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Abstract: We study a broad class of nonlocal advection-diffusion models describing the behaviour
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others. Our model allows for different nonlocal interaction kernels for each species and arbitrarily
many spatial dimensions. We prove the global existence of both non-negative weak solutions in any
spatial dimension and positive classical solutions in one spatial dimension. These results generalise
and unify various existing results regarding existence of nonlocal advection-diffusion equations. We
demonstrate that solutions can blow up in finite time when the detection radius becomes zero, i.e. when
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verify our results with numerical simulations on 2D spatial domains.
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1. Introduction

We consider a multispecies model of interacting species, which sense their environment and other
species in a nonlocal way [15,32,37]. The individual populations are denoted by u;(x, t), where t > 0
denotes time, x € Q denotes space and the index i = 1, ..., N denotes the species. The model is given
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by

N
uit; = Dilu; + V - [uizyijV(K,.j . uj)), i=1,...,N. (1.1)
=1

Here, K;; is a twice-differentiable function, with VK;; € L™, and K;; * u; denotes a convolution operator
defined as

Kij*uj(x) = fg; K;ij(x = y)u;(y)dy.

From a biological perspective, K;; describes the nonlocal sensing of species j by species i. The
constants D; > 0 are diffusion coeflicients of species i and the values of y;; denote the extent to
which species i avoids (if y;; > 0) or is attracted to (if y;; < 0) species j. For the definition of the
nonlocal term to make sense, here we let Q = T", the n-torus defined by identifying the boundaries of
[-Li, L] X --- X [-L,,L,] in a periodic fashion.

Nonlocal interaction models, such as (1.1), have become important tools in the mathematical
modelling of biological species [3, 4, 11, 29, 32, 40]. Key to their specification are the nonlocal
kernels, K;;, which model the interactions within and between species. Organisms do not typically
make movement decisions only based on the local information they have about prey, predator, or food
sources. Rather, movement decisions are based on information gathered over a certain ‘perceptual
radius’ via sight, smell, sounds, or other means of sensing [37]. These biological considerations have
given rise to certain popular functional forms for the kernels, such as the top hat kernel, whereby K;; is
constant on a ball of radius R;; around the origin and zero elsewhere, so that R;; directly corresponds
to an organism’s perceptual radius [35]. Other works have considered exponentially decaying or
normally-distributed kernels [14]. From the mathematical perspective, different choices of K;; have
sometimes been made for mathematical convenience, to enable either exact calculations [7] or proofs
[28]. However, often there are only small modifications required to move between a biologically-
inspired kernel (e.g. the top hat distribution) and a mathematically convenient one (e.g. a smooth
mollification of the top hat kernel, allowing for certain existence proofs [17]). Here, we assume that
each K;; is integrable and twice differentiable with max; ;||[VK;j|l < oo, which encompasses all the
examples just mentioned, possibly up to an arbitrarily small mollification. Importantly, however, our
assumption does not encompass the Dirac delta function, where nonlocality vanishes.

Currently, the mathematical analysis of organism movement based on nonlocal perception is at full
swing [32]. Several authors consider models of the form (1.1) to study species aggregation, segregation,
avoidance, home ranges, territories, mixing, and spatio-temporal patterns [3, 5,6, 8, 12, 16, 18, 20, 27,
32,34,37]. In many of these papers, the analysis starts with results on local and global existence and
positivity. These results are generated through various methods, such as energy functionals [6, 18,28,
32], semigroup theory and fixed-point arguments [4], or direct PDE-type estimates [24], all depending
on the specific model at hand. In [6], using methods from [9], the authors consider model (1.1) for
one species with smooth interaction kernel and they show global existence of classical solutions, using
energy-entropy methods. In [28] the assumption of smooth interaction kernels is relaxed, and assuming
a detailed balance condition on the kernels, global existence for weak solutions is shown. Our previous
work in [17] proves existence of local solutions in any space dimension and global solutions in 1D for
the case of equal interaction kernels, i.e. K;; = K.

Here we combine these results into a unifying existence theory for nonlocal models of type (1.1).
In contrast to previous models, we allow the interaction kernels Kj; to vary from species to species, and
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we have no restriction on the space dimension. This is somewhat surprising, since global existence for
local versions of our model do strongly depend on the spatial dimension [10, 30, 38]. This behaviour
is similar to the well known chemotaxis model [22,26]. Solutions to the standard chemotaxis model
are globally bounded in 1-D, while they blow-up in higher dimensions, if the initial population is large
enough in the L">-norm, where n denotes the space dimension [26]. Guided by these observations, we
consider the local limit of (1.1) and we also find cases in n > 2 dimensions where finite time blow-up
is possible.

