
http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(9): 20843–20861.
DOI:10.3934/math.2025931
Received: 25 June 2025
Revised: 13 August 2025
Accepted: 26 August 2025
Published: 10 Sepetember 2025

Research article

Global algorithm for addressing sum of linear ratios problem using the
separable nature of relaxation problem

Qunzhen Zheng1, Chenglin He2, Yan Shi3,∗ and Jingben Yin2,∗

1 School of Statistics and Mathematics, Henan Finance University, Zhengzhou 450046, China
2 School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003,

China
3 College of Information Engineering, Henan University of Animal Husbandry and Economy,

Zhengzhou 450000, China

* Correspondence: Email: wqmshiyan@163.com, jingbenyin@163.com.

Abstract: This paper proposed an algorithm based on the branch-and-bound framework for globally
solving the sum of linear ratios problem (SLRP) with a large number of ratios and a small number
of variables. First, we introduced new variables to construct an equivalent problem of the problem
(SLRP). Then, using a new linear relaxation technique, we obtained the linear relaxation problem
for the equivalent problem. By utilizing the separable nature of the linear relaxation problem, we
computed the linear relaxation problem by solving its p linear programming subproblems, thereby
the lower bound for the problem (SLRP) could be obtained. Additionally, we conducted a theoretical
analysis of the proposed algorithm and validated its feasibility and effectiveness through numerical
experiments.

Keywords: sum of linear ratios problem; global optimization; linear relaxation technique; separable
nature; computational complexity
Mathematics Subject Classification: 65K05, 90C26, 90C32

1. Introduction

Fractional programming is an important class of nonlinear optimization that has attracted significant
interest from researchers over the past few decades. The sum of linear ratios problem (SLRP) is a
type of fractional programming problem that has many real-world applications, such as investment
and financial planning [9, 25], government contracting problems [7], transportation and logistics [2],
economic benefits and production control [31], multi-objective optimization [3, 8], and so on [33, 34].
Specifically, a real-life example and application are given as follows:

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2025931

20844

Minimum area convex hull problem: Because the minimum area convex hull problem considered is
in two-dimensional space, the dimension of the variable of the problem considered is 2. The minimum
area convex hull problem can be transformed into a minimum convex polygon area problem containing
all points. The minimum convex polygon area problem including all points can be transformed into
a sum of linear ratios problem with 2 variables. When a convex polygon contains a large number of
vertices, there are a large number of linear ratios in the minimum convex polygon area problem, that
is, the number of linear ratios is much greater than the dimension 2 of the variable. In summary, the
mathematical modeling of the minimum area convex hull problem in two-dimensional space can be
written as follows:

min
p∑

t=1

f̄t(x)
ḡt(x)

, s.t. x ∈ X,

where f̄t(x) and ḡt(x) are linear functions, x ∈ R2, X is the feasible region, p ∈ N+, and p � 2.
Regarding this model, please refer to [1].

Furthermore, due to the non-convex objective function of this problem, there may be multiple local
optima that are not global optima, which brings enormous theoretical and computational complexity to
solving this problem. Therefore, the sum of linear ratios problem is NP hard [4, 28], and solving such
a problem exists important practical applications and computational difficulties.

In this paper, we will investigate the following sum of linear ratios problem:

(SLRP):


min f (x) =

p∑
i=1

d>i x + ci

e>i x + gi
,

s.t. x ∈ χ = {x ∈ Rn | Ax ≤ b, x > 0},

where A ∈ Rm×n, b ∈ Rm; di and ei ∈ Rn, ci and gi ∈ R, i = 1, . . . , p; χ is a nonempty bounded set; and
for any i = 1, . . . , p, c>i x + fi and e>i x + gi are affine functions over χ; e>i x + gi > 0, for all x ∈ χ.

Over the past few decades, many researchers have proposed various algorithms for the sum of
ratios problem with a small number of ratios and large-size variables. For example, by utilizing
the convex and concave hull approximation techniques of univariate fractional functions, Shen and
Wang [32] proposed an outer space branch-and-bound algorithm for globally solving the sum of linear
ratios problem with coefficients. Borza and Rambely [5] presented a non-iterative and straightforward
method with less computational expenses to deal with the sum of linear fractional functions over a
polyhedral set. Jiao and Liu [13] designed a global optimization algorithm for solving the sum of
linear ratios problem by combining the bilinear relaxation technique with the outer space branch-
reduction-bound search. Shen et al. [30] designed a spatial branch-and-bound algorithm by using
the resulting second-order cone relaxation bounding technique. The literatures [16–18] presented
several spatial algorithms for the sum of ratios problem with a small number of ratios and large-size
variables. In addition, based on recent monotonic optimization theory, Phuong and Tuy [29] proposed
a unified monotonic approach for the generalized linear fractional programming problem. Based on
the variable dimensional space partitioning search and the different two-stage relaxation techniques,
Jiao et al. [19, 20] proposed two global algorithms for the generalized linear fractional programming
problem and generalized polynomial problem, respectively. Specifically, the literatures [14, 15]
provided, for the first time, two outer space branch-relaxation-bound algorithms for generalized linear
fractional programming problems and generalized affine multiple product programming problems.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20845

Recently, Li et al. [26] proposed an outer space branch-and-bound algorithm for linear ratio
problems based on the inverse denominator outer space partitioning search and the direct relaxation
bounding technique. Based on the entire fractional image space partitioning search and direct
relaxation techniques, Li et al. [27] proposed an image space branch-and-bound algorithm for
affine comparison equations. Based on fractional image space partitioning search and two-stage
relaxation technique, Hou and Liu [10] provided an image space branch-reduction-bound algorithm
for generalized fractional programming problems. Based on new spatial branching and relaxation
bounding techniques, Hou and Liu [11] provided a spatial branching-pruning-bounding algorithm
for generalized linear fractional problems; Hou and Liu [12] provided an accelerated outer space
algorithm for generalized linear multiple-product programming problems based on linear function
like spatial branch search and region acceleration methods. Based on standard space search and new
relaxation techniques, Jiao et al. [21] proposed a standard space acceleration algorithm for generalized
multiple-product programming problems. For the generalized affine fractional programming problem,
Jiao and Ma [22] proposed an efficient outer space algorithm based on different relaxation processes
or techniques. In addition, using the Charns-Cooper transform, a reduced outer space equivalence
problem was constructed, and a direct relaxation technique was used to construct the relaxation
problem. Jiao et al. [23] proposed a reduced outer space algorithm for sum of linear fractional
functions problems. In addition, the improved metaheuristic approach [37], the bioinspired discrete
two-stage surrogate-assisted algorithm [35], and the migration-inspired meta-heuristic algorithm [36]
in the recent literatures also provided some new ideas for solving the problem (SLRP) with a small
number of ratios and small-size variables.

