

http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(9): 20550-20570.

DOI:10.3934/math.2025917 Received: 03 July 2025 Revised: 22 August 2025 Accepted: 29 August 2025

Published: 08 September 2025

Research article

On j-fuzzy γI -open sets with some applications

Fahad Alsharari¹, Jawaher Al-Mufarrij² and Islam M. Taha^{3,*}

- ¹ Department of Mathematics, College of Science, Jouf University, Sakaka 72311, Saudi Arabia
- ² Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- ³ Department of Mathematics, College of Science, Sohag University, Sohag, Egypt
- * Correspondence: Email: imtaha2010@yahoo.com; Tel: +201114149512.

Abstract: In this paper, we first introduced and studied a new class of fuzzy open sets, called j-fuzzy γI -open (j-F γI -open) sets on fuzzy ideal topological spaces ($\mathcal{F}I\mathcal{T}Ss$). The class of j-F γI -open sets is contained in the class of j-fuzzy strong β -I-open (j-FS βI -open) sets and contains all j-fuzzy pre-I-open (j-FPI-open) sets and j-fuzzy semi-I-open (j-FSI-open) sets. We also defined and investigated the closure and interior operators with respect to the classes of j-F γI -closed sets and j-F γI -open sets. However, we explored and discussed novel types of fuzzy I-separation axioms using j-F γI -closed sets, called j-F γI -regular spaces and j-F γI -normal spaces. Thereafter, we displayed and investigated the concept of fuzzy γI -continuity (F γI -continuity) using j-F γI -open sets. Also, we presented and characterized the concepts of fuzzy weak γI -continuity (FW γI -continuity) and fuzzy almost γI -continuity (FA γI -continuity), which are weaker forms of F γI -continuity. Moreover, we showed that F γI -continuity \Longrightarrow FA γI -continuity \Longrightarrow FW γI -continuity, but the converse may not be true. Finally, we defined and studied some new fuzzy γI -mappings via j-F γI -open sets and j-F γI -closed sets, called F γI -open mappings, F γI -closed mappings, F γI -irresolute open mappings, and F γI -irresolute closed mappings. The relationships between these classes of mappings were discussed with the help of some examples.

Keywords: fuzzy ideals; fuzzy topology; j-fuzzy γI -open set; fuzzy γI -continuity; fuzzy

 γI -irresoluteness

Mathematics Subject Classification: 54A40, 54C05, 54C08, 54D15

1. Introduction

The concept of a fuzzy set was first defined in 1965 by Zadeh [1] as a suitable approach to address with uncertainty cases that we cannot be efficiently managed via classical techniques. Over the last

decades, the research of fuzzy sets has had a vital role in mathematics and applied sciences and garnered significant attention due to its ability to handle uncertain and vague information in various real-life applications such as control systems [2, 3], artificial intelligence [4], image processing [5, 6], decision-making [7–9], etc. The integration between fuzzy sets and some uncertainty approaches, such as rough sets and soft sets, has been discussed in [10–12]. The notion of a fuzzy topology was introduced in 1968 by Chang [13], and this development has led to the expansion and discussion of several classical topological concepts in the context of a fuzzy topology [14, 15], providing more accurate and flexible models to address problems of uncertainty in various real-life areas. Overall, according to Šostak [16], the concept of a fuzzy topology being a crisp subclass of the class of fuzzy sets and fuzziness in the concept of openness of a fuzzy set have not been considered, which seems to be a drawback in the process of fuzzification of a topological space. Thereafter, Šostak [16] introduced a new notion of a fuzzy topology as the notion of openness of fuzzy sets. It is an extension of a fuzzy topology defined by Chang [13]. Furthermore, several researchers (see [17–20]) have redisplayed the same concept and investigated fuzzy topological spaces (\mathcal{FTSs}) being unaware of Šostak's work.

The generalizations of fuzzy open sets play an effective role in a fuzzy topology through their ability to improve on several results or to open the door to explore and discuss many fuzzy topological concepts such as fuzzy continuity [17, 18], fuzzy compactness [18, 19], fuzzy connectedness [18], etc. Furthermore, the concepts of j-fuzzy pre-open (j-FP-open) sets, j-fuzzy semi-open (j-FS-open) sets, j-fuzzy β -open (j-F β -open) sets, and j-fuzzy α -open (j-F α -open) sets were presented and investigated by the authors of [21, 22] in $\mathcal{FTS}s$ based on Šostak's sense [16]. Kim et al. [21] displayed and investigated weaker forms of fuzzy continuity, called FS-continuity (resp. FP-continuity and F α -continuity) between $\mathcal{FTS}s$ in the sense of Šostak. Abbas [22] defined and discussed the concepts of F β -continuous (resp. F β -irresolute) mappings. Also, Kim and Abbas [23] explored and characterized new types of j-fuzzy compactness. Overall, the notions of j-fuzzy γ -open (j-F γ -open) sets and j-fuzzy γ -closed (j-F γ -closed) sets were introduced and discussed by the authors of [24].

The notion of j-fuzzy local function was presented and investigated by Taha and Abbas [25] in an $\mathcal{F}I\mathcal{T}S$ (Z,ζ,I) based on Šostak's sense [16]. Moreover, the notions of fuzzy lower (resp. upper) weakly and almost I-continuous multifunctions were displayed and investigated by Taha and Abbas [25]. Also, Taha [26–28] introduced the notions of j-FSI-open sets, j-FPI-open sets, j-FPI-open sets, j-FSI-open sets, j-FSI-open sets, and j-GFI-closed sets in an $\mathcal{F}I\mathcal{T}S$ (Z,ζ,I) based on Šostak's sense. Overall, Taha [27, 28] presented the concepts of fuzzy lower (resp. upper) generalized I-continuous (resp. semi-I-continuous, pre-I-continuous, δ -I-continuous, α -I-continuous, β -I-continuous, and strong β -I-continuous) multifunctions via fuzzy ideals [29].

The arrangement of this paper is as follows:

- Section 2 provides fundamental results and concepts that we use in our research.
- In Section 3, we introduce and study a new class of fuzzy sets, called j-F γI -open sets on $\mathcal{F}I\mathcal{T}Ss$ in the sense of Šostak. We also define and discuss the interior and closure operators with respect to the classes of j-F γI -open sets and j-F γI -closed sets. Furthermore, we explore new types of fuzzy I-separation axioms using j-F γI -closed sets, called j-F γI -regular spaces and j-F γI -normal spaces.
- In Section 4, we display and characterize the notion of $F\gamma I$ -continuous mappings using j- $F\gamma I$ -open sets. However, we present and discuss the notions of $FA\gamma I$ -continuous and $FW\gamma I$ -continuous mappings, which are weaker forms of $F\gamma I$ -continuous mappings.
 - In Section 5, we explore and investigate new $F\gamma I$ -mappings via j- $F\gamma I$ -open sets and j-

 $F\gamma I$ -closed sets, called $F\gamma I$ -closed mappings, $F\gamma I$ -open mappings, $F\gamma I$ -irresolute mappings, $F\gamma I$ -irresolute open mappings, and $F\gamma I$ -irresolute closed mappings.

• In Section 6, we give some potential future studies and conclusions.

2. Preliminaries

In this paper, non-empty sets will be denoted by Y, X, Z, etc. For any fuzzy set $\omega \in I^Z$ (where I = [0, 1] and I^Z is the class of all fuzzy sets on Z), $\omega^c(z) = 1 - \omega(z)$, for each $z \in Z$. Also, for $s \in I$, $\underline{s}(z) = s$, for each $z \in Z$. On Z, a fuzzy point z_s is a fuzzy set and is defined as follows: $z_s(r) = s$ if r = z, and $z_s(r) = 0$ for any $r \in Z - \{z\}$. We say that z_s belongs to $\omega \in I^Z$ ($z_s \in \omega$), if $s \leq \omega(z)$. Also, $P_s(Z)$ is the class of all fuzzy points. A fuzzy set $v \in I^Z$ is a quasi-coincident with $\mu \in I^Z$ ($v \in Q$) on Z if there is $z \in Z$, with $v(z) + \mu(z) > 1$. Also, v is not a quasi-coincident with u ($v \in Q$) otherwise.

The difference between $\psi, \mu \in I^{\mathbb{Z}}$ [25] is defined as follows:

$$\psi \overline{\wedge} \mu = \begin{cases} \underline{0}, & \text{if } \psi \leq \mu, \\ \psi \wedge \mu^c, & \text{otherwise.} \end{cases}$$

Lemma 2.1. [30] Let $\omega, \nu \in I^Z$. Thus,

- (a) if $\omega Q \nu$, then $\omega \wedge \nu \neq 0$,
- (b) $\omega Q \nu$ iff there is $z_s \in \omega$ such that $z_s Q \nu$,
- (c) $\omega \overline{Q} \nu$ iff $\omega \leq \nu^c$,
- (d) $\omega \leq \nu$ iff $z_s \in \omega$ implies $z_s \in \nu$ iff $z_s Q \omega$ implies $z_s Q \nu$ iff $z_s \overline{Q} \nu$ implies $z_s \overline{Q} \omega$.

Definition 2.1. [16, 17] A mapping $\zeta: I^Z \longrightarrow I$ is called a fuzzy topology on Z if it satisfies the following conditions:

- (a) $\zeta(0) = \zeta(1) = 1$.
- (b) $\zeta(\omega \wedge \nu) \geq \zeta(\omega) \wedge \zeta(\nu)$, for any $\omega, \nu \in I^Z$.
- (c) $\zeta(\bigvee_{i\in\Gamma}\omega_i) \geq \bigwedge_{i\in\Gamma}\zeta(\omega_i)$, for any $\omega_i\in I^Z$.

Thus, (Z, ζ) is called a fuzzy topological space (\mathcal{FTS}) in the sense of Šostak.

Definition 2.2. [17, 21] A fuzzy mapping $\mathbb{P}: (Z, \zeta) \longrightarrow (Y, \mathfrak{I})$ is called

- (a) fuzzy continuous if $\zeta(\mathbb{P}^{-1}(\nu)) \geq \mathfrak{I}(\nu)$, for any $\nu \in I^Y$;
- (b) fuzzy open if $\mathfrak{I}(\mathbb{P}(\omega)) \geq \zeta(\omega)$, for any $\omega \in I^{\mathbb{Z}}$;
- (c) fuzzy closed if $\mathfrak{I}((\mathbb{P}(\omega))^c) \geq \zeta(\omega^c)$, for any $\omega \in I^{\mathbb{Z}}$.