The paper is organised as follows. In Section 2 we define a modified version of Equation (1.1) and
prove some preliminary results. This modified model is then analysed in Section 3, where we prove
the local existence of mild solutions, and in Section 4, where we prove the global existence of positive
solutions. We conclude our proof by showing that every positive solution of the modified model is also
a solution of Equation (1.1). In Section 5 we show that in the corresponding local system the solutions
can blow up in finite time. Section 6 concludes with numerical simulations showing that the solutions
of the nonlocal problem, although they become steeper as the detection radius becomes smaller, still
remain bounded.

2. A modified version of our system

To establish our existence results for Equation (1.1), our approach is first to prove existence and
non-negativity of weak solutions to a slightly modified version of Equation (1.1). We then show that
any solution of this modified system is also a solution of Equation (1.1). The modified system is as
follows

N
= Dbty + V- [ hw) Yy VK e up|,  i=1,..,N, (2.1)

J=1

where h(u) = u if u > 0 and h(u) = 0 if u < 0. Note that whenever u; > 0, Equations (1.1) and (2.1)
are identical. In Equation (2.1), derivatives are understood weakly. In particular, the weak derivative
of h(u) is W(u) = 1 if u > 0 and A’'(u) = 0 if u < 0. We collect some basic properties of h(u) in the
following Lemma.

Lemma 1. For any v € H'(T), we have |h(v)|l;2 < |Vl IVEW)|2 < IVVl2, and ||h(V)VV|| <
WY1, For any vy, v, € LA(T), we have ||h(vi) — h(vo)|l;2 < [[vi = vallp2.

inequality |[VA(W)||2 < ||VV|];2 follows from the same definitions, and also that VA(v) = h’(v)Vv. The
inequality ||h(v)VV||1 < |[vVv||, follows from the definitions of 4 and the L'-norm.
For the final inequality, we observe that

Proof. The inequality ||A(v)||,2 < ||vll;2 follows from the definitions of 4 and the L?>-norm. The

Ih(v1) = h(w)II7> = f (h(v1(x)) = h(vy(x)))*dx = f (V1 (x) = va(x))’dx + f vi(x)dx + f v3(x)dx,
T S So S3
where S = {x e T :vi(x) > 0,va(x) >0}, S, ={xeT:vi(x) >0,vx) <0},and S3 = {x e T :
vi(x) < 0,v,(x) > 0}. Now, for x € §,, we have v,(x) < 0and vi(x) > 0sov;(x) < vi(x)—v,(x), and then

vi(x) < (v1(x)—v2(x))?. Similarly, for x € S5, we have v,(x) < v2(x)—vi(x) and v3(x) < (v2(x)— v (x))*.
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Hence
f (1(x) = v2(x))*dx + f vi(xdx + f v3(x)dx < f (1(x) = v2(0))*dx < [lvy = wallp.
S S» S $1US2US5
so that [|A(v1) — h(v2)llz2 < |lvi — vallz2. O
3. Local existence of mild solutions

We begin by proving local existence of mild solutions to Equation (2.1).

Definition 1. Given uy = (uyg,....,uno) € EL*TY)Y and T > 0, we say that u(x,t) =
(ui1(x, 1), ..., un(x, 1)) € L((0, T), L>(T"))" is a mild solution of Equation (2.1) if

N
h(u;)V (Z %J'Kij * Mj)

=1

!
u; = Py, — f PRy ds (3.1)
0

for each 0 < t < T, where eP' denotes the solution semigroup of the heat equation u; = D;Au; on T",
and u;o(x) = u;(x,0) is the initial condition.

Theorem 2. Assume uy € H*(T")V and each K;; is twice differentiable with max; ;||VK;jllc < oo.
For each uy € L*(T")N there exists a time T, > 0 and a unique mild solution of Equation (2.1) with
u € L((0,T,), L>(T")N. Moreover, u € C'((0, T.,), L*(T")N n C°([0, T.,), H*(T™))".