Although the algorithms (such as [19,20,29]) mentioned above can also be used to solve the problem
(SLRP) with a small number of ratios and small-size variables, to the best of our knowledge, the global
algorithms for efficiently solving the problem (SLRP) with a large number of ratios and a small number
of variables are still scarce.

In this paper, we propose a global optimization algorithm based on the branch-and-bound
framework to solve the SLRP with a large number of ratios and a small number of variables. First,
we transform the original problem (SLRP) into an equivalent problem using the Charnes-Cooper
transformation. Then, by using the new relaxation method, we obtain a decomposable linear relaxation
problem of the equivalent problem. Utilizing the decomposability of the linear relaxation problem,
we can solve the linear relaxation problem by computing its p linear programming subproblems
for obtaining the lower bound in the branch-and-bound process, and propose a branch-and-bound
algorithm. Finally, numerical experiments demonstrate that the proposed algorithm is feasible and
efficient for solving the problem (SLRP) with a large number of ratios and a small number of variables.

The structure of this paper is as follows: In Section 2, we present the equivalent problem (EP)
of the problem (SLRP) and provide a proof of equivalence. Subsequently, we construct the linear
relaxation problem (LRP) for the EP using a new relaxation technique and decompose it into a series
of subproblems. In Section 3, we propose a global relaxation method to solve the subproblems
derived above and provide a convergence analysis and a computational complexity of the algorithm.
Section 4 demonstrates the feasibility and efficiency of the algorithm through numerical experiments,
and Section 5 presents the relevant conclusions.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20846

2. Equivalent problem and its linear relaxation

In this section, to globally solve the problem (SLRP), by using Charnes-Cooper transformation [6],

we first introduce new variables yi =
1

e>i x + gi
, si = yix, i = 1, . . . , p, and transform the problem (SLRP)

into the following equivalent problem:

(EP) :



min φ (y, s) =

p∑
i=1

(d>i si + ciyi),

s.t. e>i si + g>i yi = 1, i = 1, . . . , p,

si = yix, i = 1, . . . , p,

yi > 0, i = 1, . . . , p,

Ax ≤ b, x > 0, s > 0.

Definition 2.1. If there exists a point x∗ ∈ χ such that f (x∗) ≤ f (x) holds for any x ∈ χ, then we call x∗

an optimal solution of the problem (SLRP).

Theorem 2.1. x∗ is the optimal solution of the problem (SLRP) if and only if (x∗, y∗, s∗) is the optimal
solution of the problem (EP), where y∗ = (y∗1, y

∗
2, . . . , y

∗
p)> and s∗ = (s∗1, s

∗
2, . . . , s

∗
p)> with y∗i = 1

e>i x∗+gi

and s∗i = y∗i x∗ for each i = 1, . . . , p.

Proof. Let (x∗, y∗, s∗) be an optimal solution of the problem (EP), where s∗i = y∗i x∗, y∗i =
1

e>i x∗ + gi
,

i = 1, . . . , p. Next, we will prove that x∗ is a global optimal solution to the problem (SLRP). Now,
suppose x∗ is not the global optimal solution for the problem (SLRP), then there exists a feasible
solution x for the problem (SLRP) such that f (x) < f (x∗). Let

yi =
1

e>i x + gi
, si = yix, i = 1, . . . , p, (2.1)

and it is easy to see that (x, y, s) is a feasible solution of the problem (EP), where y = (y1, y2, . . . , yp)>

and s = (s1, s2, . . . , sp)>. Through f (x) < f (x∗) and (2.1), we can obtain
p∑

i=1

(d>i si + ciyi) =

p∑
i=1

d>i x + ci

e>i x + gi
<

p∑
i=1

d>i x∗ + ci

e>i x∗ + gi
. (2.2)

Additionally, since (x∗, y∗, s∗) is also a feasible point for the problem (EP) with

y∗i =
1

e>i x∗ + gi
, s∗i = y∗i x∗, i = 1, . . . , p,

we have
p∑

i=1

d>i x∗ + ci

e>i x∗ + gi
=

p∑
i=1

(d>i s∗i + ciy∗i). (2.3)

Combining (2.2) with (2.3), we can obtain
p∑

i=1

(d>i si + ciyi) <
p∑

i=1

(d>i s∗i + ciy∗i).

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20847

Since (x, y, s) is a feasible solution of the problem (EP), this contradicts the optimality of (x∗, y∗, s∗) for
the problem (EP). Therefore, the supposition that x∗ is not a global optimal solution for the problem
(SLRP) must be false.

Next, we show the converse case. Assuming that x∗ is a global optimal solution for the problem
(SLRP), and letting

s∗i = y∗i x∗, y∗i =
1

e>i x∗ + gi
, i = 1, . . . , p, (2.4)

then (x∗, y∗, s∗) is a feasible solution of the problem (EP). Now, suppose the problem (EP) exists a
feasible solution (x, y, s), such that

p∑
i=1

(d>i si + ciyi) <
p∑

i=1

(d>i s∗i + ciy∗i). (2.5)

Since (x, y, s) is a feasible solution of the problem (EP), we can see that (2.1) must be hold.
Hence, combining (2.1), (2.4) with (2.5), it holds that

f (x) =

p∑
i=1

d>i x + ci

e>i x + gi
=

p∑
i=1

(d>i si + ciyi) <
p∑

i=1

(d>i s∗i + ciy∗i) =

p∑
i=1

d>i x∗ + ci

e>i x∗ + gi
= f (x∗).

Since x ∈ χ, this contradicts that x∗ is a global optimal solution of the problem (SLRP). Hence, the
supposition that the problem (EP) exists a feasible solution (x, y, s) satisfying (2.5) must be false, and
the proof is completed. �

Next, multiplying both ends of inequality Ax ≤ b by yi simultaneously yields the new equivalent
form of problem (EP) as follows:

(EP1) :



min φ (y, s) =

p∑
i=1

(d>i si + ciyi),

s.t. e>i si + g>i yi = 1, i = 1, . . . , p,

si = yix, i = 1, . . . , p,

yi > 0, i = 1, . . . , p,

Asi − byi ≤ 0, i = 1, . . . , p,

x > 0, s > 0.

For the problem (SLRP), let l0
j = min{x j | x ∈ χ} > 0 and u0

j = max{x j | x ∈ χ}, and we can
construct an initial rectangle H0 as follows:

H0 = [l0, u0] , {x ∈ Rn | l0
j ≤ x j ≤ u0

j , j = 1, . . . , n}.