Definition 2.3. [18, 22] For any $\omega \in I^Z$ and $j \in I_\circ$ (where $I_\circ = (0, 1]$) in an $\mathcal{FTS}(Z, \zeta)$, we define fuzzy operators C_ζ and $I_\zeta : I^Z \times I_\circ \to I^Z$ as follows:

$$C_{\zeta}(\omega, j) = \bigwedge \{ v \in I^{\mathbb{Z}} : \omega \leq v, \ \zeta(v^c) \geq j \}.$$

$$I_{\zeta}(\omega,j) = \bigvee \{ v \in I^Z : v \leq \omega, \ \zeta(v) \geq j \}.$$

Definition 2.4. [21, 22, 24] Let (Z, ζ) be an \mathcal{FTS} and $j \in I_o$. A fuzzy set $\omega \in I^Z$ is called

- (a) *j*-F-open if $\omega = I_{\ell}(\omega, j)$;
- (b) *j*-FP-open if $\omega \le I_{\zeta}(C_{\zeta}(\omega, j), j)$;

- (c) *j*-FS-open if $\omega \leq C_{\zeta}(I_{\zeta}(\omega, j), j)$;
- (d) *j*-FR-open if $\omega = I_{\zeta}(C_{\zeta}(\omega, j), j)$;
- (e) *j*-F α -open if $\omega \leq I_{\zeta}(C_{\zeta}(I_{\zeta}(\omega, j), j), j)$;
- (f) *j*-F β -open if $\omega \leq C_{\zeta}(I_{\zeta}(C_{\zeta}(\omega, j), j), j)$;
- (g) *j*-Fy-open if $\omega \leq C_{\ell}(I_{\ell}(\omega, j), j) \vee I_{\ell}(C_{\ell}(\omega, j), j)$.

Remark 2.1. [21, 22, 24] We have the following diagram from the previous definitions.

$$j ext{-FP-open}$$
 $j ext{-F-open set}$
 $j ext{-F}\alpha ext{-open}$
 $j ext{-F}\gamma ext{-open}$
 $j ext{-FS-open}$

Definition 2.5. [21, 22, 24] A fuzzy mapping $\mathbb{P}: (Z, \zeta) \longrightarrow (Y, \mathfrak{I})$ is called FS-continuous (resp. FP-continuous, F α -continuous, F β -continuous, and F γ -continuous) if $\mathbb{P}^{-1}(\omega)$ is a j-FS-open (resp. j-FP-open, j-F α -open, j-F β -open, and j-F γ -open) set, for any $\omega \in I^Y$ with $\mathfrak{I}(\omega) \geq j$ and $j \in I_{\circ}$.

Definition 2.6. [24] For any $\omega \in I^Z$ and $j \in I_\circ$ in an $\mathcal{FTS}(Z,\zeta)$, we define fuzzy operators γC_ζ and $\gamma I_\zeta : I^Z \times I_\circ \to I^Z$ as follows:

$$\gamma C_{\zeta}(\omega, j) = \bigwedge \{ \mu \in I^Z : \omega \le \mu, \ \mu \text{ is } j\text{-F}\gamma\text{-closed} \}.$$

$$\gamma I_{\zeta}(\omega, j) = \bigvee \{ \mu \in I^Z : \mu \le \omega, \ \mu \text{ is } j\text{-F}\gamma\text{-open} \}.$$

Definition 2.7. [29] A fuzzy ideal I on Z, is a map $I: I^Z \longrightarrow I$ that satisfies the following:

- (a) $\forall \omega, \mu \in I^Z \text{ and } \omega \leq \mu \implies I(\mu) \leq I(\omega)$.
- (b) $\forall \omega, \mu \in I^Z \implies \mathcal{I}(\omega \vee \mu) \geq \mathcal{I}(\omega) \wedge \mathcal{I}(\mu)$.

Moreover, I_0 is the simplest fuzzy ideal on Z, and is defined as follows:

$$I_0(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ 0, & \text{otherwise.} \end{cases}$$

Definition 2.8. [25] Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$, $j \in I_{\circ}$, and $\omega \in I^{Z}$. Then the j-fuzzy local function ω_{j}^{*} of ω is defined as follows:

$$\omega_j^* = \bigwedge \{ \rho \in I^Z \ : \ \mathcal{I}(\omega \,\overline{\wedge}\, \rho) \geq j, \ \zeta(\rho^c) \geq j \}.$$

Remark 2.2. [25] If we take $I = I_0$, for each $\omega \in I^Z$ we have:

$$\omega_j^* = \bigwedge \{ \rho \in I^Z \ : \ \omega \le \rho, \ \zeta(\rho^c) \ge j \} = C_\zeta(\omega,j).$$

Definition 2.9. [25] Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$, $j \in I_{\circ}$, and $\omega \in I^{Z}$. Then we define fuzzy operator C_{ζ}^{*} : $I^{Z} \times I_{\circ} \to I^{Z}$ as follows:

$$C_{\zeta}^*(\omega, j) = \omega \vee \omega_j^*$$
.

Now if, $I = I_0$ then $C_{\zeta}^*(\omega, j) = \omega \vee \omega_j^* = \omega \vee C_{\zeta}(\omega, j) = C_{\zeta}(\omega, j)$ for each $\omega \in I^Z$.

Theorem 2.1. [25] Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$, $j \in I_{\circ}$, and $\omega, \rho \in I^{Z}$. The operator $C_{\zeta}^{*}: I^{Z} \times I_{\circ} \to I^{Z}$ satisfies the following properties:

- (a) $C_{\zeta}^*(\underline{0}, j) = \underline{0}$.
- (b) $\omega \leq C_{\zeta}^*(\omega, j) \leq C_{\zeta}(\omega, j)$.
- (c) If $\omega \leq \rho$, then $C_{\zeta}^{*}(\omega, j) \leq C_{\zeta}^{*}(\rho, j)$.
- (d) $C_{\zeta}^{*}(\omega \vee \rho, j) = C_{\zeta}^{*}(\omega, j) \vee C_{\zeta}^{*}(\rho, j).$ (e) $C_{\zeta}^{*}(\omega \wedge \rho, j) \leq C_{\zeta}^{*}(\omega, j) \wedge C_{\zeta}^{*}(\rho, j).$ (f) $C_{\zeta}^{*}(C_{\zeta}^{*}(\omega, j), j) = C_{\zeta}^{*}(\omega, j).$

Definition 2.10. [26, 28] Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$ and $j \in I_{\circ}$. A fuzzy set $\omega \in I^{Z}$ is called

- (a) *j*-FS*I*-open if $\omega \leq C_{\ell}^*(I_{\zeta}(\omega, j), j)$;
- (b) *j*-FP*I*-open if $\omega \leq I_{\zeta}(C_{\zeta}^{*}(\omega, j), j)$;
- (c) j-F αI -open if $\omega \leq I_{\zeta}(C_{\zeta}^*(I_{\zeta}(\omega, j), j), j)$;
- (d) j-F βI -open if $\omega \leq C_{\zeta}(I_{\zeta}(C_{\zeta}^{*}(\omega, j), j), j);$
- (e) j-FS βI -open if $\omega \leq C_{\gamma}^*(I_{\zeta}(C_{\gamma}^*(\omega, j), j), j)$;
- (f) *j*-FR*I*-open if $\omega = I_{\zeta}(C_{\zeta}^{*}(\omega, j), j)$.

Some basic results and concepts that we need in the sequel are found in [17, 18, 25–28].

3. On *j*-fuzzy γI -open sets

Here, we present and investigate a new class of fuzzy open sets, called j-FyI-open sets in an $\mathcal{F}ITS(Z, \zeta, I)$ based on Sostak's sense. Some properties of j-FyI-open sets along with their mutual relationships are discussed with the help of some illustrative examples. Also, we explore the interior and closure operators with respect to the classes of j-FyI-open and j-FyI-closed sets and investigate some of their properties. Overall, we define and study new types of fuzzy \mathcal{I} -separation axioms via j-F γI -closed sets, called j-F γI -regular and j-F γI -normal spaces.

Definition 3.1. Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$ and $j \in I_{\circ}$. A fuzzy set $\rho \in I^{Z}$ is called a j-F γI -open set if $\rho \leq C_{\zeta}^*(I_{\zeta}(\rho,j),j) \vee I_{\zeta}(C_{\zeta}^*(\rho,j),j).$

Remark 3.1. The complement of j-F γI -open sets are j-F γI -closed sets.

Lemma 3.1. Each j-Fy \mathcal{I} -open set is j-Fy-open [24].

Proof. The proof follows by Theorem 2.1 and by Definitions 2.4 and 3.1.

Remark 3.2. If we take $I = I_0$; then j-FyI-open set and j-Fy-open set [24] are equivalent.

Remark 3.3. The converse of Lemma 3.1 fails, as can be seen in Example 3.1.

Example 3.1. Define $\zeta, \mathcal{I}: I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\ \frac{2}{3}, & \text{if } \psi = \underline{0.7}, \\ \frac{1}{3}, & \text{if } \psi = \underline{0.3}, \\ 0, & \text{otherwise,} \end{cases} \qquad I(\nu) = \begin{cases} 1, & \text{if } \nu = \underline{0}, \\ \frac{2}{3}, & \text{if } \underline{0} < \nu \leq \underline{0.6}, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, $\underline{0.6}$ is an $\frac{1}{3}$ -F γ -open set, but it is not $\frac{1}{3}$ -F γI -open.

Proposition 3.1. In an $\mathcal{FITS}(Z, \zeta, I)$, for each $\omega \in I^Z$ and $j \in I_\circ$. Then

- (a) Each j-FPI-open set [26] is j-F γ I-open;
- (b) Each j-F γI -open set is j-FS βI -open [28];
- (c) Each j-FSI-open set [26] is j-F γ I-open.

Proof. (a) If ω is a *j*-FP*I*-open set. Then

$$\omega \leq I_{\zeta}(C_{\zeta}^{*}(\omega, j), j)$$

$$\leq I_{\zeta}(C_{\zeta}^{*}(\omega, j), j) \vee I_{\zeta}(\omega, j)$$

$$\leq I_{\zeta}(C_{\zeta}^{*}(\omega, j), j) \vee C_{\zeta}^{*}(I_{\zeta}(\omega, j), j).$$

Thus, ω is j-F γI -open.

(b) If ω is a *j*-F γI -open set. Then

$$\begin{split} \omega &\leq C_{\zeta}^*(I_{\zeta}(\omega,j),j) \vee I_{\zeta}(C_{\zeta}^*(\omega,j),j) \\ &\leq C_{\zeta}^*(I_{\zeta}(C_{\zeta}^*(\omega,j),j),j) \vee I_{\zeta}(C_{\zeta}^*(\omega,j),j) \\ &\leq C_{\zeta}^*(I_{\zeta}(C_{\zeta}^*(\omega,j),j),j). \end{split}$$

Thus, ω is j-FS βI -open.