Proof. In [17, Theorem 3.6] we showed local existence of mild solutions for Equation (1.1) using
a fixed point argument. In that case the sensing mechanism for each species was equal K;; = K
forall i,j = 1,...,N where K is twice differentiable. To prove the same result for variable K;; is
(2.1) rather than Equation (1.1) requires additionally employing the estimates on /4 from Lemma 1.
Other than this, the proof remains unchanged from that in [17, Theorem 3.6] so we do not repeat it
here. O

4. Global existence and positivity

Following the strategy of [17], we define a time T\ as follows. If ||u||;: is bounded for all time then
let T, = oco. Otherwise |[|u||;1 — oo as t — T for some time 7Tp,.x € (0, 00). In this case, let T, be
the earliest time such that ||u||;1 = 2||up|[;:. Our aim is to establish existence and positivity up to time
T., then use this to prove that 7, < oo leads to a contradiction. This means that 7', = oo, establishing
global existence of weak solutions. To show that 7', = co, we need the following positivity result.

Lemma 3. Keep all assumptions from Theorem 2 and also assume u;(x,0) > 0inT" foralli=1,...,N.
Then u(x,t) > 0 for solutions of Equation (2.1) for t € (0,T.). Here we understand u > 0 a.e. in T"
component-wise.

Proof. Suppose u = (uy, ..., uy) is a solution to Equation (2.1) and let us fix an index i € {1,..., N}.
We use a standard idea of cutting off the negative part of the solution. Such a method has, for example,
been used in [21] for chemotaxis models. We define the negative part as u; (x, 1) := u;(x, ) if u;(x,1) <0
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and u; (x,1) := 0 if u;(x,1) > 0, and we split the domain T" as J_(¢) = {x € T" : u;(x,1) < 0}, Jo(¥) =
{(x €T : ui(x,t) = 0}, and J.(¢) = {x € T" : u;(x,t) > 0}. Since the L>-norm of u; is differentiable in
time, we can write

dl1
d—EIILtl-_(.,t)lli2 = f ul-_u;dx+f ui_u;dx+f u; udx = f u; u,dx. 4.1)
! J-(1) Jo(®) J+(0) J-(1)

=0 =0

Since J_(¢) is an open set and u; and its weak spatial derivatives are continuous and differentiable in
time, we have u;, = u; and Vu; = Vu;, on J_(¢). Then from Equation (2.1) we obtain

di, . =
Eillul (., t)lle = ﬁ_(t) U; [DiAI/ti +V- (h(l/t,) Z ’)/”V(KU * I/t])]] dx

J=1

N
- D, f Vu; Pdx + f u DV -mydS — | (Vup)- [h(ui) 3y VK, + uj)]dx
J_(1) aJ_(1) J_(1) j=1

N
+ f u; h(u;) Z ¥ij(V(Kij * u)) - n)dS, 4.2)
a7 =

where dS is used to denote the boundary measure on dJ_(¢) and n denotes the outward normal vector
on dJ_(t). On 8J_(t), we have u; = 0, hence both boundary integral terms vanish. The third term on
the right hand side also vanishes, since on J_(¥) we have h(u;) = 0. Hence we find

dl

_ | I
dt2||ui (Dl = =2D; (EIIVMZ' (& t)“iz) <0.

Therefore ||ul.‘||i2 is a Lyapunov function and when ||u; (., 0)||;> = O then [[u; (., t)||i2 =0forallt>0. O

Theorem 4. Let uy = (uyo, ..., uno) € H* (TN and make the same assumptions as in Lemma 3.
Then in the solution from Theorem 2, we have T, = oo. In other words, u € C'((0, o), L*(T"))V N
C([0, 00), HA(T").

Proof. Since u;(x,t) > 0 for all x, ¢, we have, for each t > 0,

|[zeil|r = ﬁui(x, Ndx. 4.3)

However, the right-hand integral (total population size) remains constant over time. Therefore ||u;||;1 is
constant over time. Now recall the definition of 7', which states that if ||u;||;:1 is bounded for all i then
T, = oo. m|

This establishes global existence of weak positive solutions to Equation (2.1). To establish the
analogous result for Equation (1.1), we note that any positive solution to Equation (2.1) is also a
positive solution to Equation (1.1), since A(u;(x, 1)) = u;(x,t) whenever u;(x,t) > 0. Hence we have
established the following.

Theorem 5. The solution u € C'((0, 00), L2(T"))N N C°([0, 00), H*(T™))N from Theorem 4, is a positive,
global, weak solution to Equation (1.1).
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In particular, in one spatial dimension the solutions are classical and strictly positive, as proved in
the following.