Then, the equivalent problem (EP1) on rectangle H0 is formulated as follows:

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20848

(EP1(H0)) :



min φ (y, s) =

p∑
i=1

(d>i si + ciyi),

s.t. e>i si + g>i yi = 1, i = 1, . . . , p,

si = yix, i = 1, . . . , p,

yi > 0, i = 1, . . . , p,

Asi − byi ≤ 0, i = 1, . . . , p,

x ∈ H0, s > 0.

In this paper, we define

H = [l, u] , {x ∈ Rn | l j ≤ x j ≤ u j, j = 1, · · · , n}

as the initial rectangle H0 or its sub-rectangle resulting from the branching process. Then, the problem
(EP1) about H is given as follows:

(EP1(H)) :



min φ (y, s) =

p∑
i=1

(d>i si + ciyi),

s.t. e>i si + g>i yi = 1, i = 1, . . . , p,

si = yix, i = 1, . . . , p,

yi > 0, i = 1, . . . , p,

Asi − byi ≤ 0, i = 1, . . . , p,

x ∈ H, s > 0.

After the above discussion, we can see that the feasible set of the problem (EP1(H)) is neither a
polyhedron nor a convex set. By directly relaxing the constrained functions si = yix, i = 1, . . . , p, we
construct the linear relaxation problem of the problem (EP1(H)) as follows:

(LRP(H)) :



min φ (y, s) =

p∑
i=1

(d>i si + ciyi),

s.t. e>i si + giyi = 1, i = 1, . . . , p,

yil ≤ si ≤ yiu, i = 1, . . . , p,

Asi − byi ≤ 0, i = 1, . . . , p,

yi > 0, i = 1, . . . , p,

s > 0.

Based on the characteristics of the problem (LRP(H)), it can be decomposed into p linear
programming subproblems:

(Pi(H)) :



φi = min d>i si + ciyi,

s.t. e>i si + giyi = 1,
yil ≤ si ≤ yiu,

Asi − byi ≤ 0,
yi > 0, si > 0,

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20849

where i = 1, . . . , p. By solving these linear programming subproblems (Pi(H)), i = 1, . . . , p, we can
solve the problem (LRP(H)).

Theorem 2.2. The linear relaxed problem (LRP(H)) has an optimal solution (y∗, s∗) if and only if the
subproblem (Pi(H)) has an optimal solution (y∗i , s

∗
i) for each i = 1, . . . , p.

Proof. According to the characteristic structure of the problems (LRP(H)) and (Pi(H)), this conclusion
is easily obtained, so the proof is omitted. �

Therefore, form Theorem 2.2, by solving the p linear programming subproblems (Pi(H)), we can

compute the lower bound LB(H) of the problem (SLRP(H)), where LB(H) =
p∑

i=1
φi.

Remark 2.1. The special advantages and benefits of the relaxation method proposed in this article
are given as follows. The (pn + p)-dimensional linear relaxation problem constructed using the
relaxation method proposed in this article has the characteristic of variable separability. Solving the
(pn+ p)-dimensional linear relaxation problem can be decomposed into solving p linear programming
subproblems with (n + 1)-dimensional variables, thereby reducing the difficulty of solving the problem
and enabling the algorithm to handle the sum of the linear ratio problem with a large number of ratios
and a small number of variables. Specifically, each of these lower-dimensional problems can be solved
independently by optimizing over a subset of the original variables, which allows for efficient parallel
computation and further accelerates the convergence of the overall algorithm.

3. Algorithm and its theoretical analysis

In this section, we propose a branch-and-bound algorithm based on maximum edge bisecting for
globally solving the problem (SLRP). We outline the basic workflow of the proposed algorithm,
demonstrate its convergence, and estimate the maximum number of iterations of the algorithm.

3.1. Branching rule

In this subsection, we will introduce the branching rule used in the algorithm. Assume that the
sub-rectangle Hk = [lk, uk] , {x ∈ Rn | lk

j ≤ x j ≤ uk
j, j = 1, . . . , n} ⊆ H0 is selected, which will be

subdivided in the iteration process. Let

ĵ = arg max{uk
j − lk

j | j = 1, . . . , n},

and

Θk
ĵ =

lk
ĵ
+ uk

ĵ

2
,

and by bisecting along the maximum side of rectangle Hk, we can partition the rectangle Hk into the
following two sub-rectangles:

Hk,1 = {x ∈ Rn | lk
j ≤ xk

j ≤ uk
j, j = 1, . . . , n, j , ĵ; lk

ĵ ≤ x ĵ ≤ Θ
k
ĵ},

and
Hk,2 = {x ∈ Rn | lk

j ≤ xk
j ≤ uk

j, j = 1, . . . , n, j , ĵ;Θk
ĵ ≤ x ĵ ≤ uk

ĵ}.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20850

3.2. Branch-and-bound algorithm

In this subsection, we briefly outline the basic steps of the algorithm as follows.

Definition 3.1. Let v be the global optimum value for the problem (SLRP), and let x̃ be a feasible
solution for the MLRP. For any given termination error ε > 0, if f (x̃) − v ≤ ε, we call x̃ an ε-global
optimum solution for the problem (SLRP).

Algorithm steps:
Step 0: Given the convergence error ε > 0 and calculating the initial rectangle

H0 = [l0, u0] , {x ∈ Rn | l0
j ≤ x j ≤ u0

j , j = 1, · · · , n}.

For each i = 1, . . . , p, solve the linear programming subproblem (Pi(H0)).
If the subproblem (Pi(H0)) is not feasible, then the problem (SLRP) is also not feasible and the

algorithm will be terminated.
Otherwise, obtain the optimal solution (yi(H0), si(H0)) and optimal value φi(H0) of the subproblem

(Pi(H0)), and let LB0 =
p∑

i=1
φi(H0)

For each i = 1, . . . , p, let xi(H0) =
si(H0)
yi(H0) , and let

UB0 = min
i∈{1,2,...,p}

f (xi(H0)),

and
x0 = arg min

i∈{1,2,...,p}
f (xi(H0)).

If UB0 − LB0 ≤ ε, the algorithm stops and x0 is an ε-global optimum solution for the problem
(SLRP). Otherwise, let Z0 = {H0}, Λ = {x0}, k = 0, and proceed to Step 1.
Step 1: Applying the branching rule to partition the rectangle Hk into two sub-rectangles Hk

1 and Hk
2,

forming the setH = {Hk
1,H

k
2}. For each Hk

t ∈ H , t ∈ {1, 2}, solve the linear programming subproblem
(Pi(Hk

t)).
If the subproblem (Pi(Hk

t)) is not feasible, then the problem (EP1(Hk
t)) is also not feasible, and let

H = H \ Hk
t . Otherwise, obtain the optimal solution (yi(Hk

t), si(Hk
t)) and optimal value φi(Hk

t) of the

subproblem (Pi(Hk
t)), and let LB(Hk

t) =
p∑

i=1
φi(Hk

t).