(c) If ω is a *j*-FS*I*-open set. Then

$$\begin{split} \omega &\leq C_{\zeta}^*(I_{\zeta}(\omega,j),j) \\ &\leq C_{\zeta}^*(I_{\zeta}(\omega,j),j) \vee I_{\zeta}(\omega,j) \\ &\leq C_{\zeta}^*(I_{\zeta}(\omega,j),j) \vee I_{\zeta}(C_{\zeta}^*(\omega,j),j). \end{split}$$

Thus, ω is j-F γI -open.

Remark 3.4. We have the following diagram from the previous definitions and discussions.

Remark 3.5. The reverse implication of the above diagram does not hold, as demonstrated by Examples 3.2, 3.3, and 3.4.

Example 3.2. Let $Z = \{z_1, z_2\}$ and define $\omega, \rho, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.4}, \frac{z_2}{0.3}\}, \rho = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}, \lambda = \{\frac{z_1}{0.4}, \frac{z_2}{0.5}\}$. Define $\zeta, I : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases}
1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\
\frac{1}{4}, & \text{if } \psi = \rho, \\
\frac{1}{2}, & \text{if } \psi = \omega, \\
0, & \text{otherwise,}
\end{cases} \qquad I(\mu) = \begin{cases}
1, & \text{if } \mu = \underline{0}, \\
\frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.3}, \\
0, & \text{otherwise.}
\end{cases}$$

Thus, λ is an $\frac{1}{4}$ -FyI-open set, but it is not $\frac{1}{4}$ -FPI-open.

Example 3.3. Let $Z = \{z_1, z_2\}$ and define $\omega, \rho, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.3}, \frac{z_2}{0.2}\}, \rho = \{\frac{z_1}{0.7}, \frac{z_2}{0.8}\}, \lambda = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}$. Define $\zeta, I : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \psi = \omega, \\ \frac{1}{2}, & \text{if } \psi = \rho, \\ 0, & \text{otherwise,} \end{cases} \qquad I(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.5}, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, λ is an $\frac{1}{3}$ -F γI -open set, but it is neither $\frac{1}{3}$ -FSI-open nor $\frac{1}{3}$ -F αI -open.

Example 3.4. Let $Z = \{z_1, z_2\}$ and define $\omega, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}, \lambda = \{\frac{z_1}{0.4}, \frac{z_2}{0.5}\}$. Define $\zeta, \mathcal{I} : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases}
1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\
\frac{1}{2}, & \text{if } \psi = \omega, \\
0, & \text{otherwise,}
\end{cases} \qquad I(\mu) = \begin{cases}
1, & \text{if } \mu = \underline{0}, \\
\frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.4}, \\
0, & \text{otherwise.}
\end{cases}$$

Thus, λ is an $\frac{1}{3}$ -FS βI -open set, but it is not $\frac{1}{3}$ -F γI -open.

Definition 3.2. For each $\omega \in I^Z$ and $j \in I_\circ$ in an $\mathcal{F}I\mathcal{T}S$ (Z,ζ,I) , we define a fuzzy γ -I-closure operator $\gamma C_\zeta^*: I^Z \times I_\circ \longrightarrow I^Z$ as follows:

$$\gamma C_{\zeta}^*(\omega, j) = \bigwedge \{ \nu \in I^Z : \omega \le \nu, \ \nu \text{ is } j\text{-F}\gamma I\text{-closed} \}.$$

Proposition 3.2. For each $\omega \in I^Z$ and $j \in I_0$ in an $\mathcal{F}I\mathcal{T}S$ (Z, ζ, I) , a fuzzy set ω is j-F γI -closed iff $\gamma C_{\zeta}^*(\omega, j) = \omega$.

Proof. This follows directly from Definition 3.2.

Theorem 3.1. For each $\rho, \omega \in I^Z$ and $j \in I_\circ$ in an $\mathcal{F}I\mathcal{TS}(Z, \zeta, I)$, a fuzzy γ -I-closure operator γC_ζ^* : $I^Z \times I_\circ \longrightarrow I^Z$ satisfies the following properties.

(a)
$$\gamma C_{\zeta}^*(\underline{0}, j) = \underline{0}$$
.

(b)
$$\omega \leq \gamma C_{\zeta}^*(\omega, j) \leq C_{\zeta}(\omega, j)$$
.

- (c) $\gamma C_{\zeta}^*(\omega, j) \le \gamma C_{\zeta}^*(\rho, j)$ if $\omega \le \rho$.
- (d) $\gamma C_{\zeta}^*(\gamma C_{\zeta}^*(\omega, j), j) = \gamma C_{\zeta}^*(\omega, j).$
- (e) $\gamma C_{\zeta}^*(\omega \vee \rho, j) \geq \gamma C_{\zeta}^*(\omega, j) \vee \gamma C_{\zeta}^*(\rho, j)$.

Proof. (a), (b), and (c) are easily proved by Definition 3.2.

(d) From (b) and (c), $\gamma C_{\zeta}^{*}(\omega, j) \leq \gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j)$. Now, we show $\gamma C_{\zeta}^{*}(\omega, j) \geq \gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j)$. If $\gamma C_{\zeta}^{*}(\omega, j)$ does not contain $\gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j)$, there is $z \in Z$ and $s \in (0, 1)$ with

$$\gamma C_{\ell}^*(\omega, j)(z) < s < \gamma C_{\ell}^*(\gamma C_{\ell}^*(\omega, j), j)(z). \tag{1}$$

Since $\gamma C_{\zeta}^{*}(\omega, j)(z) < s$, by Definition 3.2, there is $\mu \in I^{\mathbb{Z}}$ as a j-F γI -closed set and $\omega \leq \mu$ with $\gamma C_{\zeta}^{*}(\omega, j)(z) \leq \mu(z) < s$. Since $\omega \leq \mu$, then $\gamma C_{\zeta}^{*}(\omega, j) \leq \mu$. Again, by the definition of γC_{ζ}^{*} , then $\gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j) \leq \mu$. Hence, $\gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j)(z) \leq \mu(z) < s$, which is a contradiction for (1). Thus, $\gamma C_{\zeta}^{*}(\omega, j) \geq \gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j)$. Therefore, $\gamma C_{\zeta}^{*}(\gamma C_{\zeta}^{*}(\omega, j), j) = \gamma C_{\zeta}^{*}(\omega, j)$.

(e) Since $\omega \leq \omega \vee \rho$ and $\rho \leq \omega \vee \rho$, then by (c), $\gamma \check{C}_{\zeta}^{*}(\omega, j) \leq \gamma C_{\zeta}^{*}(\check{\omega} \vee \rho, j)$ and $\gamma C_{\zeta}^{*}(\rho, j) \leq \gamma C_{\zeta}^{*}(\omega \vee \rho, j)$. Hence, $\gamma C_{\zeta}^{*}(\omega \vee \rho, j) \geq \gamma C_{\zeta}^{*}(\omega, j) \vee \gamma C_{\zeta}^{*}(\rho, j)$.

Definition 3.3. For each $\omega \in I^Z$ and $j \in I_\circ$ in an $\mathcal{F}I\mathcal{T}S$ (Z, ζ, I) , we define a fuzzy γ -I-interior operator $\gamma I_{\mathcal{T}}^* : I^Z \times I_\circ \longrightarrow I^Z$ as follows: $\gamma I_{\mathcal{T}}^*(\omega, j) = \bigvee \{ v \in I^Z : v \leq \omega, v \text{ is } j\text{-F}\gamma I\text{-open} \}.$

Proposition 3.3. Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$, $\omega \in I^Z$, and $j \in I_\circ$. Then

- (a) $\gamma C_{r}^{*}(\omega^{c}, j) = (\gamma I_{r}^{*}(\omega, j))^{c};$
- (b) $\gamma I_{r}^{*}(\omega^{c}, j) = (\gamma C_{r}^{*}(\omega, j))^{c}$.

Proof. (a) For each $\omega \in I^Z$, we have $\gamma C_{\zeta}^*(\omega^c, j) = \bigwedge \{ \rho \in I^Z : \omega^c \leq \rho, \ \rho \text{ is } j\text{-F}\gamma I\text{-closed} \} = [\bigvee \{ \rho^c \in I^Z : \rho^c \leq \omega, \ \rho^c \text{ is } j\text{-F}\gamma I\text{-open} \}]^c = (\gamma I_{\gamma}^*(\omega, j))^c.$

(b) This is similar to that of (a).

Proposition 3.4. For each $\omega \in I^Z$ and $j \in I_\circ$ in an $\mathcal{F}I\mathcal{TS}(Z,\zeta,I)$, a fuzzy set ω is j-F γI -open iff $\gamma I_{\mathcal{F}}^*(\omega,j) = \omega$.

Proof. This is immediate from Definition 3.3.

Theorem 3.2. For each $\rho, \omega \in I^Z$ and $j \in I_\circ$ in an $\mathcal{F}I\mathcal{T}S$ (Z, ζ, I) , a fuzzy γ -I-interior operator γI_ζ^* : $I^Z \times I_\circ \longrightarrow I^Z$ satisfies the following properties.

- (a) $\gamma I_{\epsilon}^{*}(1, j) = 1$.
- (b) $I_{\zeta}(\omega, j) \leq \gamma I_{\gamma}^*(\omega, j) \leq \omega$.
- (c) $\gamma I_{\zeta}^*(\omega, j) \leq \gamma I_{\zeta}^*(\rho, j)$ if $\omega \leq \rho$.
- (d) $\gamma I_{\zeta}^*(\gamma I_{\zeta}^*(\omega, j), j) = \gamma I_{\zeta}^*(\omega, j).$
- (e) $\gamma I_{\zeta}^{*}(\omega, j) \wedge \gamma I_{\zeta}^{*}(\rho, j) \geq \gamma I_{\zeta}^{*}(\omega \wedge \rho, j)$.

Proof. This can be proven using the same approach as in Theorem 3.1.

Definition 3.4. Let $z_s \in P_s(Z)$, $\omega \in I^Z$, and $j \in I_\circ$. An $\mathcal{F}I\mathcal{T}S$ (Z, ζ, I) is said to be a j-F γI -regular space if $z_s \overline{Q} \omega$ for any j-F γI -closed set ω , there is $\mu_i \in I^Z$ with $\zeta(\mu_i) \geq j$ for i = 1, 2, such that $z_s \in \mu_1$, $\omega \leq \mu_2$, and $\mu_1 \overline{Q} \mu_2$.

