 0 =  =x x , for all  0 x G . Then,  0G  equipped with the hypercompositions: 

(1) 

    , ,+ =x y x y  , , for all x y G with x y   

   0 0 ,+ = + =x x x    0 for all x G  

    0 ,+ = x x G   for all x G  

 

(2) 

    , ,+ =x y x y   , , for all x y G with x y  

   0 0 ,+ = + =x x x    0 for all x G  

      0 ,+ =    x x G x   for all x G  

and 

(3) 

    0, , ,x y G x y+ =    , , for all x y G with x y  

   0 0 ,+ = + =x x x    0 for all x G  

    0, ,+ =x x x   for all x G  

creates three non-isomorphic skew hyperfields. 

For the sake of convenience, these hyperfields are denoted by SHF1(G), SHF2(G) and SHF3(G), 

respectively. The constructions of SHF1(G), SHF2(G) and SHF3(G) reveal that in the case of 

hyperfields, the equivalent of Wedderburn's little theorem [29] does not apply, i.e., although every 

finite skew field is commutative, there exist non-commutative finite hyperfields. Indeed, when the 

constructions of the above theorem are applied to finite non-commutative multiplicative groups, they 

produce non-commutative finite hyperfields. For instance, the dihedral group D3 is the non-Abelian 

group having the smallest group order. Therefore, ( )31SHF D , ( )2 3SHF D  and ( )33SHF D  are three 

skew hyperfields having the smallest order. 

Furthermore, both Construction I in [28] and Proposition 1 in [30] do not require the multiplicative 

group to be abelian. As a result, Theorem 7 holds. 
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Theorem 7. Let G be a non-unitary multiplicative group and let (H*,) be its direct product with the 

multiplicative group {−1 ,1}. Consider the set H = H*{0},  where 0 is a bilaterally absorbing 

element in H, i.e. 0w=w0=0, for all wH. Then, H, equipped with the hypercompositions: 

(1) 

  (x,i)  ⨣  (y,j)  ={(x,i) ,(y,j)} ,  if (y,j)  ≠ (x,-i)  

  (x,i)  ⨣ (x,-i) = H, for all (x,i)  H* 

  (x,i) ⨣ 0 = 0 ⨣ (x,i)  = (x,i)  and 0⨣0=0, for all (x,i)  H* 

 

(2) 

  (x,i)  ⨣  (w,j)  = {(x,i) ,(w,j),(x,-i) ,(w,-j)} ,  if (w,j)  ≠ (x,i), (x,-i)  

  (x,i)  ⨣ (x,i) = H {(x,i) , (x,-i),0},  for all (x,i) H* 

  (x,i)  ⨣ (x,-i) = H {(x,i) , (x,-i)},  for all (x,i) H* 

  (x,i) ⨣ 0 = 0 ⨣ (x,i)  = (x,i)    and   0⨣0=0, for all (x,i) H* 

creates two non-isomorphic skew hyperfields. 

These hyperfields are denoted by SHF4(G) and SHF5(G), respectively. Furthermore, Construction 

II from [28] can be applied to a skew field or a skew hyperfield; therefore, the following theorems 

hold: 

Theorem 8. Let (K,+,) be a skew field. If we define the hypercomposition ⨥ on F as follows: 

 x ∔ y = { x, y, x+y },  if y ≠ -x, x, y ≠ 0; 

 x ∔ (-x) = K, for all x K*; 

 x ∔ 0 = 0 ∔ x = x, for all x K. 

Τhen, (K,∔,) is a skew hyperfield. 

Theorem 9. Let (H,+,) be a skew hyperfield. If we define a new hypercomposition «∔» on H as follows: 

 x ∔ y = {x, y}  x+y,  for all x,y  H*, with y ≠ -x; 

 x ∔ (-x) = H, for all x H*; 

 x ∔ 0 = 0 ∔ x = x, for all x H. 

Τhen, (H,∔,) is a skew hyperfield. 

As with the hyperfields, the skew hyperfields of Theorems 8 and 9 are constructed over skew 

fields and hyperfields using an extensive enlargement of their composition or hypercomposition ([5], 

Example 8) and they will be called augmented skew hyperfields in accordance with the terminology 

established in [1]. In the following, the term hyperfield is used to indicate that its multiplicative group 

is commutative. 

4. The quotient hyperfield/hyperring and the non-quotient hyperfields/hyperrings 

M. Krasner, generalizing his earlier construction of the residual hyperfield [3], developed the 

quotient hyperfield and quotient hyperring, built upon a field and a ring, respectively [7]. While this 
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construction is presented in detail in [1], key elements are recalled here to ensure the self-contained 

nature of this work. 

Let F be a field and G a subgroup of F’s multiplicative group F*. Then, the multiplicative cosets 

modulo G form a partition of F. Krasner observed that the product of two such cosets, viewed as 

subsets of F, is again a coset modulo G, while their sum is a union of such cosets. Subsequently, he 

proved that the set F/G  consisting of the equivalence classes under this partition becomes a hyperfield 

if the multiplication and the addition are defined as follows:  

 =xG yG xyG ; 

( ) ,= + xG yG xp yq G p q G†  

for all , /xG yG F G . 

Moreover, Krasner showed that if R is a ring and G is a normal subgroup of its multiplicative 

semigroup, then the above construction gives a hyperring [7]. Ch. Massouros in [30] generalized this 

construction using multiplicative subgroups that are not necessarily normal. More precisely, he showed 

that in rings, there exist multiplicative subgroups G that satisfy the property  =xG yG xyG , even 

when they are not normal. 

A crucial step toward establishing the independence of the theory of hyperfields and hyperrings 

from the corresponding theory of fields and rings was the discovery of hyperfields and hyperrings that 

do not belong to the class of quotient hyperfields or hyperrings. The existence of such structures was 

proved by Ch. Massouros in [26,30,31]. The following are the main theorems that demonstrate the 

existence of non-quotient hyperfields and hyperrings. 