If LB(Hk
t) > UBk, letH = H \ Hk

t . Otherwise, let xi(Hk
t) =

si(Hk
t)

yi(Hk
t)

and let

UB(Hk
t) = min

i∈{1,2,...,p}
f (xi(Hk

t)),

and
x(Hk

t) = arg min
i∈{1,2,...,p}

f (xi(Hk
t)).

Also, update the upper bound UBk = min{UBk,UB(Hk
t)} and Λ = Λ ∪ {x(Hk

t)}. Meanwhile, refer to xk

as the current best feasible solution for the problem (SLRP), which satisfies UBk = f (xk).
Step 2: Update the set Zk = (Zk \ Hk)

⋃
H and the lower bound LBk = min{LB(H) | H ∈ Zk}.

Step 3: If UBk − LBk ≤ ε, the algorithm stops and xk is an ε-global optimal solution for the problem
(SLRP). Otherwise, let k = k + 1, and select a sub-rectangle Hk satisfying LBk = LB(Hk), and return
to Step 1.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20851

3.3. Global convergence analysis

Theorem 3.1. For any given ε ∈ [0, 1), the algorithm will either terminate after finite iterations with
yielding a global optimal solution of the problem (SLRP), or it will generate an infinite sequence {xk} of
feasible solutions, whose accumulation point will be a global optimal solution of the problem (SLRP).

Proof. If the algorithm terminates after finite k iterations, we can obtain the best feasible solution xk

for the problem (SLRP). For any given ε > 0, we have that

UBk − LBk ≤ ε. (3.1)

Let v be the optimal value of the problem (SLRP), and we can get that

LBk ≤ v and UBk ≥ v. (3.2)

By combining (3.1) and (3.2), we can derive the following inequality:

f (xk) + ε = UBk + ε ≥ v + ε ≥ LBk + ε ≥ UBk = f (xk). (3.3)

Therefore, xk is an ε-global optimal solution to the problem (SLRP).
If the algorithm generates an infinite solution sequence {xk}, let x∗ be any accumulation point of

sequence {xk}. Without loss of generality, we assume that

lim
k→∞

xk = x∗.

Then, by the branch-and-bound process of the algorithm, we can conclude that

LBk ≤ f (x∗) ≤ f (xk) = UBk, k = 0, 1, 2 (3.4)

Since {LBk} is a monotonic nondecreasing sequence, and {UBk} is a nonincreasing sequence, both
of them are convergent sequences. Thus, taking the limits on both sides of (3.4), we get that

lim
k→∞

LBk ≤ f (x∗) ≤ lim
k→∞

f (xk) = lim
k→∞

UBk.

By combining the continuity of the function f (x) with the termination condition that UBk − LBk ≤ ε

for any given ε ∈ [0, 1), it can deduce that

lim
k→∞

LBk = f (x∗) = lim
k→∞

f (xk) = lim
k→∞

UBk. (3.5)

Thus, the accumulation point x∗ of the sequence {xk} is a global optimal solution of the problem
(SLRP), and the proof is complete. �

3.4. Computational complexity analysis

In this subsection, we provide the computational complexity analysis of the algorithm to estimate
the maximum number of iterations.

First, for any Hk = [lk, uk] , {x ∈ Rn | lk
j ≤ x j ≤ uk

j, j = 1, . . . , n} ⊆ H0, we define

σi = min
x∈χ

e>i x + gi, i = 1, . . . , p, (3.6)

ρ = max
i∈{1,...,p}, j∈{1...,n}

∣∣∣gidi j + ciei j

∣∣∣ , (3.7)

η = max
i∈{1,...,p}

1
σ2

i

. (3.8)

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20852

Theorem 3.2. For any given termination error ε, during the kth iteration of the algorithm, if the
generated rectangle Hk satisfies

uk
ĵ − lk

ĵ ≤
ε

pηnρ
,

then the algorithm will terminate and return an ε-globally optimal solution of the problem (SLRP).

Proof. Without losing generality, suppose that (ŷk, ŝk) is the optimal solution of the problem (LRP).
Let x̂k

i =
ŝk

i

ŷk
i
, and we have

xk = arg min
i∈{1,2,...,p}

f (x̂k
i),

yk
i =

1
e>i xk + gi

, i = 1 . . . , p,

and
sk

i = yk
i xk, i = 1, . . . , p,

Obviously, (xk, yk, sk) is a feasible solution to the problem (EP1) at the k-th iteration, and we have that

LBk = φ(ŷk, ŝk) ≤ UBk = f (xk) = φ(yk, sk).

Then, when the generated rectangle Hk satisfies uk
ĵ
− lk

ĵ
≤ ε

pηnρ , we get that

UBk − LBk = φ(yk, sk) − φ(ŷk, ŝk)

=

p∑
i=1

(d>i sk
i + ciyk

i) −
p∑

i=1

(d>i ŝk
i + ciŷk

i)

=

p∑
i=1

di(si − ŝk
i) +

p∑
i=1

ci(yk
i − ŷk

i)

=

p∑
i=1

gid>i (xk − x̂k)
(e>i xk + gi)(e>i x̂k + gi)

+

p∑
i=1

cie>i (xk − x̂k)
(e>i xk + gi)(e>i x̂k + gi)

=

p∑
i=1

(gid>i + cie>i)(xk − x̂k)
(e>i xk + gi)(e>i x̂k + gi)

≤

p∑
i=1

1
σ2

i

×

n∑
j=1

∣∣∣gidi j + ciei j

∣∣∣ (uk
j − lk

j)

≤ pηnρ(uk
ĵ − lk

ĵ)

≤ ε.

Therefore, when the generated rectangle Hk satisfies uk
ĵ
− lk

ĵ
≤ ε

pηnρ , the algorithm will be terminated.
At the same time, referring to υ∗ as the optimal value of the problem (SLRP), from Steps 0, 2, and 3 of
the algorithm, noting that υ∗ 6 UBk = f (xk), LBk 6 υ

∗, and the termination condition UBk − LBk ≤ ε,
we can further follow that υ∗ 6 f (xk) 6 ε + LBk 6 ε + υ∗. Then, the algorithm returns an ε-globally
optimum solution of the problem (SLRP), and the proof is complete. �

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20853

Theorem 3.3. Given an error ε >0, the algorithm can find a global ε-optimal solution in at most⌈ n∏
j=1

max
{ pηnρ

ε
(u0

j − l0
j), 1

}⌉
iterations.