Theorem 6. On 1D domains, the solution to Equation (1.1) given in Theorem 5 is a classical strictly
positive solution.

Proof. In one spatial dimension we have the Sobolev embedding from H? to C'. By using the same
argument of [17, Lemma 3.8], we can show that the solution u given in Theorem 5 is such that u(-,7) €
C?. Therefore, in 1D the solution to Equation (1.1) satisfies

u € C'((0, ), L2(T))N n C°([0, ), C*(T))", (4.4)

which is therefore a classical solution. To prove that this solution is strictly positive in 1D, we consider
the following linear parabolic PDE problem

N
O-it:Diaxxo_i+ax[0—iz7/ijax(Kij*uj))a i=1,...,N, 4.5)

J=1
where u = (uy, ..., uy) is the solution to the one dimensional version of Equation (1.1) satisfying (4.4).
Notice that the coefficients of the linear problem in Equation (4.5) are continuous. Leto = (07, ...,0y)

be a non-negative (component-wise) classical solution to Equation (4.5). Then Harnack’s inequality
for parabolic systems (see [13, Theorem 10, page 370]) ensures that for each 0 < #; < 7, there exists a
positive constant C such that

sup oi(x, ty) < Cit%foy-(x, 1), i=1,...,N. (4.6)
T

In particular, u = (uy,...,uy) is a solution to Equation (4.6), and therefore it satisfies the inequalities
in Equation (4.6), that is

sup u;(x,t;) < C ir%f ui(x, 1), i=1,...,N, 4.7)
T

for each 0 < t; < t,. Since u; > 0 and ||u;||r = |luipllr > 0, it follows that sup u;(x, ¢;) > 0, which
implies that inf u;(x, #) > O at any positive time ¢. The above Harnack’s inequality is not available for
weak solutions in higher dimensions, hence we prove strict positivity only for the 1D case. O

5. Blow-up of the solutions in the local limit

In this section we formally show that solutions of the local version of Equation (1.1) (i.e., the
equation obtained by choosing the kernels K;; equal to the 6-Dirac function) can have finite time blow-
up solutions for n > 2, where n denotes the spatial dimension. To this end, we use an argument
previously used for chemotaxis models (see [33]). Namely, we consider a case where an aggregation
arises at a certain location and we orient the torus T” in such a way that the ‘boundary’ locations — i.e.
where x; = +L;/2 for some k where x = (xy,..., x,) — are far away from this aggregation. Then we
consider the second moment of this aggregate and show that for a bounded solution, the second moment
becomes negative over time. This contradicts the assumption of the solution to be bounded and hence
implies blow-up. We will consider two cases: y;; < 0, forall i, j = 1,..., N (mutual attraction and
self-attraction); y; < 0,i = 1,..., N (self-attraction) and ;; > 0, i # j (mutual avoidance).

AIMS Mathematics Volume 10, Issue 9, 21254-21272.



21260

Theorem 7 (Formal Blow-up). Consider the PDE
N
Uy = Dl'AMl' +V. [uiZyijVuj], (51)
=1

obtained from Equation (1.1) with K;; = ¢, for all i,j = 1,...,N, where ¢ denotes the 6-Dirac
distribution. Let

Assume that u(x,t) = (ui(x,1),uy(x,1t),...,un(x,1t)) is the solution with initial condition u, =
(u10, ..., Uuno). Assume further that, for alli = 1,...,N, uy decays to zero as x, — —Ly, Ly for any
k=1,...,n

Case 1. Let y;; < 0 (mutual and self- attraction), foralli,j=1,...,N. If

y 2PD
and )/(l]) < —m (53)

T"|

P>

then the solution u becomes unbounded in finite time.

Case 2. Let y;; < 0 (self-attraction), fori = 1,...,N, and y;; > 0 (mutual avoidance), for i # j and
i,j=1,...,N, such that

N
Z(y,-j+yj,-)<—y,-,-, forall i=1,...,N. (5.4)
T
If
i ) 4PD
P>N d ¥y <———— 55
>N—= and "< P NI (3.5)

then the solution u becomes unbounded in finite time.