Theorem 10. [30] Let Θ be a multiplicative group that has more than two elements and let (Κ*,) be 

its direct product with the multiplicative group {−1,1}. Consider the set Κ = Κ*{0},  where 0 is a 

bilaterally absorbing element in Κ, i.e., 0w=w0=0, for all wΚ. The following hypercomposition is 

introduced in Κ: 

 (x,i)  ⨥ (y,j)  = {(x,i) ,  (y,j), (x,-i),  (y,-j)} ,  if (y,j)  ≠ (x,i),  (x,-i); 

 (x,i)  ⨥ (x,i) = Κ  {(x,i) ,  (x,-i), 0};  

 (x,i)  ⨥ (x,-i) = Κ  {(x,i) ,  (x,-i)};  

 (x,i) ⨥ 0 = 0 ⨥ (x,i)  = (x,i)  and 0⨥0=0. 

Then, the triplet K(Θ) = (Κ ,⨥, ) is a hyperfield that does not belong to the class of quotient hyperfields 

when Θ is a periodic group. 

Corollary 1. The hyperfield 81

7HF (Table 1) is not a quotient hyperfield. 
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Table 1. The canonical hypergroup of the non-quotient hyperfield 81

7HF . 

 

Theorem 11. [26,31] Let Θ be a multiplicative group that has more than two elements, and let 0 be a 

multiplicatively bilaterally absorbing element. If a hypercomposition ⨥ is defined on H=Θ{0}  as 

follows: 

 x ⨥ y = {x, y},  for all x,y  Θ, with y ≠ x 

 x ⨥ x = H    {x}, for all x Θ  

 x ⨥ 0 = 0 ⨥ x = x, for all x H 

then the triplet H(Θ) = (Θ{0} ,⨥ , ) is a hyperfield that is not isomorphic to a quotient hyperfield 

when Θ is a periodic group. 

Corollary 2. The hyperfield 258

7HF  (Table 2) is not a quotient hyperfield. 

Table 2. The canonical hypergroup of the non-quotient hyperfield 258

7HF . 
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Theorem 12. [30] The direct sum S of the hyperrings Si, iI, is not isomorphic to a sub-hyperring of 

a quotient hyperring if at least one of the Si is a non-quotient hyperfield. 

Additional classes of non-quotient hyperfields/hyperrings were subsequently made by Nakassis [32]. 

Theorem 13. [32] Let ( ),T  be a multiplicative group of order m, with m > 3. Also let  0 ,= H T  

where 0 is a multiplicatively absorbing element. If H is equipped with the hypercomposition: 

 x ⨥ y = H    {0,x,y},  for all x,y  T, with y ≠ x; 

 x ⨥ x = {0,x} , for all x T; 

 x ⨥ 0 = 0 ⨥ x = x, for all x H 

then, H(T) = (T{0},⨥ , ) is a hyperfield which is a non-quotient hyperfield if the cardinality of T is 

properly chosen. 

The next two propositions are crucial for proving that hyperfields of the type outlined in Theorem 

13 are not quotient hyperfields. 

Proposition 1. In a quotient hyperfield /F Q , the cardinality of the sum of any two elements cannot 

exceed the cardinality of Q. 

Proof. Suppose that ,xQ yQ  are two arbitrary elements of /F Q . Then, 

( ) + = + xQ yQ x yq Q q Q  

and the function : → +f Q xQ yQ  with ( ) ( )= +f q x yq Q  is a surjection.□ 

Proposition 2. If in a quotient hyperfield /F Q  the differences −xQ xQ , /xQ F Q  have only 0 in 

common, then the cardinality of the sum of any two non-opposite or two non-equal elements is equal 

to the cardinality of Q. 

Proof. Let xQ, yQ be two non-opposite and non-equal elements in /F Q . Then, 

( ) + = + xQ yQ x yq Q q Q . 

Next, if ( ) ( )+ = +x yq Q x yp Q , then 

( ) ( ) ( )+ = +  − = −  −  − x yq x yp r x xr yq ypr xQ xQ yQ yQ . 

From the validity of the equality ( ) ( )  0−  − =xQ xQ yQ yQ , it follows that 0 .− =x xr  

Therefore, 1=r  and consequently 0− =yq yp  or equivalently =q p . Hence, 

( )+ =card xQ yQ cardQ . □ 

We subsequently present some non-quotient hyperfields from the list of 277 seven-element 

hyperfields detailed in Section 10, utilizing these propositions. 
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Proposition 3. 

i. The hyperfield 3

7HF  (Table 3) is not a quotient hyperfield. 

Table 3. The canonical hypergroup of the non-quotient hyperfield 3

7HF . 

 

ii. The hyperfield 4

7HF  (Table 4) is not a quotient hyperfield. 

Table 4. The canonical hypergroup of the non-quotient hyperfield 4

7HF . 

 

Proof. (i) The opposite of 1 is c, the opposite of a is d, the opposite of b is e and the differences 1-c, 

a-d and b-e have only 0 in common. Therefore, if 3

7HF  were isomorphic to a quotient hyperfield F/Q, 

then, according to Proposition 2, the cardinality of Q would be equal to the cardinality of the sum of 

any two non-opposite and non-equal elements, which is 4. Moreover, according to Proposition 1, the 

cardinality of the sum of any two elements cannot exceed the cardinality of Q. However, the cardinality 

of the sum x+x is equal to 5 for any 3

7x HF . Hence, 3

7HF  is not a quotient hyperfield. Similar is the 

proof of (ii).□ 
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Proposition 4. 

i. The hyperfield 5

7HF  (Table 5) is not a quotient hyperfield. 

Table 5. The canonical hypergroup of the non-quotient hyperfield 5

7HF . 

 

ii. The hyperfield 6

7HF  (Table 6) is not a quotient hyperfield. 

Table 6. The canonical hypergroup of the non-quotient hyperfield 6

7HF . 
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iii. The hyperfield 11

7HF  (Table 7) is not a quotient hyperfield. 

Table 7. The canonical hypergroup of the non-quotient hyperfield 11

7HF . 