Proof. If the algorithm does not terminate at the k-th iteration, then in the previous iteration, at most
k + 1 sub-rectangles are partitioned from the initial rectangle H0. Based on Theorem 3.2, in the k-th
iteration, we choose ĵ and get uk

ĵ
− lk

ĵ
≥ ε

pηnρ . Since the interval [lk
ĵ
, uk

ĵ
] is divided into two subintervals

at the midpoint
lk

ĵ
+uk

ĵ

2 , the resulting two subintervals satisfy uk1
ĵ
− lk1

ĵ
= uk2

ĵ
− lk2

ĵ
≥ ε

2pηnρ . This indicates
that each rectangle H =

∏n
j=1[l j, u j] satisfies u j − l j ≥ min{ ε

2pηnρ , u
0
j − l0

j}, j = 1, . . . , n. Here, it should
be noted that, when u0

j − l0
j ≤

ε
pηnρ , the j-th direction has never been divided in these k iterations.

For all k + 1 sub-rectangles, define their total volume as V , then we have

V ≥ (k + 1)
n∏

j=1

min
{ ε

2pηnρ
, u0

j − l0
j

}
. (3.9)

Besides,

V =

n∏
j=1

(u0
j − l0

j) (3.10)

is apparent. Thus, from (3.9) and (3.10), it can be concluded that

n∏
j=1

(u0
j − l0

j) ≥ (k + 1)
n∏

j=1

min
{ ε

2pηnρ
, u0

j − l0
j

}
. (3.11)

This indicates that

k ≤
n∏

j=1

max
{2pηnρ

ε
(u0

j − l0
j), 1

}
.

In other words, by Theorem 3.2, the algorithm iterates at most⌈ p∏
j=1

max
{2pηnρ

ε
(u0

j − l0
j), 1

}⌉
times and will be terminated. If not, we have that

(k + 1)
p∏

j=1

min
{ ε

2pηnρ
, u0

j − l0
j

}
>

n∏
j=1

max{
2pηnρ
ε

(u0
j − l0

j), 1} ×min{
ε

2pηnρ
, u0

j − l0
j}. (3.12)

Subsequently, we will consider the following two cases:
(i) If ε

2pηnρ < u0
j − l0

j , then we have

max{
2pηnρ
ε

(u0
j − l0

j), 1} ×min{
ε

2pηnρ
, u0

j − l0
j} =

2pηnρ
ε

(u0
j − l0

j) ×
ε

2pηnρ
= u0

j − l0
j . (3.13)

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20854

(ii) If ε
2pηnρ > u0

j − l0
j , then we have

max{
2pηnρ
ε

(u0
j − l0

j), 1} ×min{
ε

2pηnρ
, u0

j − l0
j} = 1 × (u0

j − l0
j) = u0

j − l0
j . (3.14)

By (3.10)–(3.14), it can be concluded that

n∏
j=1

(u0
j − l0

j) = V >

n∏
j=1

(u0
j − l0

j).

Obviously, this is a contradiction. Thus, the algorithm can find a global ε-optimal solution in at most⌈ n∏
j=1

max
{ 2pηnρ

ε
(u0

j − l0
j), 1

}⌉
iterations. This proof is complete. �

Remark 3.1. According to the complexity theory of algorithms, the complexity of algorithms is an
exponential function of the dimensionality n of variable x. Therefore, the performance of algorithms
is sensitive to the number n of variables x. When n is fixed, the average running time of the algorithm
increases with the increase of p.

4. Numerical comparisons

In this section, we present computational results of the proposed algorithm on the randomly
generated test problems. The algorithm is coded in Matlab(2023a) and all computations are
implemented on an AMD Ryzen 5 5000 CPU 2.1GHz with 16G memory microcomputer.

First of all, some small-size deterministic examples (see Examples 1–12 in the Appendix) are
tested with our algorithm for comparison with the known extant algorithms [24, 32], and numerical
comparisons between some existing algorithms and our algorithm on Examples 1–10 are reported in
Table 1 with the given convergence tolerance, where some notations have been used for column headers
in Table 1: Opt. val.: global optimal value; Iter.: number of iterations of the algorithm; Time: the CPU
execution time of the algorithm in seconds.

From the numerical results in Table 1, for Examples 1–10, we can follow that our algorithm can
obtain the same global optimal solutions and optimal values as the existing algorithms of [24,32]. Our
algorithm performs better than the methods of [24,32] for finding the optimal solution in less time and
fewer iterations. Therefore, in terms of test Examples 1–10, the experimental results verify that our
algorithm is valid and feasible.

Second, we solve the following randomly generated test problem:
Problem 1.  min

p∑
i=1

ĉ>i x + f̂i

ê>i x + ĝi
,

s.t. Ax ≤ b, x > 0,

where ĉi ∈ Rn, êi ∈ Rn, f̂i ∈ R, ĝi ∈ R, i = 1, 2, . . . , p; A ∈ Rm×n, b ∈ Rm; each element of ĉi and êi is
randomly generated from the interval [0, 1]; every element in the matrix A and b is randomly generated
from the interval [0, 1], and f̂i and ĝi are equal to 100.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20855

For Problem 1, we record the number of iterations and computational time for the experimental data.
For each set of parameters with the different (p,m, n), each element of ĉi and êi is randomly generated
from [0, 1], each element of A and b is randomly generated from [0, 1], and f̂i and ĝi are equal to 100.
We perform 10 calculations to obtain the average number of iterations and average computational
time (in seconds), and we also separately record the minimum, maximum, and average values of the
number of iterations and computational time. The termination error in numerical experiments is 10−2.
The resulting experimental data is presented in Table 2.

Table 1. Numerical comparisons between some existing algorithms and our algorithm on
test Examples 1–10.