Definition 3.5. Let $\omega, \rho \in I^Z$ and $j \in I_\circ$. An $\mathcal{F}I\mathcal{T}S$ (Z, ζ, I) is said to be a j-F γI -normal space if $\omega \overline{Q} \rho$ for any j-F γI -closed sets ω and ρ , there is $\mu_i \in I^Z$ with $\zeta(\mu_i) \geq j$ for i = 1, 2, such that $\omega \leq \mu_1$, $\rho \leq \mu_2$, and $\mu_1 \overline{Q} \mu_2$.

Theorem 3.3. Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$, $z_s \in P_s(Z)$, $\omega \in I^Z$, and $j \in I_\circ$. Each of the following statements implies the others.

- (a) (Z, ζ, I) is an j-F γI -regular space.
- (b) If $z_s \in \omega$ for any j-F γI -open set ω , there is $\mu \in I^Z$ with $\zeta(\mu) \geq j$, and

$$z_s \in \mu \leq C_{\mathcal{E}}(\mu, j) \leq \omega.$$

(c) If $z_s \overline{Q} \omega$ for any j-F γI -closed set ω , there is $\mu_i \in I^Z$ with $\zeta(\mu_i) \geq j$ for i = 1, 2, such that $z_s \in \mu_1$, $\omega \leq \mu_2$, and $C_{\zeta}(\mu_1, j) \overline{Q} C_{\zeta}(\mu_2, j)$.

Proof. (a) \Rightarrow (b) Let $z_s \in \omega$ for any j-F γI -open set ω , then $z_s \overline{Q} \omega^c$. Since (Z, ζ, I) is j-F γI -regular, then there is $\mu, \nu \in I^Z$ with $\zeta(\mu) \geq j$ and $\zeta(\nu) \geq j$, such that $z_s \in \mu$, $\omega^c \leq \nu$, and $\mu \overline{Q} \nu$. Thus, $z_s \in \mu \leq \nu^c \leq \omega$, so $z_s \in \mu \leq C_{\zeta}(\mu, j) \leq \omega$.

- (b) \Rightarrow (c) Let z_s \overline{Q} ω for any j-F γI -closed set ω , then $z_s \in \omega^c$. By (b), there is $v \in I^Z$ with $\zeta(v) \geq j$ and $z_s \in v \leq C_{\zeta}(v, j) \leq \omega^c$. Since $\zeta(v) \geq j$, then v is an j-F γI -open set and $z_s \in v$. Again, by (b), there is $\mu \in I^Z$ such that $\zeta(\mu) \geq j$, and $z_s \in \mu \leq C_{\zeta}(\mu, j) \leq v \leq C_{\zeta}(v, j) \leq \omega^c$. Therefore, $\omega \leq (C_{\zeta}(v, j))^c = I_{\zeta}(v^c, j) \leq v^c$. Set $\lambda = I_{\zeta}(v^c, j)$, and then $\zeta(\lambda) \geq j$. Thus, $C_{\zeta}(\lambda, j) \leq v^c \leq (C_{\zeta}(\mu, j))^c$. Hence, $C_{\zeta}(\mu, j)$ \overline{Q} $C_{\zeta}(\lambda, j)$.
 - (c) \Rightarrow (a) This is immediate from Definition 3.4.

Theorem 3.4. Let (Z, ζ, I) be an $\mathcal{F}I\mathcal{T}S$, $\omega, \rho \in I^Z$, and $j \in I_\circ$. Each of the following statements implies the others.

- (a) (Z, ζ, I) is an j-F γI -normal space.
- (b) If $\mu \le \omega$ for any j-F γI -closed set μ and j-F γI -open set ω , there is $\nu \in I^Z$ with $\zeta(\nu) \ge j$, and $\mu \le \nu \le C_{\zeta}(\nu, j) \le \omega$.
- (c) If $\omega \ \overline{Q} \ \rho$ for any j-F γI -closed sets ω and ρ , there is $\mu_i \in I^Z$ with $\zeta(\mu_i) \ge j$ for i = 1, 2, such that $\omega \le \mu_1, \rho \le \mu_2$, and $C_{\zeta}(\mu_1, j) \ \overline{Q} \ C_{\zeta}(\mu_2, j)$.

Proof. This can be proven using the same approach as in Theorem 3.3.

4. Fuzzy γI -continuity

Here, we display and study the notion of $F\gamma I$ -continuity using j- $F\gamma I$ -open sets. Furthermore, we present and characterize the notions of $FA\gamma I$ -continuity and $FW\gamma I$ -continuity, which are weaker forms of $F\gamma I$ -continuity. Also, we show that $F\gamma I$ -continuity $\Longrightarrow FA\gamma I$ -continuity $\Longrightarrow FW\gamma I$ -continuity, but the converse may not be true.

Definition 4.1. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is called $\text{F}\gamma I$ -continuous if $\mathbb{P}^{-1}(\omega)$ is a j- $\text{F}\gamma I$ -open set, for any $\omega \in I^Y$ with $\mathfrak{I}(\omega) \geq j$ and $j \in I_{\circ}$.

Lemma 4.1. Every $F\gamma I$ -continuity is an $F\gamma$ -continuity [24].

Proof. The proof follows by Lemma 3.1 and by Definitions 2.5 and 4.1.

Remark 4.1. If we take $I = I_0$; then $F\gamma I$ -continuity and $F\gamma$ -continuity [24] are equivalent.

Remark 4.2. The converse of Lemma 4.1 fails, as can be seen in Example 4.1.

Example 4.1. Define $\zeta, \mathcal{I}, \mathfrak{I} : I^Z \longrightarrow I$ as follows:

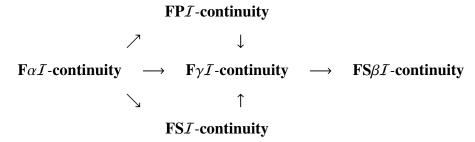
$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{2}, & \text{if } \psi = \underline{0.7}, \\ \frac{1}{3}, & \text{if } \psi = \underline{0.3}, \\ 0, & \text{otherwise,} \end{cases} \qquad I(\nu) = \begin{cases} 1, & \text{if } \nu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \nu \leq \underline{0.6}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \theta = \underline{0.6}, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is Fy-continuous, but it is not FyI-continuous.

Definition 4.2. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is called $F\alpha I$ -continuous (resp. FPI-continuous, FSI-continuous, and $FS\beta I$ -continuous) if $\mathbb{P}^{-1}(\omega)$ is a j- $F\alpha I$ -open (resp. j-FPI-open, j-FSI-open, and j- $FS\beta I$ -open) set, for any $\omega \in I^Y$ and $\mathfrak{I}(\omega) \geq j$ with $j \in I_{\circ}$.

Remark 4.3. We have the following diagram from the previous definitions.



Remark 4.4. The reverse implication of the above diagram does not hold, as demonstrated by Examples 4.2, 4.3, and 4.4.

Example 4.2. Let $Z = \{z_1, z_2\}$ and define $\omega, \rho, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.4}, \frac{z_2}{0.3}\}, \rho = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}, \lambda = \{\frac{z_1}{0.4}, \frac{z_2}{0.5}\}$. Define $\zeta, I, \Im : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases}
1, & \text{if } \psi \in \{\underline{0}, \underline{1}\}, \\
\frac{1}{5}, & \text{if } \psi = \rho, \\
\frac{1}{2}, & \text{if } \psi = \omega, \\
0, & \text{otherwise,}
\end{cases} \qquad I(\mu) = \begin{cases}
1, & \text{if } \mu = \underline{0}, \\
\frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.3}, \\
0, & \text{otherwise,}
\end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{5}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is $\mathrm{F}\gamma I$ -continuous, but it is not $\mathrm{FP}I$ -continuous.

Example 4.3. Let $Z = \{z_1, z_2\}$ and define $\omega, \rho, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.3}, \frac{z_2}{0.2}\}, \rho = \{\frac{z_1}{0.7}, \frac{z_2}{0.8}\}, \lambda = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}.$ Define $\zeta, I, \Im : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \psi = \omega, \\ \frac{1}{2}, & \text{if } \psi = \rho, \\ 0, & \text{otherwise,} \end{cases} \qquad I(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.5}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow (Z,\mathfrak{I})$ is $F\gamma I$ -continuous, but it is neither FS I-continuous nor $F\alpha I$ -continuous.

Example 4.4. Let $Z = \{z_1, z_2\}$ and define $\omega, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}, \lambda = \{\frac{z_1}{0.4}, \frac{z_2}{0.5}\}$. Define $\zeta, I, \Im: I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{2}, & \text{if } \psi = \omega, \\ 0, & \text{otherwise,} \end{cases} \qquad I(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.4}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is FS βI -continuous, but it is not F γI -continuous.

Theorem 4.1. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is $F\gamma I$ -continuous iff for any $z_s \in P_s(Z)$ and any $\psi \in I^Y$ with $\mathfrak{I}(\psi) \geq j$ containing $\mathbb{P}(z_s)$, there is $\omega \in I^Z$ that is j-F γI -open containing z_s and $\mathbb{P}(\omega) \leq \psi$ with $j \in I_{\circ}$.

Proof. (\Rightarrow) Let $z_s \in P_s(Z)$ and $\psi \in I^Y$ with $\mathfrak{I}(\psi) \geq j$ containing $\mathbb{P}(z_s)$, and hence $\mathbb{P}^{-1}(\psi) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j)$. Since $z_s \in \mathbb{P}^{-1}(\psi)$, $z_s \in \gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j) = \omega$ (say). Hence, $\omega \in I^Z$ is j-F γI -open containing z_s with $\mathbb{P}(\omega) \leq \psi$.

 (\Leftarrow) Let $z_s \in P_s(Z)$ and $\psi \in I^Y$ with $\mathfrak{I}(\psi) \geq j$ containing $\mathbb{P}(z_s)$. By the given assumption, there exists $\omega \in I^Z$ that is j-F γI -open containing z_s with $\mathbb{P}(\omega) \leq \psi$. Thus, $z_s \in \omega \leq \mathbb{P}^{-1}(\psi)$ and $z_s \in \gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j)$. Then, $\mathbb{P}^{-1}(\psi) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j)$, so $\mathbb{P}^{-1}(\psi)$ is a j-F γI -open set. Hence, \mathbb{P} is F γI -continuous. \square

Theorem 4.2. Let $\mathbb{P}:(Z,\zeta,I)\longrightarrow (Y,\mathfrak{I})$ be a fuzzy mapping and $j\in I_{\circ}$. Each of the following statements implies the others for any $\omega\in I^{Z}$ and $\psi\in I^{Y}$:

- (a) \mathbb{P} is $F\gamma I$ -continuous.
- (b) $\mathbb{P}^{-1}(\psi)$ is j-F $\gamma \mathcal{I}$ -closed, for every $\psi \in I^Y$ with $\mathfrak{I}(\psi^c) \geq j$.
- (c) $\mathbb{P}(\gamma C_{r}^{*}(\omega, j)) \leq C_{\mathfrak{I}}(\mathbb{P}(\omega), j)$.