 
Proof. (i) The opposite of 1 is c, the opposite of a is d, the opposite of b is e and the differences 1-c, 

a-d and b-e have only 0 in common. Therefore, if 5

7HF  were isomorphic to a quotient hyperfield 

/F Q , then, according to Proposition 2, the cardinality of Q  would be equal to the cardinality of the 

sum of any two non-opposite and non-equal elements. Therefore, the cardinalities of the sum of any 

two non-opposite and non-equal elements would have been equal. However, card(1+a) = 4, while 

card(b+c)=5. Consequently, 5

7HF  is not a quotient hyperfield. Similar is the proof of (ii) and (iii). □ 

Remark 1. In the light of Propositions 1 and 2, it is preferable to keep the first proof that 2

5NQHF  in [1] 

is not a quotient hyperfield when its multiplicative group is the Vierergruppe and it is classified 

according to Theorem 14 of [1], when its multiplicative group is cyclic. 

5. Strongly canonical and superiorly canonical hyperfields/hyperrings 

As in the case of fields, a valuation theory has also been developed for hyperfields. The concept 

of valuation for hyperfields was introduced by M. Krasner [3]. References [33–36] provide more recent 

studies on valuation in hyperfields, while [37] by A. Linzi offers an extremely detailed and in-depth 

presentation of hyperfield valuation theory. Among other things in his paper, A. Linzi clarifies several 

points of J. Mittas’ earlier research on valued hyperfields [38–43]. J. Mittas proved [38–42] that a 

necessary and sufficient condition for a canonical hypergroup, and consequently for a hyperfield, to 

be valuated or hypervaluated is the validity of certain additional properties of a purely algebraic type, 

i.e., properties that can be expressed without the intervention of the valuation or the hypervaluation, 

respectively. This led him to the definition of the following two special canonical hypergroups: 

(a) The strongly canonical hypergroup, which is a canonical hypergroup that also satisfies the 

axioms: 

S1: If  +x x y , then + =x y x , for all , x y H ; 

S2: If ( ) ( )+  + x y z w , then either +  +x y z w  or +  +z w x y . 
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(b) The superiorly canonical hypergroup, which is a strongly canonical hypergroup that also 

satisfies the axioms: 

S3: If ,  −z w x y  and x y , then − = −z z w w ; 

S4: If  −x z z  and  −y z z  then −  −x x y y . 

Thus, depending on the type of their additive hypergroup, strongly canonical and superiorly 

canonical hyperfields are defined, respectively. Mittas proved the following theorem (e.g., [44], 

Theorem 4.2]: 

Theorem 14. A hyperfield can be valuated if and only if its additive hypergroup is superiorly canonical. 

A detailed and thorough proof of this theorem is given by A. Linzi in [37] (Theorem 4.22). 

Proposition 5. In a strongly canonical hyperfield, if x y , then: 

( ) ( )−  − =x x y x  and ( ) ( )−  − =y y y x . 

Proof. Suppose that x y  and ( ) ( )−  − x x y x . Let ( ) ( ) −  −w x x y x . Then,  −w y x  

implies that  +y x w . Moreover,  −w x x  implies that  +x x w . Therefore, = +x x w . Thus 

=x y , which contradicts our assumption. □ 

Proposition 6. In a strongly canonical hyperfield K, the following statements hold. 

i. ( )+ − =x x x x ,  for all x K ; 

ii.  −x x x  and equivalently  +x x x ,  for all  0 x K . 

Proof. (i) Suppose that  −w x x . Then,  +x x w  and therefore, = +x x w . Thus, 

( )
 −

+ − = + =
w x x

x x x x w x . 

(ii) Suppose that x is a non-zero element such that  −x x x . Then, ( )0 + −x x x . However, 

according to (i), ( )= + −x x x x . Consequently, 0=x , which is absurd. □ 

Lemma 1. [43] In a canonical hypergroup H, the following property: 

( ) ( ) ( ) ( )+  +  −  − x y z w x z w y  

is satisfied for all , , , x y z w H . 

Theorem 15. Let K be a strongly canonical hyperfield. Then, for any fixed point a K , the sets ,+a x

x K  form a partition of K. 

Proof. Let x y and suppose that ( ) ( )+  + a x a y . Then, because of Lemma 1, 

( ) ( )−  − x y a a . If ( ) ( ) −  −w x y a a , then:  

 −   +w x y x w y  and  −   +  = +w a a a w a a w a . 
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Hence, 

( ) ( )+  + + = + + = +a x a w y a w y a y . 

Moreover, 

 −   −w x y y x w  and  −   −  = −w a a a a w a a w . 

Thus, 

( ) ( )+  + − = − + = +a y a x w a w x a x . 

Therefore, 

+ = +a x a y . 

Example 1. Let H be a set that is totally ordered and symmetric around a center, denoted by 0 .H

Then, H, equipped with the hypercomposition: 

,

 

,  

 


+ = + =
 −  − =x

y if x y

x y x x x

x xx

 

is a canonical hypergroup. Now, if  0H  is an abelian multiplicative group and 0 is bilaterally 

absorbing with regard to the multiplication, then H becomes a hyperfield. Moreover, if the 

hypercomposition on H is defined as follows: 

( )

,

 

,

 


+ = + =

−


 − =

−

x x

y if x y

x y x x x

x x

 

then H is a strongly canonical hyperfield. 

Example 2. Let (E , ) be a totally ordered multiplicative semigroup, having a minimum element 0, 

which is bilaterally absorbing with regard to the multiplication. The following hypercomposition is 

defined on E: 

 

 

max , ,

| ,


+ = 

  =

x y if x y
x y

z E z x if x y
  

Then, ( ), ,+ E  is a hyperring. If  0E  is a multiplicative group, then ( ), ,+ E  is a skew 

hyperfield, while if it is an abelian group, then ( ), ,+ E  is a hyperfield. This hyperfield was introduced 

by J. Mittas (see [25] page 86 and [45] page 370); nowadays, it is called tropical hyperfield (see e.g., 

[46–50]). Moreover, if the hypercomposition on E is defined as follows: 

 

 

max , ,

| ,


+ = 

  =

x y if x y
x y

z E z x if x y
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then ( ), ,+ E  is a strongly canonical hyperring. If  0E  is a multiplicative group, then ( ), ,+ E  

is a strongly canonical skew hyperfield, while if it is an abelian group, ( ), ,+ E  is a strongly canonical 

hyperfield.  