No. Algorithms Opt. val. Optimal solution Iter. Time ε

1 Ours -4.84151 (0.1000, 2.3750) 1 0.0890 10−6

Algorithm of [24] -4.84151 (0.1000, 2.3750) 4 0.1283 10−6

Algorithm of [27] -4.84151 (0.1000, 2.3750) 14 0.3654 10−6

2 Ours -2.47143 (1.0000, 0.0000, 0.0000) 73 1.1267 10−6

Algorithm of [24] -2.47143 (1.0000, 0.0000, 0.0000) 82 1.3452 10−6

Algorithm of [27] -2.47143 (1.0000, 0.0000, 0.0000) 113 2.0513 10−6

3 Ours -1.90000 (0.0000, 3.3333, 0.0000) 1 0.1245 10−6

Algorithm of [24] -1.90000 (0.0000, 3.3333, 0.0000) 8 0.945 10−6

Algorithm of [27] -1.90000 (0.0000, 3.3333, 0.0000) 424 6.907 10−6

4 Ours -4.09070 (1.1111, 0.0000, 0.0000) 1 0.1392 10−6

Algorithm of [24] -4.09070 (1.1111, 0.0000, 0.0000) 4 0.4386 10−6

Algorithm of [27] -4.09070 (1.1111, 0.0000, 0.0000) 82 2.359 10−6

5 Ours 3.71092 (0.0000, 1.6667, 0.0000) 1 0.0274 10−6

Algorithm of [24] 3.71092 (0.0000, 1.6667, 0.0000) 4 0.1356 10−6

Algorithm of [27] 3.71092 (0.0000, 1.6667, 0.0000) 112 1.4586 10−6

6 Ours -3.00292 (0.0000, 3.3333, 0.0000) 1 0.1156 10−6

Algorithm of [24] -3.00292 (0.0000, 3.3333, 0.0000) 89 1.2364 10−6

Algorithm of [27] -3.00225 (0.0000, 2.8455, 0.0000) 132 2.5458 10−6

7 Ours 4.91259 (1.5000, 1.5000) 165 3.9902 10−6

Algorithm of [24] 4.91259 (1.5000, 1.5000) 166 4.0871 10−6

Algorithm of [27] 4.91259 (1.5000, 1.5000) 330 8.4212 10−6

8 Ours -4.09070 (1.1111, 0.0000, 0.0000) 1 0.0376 10−6

Algorithm of [24] -4.09070 (1.1111, 0.0000, 0.0000) 8 0.1090 10−6

Algorithm of [27] -4.09070 (1.1111, 0.0000, 0.0000) 977 32.41 10−6

9 Ours 3.29167 (3.0000, 4.0000) 1 0.0282 10−6

Algorithm of [24] 3.29167 (3.0000, 4.0000) 9 0.489 10−6

Algorithm of [27] 3.29167 (3.0000, 4.0000) 138 1.902 10−6

10 Ours 4.42857 (5.0000, 0.0000, 0.0000) 1 0.0308 10−6

Algorithm of [24] 4.42857 (5.0000, 0.0000, 0.0000) 12 0.2132 10−6

Algorithm of [27] 4.42857 (5.0000, 0.0000, 0.0000) 98 1.2931 10−6

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20856

Table 2. Experimental results on the randomly generated test Problem 1.

(p,m, n)
Iter Time

min. ave. max. min. ave. max.
(50,10,2) 0 3.9 12 0.17265 1.585562 4.73441
(100,10,2) 1 26.8 71 1.17688 21.305212 54.18782
(150,10,2) 1 37.8 117 1.86746 46.537853 139.25536
(200,10,2) 1 38 152 2.37256 59.682521 125.03535
(300,10,2) 2 45.1 147 4.92376 91.516705 294.0104
(400,10,2) 2 133.6 459 6.28794 345.899427 1168.62086
(500,10,2) 2 149.2 390 7.84995 470.904921 1225.48065
(600,10,2) 3 78.2 209 13.58283 506.971382 1642.41682
(700,10,2) 27 330.3 826 123.55211 613.648123 1536.35623
(800,10,2) 32 312.9 555 165.4178 679.852562 1705.53504
(900,10,2) 82 318.5 481 561.23789 984.004699 3966.5198
(1000,10,2) 63 295.7 987 690.18154 1030.719038 2163.83152
(100,10,3) 2 77.3 302 1.54206 48.773773 190.15702
(200,10,3) 2 113.7 518 3.30311 161.120675 770.38062
(300,10,3) 3 289 601 8.36701 584.99691 1153.47521
(400,10,3) 10 264 900 26.29532 685.743374 2351.9021
(500,10,3) 1 381.9 1335 5.47715 1026.24487 3461.11334
(50,10,4) 9 107.6 276 3.92405 40.717008 79.75275
(100,10,4) 1 169 335 0.31642 106.856346 211.11143
(200,10,4) 1 85.6 216 2.38088 125.808901 303.00551
(300,10,4) 1 246.7 993 3.39098 484.209614 1946.05488

By the computational results for the randomly generated test problems, it can be seen that the
algorithm can effectively solve the sum of linear ratios problem with a substantial quantity of ratios
and low dimensional variables.

Remark 4.1. From Table 2, we can see that the algorithm’s performance is sensitive to variations in
the number of variables. However, when n is fixed, the average running time of the algorithm increases
with the increase of p. In addition, we don’t find that the specific problem characteristics (e.g., sparsity,
degeneracy) significantly impact the algorithm’s performance.

5. Conclusions

This paper present a branch-and-bound algorithm for globally addressing the SLRP with a
substantial quantity of ratios and low dimensional variables. For addressing the problem (SLRP),
we first transform it into the EP using the Charnes-Cooper transformation, and then apply the linear
relaxation technique to construct the LRP of the problem (EP). Subsequently, based on the branch-
and-bound framework, we propose a global algorithm using the separability of the problem (LRP).
Finally, we validate the effectiveness of the algorithm by solving large-scale stochastic test problems.
In future work, we will promote the separability of relaxation problems and design global optimization

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20857

algorithms for solving the generalized linear fractional multiplicative programming problem with a
substantial quantity of ratios and low dimensional variables.

Author contributions

Qunzhen Zheng: Formal analysis, investigation, resources, methodology, writing-original draft,
validation, data curation, and funding acquisition; Chenglin He: Formal analysis, investigation, writing
review & editing, software, data curation; Yan Shi: Conceptualization, supervision; Jingben Yin:
Project administration, methodology, validation, and formal funding acquisition. All authors have
read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This paper is supported by the Key Scientific and Technological Research Projects of Henan
Province (202102210147, 192102210114).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. E. Arkin, Y. Chiang, M. Held, J. Mitchell, V. Sacristan, S. Skiena, et al., On minimum-area hulls,
Algorithmica, 21 (1998), 119–136. https://doi.org/10.1007/PL00009204

2. E. B. Bajalinov, Linear-fractional programming theory, methods, applications and software,
Dordrecht: Kluwer Academic Publishers, 2003. https://doi.org/10.1007/978-1-4419-9174-4

3. H. P. Benson, Vector maximization with two objective functions, J. Optim. Theory Appl., 28 (1979),
253–257. https://doi.org/10.1007/BF00933245

4. H. P. Benson, A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios
problem, Eur. J. Oper. Res., 182 (2007), 597–611. https://doi.org/10.1016/j.ejor.2006.08.036

5. M. Borza, A. S. Rambely, A linearization to the sum of linear ratios programming problem,
Mathematics, 9 (2021), 1004. https://doi.org/10.3390/math9091004

6. A. Charnes, W. W. Cooper, Programming with linear fractional functionals, Naval Research
Logistics Quarterly, 9 (1962), 181–186. https://doi.org/10.1002/nav.3800090303

7. C. S. Colantoni, R. P. Manes, A. Whinston, Programming, profit rates and pricing decisions,
Account. Rev., 44 (1969), 467–481.