- (d) $\gamma C_{\mathcal{I}}^*(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j)).$
- (e) $\mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi,j)) \leq \gamma I_{r}^{*}(\mathbb{P}^{-1}(\psi),j).$

Proof. (a) \Leftrightarrow (b) The proof follows from Definition 4.1 and $\mathbb{P}^{-1}(\psi^c) = (\mathbb{P}^{-1}(\psi))^c$.

(b) \Rightarrow (c) Let $\omega \in I^Z$. By (b), we obtain $\mathbb{P}^{-1}(C_{\mathfrak{I}}(\mathbb{P}(\omega), j))$ is j-F γI -closed. Hence,

$$\gamma C_{\zeta}^{*}(\omega, j) \leq \gamma C_{\zeta}^{*}(\mathbb{P}^{-1}(\mathbb{P}(\omega)), j) \leq \gamma C_{\zeta}^{*}(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\mathbb{P}(\omega), j)), j) = \mathbb{P}^{-1}(C_{\mathfrak{I}}(\mathbb{P}(\omega), j)).$$

Therefore, $\mathbb{P}(\gamma C_{\ell}^*(\omega, j)) \leq C_{\mathfrak{I}}(\mathbb{P}(\omega), j)$.

- (c) \Rightarrow (d) Let $\psi \in I^{\gamma}$. By (c), we obtain $\mathbb{P}(\gamma C_{\zeta}^{*}(\mathbb{P}^{-1}(\psi), j)) \leq C_{\mathfrak{I}}(\mathbb{P}(\mathbb{P}^{-1}(\psi)), j) \leq C_{\mathfrak{I}}(\psi, j)$. Hence, $\gamma C_{\zeta}^{*}(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\mathbb{P}(\gamma C_{\zeta}^{*}(\mathbb{P}^{-1}(\psi), j))) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j))$.
 - (d) \Leftrightarrow (e) The proof follows from Proposition 3.3 and $\mathbb{P}^{-1}(\psi^c) = (\mathbb{P}^{-1}(\psi))^c$.
- (e) \Rightarrow (a) Let $\psi \in I^Y$ with $\mathfrak{I}(\psi) \geq j$. By (e), we have $\mathbb{P}^{-1}(\psi) = \mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi, j)) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\psi)$. Then, $\gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j) = \mathbb{P}^{-1}(\psi)$. Hence, $\mathbb{P}^{-1}(\psi)$ is j-F γI -open, so \mathbb{P} is F γI -continuous. \square

Definition 4.3. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is called $\text{FA}\gamma I$ -continuous if $\mathbb{P}^{-1}(\omega) \leq \gamma I_{\zeta}^{*}(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\omega, j), j)), j)$, for any $\omega \in I^{Y}$ with $\mathfrak{I}(\omega) \geq j$ and $j \in I_{\circ}$.

Lemma 4.2. Every $F\gamma I$ -continuity is an $FA\gamma I$ -continuity.

Proof. This follows directly from Definitions 4.1 and 4.3.

Remark 4.5. It is clear from Example 4.5 that the converse of Lemma 4.2 does not apply.

Example 4.5. Let $Z = \{z_1, z_2, z_3\}$ and define $\omega, \rho, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.4}, \frac{z_2}{0.2}, \frac{z_3}{0.4}\}, \rho = \{\frac{z_1}{0.5}, \frac{z_2}{0.5}, \frac{z_3}{0.4}\}, \lambda = \{\frac{z_1}{0.3}, \frac{z_2}{0.2}, \frac{z_3}{0.6}\}.$ Define $\zeta, I, \Im : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{1}, \underline{0}\}, \\ \frac{2}{3}, & \text{if } \psi = \omega, \\ \frac{1}{2}, & \text{if } \psi = \rho, \\ 0, & \text{otherwise.} \end{cases} \qquad I(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu \leq \underline{0.6}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{2}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is $FA\gamma I$ -continuous, but it is not $F\gamma I$ -continuous.

Theorem 4.3. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is $\text{FA}\gamma I$ -continuous iff for any $z_s \in P_s(Z)$ and any $\rho \in I^Y$ with $\mathfrak{I}(\rho) \geq j$ containing $\mathbb{P}(z_s)$, there is $\omega \in I^Z$ that is j-F γI -open containing z_s and $\mathbb{P}(\omega) \leq I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho, j), j)$ with $j \in I_{\mathfrak{I}}$.

Proof. (\Rightarrow) Let $z_s \in P_s(Z)$ and $\rho \in I^Y$ with $\mathfrak{I}(\rho) \geq j$ containing $\mathbb{P}(z_s)$, and hence

$$\mathbb{P}^{-1}(\rho) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho,j),j)),j).$$

Since $z_s \in \mathbb{P}^{-1}(\rho)$, then $z_s \in \gamma I_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho,j),j)),j) = \omega$ (say). Hence, $\omega \in I^Z$ is j-F γI -open containing z_s and $\mathbb{P}(\omega) \leq I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho,j),j)$.

 (\Leftarrow) Let $z_s \in P_s(Z)$, $\rho \in I^Y$, and $\mathfrak{I}(\rho) \geq j$ with $z_s \in \mathbb{P}^{-1}(\rho)$. By the given assumption, there exists $\omega \in I^Z$ that is j-F γI -open containing z_s and $\mathbb{P}(\omega) \leq I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho, j), j)$. Hence, $z_s \in \omega \leq \mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho, j), j))$ and

$$z_s \in \gamma I_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho,j),j)),j).$$

Then, $\mathbb{P}^{-1}(\rho) \leq \gamma I_{\gamma}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\rho,j),j)),j)$. Thus, \mathbb{P} is FA γI -continuous.

Theorem 4.4. Let $\mathbb{P}:(Z,\zeta,I)\longrightarrow (Y,\mathfrak{I})$ be a fuzzy mapping, $\psi\in I^Y$, and $j\in I_\circ$. Each of the following statements implies the others.

- (a) \mathbb{P} is FA γI -continuous.
- (b) $\mathbb{P}^{-1}(\psi)$ is j-F γI -open, for each j-FR-open set ψ .
- (c) $\mathbb{P}^{-1}(\psi)$ is j-F γI -closed, for each j-FR-closed set ψ .
- (d) $\gamma C_{\mathcal{I}}^*(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j))$, for each j-F γ -open set ψ .
- (e) $\gamma C_{\mathcal{I}}^{\ast}(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j))$, for each *j*-FS-open set ψ .

Proof. (a) \Rightarrow (b) Let $z_s \in P_s(Z)$ with $\psi \in I^Y$ be a j-FR-open set and $z_s \in \mathbb{P}^{-1}(\psi)$. Thus, by (a), there is $\omega \in I^Z$ that is j-F γI -open and $z_s \in \omega$ with $\mathbb{P}(\omega) \leq I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j)$. Then, $\omega \leq \mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j)) = \mathbb{P}^{-1}(\psi)$ and $z_s \in \gamma I_{\mathcal{I}}^*(\mathbb{P}^{-1}(\psi),j)$. Hence, $\mathbb{P}^{-1}(\psi) \leq \gamma I_{\mathcal{I}}^*(\mathbb{P}^{-1}(\psi),j)$, so $\mathbb{P}^{-1}(\psi)$ is j-F γI -open.

- (b) \Rightarrow (c) If $\psi \in I^Y$ is j-FR-closed, hence by (b), $\mathbb{P}^{-1}(\psi^c) = (\mathbb{P}^{-1}(\psi))^c$ is j-F γI -open. Thus, $\mathbb{P}^{-1}(\psi)$ is j-F γI -closed.
- (c) \Rightarrow (d) If $\psi \in I^Y$ is j-F γ -open and since $C_{\mathfrak{I}}(\psi, j)$ is j-FR-closed, then by (c), $\mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j))$ is j-F γI -closed. Since $\mathbb{P}^{-1}(\psi) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j))$, thus

$$\gamma C_{\zeta}^*(\mathbb{P}^{-1}(\psi),j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi,j)).$$

- (d) \Rightarrow (e) The proof follows by the fact that each j-FS-open set is j-F γ -open.
- (e) \Rightarrow (c) If $\psi \in I^{Y}$ is j-FR-closed, and then ψ is j-FS-open. By (e),

$$\gamma C_\zeta^*(\mathbb{P}^{-1}(\psi),j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi,j)) = \mathbb{P}^{-1}(\psi).$$

Thus, $\mathbb{P}^{-1}(\psi)$ is j-F $\gamma \mathcal{I}$ -closed.

(c) \Rightarrow (a) If $z_s \in P_s(Z)$ with $\psi \in I^Y$ and $\mathfrak{I}(\psi) \geq j$ such that $z_s \in \mathbb{P}^{-1}(\psi)$, and then $z_s \in \mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j))$. Since $[I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j)]^c$ is j-FR-closed, by (c), $\mathbb{P}^{-1}([I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j)]^c)$ is j-F γI -closed. Thus, $\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j))$ is j-F γI -open and $z_s \in \gamma I_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j)),j)$. Then, $\mathbb{P}^{-1}(\psi) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi,j),j)),j)$. Hence, \mathbb{P} is FA γI -continuous.

Definition 4.4. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is called $\mathrm{FW}\gamma I$ -continuous if $\mathbb{P}^{-1}(\omega) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\omega, j)), j)$, for any $\omega \in I^Y$ with $\mathfrak{I}(\omega) \geq j$ and $j \in I_{\circ}$.

Lemma 4.3. Every $F\gamma I$ -continuity is an $FW\gamma I$ -continuity.

Proof. This follows directly from Definitions 4.1 and 4.4.

Remark 4.6. It is clear from Example 4.6 that the converse of Lemma 4.3 does not apply.

Example 4.6. Let $Z = \{z_1, z_2, z_3\}$ and define $\omega, \rho, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.4}, \frac{z_2}{0.2}, \frac{z_3}{0.4}\}, \rho = \{\frac{z_1}{0.5}, \frac{z_2}{0.5}, \frac{z_3}{0.4}\}, \lambda = \{\frac{z_1}{0.3}, \frac{z_2}{0.2}, \frac{z_3}{0.6}\}$. Define $\zeta, I, \Im : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases}
1, & \text{if } \psi \in \{\underline{0}, \underline{1}\}, \\
\frac{1}{3}, & \text{if } \psi = \omega, \\
\frac{1}{2}, & \text{if } \psi = \rho, \\
0, & \text{otherwise,}
\end{cases} \qquad I(\mu) = \begin{cases}
1, & \text{if } \mu = \underline{0}, \\
\frac{1}{2}, & \text{if } \underline{0} < \mu \leq \underline{0.6}, \\
0, & \text{otherwise,}
\end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is $\mathrm{FW}\gamma I$ -continuous, but it is not $\mathrm{F}\gamma I$ -continuous.