Corrigendum on [1] 

Theorem 12 in [1] claims that the above hyperring ( ), ,+ E  is a non-quotient hyperring. However, 

this is not accurate due to a slight confusion in the proof. Specifically, while it is initially shown that 

the assumption that E is isomorphic to a quotient hyperfield R/Q implies that «4Q  is a distinct class 

from both Q  and 2Q » just six lines below it is mistakenly assumed that 4Q=Q , which led to an 

incorrect reductio ad absurdum, concluding that 7Q  and 7Q . This was observed by David 

Hobby and Jaiung Jun, who subsequently examined whether the family of these hyperfields contains 

quotient hyperfields and constructed an interesting example that answers this question in the 

affirmative [51]. 

6. Construction of the hyperfields of order 7 

This Section presents the algorithmic method, which is used for the construction of the hyperfields 

that have 7 elements. There exist 277 such hyperfields, detailed in Section 10 and they are denoted as 

7 , 1 277 kHF k . 1

7HF  is the field Z7. The multiplicative group *

7HF  of these hyperfields consists 

of six elements. As it is known, there are two groups with six elements: The cyclic group Z6 and the 

dihedral group D3. Since Z6 is cyclic, it is abelian, while D3 is not abelian. Consequently, the 

multiplicative group of hyperfields of order 7 is the cyclic group Z6. Of course, D3 can be used to form 

skew hyperfields, as it is indicated in Section 3. 

Since the multiplicative group *

7HF  of hyperfields of order 7 is the cyclic group Z6 , we have 

that  * 2 3 4 5

7 1, , , , ,=HF a a a a a , where a is a generator of *

7HF . Note that the generators of the 

multiplicative group of Z7 are a=3 and a=5. 

Theorem 16. For the hyperfields of order 7, the following apply: 

i. 0 1 +a , 

ii. 
20 1 +a , 

iii. 
40 1 +a , 

iv. 
50 1 +a  

where a is the generator of the multiplicative group. 

Proof. i. Suppose that 0 1 +a , then 1= −a  and therefore 2 1=a . Hence, a is not a generator of 
*

7HF , which is a contradiction. 

ii. If 
20 1 +a , then 2 1= −a . Hence, 

4 1=a  and therefore a is not a generator of *

7HF , which 

contradicts the assumption for a. 

iii. If 
40 1 +a , then 4 1= −a . Also, 

8 6 2 2= =a a a a . Thus, 
2 1=a  and therefore a is not a generator 

of *

7HF , which is absurd. 



21302 

AIMS Mathematics  Volume 10, Issue 9, 21287–21421. 

iv. If 50 1 +a , then 5 1= −a . From 10 6 4 4= =a a a a , it derives that 4 1=a  and, therefore, a is not a 

generator of *

7HF , absurd. □ 

Corollary 1. For the hyperfields of order 7, it holds that either 0 1 1 +  or 30 1 +a , where a is the 

generator of the multiplicative group. 

Corollary 2. For hyperfields of order 7, the following properties hold: 

i.  2 3 4 51 1, , , , ,+ a a a a a a ; 

ii.  2 2 3 4 51 1, , , , ,+ a a a a a a . 

where a is the generator of the multiplicative group. 

Proposition 7. The addition in 
7

kHF  is completely defined by the sums: 

2 31 1, 1 , 1 , 1+ + + +a a a  

where a is the generator of the multiplicative group. 

Proof. Distributivity implies the following: 

i. 1+a4 = a4(a2+1) 

ii. 1+a5 = a5(a+1) 

iii. a+a = a(1+1) 

iv. a+a2 = a(a+1) 

v. a+a3 = a(a2+1) 

vi. a+a4 = a(a3+1) 

vii. a+a5 = a(a4+1) 

viii. a2+a2 = a2(1+1) 

ix. a2+a3 = a2(a+1) 

x. a2+a4 = a2(a2+1) 

xi. a2+a5 = a2(a3+1) 

xii. a3+a3 = a3(1+1) 

xiii. a3+a4 = a3(a+1) 

xiv. a3+a5 = a3(a2+1) 

xv. a4+a4 = a4(1+1) 

xvi. a4+a5 = a4(a+1) 

xvii. a5+a5 = a5(1+1) 

Using the notation b, c, d, and e for the elements a2, a3, a4 and a5, respectively, the following 

Cayley Table (Table 8) summarizes the above results: 
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Table 8. The addition in 
7

kHF . 

 

7. Classification of the hyperfields of order 7 

Most of the 277 seven-element hyperfields that are listed in Section 10 are classified here. 

Krasner's question of whether there exist non-quotient hyperfields [7] or not, led to the construction of 

the class of the monogene hyperfields [28,52]. The study of the isomorphism of these hyperfields to 

the quotient ones brought forth the question of whether a field F can be expressed as the difference 

−G G , where G is a subgroup of its multiplicative group [30,31,52–55]. The conditions under which 

this occurs are detailed in the same referenced works. Thus, if a hyperfield of order 7 is isomorphic to 

a quotient hyperfield F/G, then G is a multiplicative subgroup of F having index 6 and, in this case, 

the following theorem ([1], Theorem 15) holds: 

Theorem 17. [1] If F is a finite field and G is a subgroup of its multiplicative group of index 6 and 

order m , then G–G=F, if and only if: 

 1− G  and 11m , 

 1− G , 11=charF  and 20m , 

 1− G , 13=charF  and 28m , 

 1− G , 11,13charF  and 30m . 