Proof. Case 1. Define the second moment as

M) := Z

1

f |x?u;(x, H)dx, (5.6)

N
- YT
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and compute

N

d 2
d_tM = Z anlxl uidx

N
=y D f X Audx + Z ¥ij f XV - (u;Vu)dx
i=1 i,j=1

N
D,.( f V- (|x*Vu,)dx - f V(lez)-Vuidx)dx
i—1 T T

N
+Zyu( fT V- (Vi) dx - fT n V<|x|2>~(uiVuj)dx)

ij=1

N
:—Z fV(|x|) Vua’x—Zy,J\fT V(|x|2).(u,»Vuj)dx
i=1 i,j=1 "
N
:—ZZDifx Vu,dx — ZZy,fo-(uiVuj)dx
i=1 ™ i.j=1 o
N
:—ZZDifx'Vuidx—Zyijfx-V(uiuj)dx
i=1 ™ ij=1 ™
N N
:—ZZDifV-(xui)dx+2nZDifudx—Zy,JfV (xuu])dx+n2yl]fu,~ujdx
i=1 ™ i= i,j=1 i,j=1 i
N

:ZnZDifu,dx+nZy,]fu,~ujdx
i=1

i,j=1

N
SZnZDifudx+’y(”) quu]dx
i=1

i,j=1
2

N N
=2n Z D; f u;dx + y(ii)nf u; | dx
i=1 ™ ™ \i=1

N N\
<2Dn f u;dx + 7(ii)nf ui dx
N N
<2Dn f widx +y'n |2 udx — |T"|

=1 YT

N N
=2Dn Z f ujppdx + y(ii)n (2 Z f Ujppdx — IT"I]
-1 Tn N T

i=1

(5.7
where ¥ and D are defined in Equation (5.2). The third and seventh equalities are obtained integrating
by parts. The third inequality follows from y'” < 0 and the Young’s inequality a®> > 2a — 1. The last
equality follows from conservation of total population size, i.e. an ui(x,t)dx = an ujo(x)dx, for all t >
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0, where u; is the initial condition.
By using the definition of P = 3| an ujo(x)dx, Equation (5.7) can be rewritten as

d )
oM < 2DnP +yn 2P — [T"). (5.8)
Since T D
" i, +&
P — d (”) = - D) 5'9
> andy 2P —T"] (5:9)

for some £ > 0, then d%M < —en. Since the derivative of M(t) is bounded above by a strictly negative
constant, —en, there exists a finite time 7 > 0 such that M(T") = 0 (by Mean Value Theorem). Hence,
by Equation (5.6) and since u;(x, f) conserves its total mass, it follows that, foralli = 1,..., N, u; tends
to 6(x), the Dirac delta function, as t — 7. This completes the proof of Case 1.

Case 2. As in the previous case, we compute the time-derivative of the second moment of M(t) as
follows

d N
EM:Zni_ZlDifu,dx+nZyljfuujdx

i,j=1

:2niD,~f u,~dx+n2y,-,~f u; dx+n2yljf uiujdx
i=1 ™ i=1

i,j=1
i#j

<2nZDfu,dx+nZy,,fu dx + = Z(ylj+y],)fudx

l]l
i*]

N N
n
<2n D, u;dx + = u; 2 dx
2o 221 i 5.10
< 2Dan u; dx+y(”) f

N
< 2Dan uidx + ¥ = Zf Qu; — 1)dx
N
=2Dn Z f widx +y'n Z f dx — y(”) NIT"I
- n =1
Z f uipdx +y'n f ujpdx — 7(”) NIT”I

™

where ¥ and D are defined in Equation (5.2). Since P = YV, fw ujo(x)dx, Equation (5.10) can be
rewritten as

d y N
—M < 2DnP + % (P——T"). 5.11
oM=< nP + v'"n 2| | ( )
Since ™ 4PD
n +&
P> = 5.12
NI (5.12)
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for some € > 0, then %M < —en/2. Then, by the same argument as Case 1, ; tends to 6(x) ast — T,
foralli=1,...,N. O

The above calculations do not give a complete categorisation of blow-up regimes, but do
demonstrate the singular nature of non-linear and local cross-diffusion terms. As with chemotaxis
models [1, 22,23, 25], such a categorisation requires advanced machinery such as energy estimates
or multiscale arguments, which are beyond the scope of this work. We leave the general question of
blow-up in Equation (5.1) as an interesting open problem.