Theorem 4.5. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is $FW\gamma I$ -continuous iff for any $z_s \in P_s(Z)$ and any $\rho \in I^Y$ with $\mathfrak{I}(\rho) \geq j$ containing $\mathbb{P}(z_s)$, there is $\omega \in I^Z$ that is j-F γI -open containing z_s and $\mathbb{P}(\omega) \leq C_{\mathfrak{I}}(\rho, j)$ with $j \in I_{\circ}$.

Proof. (\Rightarrow) Let $z_s \in P_s(Z)$ and $\rho \in I^Y$ with $\mathfrak{I}(\rho) \geq j$ containing $\mathbb{P}(z_s)$, and hence

$$\mathbb{P}^{-1}(\rho) \le \gamma I_{\zeta}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\rho,j)),j).$$

Since $z_s \in \mathbb{P}^{-1}(\rho)$, then $z_s \in \gamma I_{\zeta}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\rho, j)), j) = \omega$ (say). Thus, $\omega \in I^Z$ is j-F γI -open containing z_s and $\mathbb{P}(\omega) \leq C_{\mathfrak{I}}(\rho, j)$.

 (\Leftarrow) Let $z_s \in P_s(Z)$, $\rho \in I^Y$ and $\mathfrak{I}(\rho) \geq j$ with $z_s \in \mathbb{P}^{-1}(\rho)$. By the given assumption, there exists $\omega \in I^Z$ that is j-F γI -open containing z_s with $\mathbb{P}(\omega) \leq C_{\mathfrak{I}}(\rho, j)$. Hence, $z_s \in \omega \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\rho, j))$ and $z_s \in \gamma I_{\mathcal{I}}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\rho, j)), j)$. Thus, $\mathbb{P}^{-1}(\rho) \leq \gamma I_{\mathcal{I}}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\rho, j)), j)$. Therefore, \mathbb{P} is FW γ -I-continuous. \square

Theorem 4.6. Let $\mathbb{P}:(Z,\zeta,I)\longrightarrow (Y,\mathfrak{I})$ be a fuzzy mapping, $\psi\in I^Y$, and $j\in I_\circ$. Each of the following statements implies the others.

- (a) \mathbb{P} is $FW\gamma I$ -continuous.
- (b) $\mathbb{P}^{-1}(\psi) \geq \gamma C_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi, j)), j)$, if $\mathfrak{I}(\psi^c) \geq j$.
- (c) $\gamma I_{\zeta}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\dot{\psi},j)),j) \geq \mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi,j)).$
- (d) $\gamma C_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi,j)),j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi,j)).$

Proof. (a) \Leftrightarrow (b) This follows directly from Definition 4.4 and Proposition 3.3.

(b) \Rightarrow (c) Let $\psi \in I^Y$. Then by (b),

$$\gamma C^*_{\zeta}(\mathbb{P}^{-1}(I_{\mathfrak{I}}(C_{\mathfrak{I}}(\psi^c,j),j)),j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi^c,j)).$$

Thus, $\mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi, j)) \leq \gamma I_{\mathcal{I}}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j)), j)$.

- (c) \Leftrightarrow (d) This follows directly from Proposition 3.3.
- (d) \Rightarrow (a) Let $\psi \in I^Y$ with $\mathfrak{I}(\psi) \geq j$. Then by (d), $\gamma C_{\zeta}^*(\mathbb{P}^{-1}(I_{\mathfrak{I}}(\psi^c, j)), j) \leq \mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi^c, j)) = \mathbb{P}^{-1}(\psi^c)$. Hence, $\mathbb{P}^{-1}(\psi) \leq \gamma I_{\zeta}^*(\mathbb{P}^{-1}(C_{\mathfrak{I}}(\psi, j)), j)$, so \mathbb{P} is FW γI -continuous. \square

Lemma 4.4. Every $FA\gamma I$ -continuity is an $FW\gamma I$ -continuity.

Proof. This follows directly from Definitions 4.3 and 4.4.

Remark 4.7. It is clear from Example 4.7 that the converse of Lemma 4.4 does not apply.

Example 4.7. Let $Z = \{z_1, z_2, z_3\}$ and define $\omega, \lambda, \rho \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.6}, \frac{z_2}{0.2}, \frac{z_3}{0.4}\}, \lambda = \{\frac{z_1}{0.3}, \frac{z_2}{0.2}, \frac{z_3}{0.5}\}, \rho = \{\frac{z_1}{0.3}, \frac{z_2}{0.2}, \frac{z_3}{0.4}\}.$ Define $\zeta, \mathcal{I}, \mathfrak{I} : I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{4}, & \text{if } \psi = \omega, \\ \frac{1}{2}, & \text{if } \psi = \rho, \\ 0, & \text{otherwise.} \end{cases} \qquad I(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu \leq \underline{0.5}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{4}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is $\mathrm{FW}\gamma I$ -continuous, but it is not $\mathrm{FA}\gamma I$ -continuous.

Remark 4.8. We have the following diagram from the previous definitions and discussions.

$$F\gamma I$$
-continuity \longrightarrow $FA\gamma I$ -continuity \longrightarrow $FW\gamma I$ -continuity

Proposition 4.1. Let $\mathbb{P}:(Z,\zeta,I)\longrightarrow (X,\eta)$ and $\mathbb{Y}:(X,\eta)\longrightarrow (Y,\mathfrak{I})$ be two fuzzy mappings. Then the composition $\mathbb{Y}\circ\mathbb{P}$ is $FA\gamma I$ -continuous if \mathbb{P} is $F\gamma I$ -continuous and \mathbb{Y} is fuzzy continuous.

Proof. This follows directly from Definitions 2.2, 4.1, and 4.3.

5. Fuzzy γI -irresoluteness

Here, we introduce and discuss some new fuzzy γI -mappings via j-F γI -open and j-F γI -closed sets, called F γI -irresolute (resp. F γI -open, F γI -irresolute open, F γI -closed, and F γI -irresolute closed) mappings. Furthermore, the relationships between these classes of mappings are discussed with the help of some illustrative examples.

Definition 5.1. A fuzzy mapping $\mathbb{P}: (Z, \zeta, I) \longrightarrow (Y, \mathfrak{I})$ is called $F\gamma I$ -irresolute if $\mathbb{P}^{-1}(\omega)$ is a j- $F\gamma I$ -open set, for any j- $F\gamma$ -open set $\omega \in I^Y$ with $j \in I_{\circ}$.

Lemma 5.1. Every $F\gamma I$ -irresolute mapping is $F\gamma I$ -continuous.

Proof. This follows directly from Definitions 4.1, 5.1, and Remark 2.1.

Remark 5.1. It is clear from Example 5.1 that the converse of Lemma 5.1 does not apply.

Example 5.1. Let $Z = \{z_1, z_2\}$ and define $\lambda, \rho \in I^Z$ as follows: $\lambda = \{\frac{z_1}{0.5}, \frac{z_2}{0.5}\}, \rho = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}$. Define $\zeta, I, \Im: I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \psi = \rho, \\ 0, & \text{otherwise,} \end{cases} \qquad \mathcal{I}(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.5}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{3}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta,I)\longrightarrow(Z,\mathfrak{I})$ is $F\gamma I$ -continuous, but it is not $F\gamma I$ -irresolute.

Theorem 5.1. Let $\mathbb{P}:(Z,\zeta,I)\longrightarrow (Y,\mathfrak{I})$ be a fuzzy mapping and $j\in I_{\circ}$. Each of the following statements implies the others for any $\omega\in I^{\mathbb{Z}}$ and $\psi\in I^{\mathbb{Y}}$:

- (a) \mathbb{P} is $F\gamma \mathcal{I}$ -irresolute.
- (b) $\mathbb{P}^{-1}(\psi)$ is *j*-F γI -closed, for each *j*-F γ -closed set ψ .
- (c) $\mathbb{P}(\gamma C_{\zeta}^*(\omega, j)) \leq \gamma C_{\mathfrak{I}}(\mathbb{P}(\omega), j)$.
- (d) $\gamma C_{\mathcal{L}}^*(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}(\psi, j)).$
- (e) $\mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}(\psi, j)) \leq \gamma I_{\gamma}^{*}(\mathbb{P}^{-1}(\psi), j)$.

Proof. (a) \Leftrightarrow (b) This follows directly from Definition 5.1 and $\mathbb{P}^{-1}(\psi^c) = (\mathbb{P}^{-1}(\psi))^c$.

(b) \Rightarrow (c) Let $\omega \in I^{\mathbb{Z}}$. By (b), $\mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}(\mathbb{P}(\omega), j))$ is j-F $\gamma \mathcal{I}$ -closed. Then,

$$\gamma C_{\mathcal{I}}^*(\omega, j) \leq \gamma C_{\mathcal{I}}^*(\mathbb{P}^{-1}(\mathbb{P}(\omega)), j) \leq \gamma C_{\mathcal{I}}^*(\mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}(\mathbb{P}(\omega), j)), j) = \mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}(\mathbb{P}(\omega), j)).$$

Thus, $\mathbb{P}(\gamma C_{\gamma}^*(\omega, j)) \leq \gamma C_{\mathfrak{I}}(\mathbb{P}(\omega), j)$.

- (c) \Rightarrow (d) Let $\psi \in I^Y$. By (c), $\mathbb{P}(\gamma C_{\zeta}^*(\mathbb{P}^{-1}(\psi), j)) \leq \gamma C_{\mathfrak{I}}(\mathbb{P}(\mathbb{P}^{-1}(\psi)), j) \leq \gamma C_{\mathfrak{I}}(\psi, j)$. Hence, $\gamma C_{\zeta}^*(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\mathbb{P}(\gamma C_{\zeta}^*(\mathbb{P}^{-1}(\psi), j))) \leq \mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}(\psi, j))$.
 - (d) \Leftrightarrow (e) This follows directly from Proposition 3.3 and $\mathbb{P}^{-1}(\psi^c) = (\mathbb{P}^{-1}(\psi))^c$.
 - (e) \Rightarrow (a) Let $\psi \in I^{\gamma}$ be a *j*-F γ -open set. By (e),

$$\mathbb{P}^{-1}(\psi) = \mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}(\psi, j)) \leq \gamma I_{\zeta}^{*}(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\psi).$$

Then, $\gamma I_{\zeta}^*(\mathbb{P}^{-1}(\psi), j) = \mathbb{P}^{-1}(\psi)$. Thus, $\mathbb{P}^{-1}(\psi)$ is j-F γI -open, so \mathbb{P} is F γI -irresolute. \square

Proposition 5.1. Let $\mathbb{P}: (Z, \zeta, I) \longrightarrow (X, \eta)$ and $\mathbb{Y}: (X, \eta) \longrightarrow (Y, \mathfrak{I})$ be two fuzzy mappings. Then the composition $\mathbb{Y} \circ \mathbb{P}$ is $F \gamma I$ -irresolute (resp. $F \gamma I$ -continuous) if \mathbb{P} is $F \gamma I$ -irresolute and \mathbb{Y} is $F \gamma$ -irresolute (resp. fuzzy continuous).