In the above theorem, the notation charF denotes the characteristic of the field F. Moreover, it is 

known that if G is a subgroup of finite index in the multiplicative group of an infinite field F, then the 

equality G–G=F  holds [1,56,57]. Consequently, the quotient hyperfields F/G for which G–GF/G  

are fully and explicitly determined by Theorem 17. Therefore, the following theorem holds: 
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Theorem 18. The quotient hyperfields of order 7 that satisfy the condition G–GF/G are as follows: 

i. Z7, Z19/G, Z31/G, Z43/G, 25 /  GF G  and 27 /  GF G , when the multiplicative subgroup G 

does not contain −1. 

ii. Z13/G, Z37/G, Z61/G, Z73/G, Z97/G and Z109/G, when the multiplicative subgroup G contains −1. 

Remark 2. Αs shown below, in Proposition 9.v, Z157/G is isomorphic to Z97/G, and for this reason, it 

is not included in case (ii) of the above theorem. 

The following subsections focus on the study of the isomorphisms of the hyperfields presented in 

Theorem 18 in relation to the seven-element hyperfields listed in Section 10. The objective is to 

identify which hyperfields from this list are classified as quotient hyperfields and which are not. 

7.1. The quotient hyperfields F/G of order 7 that are constructed from the prime fields and for which 

G – G  F/G and  – 1 G hold 

Field Z7 , which may be regarded as a trivial hyperfield, could be considered the initial member 

of this category. The remaining members, according to Theorem 18, are Z19/G, Z31/G, and Z43/G. 

Proposition 8. 

i. The multiplicative subgroup of index 6 of the field Z19 is 

   1,  7,  11=G  

and the hyperfield Z19/G is isomorphic to 9

7HF  (Table 9). 

Table 9. The canonical hypergroup of the hyperfield Z19/G. 
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ii. The multiplicative subgroup of index 6 of the field Z31 is 

   1,  2,  4,  8,  16=G  

and the hyperfield Z31/G is isomorphic to 13

7HF  (Table 10). 

Table 10. The canonical hypergroup of the hyperfield Z31/G. 

 

iii. The multiplicative subgroup of index 6 of the field Z43 is 

   1,  4,  11,  16,  21,  35,  41=G  

and the hyperfield Z43/G is isomorphic to 61

7HF  (Table 11). 

Table 11. The canonical hypergroup of the hyperfield Z43/G. 
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7.2. The quotient hyperfields F/G of order 7 that are constructed from the prime fields and for 

which G–GF/G and  – 1G hold 

The members of this category, according to Theorem 18, are Z13/G, Z37/G, Z61/G, Z73/G, Z97/G, 

and Z109/G. 

Proposition 9. 

i. The multiplicative subgroup of index 6 of field Z13 is 

   1,12=G  

and the hyperfield Z13/G is isomorphic to 143

7HF  (Table 12). 

Table 12. The canonical hypergroup of the hyperfield Z13/G. 

 

ii. The multiplicative subgroup of index 6 of the field Z37 is 

   1,  10,  11,  26,  27,  36=G  

and the hyperfield Z37/G is isomorphic to 160

7HF  (Table 13). 
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Table 13. The canonical hypergroup of the hyperfield Z37/G. 

 

iii. The multiplicative subgroup of index 6 of the field Z61 is 

   1,  3,  9,  20,  27,  34,  41,  52,  58,  60=G  

and the hyperfield Z61/G is isomorphic to 234

7HF  (Table 14). 

Table 14. The canonical hypergroup of the hyperfield Z61/G. 

 

iv. The multiplicative subgroup of index 6 of field Z73 is 

   1,  3,  8,  9,  24,  27,  46,  49,  64,  65,  70,  72=G  

and the hyperfield Z73/G is isomorphic to 245

7HF  (Table 15). 
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Table 15. The canonical hypergroup of the hyperfield Z73/G. 

 

v. The multiplicative subgroups of index 6 of fields Z97 and Z157 are, respectively: 

   1,  8,  12,  18,  22,  27,  33,  47,  50,  64,  70,  75,  79,  85,  89,  96

1,  4,  14,  16,  27,  39,  46,  49,  56,  58,  64,  67,  75,  82,  
  

90,  93,  99,  101,  108,  111,  118,  130,  141,  143,  153,  156

 



= 



=G

G
 

and the hyperfields Z97/G, Z157/G are isomorphic to 267

7HF (Table 16). 

Table 16. The canonical hypergroup of the hyperfields Z97/G and Z157/G. 

 

vi. The multiplicative subgroup of index 6 of field Z109 is 

   1,  4,  16,  27,  34,  38,  43,  45,  46,  63,  64,  66,  71,  75,  82,  93,  105,  108=G  
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and the hyperfield Z109/G is isomorphic to 246

7HF  (Table 17). 

Table 17. The canonical hypergroup of the hyperfield Z109/G. 

 

7.3. The quotient hyperfields F/G of order 7 that are constructed from the finite fields GF[pn], n>1 

and for which G–GF/G holds 

According to Theorem 18, this category has two members, which are the hyperfields 
25 /  GF G  and 

27 /  GF G . 

Field GF[52] consists of all the linear polynomials with coefficients in the field of residues modulo 

5. In GF[52], the polynomial x2+3x+4 is irreducible. Thus, in the multiplication of the polynomials, we 

set x2 = −3x−4 = 2x+1 and then they are combined according to the ordinary rules, working modulo 5. 

The multiplicative subgroup of index 6 in GF[52] is G = {1, 2, 3, 4} and its cosets are: 

( ) ( ) ( ) ( ), , 1 , 2 1 , 3 1 , 4 1+ + + +G xG x G x G x G x G  

The results of the hypercomposition in the above hyperfield lead to the following proposition: 

Proposition 10. The hyperfield 

( ) ( ) ( ) ( ) 
2

0, , , 1 , 2 1 , 3 1 , 4 1
5   = + + + +G xG x G x G x G x

G

GF
G  

is isomorphic to 142

7HF  (Table 18). 
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Table 18. The canonical hypergroup of the hyperfield GF[52]/G. 