6. Numerical simulations

The aim of this section is to demonstrate numerically how the existence of solutions breaks down
in the spatially-local limit of Equation (1.1) for a few choice examples. For our numerical solutions,
we use a spectral method and the numerical scheme described in [17]. First, we analyse the behaviour
of the numerical solutions when adopting the following interaction kernel:

S z 212 F 242 < 2
r?j(ﬂz—4)(1 +c0s(ru VX2 +y )), if x* +y” <7,

Ki '(x’ )’) =
! ) otherwise,

6.1)

which satisfies the assumptions of Theorem 2.

Figure 1 shows three sets of numerical simulations obtained by fixing N = 1 population (in (a) and
(b)), N = 2 populations (in (¢) and (d)) and N = 3 populations (in (¢) and (f)), with y;; < 0 (mutual
attraction) and r;; = rj;, for all 7, j. The simulated populations become steeper as the detection radius,
rij, decreases. This is suggestive of blow-up as r;; vanishes, even though solutions remain bounded
for all strictly positive r;;. Note that in the limit r;; — 0 for all i and j, this example reduces to Case
1 analysed in the previous section. There, we show that the local system may undergo a finite time
blow-up for large enough initial data. The appearance of spike solutions becomes more pronounced
with the addition of populations. In fact, for fixed values of r;;, the addition of populations makes
the solution higher and steeper, due to the fact that, in addition to self-attraction, the populations also
exhibit mutual attraction (compare panels a, ¢, and e).

Figure 2 shows a similar analysis to Figure 1, but this time focusing on the situation relevant to
Case 2, i.e. populations exhibiting mutual avoidance and a sufficiently strong self-attraction. As with
Figure 1, we observe that as r;; decreases, the population profiles become steeper, suggesting blow-up
as r;j tends to zero.
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Case 1. y;; < 0: Self attraction and Mutual attraction

w u
80
60 400 l
40, 200
20
1 S
~ 1
y ! y < !
00 00
@ r; = (b) ryy =
0.3 0.2
up Uz uy U2
150, ‘ 50 ‘ 800 o0
600 l 600 l
100 1004 i 400 400
50 50 ~. 200 200
0l 0. 0 0
1 1 s 1 1 .
y - 1 y § - 1 y - 1 v — 1
00 00 00 00
(C) r,-j=0.3 (d) r,-/-=0.2
U1 U2 us Uy U3 u3
- 1000 T 1000 T 1000
200 200 ‘
500 500 500
100 i 100 |
0. 0 0. 0. 0
. e 1 el 1 i, 1 o 1 . ) ~ 1 ~
y o] y o] y o] Y Ny ! V% ! Y Oy
00 00 00 00 00 00
(e) rij=0~3 (D rij=0-2

Figure 1. Numerical simulations of Equations (1.1), with K;; defined as in (6.1), on square
domains for different numbers N of populations: N = 1 in (a)-(b), N = 2in (c)-(d),and N = 3
in (e)-(f), for decreasing values of the sensing ranges r;;, with r;; = rj;, for i, j = 1,2,3. The
other parameter values are: D; = 1, y;; = y; = —1, forall i, j = 1,2,3. For each value of
N, the stationary states with r;; = 0.3 (panels (a), (c), and (e)) emerge from a small random
perturbation of the homogeneous steady state. The resulting stationary solution is then used
as the initial condition for the simulation with r;; = 0.2. All panels show the solutions at time
T = 10, after transient dynamics have subsided.
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Case 2. y;; <0, y;; > 0 for i # j: Self attraction and Mutual avoidance

Uy, U2 U1, U
— \\\\\ 400 S
40 200 -
20 — R N
1 ™~ 0
~ - 1 ~ /
N L Ao
00 0o
(a) Tij =0.3 (b) Tij =02

Figure 2. Numerical simulations of Equations (1.1), with Kj;; defined as in (6.1), on square
domains with N = 2, for decreasing values of the sensing ranges r;;, with r;; = rj;, for
i, j = 1,2. The other parameter values are: Dy = Dy = 1, y;; =y = =5, y12 = y21 = L.
The stationary solution in (a) emerges from a small random perturbation of the homogeneous
steady state with r;; = 0.3. This stationary solution is then used as the initial condition for
the simulation with r;; = 0.2 (panel (b)). All panels show the solutions at time 7" = 10, after
transient dynamics have subsided.