Proof. This follows directly from Definitions 2.2, 4.1, and 5.1.

Definition 5.2. A fuzzy mapping $\mathbb{P}: (Z, \zeta) \longrightarrow (Y, \mathfrak{I}, I)$ is called $F\gamma I$ -open if $\mathbb{P}(\omega)$ is a j- $F\gamma I$ -open set, for any $\omega \in I^Z$ with $\zeta(\omega) \geq j$ and $j \in I_{\circ}$.

Definition 5.3. A fuzzy mapping $\mathbb{P}:(Z,\zeta)\longrightarrow (Y,\mathfrak{I},I)$ is called $\mathrm{F}\gamma I$ -irresolute open if $\mathbb{P}(\omega)$ is a j-F γI -open set, for any j-F γ -open set $\omega\in I^Z$ with $j\in I_\circ$.

Lemma 5.2. Each $F\gamma I$ -irresolute open mapping is $F\gamma I$ -open.

Proof. This follows directly from Definitions 5.2, 5.3, and Remark 2.1.

Remark 5.2. It is clear from Example 5.2 that the converse of Lemma 5.2 does not apply.

Example 5.2. Let $Z = \{z_1, z_2\}$ and define $\omega, \lambda \in I^Z$ as follows: $\omega = \{\frac{z_1}{0.5}, \frac{z_2}{0.5}\}, \lambda = \{\frac{z_1}{0.5}, \frac{z_2}{0.4}\}$. Define $\zeta, \mathfrak{I}, I: I^Z \longrightarrow I$ as follows:

$$\zeta(\psi) = \begin{cases} 1, & \text{if } \psi \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{5}, & \text{if } \psi = \omega, \\ 0, & \text{otherwise,} \end{cases} \qquad \mathcal{I}(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \\ \frac{1}{2}, & \text{if } \underline{0} < \mu < \underline{0.5}, \\ 0, & \text{otherwise,} \end{cases}$$

$$\mathfrak{I}(\theta) = \begin{cases} 1, & \text{if } \theta \in \{\underline{1}, \underline{0}\}, \\ \frac{1}{5}, & \text{if } \theta = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

Then, the identity fuzzy mapping $\mathbb{P}:(Z,\zeta)\longrightarrow(Z,\mathfrak{I},I)$ is $\mathrm{F}\gamma I$ -open, but it is not $\mathrm{F}\gamma I$ -irresolute open.

Theorem 5.2. Let $\mathbb{P}:(Z,\zeta)\longrightarrow(Y,\mathfrak{I},I)$ be a fuzzy mapping and $j\in I_{\circ}$. Each of the following statements implies the others for any $\omega \in I^Z$ and $\psi \in I^Y$:

- (a) \mathbb{P} is $F\gamma \mathcal{I}$ -open.
- (b) $\mathbb{P}(I_{\zeta}(\omega, j)) \leq \gamma I_{\mathfrak{I}}^*(\mathbb{P}(\omega), j)$.
- (c) $I_{\zeta}(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}^*(\psi, j)).$
- (d) For each ψ and each ω with $\zeta(\omega^c) \geq j$ and $\mathbb{P}^{-1}(\psi) \leq \omega$, there is $\mu \in I^Y$ is j-F γI -closed with $\psi \leq \mu$ and $\mathbb{P}^{-1}(\mu) \leq \omega$.

Proof. (a) \Rightarrow (b) Since $\mathbb{P}(I_{\ell}(\omega, j)) \leq \mathbb{P}(\omega)$, hence by (a), $\mathbb{P}(I_{\ell}(\omega, j))$ is j-F γI -open. Thus,

$$\mathbb{P}(I_{\zeta}(\omega,j)) \leq \gamma I_{\mathfrak{I}}^*(\mathbb{P}(\omega),j).$$

- (b) \Rightarrow (c) Set $\omega = \mathbb{P}^{-1}(\psi)$, and hence by (b), $\mathbb{P}(I_{\zeta}(\mathbb{P}^{-1}(\psi), j)) \leq \gamma I_{\mathfrak{I}}^*(\mathbb{P}(\mathbb{P}^{-1}(\psi)), j) \leq \gamma I_{\mathfrak{I}}^*(\psi, j)$. Then, $I_{\zeta}(\mathbb{P}^{-1}(\psi),j) \leq \mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}^*(\psi,j)).$
- (c) \Rightarrow (d) Let $\psi \in I^Y$ and $\omega \in I^Z$ with $\zeta(\omega^c) \geq j$ such that $\mathbb{P}^{-1}(\psi) \leq \omega$. Since $\omega^c \leq \mathbb{P}^{-1}(\psi^c)$, $\omega^c = I_{\zeta}(\omega^c, j) \le I_{\zeta}(\mathbb{P}^{-1}(\psi^c), j)$. Hence by (c), $\omega^c \le I_{\zeta}(\mathbb{P}^{-1}(\psi^c), j) \le \mathbb{P}^{-1}(\gamma I_{\mathfrak{R}}^*(\psi^c, j))$. Then, we have

$$\omega \geq (\mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}^*(\psi^c, j)))^c = \mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}^*(\psi, j)).$$

Thus, $\gamma C_{\mathfrak{I}}^*(\psi, j) \in I^Y$ is j-F γI -closed with $\psi \leq \gamma C_{\mathfrak{I}}^*(\psi, j)$ and $\mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}^*(\psi, j)) \leq \omega$. (d) \Rightarrow (a) Let $\sigma \in I^Z$ with $\zeta(\sigma) \geq j$. Set $\psi = (\mathbb{P}(\sigma))^c$ and $\omega = \sigma^c$, $\mathbb{P}^{-1}(\psi) = \mathbb{P}^{-1}((\mathbb{P}(\sigma))^c) \leq \omega$. By (d), there exists $\mu \in I^Y$ is j-F γI -closed with $\psi \leq \mu$ and $\mathbb{P}^{-1}(\mu) \leq \omega = \sigma^c$. Then, $\mathbb{P}(\sigma) \leq \mathbb{P}(\mathbb{P}^{-1}(\mu^c)) \leq \mu^c$. Since $\psi \leq \mu$, $\mathbb{P}(\sigma) = \psi^c \geq \mu^c$. Thus, $\mathbb{P}(\sigma) = \mu^c$, so $\mathbb{P}(\sigma)$ is a *j*-F γI -open set. Hence, \mathbb{P} is F γI -open. \square

Theorem 5.3. Let $\mathbb{P}:(Z,\zeta)\longrightarrow(Y,\mathfrak{I},\mathcal{I})$ be a fuzzy mapping and $j\in I_{\circ}$. Each of the following statements implies the others for any $\omega \in I^Z$ and $\psi \in I^Y$:

- (a) \mathbb{P} is $F\gamma \mathcal{I}$ -irresolute open.
- (b) $\mathbb{P}(\gamma I_{\zeta}(\omega, j)) \leq \gamma I_{\mathfrak{I}}^*(\mathbb{P}(\omega), j)$.
- (c) $\gamma I_{\zeta}(\mathbb{P}^{-1}(\psi), j) \leq \mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}^{*}(\psi, j)).$
- (d) For each ψ and each ω is an j-F γ -closed set with $\mathbb{P}^{-1}(\psi) \leq \omega$, there is $\mu \in I^{\gamma}$ is j-F γI -closed with $\psi \leq \mu$ and $\mathbb{P}^{-1}(\mu) \leq \omega$.

Proof. This can be proven using the same approach as in Theorem 5.2.

Definition 5.4. A fuzzy mapping $\mathbb{P}: (Z, \zeta) \longrightarrow (Y, \mathfrak{I}, I)$ is called $F\gamma I$ -closed if $\mathbb{P}(\omega)$ is a j- $F\gamma I$ -closed set, for any $\omega \in I^Z$ with $\zeta(\omega^c) \geq j$ and $j \in I_\circ$.

Definition 5.5. A fuzzy mapping $\mathbb{P}:(Z,\zeta)\longrightarrow (Y,\mathfrak{I},I)$ is called $\mathrm{F}\gamma I$ -irresolute closed if $\mathbb{P}(\omega)$ is a j-F γI -closed set, for any j-F γ -closed set $\omega\in I^Z$ and $j\in I_\circ$.

Lemma 5.3. Each $F\gamma I$ -irresolute closed mapping is $F\gamma I$ -closed.

Proof. This follows directly from Definitions 5.4 and 5.5.

Theorem 5.4. Let $\mathbb{P}:(Z,\zeta)\longrightarrow (Y,\mathfrak{I},I)$ be a fuzzy mapping and $j\in I_{\circ}$. Each of the following statements implies the others for any $\omega\in I^{Z}$ and $\psi\in I^{Y}$:

- (a) \mathbb{P} is $F\gamma \mathcal{I}$ -closed.
- (b) $\gamma C_{\mathfrak{I}}^*(\mathbb{P}(\omega), j) \leq \mathbb{P}(C_{\zeta}(\omega, j)).$
- (c) $\mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}^*(\psi,j)) \leq C_{\zeta}(\mathbb{P}^{-1}(\psi),j).$
- (d) For each ψ and each ω with $\zeta(\omega) \ge j$ and $\mathbb{P}^{-1}(\psi) \le \omega$, there is $\mu \in I^Y$ is j-F γI -open with $\psi \le \mu$ and $\mathbb{P}^{-1}(\mu) \le \omega$.

Proof. This can be proven using the same approach as in Theorem 5.2.