8. D. F. Dennis, Analyzing public inputs to multiple objective decisions on national forests using
conjoint analysis, Forest Sci., 44 (1998), 421–429. https://doi.org/10.1093/forestscience/44.3.421

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

http://dx.doi.org/https://doi.org/10.1007/PL00009204
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-9174-4
http://dx.doi.org/https://doi.org/10.1007/BF00933245
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2006.08.036
http://dx.doi.org/https://doi.org/10.3390/math9091004
http://dx.doi.org/https://doi.org/10.1002/nav.3800090303
http://dx.doi.org/https://doi.org/10.1093/forestscience/44.3.421

20858

9. J. E. Falk, S. W. Palocsay, Optimizing the sum of linear fractional functions, In: Recent
advances in global optimization, Princeton: Princeton University Press, 1991, 221–258.
https://doi.org/10.1515/9781400862528.221

10. Z. Hou, S. Liu, An efficient image space branch-reduction-bound algorithm to globally solve
generalized fractional programming problems for large-scale real applications, J. Comput. Appl.
Math., 451 (2024), 116070. https://doi.org/10.1016/j.cam.2024.116070

11. Z. Hou, S. Liu, A spatial branch-reduction-bound algorithm for solving generalized
linear fractional problems globally, Chaos Soliton. Fract., 176 (2023), 114144.
https://doi.org/10.1016/j.chaos.2023.114144

12. Z. Hou, S. Liu, An accelerating outer space algorithm for globally solving generalized linear
multiplicative problems, Numer. Algor., 94 (2023), 877–904. https://doi.org/10.1007/s11075-023-
01523-y

13. H. Jiao, S. Liu, A practicable branch and bound algorithm for sum of linear ratios problem, Eur. J.
Oper. Res., 243 (2015), 723–730. https://doi.org/10.1016/j.ejor.2015.01.039

14. H. Jiao, S. Liu, Y. Zhao, Effective algorithm for solving the generalized linear multiplicative
problem with generalized polynomial constraints, Appl. Math. Model., 39 (2015), 7568–7582.
https://doi.org/10.1016/j.apm.2015.03.025

15. H. Jiao, B. Li, Y. Shang, An outer space approach to tackle generalized affine fractional program
problems, J. Optim. Theory Appl., 201 (2024), 1–35. https://doi.org/10.1007/s10957-023-02368-0

16. H. Jiao, J. Ma, P. Shen, Y. Qiu, Effective algorithm and computational complexity for
solving sum of linear ratios problem, J. Ind. Manag. Optim., 19 (2023), 4410–4427.
https://doi.org/10.3934/jimo.2022135

17. H. Jiao, J. Ma, An efficient algorithm and complexity result for solving the sum of general ratios
problem, Chaos Soliton. Fract., 164 (2022), 112701. https://doi.org/10.1016/j.chaos.2022.112701

18. H. Jiao, Y. Shang, R. Chen, A potential practical algorithm for minimizing
the sum of affine fractional functions, Optimization, 72 (2023), 1577–1607.
https://doi.org/10.1080/02331934.2022.2032051

19. H. Jiao, Y. Shang, Two-level linear relaxation method for generalized linear fractional
programming, J. Oper. Res. Soc., 11 (2023), 569–594. https://doi.org/10.1007/s40305-021-00375-
4

20. H. Jiao, Y. Shang, W. Wang, Solving generalized polynomial problem by
using new affine relaxed technique, Int. J. Comput. Math., 99 (2022), 309–331.
https://doi.org/10.1080/00207160.2021.1909727

21. H. Jiao, B. Li, W. Yang, A criterion-space branch-reduction-bound algorithm for
solving generalized multiplicative problems, J. Glob. Optim., 89 (2024), 597–632.
https://doi.org/10.1007/s10898-023-01358-w

22. H. Jiao, J. Ma, Optimizing generalized linear fractional program using the
image space branch-reduction-bound scheme, Optimization, 74 (2025), 1–32.
https://doi.org/10.1080/02331934.2023.2253816

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

http://dx.doi.org/https://doi.org/10.1515/9781400862528.221
http://dx.doi.org/https://doi.org/10.1016/j.cam.2024.116070
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.114144
http://dx.doi.org/https://doi.org/10.1007/s11075-023-01523-y
http://dx.doi.org/https://doi.org/10.1007/s11075-023-01523-y
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2015.01.039
http://dx.doi.org/https://doi.org/10.1016/j.apm.2015.03.025
http://dx.doi.org/https://doi.org/10.1007/s10957-023-02368-0
http://dx.doi.org/https://doi.org/10.3934/jimo.2022135
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112701
http://dx.doi.org/https://doi.org/10.1080/02331934.2022.2032051
http://dx.doi.org/https://doi.org/10.1007/s40305-021-00375-4
http://dx.doi.org/https://doi.org/10.1007/s40305-021-00375-4
http://dx.doi.org/https://doi.org/10.1080/00207160.2021.1909727
http://dx.doi.org/https://doi.org/10.1007/s10898-023-01358-w
http://dx.doi.org/https://doi.org/10.1080/02331934.2023.2253816

20859

23. H. Jiao, J. Ma, Y. Shang, Reduced outer space algorithm for globally computing
affine sum-of-ratios problems, Asia Pac. J. Oper. Res., 42 (2025), 2450015.
https://doi.org/10.1142/S0217595924500155

24. H. Jiao, Y. Shang, Image space branch-reduction-bound algorithm for globally solving the sum
of affine ratios problem, J. Comput. Math., 43 (2025), 203–228. https://doi.org/10.4208/jcm.2203-
m2021-0085

25. H. Konno, M. Inori, Bond portfolio optimization by bilinear fractional programming, J. Oper. Res.
Soc. Jpn., 32 (1989), 143–158. https://doi.org/10.15807/jorsj.32.143

26. H. Li, L. Wang, Y. Zhao, Global optimization algorithm for a class of linear ratios optimization
problem, AIMS Mathematics, 9 (2024), 16376–16391. https://doi.org/10.3934/math.2024793

27. H. Li, Y. Feng, H. Jiao, Y. Shang, A novel algorithm for solving sum of several affine fractional
functions, AIMS Mathematics, 8 (2023), 9247–9264. https://doi.org/10.3934/math.2023464