In addition to these two examples inspired by the Case 1 and Case 2, we also examine some
cases where we do not currently have blow-up results. For example, Figure 3 shows the case of two
populations that attract each other (y,,7¥,; < 0) but do not exhibit self-attraction (y; = 0). Likewise,
in Figure 4 we consider a mixture of self-avoidance and self-attraction, mutual avoidance and mutual
attraction, again observing a peak narrowing as r;; decreases. Note also that, in Figures 3 and 4, only
one of the detection radii is reduced, suggesting that solutions of System (1.1) may blow-up even in
situations where just one of the kernels Kj; is the 6-Dirac function. A detailed analysis of various
blow-up scenarios is a fruitful direction of future research.

Case 3. y;; = 0, y;; < 0 for i # j: No-Self attraction and Mutual attraction

uy U9 (51 U
100 100 g 100 S -
] ' 600
50 50 A 50 400 |
200 |
ol A ol ol A 0.
1 1 “1 1 1 Y
y A X y o X y X y X
00 00 00 00
(a) r2j=0.3 (b) r2j=0.1

Figure 3. Numerical simulations of Equations (1.1), with K;; defined as in (6.1), on square
domains with N = 2, for decreasing values of the sensing ranges r,; = ry, with ry; = r; =
0.4 fixed. The other parameter values are: D; = Dy = 1, y11 = y20 = 0, y12 = 21 = —1.2,
v12 = v21 = 1. The stationary solution in (a) emerges from a small random perturbation of
the homogeneous steady state with r;; = 0.3. This resulting stationary solution is then used
as the initial condition for the simulation with r;; = 0.1 (panel (b)). All panels show the
solutions at time 7" = 10, after transient dynamics have subsided.
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Case 4. Miscellaneous

U U
1;\ 1 - U9 Uus
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Figure 4. Numerical simulations of Equations (1.1), with Kj;; defined as in (6.1), on square
domains with N = 3 for decreasing values of the sensing ranges r3; = r3; = r33, while
rij = 0.4 and rp; = 0.3, for j = 1,2,3, are kept fixed. The other parameter values are:
Dy =Dy =Ds =1, yn=1Lyno=-Lys=-Lyo=yn=1Lys =y =1
v23 = v32 — 1. The stationary solution in (a) emerges from a small random perturbation of the
homogeneous steady state with r;; = 0.3. This resulting stationary solution is then used as the
initial condition for the simulation with r;; = 0.1 (panel (b)). All panels show the solutions
at time 7 = 30, after transient dynamics have subsided.

To assess the consistency of the observed steepening behaviour with respect to the choice of kernel,
we performed additional simulations using two alternative smooth kernels: the following bump kernel

X2 /52
C (e_(,z(|1|,i2/,.2)), if x* = x* +y* < 12,
K(x,y) = (6.2)
0, otherwise,
and the following mollified top-hat kernel
Ci, if X% +y* < r7,
K(x,y) = Clexp{l— (1| 1)2], ifr <x*+y*<r, (6.3)
1— X|—7,
r=rq
0, otherwise.

Both kernels are supported on a disk of radius r and satisfy the assumptions of Theorem 2. The
constants C and C; in the kernel definitions are chosen so that the resulting functions are probability
densities, i.e., they integrate to one over their support, and we set o = 0.5 and r; = 0.97 throughout. We
carried out a similar investigation to that of the cosine kernel (Equation (6.1)) and observed comparable
steepening behaviour for decreasing values of the interaction range r. Here, we present results for a
representative case: the two-population setting under Case 1, where y;; < 0, and r;; = r;; =: r, for all
i, j. In our simulations, we observe that, as r decreases, the stationary solutions become increasingly
peaked (see Figure 5), suggesting a tendency towards blow-up in the local limit. However, the rate at
which this steepening occurs depends on the kernel. Specifically, the bump kernel produces sharper
peaks more quickly as r decreases (see Figure 5 (a) and (b)), whereas the smooth top-hat kernel
produces a more gradual increase in peak height (see Figure 5(c)-(e)). This difference appears to
be related to the shape of the kernel, with more sharply concentrated kernels inducing stronger local
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aggregation effects (see Figure 6). Overall, the simulations confirm that the steepening phenomenon is
not specific to the cosine kernel and persists across a range of smooth, compactly supported interaction
kernels.