Theorem 5.5. Let $\mathbb{P}:(Z,\zeta)\longrightarrow (Y,\mathfrak{I},I)$ be a fuzzy mapping and $j\in I_{\circ}$. Each of the following statements implies the others for any $\omega\in I^{Z}$ and $\psi\in I^{Y}$:

- (a) \mathbb{P} is $F\gamma I$ -irresolute closed.
- (b) $\gamma C_{\pi}^*(\mathbb{P}(\omega), j) \leq \mathbb{P}(\gamma C_{\zeta}(\omega, j)).$
- (c) $\mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}^*(\psi,j)) \leq \gamma C_{\zeta}(\mathbb{P}^{-1}(\psi),j).$
- (d) For each ψ and each ω is an j-F γ -open set with $\mathbb{P}^{-1}(\psi) \leq \omega$, there is $\mu \in I^{Y}$ is j-F γI -open with $\psi \leq \mu$ and $\mathbb{P}^{-1}(\mu) \leq \omega$.

Proof. This can be proven using the same approach as in Theorem 5.2.

Proposition 5.2. Let $\mathbb{P}:(Z,\zeta)\longrightarrow (Y,\mathfrak{I},I)$ be a fuzzy mapping and bijective, \mathbb{P} is $F\gamma I$ -irresolute closed iff \mathbb{P} is $F\gamma I$ -irresolute open.

Proof. This follows directly from:

$$\mathbb{P}^{-1}(\gamma C_{\mathfrak{I}}^{*}(v,j)) \leq \gamma C_{\zeta}(\mathbb{P}^{-1}(v),j) \iff \mathbb{P}^{-1}(\gamma I_{\mathfrak{I}}^{*}(v^{c},j)) \leq \gamma I_{\zeta}(\mathbb{P}^{-1}(v^{c}),j).$$

6. Conclusions and future work

In this manuscript, a novel class of fuzzy open sets, called j-F γI -open sets, has been defined on $\mathcal{F}I\mathcal{T}Ss$ in the sense of Šostak. Also, some properties of j-F γI -open sets, along with their mutual relationships, have been investigated. After that, the concepts of F γI -interior operators and F γI -closure operators have been introduced and studied. We also presented and investigated some types of fuzzy I-separation axioms, called j-F γI -normal spaces and j-F γI -regular spaces via j-F γI -closed sets. Moreover, the notion of F γI -continuity has been defined and discussed. The concepts of FA γI -continuous and FW γI -continuous mappings, which are weaker forms of F γI -continuous

mappings, have been introduced and studied. Finally, we explored and characterized some new fuzzy γI -mappings via j-F γI -open sets and j-F γI -closed sets, called F γI -open mappings, F γI -closed mappings, F γI -irresolute mappings, F γI -irresolute open mappings, and F γI -irresolute closed mappings. The relationships between these classes of mappings have been discussed with the help of some illustrative examples.

In upcoming research, we intend to study the following topics: (a) defining these concepts given here based on lattice-valued fuzzy sets; (b) introducing fuzzy lower and upper γI -continuous multifunctions and j-fuzzy γI -connected sets; (c) extending these concepts given here to include fuzzy soft minimal (topological) spaces as introduced in [31, 32]; and (d) finding a use for these concepts given here to include double fuzzy topological spaces as introduced in [33].

Author contributions

Fahad Alsharari: Conceptualization, Writing—original draft, Investigation, Formal analysis; Jawaher Al-Mufarrij: Conceptualization, Formal analysis, Investigation, Writing—review and editing; Islam Taha: Supervision, Conceptualization, Formal analysis, Writing—original draft, Investigation, Writing—review and editing. All authors have reviewed and consented to the finalized version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is funded by the Deanship of Graduate Studies and Scientific Research at Jouf University through the Fast-Track Research Funding Program.

Conflict of interest

The authors declare that they have no conflict of interest.

References

- 1. L. A. Zadeh, Fuzzy sets, *Information and control*, **8** (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- 2. H.-J. Zimmermann, *Fuzzy set theory and its applications*, 2 Eds., Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-015-7949-0
- 3. Y. Gupta, A. Saini, A. K. Saxena, A new fuzzy logic based ranking function for efficient information retrieval system, *Expert Syst. Appl.*, **42** (2015), 1223–1234. https://doi.org/10.1016/j.eswa.2014.09.009
- 4. R. R. Yager, L. A. Zadeh, *An introduction to fuzzy logic applications in intelligent systems*, New York: Springer, 1992. https://doi.org/10.1007/978-1-4615-3640-6

- 5. H.-C. Wu, *Mathematical foundations of fuzzy sets*, John Wiley & Sons, 2023. https://doi.org/10.1002/9781119981558
- 6. I. Bloch, A. Ralescu, *Fuzzy sets methods in image processing and understanding*, Cham: Springer, 2023. https://doi.org/10.1007/978-3-031-19425-2
- 7. H. Wu, Z. Xu, Fuzzy logic in decision support: methods, applications and future trends, *International Journal of Computers Communications and Control*, **16** (2021), 4044. https://doi.org/10.15837/ijccc.2021.1.4044
- 8. A. Aleksic, D. Tadic, Industrial and management applications of type-2 multi-attribute decision-making techniques extended with type-2 fuzzy sets from 2013 to 2022, *Mathematics*, **11** (2023), 2249. https://doi.org/10.3390/math11102249
- 9. J. Kannan, V. Jayakumar, N. Kausar, D. Pamucar, V. Simic, Enhancing decision-making with linear diophantine multi-fuzzy set: application of novel information measures in medical and engineering fields, *Sci. Rep.*, **14** (2024), 28537. https://doi.org/10.1038/s41598-024-79725-0
- 10. B. Ahmad, A. Kharal, On fuzzy soft sets, *Adv. Fuzzy Syst.*, **2009** (2009), 586507. https://doi.org/10.1155/2009/586507
- 11. N. Cagman, S. Enginoglu, F. Citak, Fuzzy soft set theory and its application, *Iran. J. Fuzzy Syst.*, **8** (2011), 137–147. https://doi.org/10.22111/ijfs.2011.292
- 12. M. Atef, M. I. Ali, T. M. Al-shami, Fuzzy soft covering based multi-granulation fuzzy rough sets and their applications, *Comput. Appl. Math.*, **40** (2021), 115. https://doi.org/10.1007/s40314-021-01501-x
- 13. C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, **24** (1968), 182–190. https://doi.org/10.1016/0022-247X(68)90057-7
- 14. S. Saleh, T. M. Al-shami, A. A. Azzam, M. Hosny, Stronger forms of fuzzy preseparation and regularity axioms via fuzzy topology, *Mathematics*, **11** (2023), 4801. https://doi.org/10.3390/math11234801
- 15. S. A. M. Saleh, F. M. Birkea, T. Al-shami, M. Arar, M. Omran, Novel categories of spaces in the frame of generalized fuzzy topologies via fuzzy gμ-closed sets, *Eur. J. Pure Appl. Math.*, **18** (2025), 5856. https://doi.org/10.29020/nybg.ejpam.v18i1.5856
- 16. A. P. Šostak, On a fuzzy topological structure, In: *Proceedings of the 13th winter school on abstract analysis*, Palermo: Circolo Matematico di Palermo, Srni, Czech Republic, 27 January–3 February, 1985, 89–103.
- 17. A. A. Ramadan, Smooth topological spaces, *Fuzzy Set. Syst.*, **48** (1992), 371–375. https://doi.org/10.1016/0165-0114(92)90352-5
- 18. K. C. Chattopadhyay, S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, *Fuzzy Set. Syst.*, **54** (1993), 207–212. https://doi.org/10.1016/0165-0114(93)90277-O
- 19. M. K. El-Gayyar, E. E. Kerre, A. A. Ramadan, Almost compactness and near compactness in smooth topological spaces, *Fuzzy Set. Syst.*, **62** (1994), 193–202. https://doi.org/10.1016/0165-0114(94)90059-0

- 20. U. Höhle, A. P. Šostak, A general theory of fuzzy topological spaces, *Fuzzy Set. Syst.*, **73** (1995), 131–149. https://doi.org/10.1016/0165-0114(94)00368-H
- 21. Y. C. Kim, A. A. Ramadan, S. E. Abbas, Weaker forms of continuity in Šostak's fuzzy topology, *Indian J. Pure Appl. Math.*, **34** (2003), 311–333.
- 22. S. E. Abbas, Fuzzy *β*-irresolute functions, *Appl. Math. Comput.*, **157** (2004), 369–380. https://doi.org/10.1016/j.amc.2003.08.040
- 23. Y. C. Kim, S. E. Abbas, On several types of *R*-fuzzy compactness, *J. Fuzzy Math.*, **12** (2004), 827–844.
- 24. F. Alsharari, H. Y. Saleh, I. M. Taha, Some characterizations of k-fuzzy γ -open sets and fuzzy γ -continuity with further selected topics, *Symmetry*, **17** (2025), 678. https://doi.org/10.3390/sym17050678
- 25. I. M. Taha, S. E. Abbas, A new notion of fuzzy local function and some applications, *Adv. Fuzzy Sys.*, **2022** (2022), 8954163. https://doi.org/10.1155/2022/8954163
- 26. I. M. Taha, On r-fuzzy ℓ -open sets and continuity of fuzzy multifunctions via fuzzy Ideals, J. Math. Comput. Sci., **10** (2020), 2613–2633. https://doi.org/10.28919/jmcs/4944
- 27. I. M. Taha, On r-generalized fuzzy ℓ -closed sets: properties and applications, J. Math., **2021** (2021), 4483481. https://doi.org/10.1155/2021/4483481
- 28. I. M. Taha, r-fuzzy δ - ℓ -open sets and fuzzy upper (lower) δ - ℓ -continuity via fuzzy idealization, J. *Math. Comput. Sci.*, **25** (2022), 1–9. https://doi.org/10.22436/jmcs.025.01.01
- 29. A. A. Ramadan, Y. C. Kim, M. K. Ei-Gayyar, Smooth ideals, *Journal of the Korean Institute of Intelligent Systems*, **12** (2002), 90–95. https://doi.org/10.5391/JKIIS.2002.12.1.090
- 30. A. Kandil, M. E. El-Shafei, Regularity axioms in fuzzy topological spaces and FRi-proximities, *Fuzzy Set. Syst.*, **27** (1988), 217–231. https://doi.org/10.1016/0165-0114(88)90151-0
- 31. A. Aygünoğlu, V. Çetkin, H. Aygün, An introduction to fuzzy soft topological spaces, *Hacet. J. Math. Stat.*, **43** (2014), 193–208. https://doi.org/10.15672/HJMS.2015449418
- 32. I. M. Taha, Compactness on fuzzy soft *r*-minimal spaces, *Int. J. Fuzzy Log. Intell. Syst.*, **21** (2021), 251–258. https://doi.org/10.5391/IJFIS.2021.21.3.251
- 33. I. M. Taha, Some properties of (*r*, *s*)-generalized fuzzy semi-closed sets and some applications, *J. Math. Comput. Sci.*, **27** (2022), 164–175. https://doi.org/10.22436/jmcs.027.02.06

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)