 

In field GF[72] of all linear polynomials with coefficients from Z7, the addition and the 

multiplication of the polynomials are defined in the usual way; by replacing x2 with 6, since x2+1 is 

the irreducible polynomial of degree 2. The multiplicative subgroup of index 6 in field GF[72] is  

G ={1, 6, x, 6x, 2x+2, 2x+5, 5x+2, 5x+5}, 

and its cosets are: 

G, (x+2)G, (x+2)2G = (4x+3)G, (x+2)3G = (4x+2)G, (x+2)4G = (3x)G and (x+2)5G = (6x+4)G 

The results of the hypercomposition in hyperfield GF[72]/G lead to the following proposition: 

Proposition 11. The hyperfield 

( ) ( ) ( ) ( ) ( ) 
2

0, , 2 , 4 3 , 2
7

4 , 3 , 6 4
   = + + + +G x G x

G
G x G x G x

G

F
G  

is isomorphic to 225

7HF  (Table 19). 
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Table 19. The canonical hypergroup of the hyperfield GF[72]/G. 

 

7.4. Quotient hyperfields F/G of order 7 for which G – G = F/G.  

This subsection, presents some seven-element hyperfields that derive as quotients of finite fields, 

in which the sum of two opposite elements yields the whole hyperfield. 

Proposition 12. The multiplicative subgroup of index 6 of fields Z67, Z79, and Z139 are, respectively: 

 

 

  1,  9,  14,  15,  22,  24,  25,  40,  59,  62,  64

  1,  8,  10,  21,  24,  25,  38,  46,  52,  62,  64,  65,  67

1,  6,  34,  36,  44,  45,  52,  55,  57,  63,  64,  65,  
  

77,  79,  80,  91,  100,  106,  112,  116,  125,  129,  131




=

=


=




G

G

G


 

and hyperfields Z67/G, Z79/G and Z139/G are isomorphic to 137

7HF  (Table 20). 
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Table 20. The canonical hypergroup of the hyperfields Z67/G, Z79/G and Z139/G. 

 

Proposition 13. 

i. The multiplicative subgroups of index 6 of fields Z103, Z127, Z151 and Z163 are respectively: 

   1,  8,  9,  13,  14,  23,  30,  34,  61,  64,  66,  72,  76,  79,  81,  93,  100

1,  2,  4,  8,  16,  19,  25,  32,  38,  47,  50,  
  

61,  64,  73,  76,  87,  94,  100,  107,  117,  122

1,  8,  9,  19,  20,  29,  44,  50,  59,  64,
  

 
 
 

=

=

=

G

G

G
 68,  72,  78, 81,  

 84,  86,  91,  94,  98,  110,  123,  124,  125,  127,  148

1,  6,  21,  22,  25,  36,  38,  40,  53,  58,  61,  64,  65,  77,  85,
 

104,  115,  126,  132,  133,  135,  136,  140,  146,  150,  155,  158

 
 
 




=


 


G

  

and the hyperfields Z103/G, Z127/G, Z151/G and Z163/G are isomorphic to 141

7HF  (Table 21). 
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Table 21. The canonical hypergroup of the hyperfields Z103/G, Z127/G, Z151/G and Z163/G. 

 

ii. The multiplicative subgroup of index 6 of field Z181 is 

1,  5,  25,  27,  29,  36,  42,  46,  48,  49,  56,  59,  64,  67,  82,  99,  114,  
  

117,  122,  125,  132,  133,  135,  139,  145,  152,  154,  156,  176,  180


=


 
 

G   

and the hyperfield Z181/G is isomorphic to 277

7HF  (Table 22). 

Table 22. The canonical hypergroup of the hyperfield Z181/G. 

 

Field GF[112] consists of all the linear polynomials with coefficients from the field of residues 

modulo 11. In GF[112], the polynomial x2+1 is irreducible. Thus, the polynomials are combined 

according to the ordinary rules, working modulo 11, by setting x2=−1=10. The multiplicative 

subgroup of index 6 in GF[112] is  
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G ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x} 

and its cosets are: 

G,  (3x+1)G,  (3x+1)2G = (6x+3)G,  (3x+1)3G = (4x+7)G, 

(3x+1)4G = (3x+6)G,  (3x+1)5G = (10x+8)G. 

The outcomes of the hypercomposition within the hyperfield 
211 /  GF G  give rise to the next 

proposition: 

Proposition 14. The hyperfield 211 /  GF G  is isomorphic to 277

7HF . 

In the field GF[132], the irreducible polynomial is x2+2. Thus, in the multiplication of the 

polynomials, we set x2 = −2 = 11. The multiplicative subgroup of index 6 in GF[132] is  

1,  5,  8,  12,

5 1,  8 1,  2 2,  11 2,  3 3,  10 3,  5 4,  8 4,  5,  12 5,  

6,  12 6, 7,  12 7,  8,  12 8,  5 9,  8 9,

3 10,  10 10,  2 11,  11 11,  5 12,  8 12

+ + + + + + + + + +

+ +

 
 
 

=  
 + + + + + 
  

+

+ + + + + +

x x x x x x x x x x

x x x x x x x x

x x

G

x x x x

, 

which has 28 elements, and its cosets are: 

G,  xG,  x2G = 11G,  x3G = 11xG,  x4G = 4G,  x5G = 11xG. 

Therefore, the proposition holds: 

Proposition 15. The hyperfield 
213 /  GF G  is isomorphic to 277

7HF . 

A hyperfield of type 277

7HF  or 141

7HF  is called a total hyperfield. 

Example 3. The multiplicative subgroup of index 6 of the field Z193 is:  

1,3,8,9,14,23,24,27,42,43,50,64,67,69,72,81,112,121,124,
  

126,129,143,150,151,166,169,170,179,184,185,190,192
G =

 
 
 

 

Its cosets are: 

G, 5G, 52G, 53G, 54G and 55G, 

and the hyperfield Z193/G is the total with self-opposite elements, which is isomorphic to 277

7HF . 

Example 4. The multiplicative subgroup of index 6 of field Z199 is:  

1,5,8,18,25,28,40,52,61,62,63,64 90,92,98,103,106111114,
  

116,117,121,123,125,132,139,140,144157,172,182,187 188
G

 
 
 

=
, , ,

, ,
 

Its cosets are: 

G, 3G, 32G, 33G, 34G and 35G, 
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and the hyperfield Z199/G is the total with no self-opposite elements, which is isomorphic to 141

7HF . 