28. T. Matsui, NP-hardness of linear multiplicative programming and related problems, J. Glob.
Optim., 9 (1996), 113–119. https://doi.org/10.1007/BF00121658

29. N. Phuong, H. Tuy, A unified monotonic approach to generalized linear fractional programming,
J. Global Optim., 26 (2003), 229–259. https://doi.org/10.1023/A:1023274721632

30. P. Shen, Y. Wang, D. Wu, A spatial branch and bound algorithm for solving the sum of linear ratios
optimization problem, Numer. Algor., 93 (2023), 1373–1400. https://doi.org/10.1007/s11075-022-
01471-z

31. S. Schaible, Fractional programming, In: Handbook of global optimization, Boston: Springer,
1995, 495–608. https://doi.org/10.1007/978-1-4615-2025-2 10

32. P. P. Shen, C. F. Wang, Global optimization for sum of linear ratios problem with coefficients, Appl.
Math. Comput., 176 (2006), 219–229. https://doi.org/10.1016/j.amc.2005.09.047

33. I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019),
2125–2169. https://doi.org/10.1080/02331934.2019.1632250

34. I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017),
439–470. https://doi.org/10.1080/02331934.2016.1276179

35. A. Q. Tian, H. X. Lv, X. Y. Wang, J. S. Pan, V. Snášel, Bioinspired discrete two-stage surrogate-
assisted algorithm for large-scale traveling salesman problem, J. Bionic. Eng., 22 (2025), 1926–
1939. https://doi.org/10.1007/s42235-025-00724-6

36. A. Q. Tian, F. F. Liu, H. X. Lv, Snow Geese algorithm: a novel migration-inspired meta-heuristic
algorithm for constrained engineering optimization problems, Appl. Math. Model., 126 (2024),
327–347. https://doi.org/10.1016/j.apm.2023.10.045

37. D. Zhan, A. Q. Tian, S. Q. Ni, Optimizing PID control for multi-model adaptive high-speed rail
platform door systems with an improved metaheuristic approach, Int. J. Elec. Power., 169 (2025),
110738. https://doi.org/10.1016/j.ijepes.2025.110738

Appendix

Some deterministic examples are given as follows.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

http://dx.doi.org/https://doi.org/10.1142/S0217595924500155
http://dx.doi.org/https://doi.org/10.4208/jcm.2203-m2021-0085
http://dx.doi.org/https://doi.org/10.4208/jcm.2203-m2021-0085
http://dx.doi.org/https://doi.org/10.15807/jorsj.32.143
http://dx.doi.org/https://doi.org/10.3934/math.2024793
http://dx.doi.org/https://doi.org/10.3934/math.2023464
http://dx.doi.org/https://doi.org/10.1007/BF00121658
http://dx.doi.org/https://doi.org/10.1023/A:1023274721632
http://dx.doi.org/https://doi.org/10.1007/s11075-022-01471-z
http://dx.doi.org/https://doi.org/10.1007/s11075-022-01471-z
http://dx.doi.org/https://doi.org/10.1007/978-1-4615-2025-2_10
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.09.047
http://dx.doi.org/https://doi.org/10.1080/02331934.2019.1632250
http://dx.doi.org/https://doi.org/10.1080/02331934.2016.1276179
http://dx.doi.org/https://doi.org/10.1007/s42235-025-00724-6
http://dx.doi.org/https://doi.org/10.1016/j.apm.2023.10.045
http://dx.doi.org/https://doi.org/10.1016/j.ijepes.2025.110738

20860

Example 1. ([24]) 

min f (x) = −3.333x1−3x2−1
1.666x1+x2+1 + −4x1−3x2−1

x1+x2+1 ,

s.t. 5x1 + 4x2 ≤ 10,
−x1 ≤ −0.1,
−x2 ≤ −0.1,
−2x1 − x2 ≤ −2,
x1, x2 ≥ 0.

Example 2. ([24, 29]) 

max 3x1+x2−2x3+0.8
2x1−x2+x3

+ 4x1−2x2+x3
7x1+3x2−x3

,

s.t. x1 + x2 − x3 ≤ 1,
−x1 + x2 − x3 ≤ −1,
12x1 + 5x2 + 12x3 ≤ 34.8,
12x1 + 12x2 + 7x3 ≤ 29.1,
−6x1 + x2 + x3 ≤ −4.1.

Example 3. ([24, 32])
max 3x1+4x2+50

3x1+5x2+4x3+50 −
3x1+5x2+3x3+50
5x1+5x2+4x3+50 −

x1+2x2+4x3+50
5x2+4x3+50 −

4x1+3x2+3x3+50
3x2+3x3+50 ,

s.t. 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 4. ([24])

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 + x1+2x2+5x3+50
x1+5x2+5x3+50 + x1+2x2+4x3+50

5x2+4x3+50 ,

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 5. ([24])

min 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 + x1+2x2+4x3+50
x1+5x2+5x3+50 + x1+2x2+4x3+50

5x2+4x3+50 ,

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

20861

Example 6. ([24, 32])
max 3x1+5x2+3x3+50

3x1+4x2+5x3+50 + 3x1+4x2+50
4x1+3x2+2x3+50 + 4x1+2x2+4x3+50

5x1+4x2+3x3+50 ,

s.t. 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 7. ([24]) 
min 37x1+73x2+13

13x1+13x2+13 + 63x1−18x2+39
13x1+26x2+13 ,

s.t. 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 8. ([24, 32])

max 4x1+3x2+3x3+50
3x2+2x3+50 + 3x1+4x2+50

4x1+4x2+5x3+50 + x1+2x2+5x3+50
x1+5x2+5x3+50 + x1+2x2+4x3+50

5x2+4x3+50 ,

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1, x2, x3 ≥ 0.

Example 9. ([24, 32])
max 37x1+73x2+13

13x1+13x2+13 + 63x1−18x2+39
−13x1−26x2−13 + 13x1+13x2+13

63x1−18x2+39 + 13x1+26x2+13
−37x2−73x3−13 ,

s.t. 5x1 − 3x2 = 3,
1.5 ≤ x1 ≤ 3.

Example 10. ([24])

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 + x1+2x2+5x3+50
x1+5x2+5x3+50 + x1+2x2+4x3+50

5x2+4x3+50 ,

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≥ 10,
x1, x2, x3 ≥ 0.

c© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 9, 20843–20861.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Equivalent problem and its linear relaxation
	Algorithm and its theoretical analysis
	Branching rule
	Branch-and-bound algorithm
	Global convergence analysis
	Computational complexity analysis

	Numerical comparisons
	Conclusions