Increasing the values of the diffusion coefficients tends to inhibit peak formation, eventually driving
the system towards a homogeneous distribution. For this reason, in our simulations, we selected the
diffusion coefficients D; sufficiently small and the interaction strengths |y;;| sufficiently large to ensure
that the homogeneous steady state is linearly unstable, as shown in [19]. A small diffusion coefficient
is necessary not only for this linear instability but also for the blow-up phenomenon described in
Theorem 7, although the two regions are distinct. Indeed, there are cases where the homogeneous
steady state is stable, yet stable steady state solutions also exist with steep peaks [18].

Case 1. y;; < 0: Self attraction and Mutual attraction for different kernels

U1 U Uy Uz
i 1000 | - 1000 |
400 400
200 i 200 l 500 [ 500
ol ol 0 0
1 1 1 -1 :
y //,X 1 Yo 1 y — 1 y . 1
00 00 00 00
(@ar=03 (b)r=02
Uy Ug Ul Uz Uy Uz
15 115 40 40 T 200 200
10 10 20 l 20 100 I 100
5 5 :
. . ol 0.
1 ) M g ,~ 1 1 .
y X k y X ! Y ~— X Yook ! ¥ X Y X !
00 0o 00 00 00 00
©)r=03 dr=02 (e)r=0.1

Figure 5. Numerical solutions of Equations (1.1), with N = 2 and r := r;; = r;, fori, j = 1,2.
In (a)-(b): K is defined as in (6.2) with o = 0.5; in (¢)-(e): K is defined as in (6.3) with
r; = 0.9r. The other parameter values are: D; = 1, y;; = y;; = —1,forall i, j = 1,2. In each
set of simulations, the stationary solution shown for » = 0.3 emerges from a small random
perturbation of the homogeneous steady state. This stationary state is then used as initial
condition for the simulations with » = 0.2 and » = 0.1. All panels show the solutions at time
T = 10, after transient dynamics have subsided.
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1D profile of the interaction kernels
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Figure 6. One-dimensional profiles of the three interaction kernels used in the simulations:
cosine kernel in red (Equations (6.1)), bump kernel in blue (Equation (6.2)) and smooth top-
hat kernel in green (Equation (6.3)), all supported on a disk of radius » = 0.3. For the bump
kernel, we used o = 0.5; for the smooth top-hat kernel, r; = 0.9r. Each kernel is normalized
so that its integral over the disk equals one.

7. Conclusions

We have established a comprehensive framework for understanding nonlocal advection-diffusion
models of any number of interacting populations, which unifies and extends many previous results
on existence of solutions, together with insights into blow-up of singular situations. We have shown
that, under the assumption of sufficiently smooth kernels, positive solutions exist globally in any spatial
dimension. This finding not only generalises existing knowledge, but also reveals a remarkable contrast
with local models, where global existence often depends critically on the dimension of the spatial
domain [10, 30, 38].

We also provide strong evidence for the critical role of nonlocal interactions in preventing the blow-
up of solutions in finite time. Our analysis in Section 5 highlights the role of local cross-diffusion terms
and their ability to create sudden singularities in finite time. Similar phenomena have been observed
and analysed in chemotaxis models [1,22,26]. While a complete categorisation of blow-up would
require sophisticated tools beyond the scope of this paper, the analysis of local limits and numerical
simulations provide solid support for the crucial role of nonlocality in preventing blow-up, paving the
way for future explorations of the long-term behaviour and applications of these models in a variety of
fields.

From a practical perspective, existence and blow-up results can be very useful in informing users of
PDE models whether they are sensibly defined. In particular, when performing numerics, knowledge
of existence and blow-up regimes can inform whether those numerics are likely to produce meaningful
results a priori, regardless of the numerical scheme being used. Here, we demonstrate how our insights
on existence and blow-up translate to the appearance of spike-like solutions as the detection radius
decreases to zero. As the limit is approached, it is necessary to use ever-higher spatial resolution to
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capture the behaviour of the PDE accurately. However, away from this limit, solutions are nicely
mollified, allowing for more rapid numerical analysis.

The general global existence result presented here paves the way to a systematic analysis of nonlocal
biological interactions. Our main interest is to gain a better understanding of animal space use
and oriented animal movement. Possible applications of the model (1.1) are widespread, including
animal home ranges [2], space use by territorial competitors [36], swarming and flocking [11], species
reactions to anthropogenic disturbances [31], and biodiversity in heterogeneous environments [39].
The results presented here put us at ease to freely use nonlocal PDE models of type (1.1) to describe
complex spatio-temporal interactions arising from such applications.
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