The combination of Propositions 13, 14 and 15 along with Examples 3 and 4, gives rise to the 

conjecture: 

Conjecture: If the order of the multiplicative subgroup of a finite field exceeds a certain number, then 

the generated quotient hyperfield is total. 

The next theorems refer to the augmented hyperfields of the above quotient hyperfields. Bear in 

mind that if (H,+,) is a field or a hyperfield, then its augmented hyperfield is the hyperfield in which 

the sum of any two non-zero and non-opposite elements is extended (augmented) to include the two 

addends (extensive enlargement of the hypercomposition [5, example 8]). Proposition 1 in [28] (see 

also Proposition 2 in [1]) shows that in the augmented hyperfields the sum of two opposite elements 

is equal to the entire set H. Thus, the augmented hyperfield of a hyperfield is endowed with the 

following hypercomposition «∔»: 

 x ∔ y = {x, y}  x+y,  for all x,y  H*, with y ≠ -x, 

 x ∔ (-x) = H, for all x H*, 

 x ∔ 0 = 0 ∔ x = x, for all x H. 

The augmented hyperfield of a hyperfield H is denoted by [H] and, as proved in [28] (Proposition 

4) and in [1] (Theorems 4 and 5), if H is a field or a quotient hyperfield, then [H] is also a quotient 

hyperfield. 

Theorem 19. The augmented hyperfield of the field Z7 is isomorphic to 2

7HF  (Table 23). 

Table 23. The canonical hypergroup of the augmented hyperfield of the field Z7. 

 

Theorem 20. If G is the multiplicative subgroup of index 6 in the following fields, then: 
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i. The augmented hyperfield of the hyperfield Z13/G is isomorphic to 271

7HF , i.e., 

  143 271

7 713 /    Z HF HFG ; 

ii. The augmented hyperfield of the hyperfield Z19/G is isomorphic to 96

7HF , i.e., 

  719

9 96

7/    HF HFZ G ; 

iii. The augmented hyperfield of the hyperfield Z31/G is isomorphic to 95

7HF , i.e., 

  13

3

95

7 71 /     HF HFZ G ; 

iv. The augmented hyperfield of the hyperfield Z37/G is isomorphic to 276

7HF , i.e., 

  160 276

7 737 /    Z HF HFG ; 

v. The augmented hyperfield of the hyperfield Z43/G is isomorphic to 110

7HF , i.e., 

  61 110

43 7 7/    HF HFZ G ; 

vi. The augmented hyperfield of the hyperfield Z61/G is isomorphic to 277

7HF , i.e., 

  234 277

61 7 7/    Z HF HFG ; 

vii. For the hyperfields Z67/G, Z79/G and Z139/G, it holds that: 

      137 137

67 79 139 7 7/ / /      HF HFZ G Z G Z G ; 

viii. The augmented hyperfield of the hyperfield Z73/G is isomorphic to 276

7HF , i.e., 

  245 276

73 7 7/    Z HF HFG ; 

ix. The augmented hyperfield of: 

(a) the isomorphic hyperfields Z97/G and Z157/G, 

(b) the hyperfield Z109/G and  

(c) the hyperfield Z181/G 

is isomorphic to 277

7HF , that is 

    267 277

97 157 7 7/ /      HF HFZ G Z G , 

  246 277

109 7 7/    HF HFZ G , 
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and 

  277 277

181 7 7/    HF HFZ G ; 

x. For the hyperfields 103 127 151 163/ ,  / ,  / ,  /Z G Z G Z G Z G  it holds that: 

       103 127 151 1

141 14

3

1

6 7 7/ / / /       HF HFZ G Z G Z G Z G ; 

xi. The augmented hyperfield of the hyperfield 
25 /  GF G  is isomorphic to 277

7HF , i.e., 

142 277

7

2

75 /  
 

       HF HFGF G ; 

xii. The augmented hyperfield of the hyperfield 
2 /7  GF G  is isomorphic to 275

7HF , i.e., 

225 275

7

2

77 /  
 

       HF HFGF G . 

The proofs for cases (i) through (xi) of the aforementioned theorem are straightforward; however, 

the proof for the last case is included in Section 10 along with the necessary analysis. 

7.5. Classification of hyperfields of order 7 

The analysis and study of the various cases, conducted through Propositions 8, 9, 10 and 11, lead 

to the following theorem, which provides a classification of all the hyperfields of subsections A1–A3 

and B1–B5 of Section 10: 

Theorem 21. 

i. Subsection A1 consists of the field Z7 and its augmented hyperfield. 

ii. All hyperfields in subsection A2i are non-quotient hyperfields. 

iii. All hyperfields in subsection A2ii are non-quotient hyperfields with the exception of 9

7HF , which 

is a quotient hyperfield. 

iv. All hyperfields in subsection A3i are non-quotient hyperfields with the exception of 13

7HF , which 

is a quotient hyperfield. 

v. All hyperfields in subsection A3ii are non-quotient hyperfields with the exception of 61

7HF , which 

is a quotient hyperfield. 

vi. Subsection B1 consists of quotient hyperfields. 

vii. Subsection B2 consists of non-quotient hyperfields. 

viii. All hyperfields in subsection B3i are non-quotient hyperfields with the exception of 160

7HF , which 

is a quotient hyperfield. 

ix. All hyperfields in subsections B3ii and B4i are non-quotient hyperfields. 

x. All hyperfields in subsection B4ii are non-quotient hyperfields with the exception of 225

7HF  and 
234

7HF , which are quotient hyperfields. 
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xi. All hyperfields in subsection B5i are non-quotient hyperfields with the exception of 245

7HF  and 
246

7HF , which are quotient hyperfields. 

xii. All hyperfields in subsection B5ii are non-quotient hyperfields with the exception of 267

7HF , which 

is a quotient hyperfield. 

8. Discussion 

In mathematics, a set of axioms is any collection of formally stated assertions that are consistent, 

can be used to prove other formally stated assertions and none of which is redundant. In this sense, the 

four additive axioms of the hyperfield are reduced in this paper by one, as it is proved that the axiom 

of reversibility can derive from the remaining axioms. 

This reduction, combined with the development of a suitable algorithm based on the newly 

established reduced set of axioms, enabled the construction and enumeration of the hyperfields of order 

7. Through the construction of these hyperfields, an important family of canonical hypergroups was 

simultaneously obtained, specifically, those capable of serving as the additive parts of hyperfields with 

7 elements. Moreover, since canonical hypergroups are join hypergroups [82] and, when their elements 

are idempotent, they form join spaces [83,84], a corresponding family of finite join hypergroups was 

also constructed. The construction of all these hypercompositional structures not only provides insights 

into their internal algebraic properties but also establishes a solid foundation for further theoretical 

developments and applications in areas to which they are directly related, such as projective geometry, 

matroid theory, and tropical geometry. 

Furthermore, the study of the isomorphism of the hyperfields of order 7 to the quotient hyperfields 

supports the conjecture that the multiplicative subgroups of a field have additive properties that other, 

arbitrary subsets with the same cardinality do not have. In simpler terms, we can reasonably assert that 

the elements of a finite field’s multiplicative subgroups have a specific distribution within the field, 

such that, when these subgroups exceed a certain minimum order, they can be added to, or subtracted 

from themselves or from their cosets and generate the field. In light of this conjecture and given that 

if G is a subgroup of finite index in the multiplicative group of an infinite field F, then G–G=F, it is 

reasonable to raise the question of whether most finite hyperfields are non-quotient ones. 

In this paper, also appear properties and examples of skew hyperfields, strongly canonical 

hyperfields/hyperrings, and superiorly canonical hyperfields/hyperrings that round off and complete 

the conclusions and results of [1].  

9. Conclusions 

The development of an equivalent and reduced axiom system for hyperfields is important in both 

theoretical and practical aspects of the theory of hypercompositional structures. A more concise set of 

axioms not only simplifies the process of formal proofs but also significantly improves the efficiency 

of algorithmic approaches, particularly in the enumeration and classification of algebraic structures 

such as hyperfields. This simplification is of considerable value in computational algebra, where 

exhaustive searches and structural verifications must be implemented efficiently. 

Regarding the enumeration of the hyperfields of order 7, the findings presented in this study 

provide a complete enumeration of such structures for the first time. It establishes that there exist 277 

hyperfields of order 7, including the field Ζ7, all of which are presented in Section 10. 
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Among these 277 hyperfields, 64 are monogene. Using the propositions and theorems established 

in this paper, the 213 non-monogene hyperfields were classified. It is shown that, apart from the field 

Z7, there exist 11 quotient hyperfields and 201 non-quotient hyperfields. Furthermore, it is shown that 

among the monogene hyperfields, 9 are quotient hyperfields. The analytical classification of these 

hyperfields is presented in Tables 26 and 27 of Section 10. 

The classification of the remaining monogene hyperfields necessitates the development of new 

theorems, and this remains an open area for further research.  

The challenge of constructing, enumerating, and classifying hyperfields with an order exceeding 

7 continues to be unresolved. 

10. The list of 7-element hyperfields and their classifications 

The enumeration of hypercompositional structures has been a research area since the 1980s. The 

initial publication addressing this subject was authored by M. De Salvo and D. Freni [58]. 

Subsequently, R. Migliorato focused on the enumeration of 3-element hypergroups [59], with his 

findings being validated by later studies [60,61], which progressively refined the computational 

techniques employed in the enumeration process. Since then, this topic has been the subject of 

numerous papers (e.g., [62–81]). The hyperfields of order less than 6 are enumerated in [1,69–72], 

from which [1] presents their detailed classification with the necessary extensions and corrections of 

the previous results and summarizes all of them in its Table 26. Considering the field as a special case 

of the hyperfield, there are 2 hyperfields of order 2, 5 hyperfields of order 3, and 27 hyperfields of 

order 5. Interestingly, all the hyperfields of order 2 and 3 are quotient hyperfields [1]. 

In this Section, we present the hyperfields of order 7, which are produced as described in Section 

6 and with the use of the Mathematica [85] packages that are developed in [61,73–76]. A collateral 

direct consequence is that the corresponding family of canonical 7-element hypergroups is also 

revealed. Moreover, since every canonical hypergroup is a join one [82], a familly of 277 seven-

element join hypergroups is constructed as well. 

The symbols 0, 1, a, b, c, d and e are used to denote these hyperfields’ elements, where a is the 

generator of their multiplicative subgroup and b, c, d and e represent the elements a2, a3, a4, and a5, 

respectively.  

The table of order 7 hyperfields’ multiplicative subgroup is the following (Table 24): 
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Table 24. The multiplicative subgroup of the hyperfields of order 7. 

 

Note that the isomorphic for each hyperfield in this Section can be obtained by interchanging a 

with e, and b with d. For example, the augmented hyperfield of 225

7HF , referenced in Theorem 20.xii, 

has the canonical additive hypergroup of Table 25: 

Table 25. The canonical hypergroup of the augmented hyperfield 
225

7
  HF  of 225

7HF . 
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This hyperfield is not among the ones in the list below. However, the list contains its isomorphic 

hyperfield 275

7 ,HF  which is obtained from 225

7
  HF  by interchanging a with e and b with d in the 

above Cayley table. 

The categories in which the hyperfields of order 7 are classified in the following list are: 

A. The hyperfields of order 7, which do not have self-opposite elements. For these, 01+c. 

B. The hyperfields of order 7 with self-opposite elements. For these, 01+1. 

The above categories were divided into subcategories according to the number of elements included 

in the difference x-x. Observe that when card(x-x)=7, then the hypercomposition is closed, i.e., x,yx+y 

(see Proposition 1 in [28], Proposition 2 in [1]). The following Tables 26 and 27 summarize the number of 

hyperfields of order 7 in each category and subcategory. 
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