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1. Introduction

Mathematical modeling is a cornerstone for analyzing, predicting, and managing the transmission
dynamics of infectious diseases [1, 2]. Among various frameworks, compartmental models, such
as the susceptible-infectious-recovered (SIR) model and its extensions, are fundamental tools for
capturing epidemic spread and informing public health interventions [3]. However, classical integer-
order models often fail to account for the memory and hereditary properties present in real epidemics,
such as variable infectious periods, delayed effects of control measures, and non-exponential waiting
times [4, 5].
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Fractional-order differential equations have thus gained prominence in epidemiological modeling
for their ability to incorporate memory effects, whereby the system’s current state depends on
its historical trajectory [5–7]. The Caputo derivative, with its power-law kernel, is widely used
but suffers from singularities, while the Caputo–Fabrizio (CF) derivative, featuring a non-singular
exponential kernel, offers both computational advantages and physically realistic fading memory [8–
10]. Nonetheless, the standard CF kernel is not normalized, which can introduce inconsistencies in
the interpretation and scaling of memory effects. The normalized Caputo-Fabrizio (NCF) derivative
addresses this limitation by ensuring the kernel integrates to unity, thereby preserving the operator’s
interpretation as a true weighted average [11].

In recent years, significant progress has been made in the study of control and synchronization
of nonlinear and fractional-order systems. For instance, Zhang et al. [12] proposed a dynamic
event-based tracking control strategy for boiler turbine systems, ensuring guaranteed performance
and contributing to practical engineering applications. You and Zhang [13] developed a finite-time
synchronization method for fractional-order chaotic systems based on the maximum-valued method
of functions of five variables. Moreover, Kao et al. [14] investigated projective synchronization for
uncertain fractional reaction-diffusion systems through an adaptive sliding mode control scheme with a
finite-time guarantee, while Kao et al. [15] further explored Mittag–Leffler synchronization of delayed
fractional memristor neural networks via adaptive control. Complementarily, Cao et al. [16] analyzed
the global Mittag–Leffler stability of delayed fractional coupled reaction-diffusion systems on networks
without strong connectivity. Extending this line of research, Cao et al. [17] introduced a sliding mode
control framework for uncertain fractional-order reaction-diffusion memristor neural networks with
time delays. Additionally, Kao et al. [18] investigated global Mittag–Leffler synchronization of coupled
delayed fractional reaction-diffusion Cohen–Grossberg neural networks using sliding mode control.
These works collectively highlight the growing importance of advanced control and synchronization
methods in both theoretical research and engineering systems.

Despite theoretical and practical advances, fractional epidemic models employing quarantine or
isolation strategies have not been systematically explored with the NCF derivative. The SIQR model
enhances the classical SIR framework by incorporating a quarantined class, which captures the impact
of interventions such as quarantine, isolation, or hospitalization, playing a critical role in disease
control (e.g., COVID-19, SARS, Ebola).

This study presents, analyzes, and numerically investigates a fractional SIQR epidemic model
governed by the NCF operator. We provide a rigorous mathematical analysis of the model’s properties
(existence, uniqueness, positivity, and boundedness), derive a robust numerical scheme, and compare
the NCF-SIQR model with its classical and unnormalized fractional counterparts.

In addition to classical numerical analysis, we leverage artificial neural networks (ANNs) to
approximate the compartmental solutions and perform model validation. Recent research demonstrates
that machine learning and deep learning algorithms can effectively complement fractional-order
models, offering improved predictive accuracy, noise tolerance, and the ability to learn complex
patterns from simulation or empirical data [19–21]. In our approach, ANN techniques are used to fit
and predict the solution trajectories of the SIQR compartments as shown in Figure 1, with performance
evaluated using mean squared error, regression analysis, and error distribution metrics.

The primary objectives of this work are as follows:

• Develop and analyze a fractional SIQR epidemic model using the NCF derivative.
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• Prove the essential mathematical properties of the model.
• Propose and implement a reliable numerical scheme.
• Demonstrate the effectiveness of both numerical and ANN-based approaches through

comprehensive simulations and comparative analyses.

Figure 1. Schematic diagram of the SIQR model.

Section 2 reviews the necessary preliminaries on fractional derivatives and machine learning
concepts. Section 3 presents the model formulation. Section 4 details the theoretical analysis. Section 5
introduces the numerical method. Section 6 reports the simulation and ANN results. Section 7 provides
concluding remarks and outlines directions for future research.

2. Preliminaries

Before proceeding, we present the following definitions, which will be fundamental in the
development of our main results.

Definition 2.1. [22] For 0 < α < 1, the CF derivative of a function u(t) is

(CF Dα0u)(t) =
1

1 − α

∫ t

0
e−µα(t−s)u′(s)ds,

where µα = α
1−α .

Definition 2.2. [23] The NCF derivative is defined by

(NCF Dα0u)(t) =
1

(1 − α)Cα(t)

∫ t

0
e−µα(t−s)u′(s)ds,

where

Cα(t) =
1
α

(1 − e−µαt).

This normalization ensures the kernel integrates to 1 over [0, t].
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3. Model formulation

We consider the normalized fractional SIQR model:

(NCF Dα0S )(t) = −βS (t)I(t),
(NCF Dα0 I)(t) = βS (t)I(t) − (γ + δ)I(t),

(NCF Dα0 Q)(t) = δI(t) − ηQ(t),
(NCF Dα0R)(t) = γI(t) + ηQ(t), (3.1)

S (0) = S 0 ≥ 0, I(0) = I0 ≥ 0,Q(0) = Q0 ≥ 0,R(0) = R0 ≥ 0,

where β is the infection rate, γ is the recovery rate from the infectious class, δ is the isolation
(quarantine) rate, and η is the recovery rate from the quarantined class. The total initial population
is N0 = S 0 + I0 + Q0 + R0.

In this framework, the functions S (t), I(t), Q(t), and R(t) represent the proportions of the population
that are susceptible, infectious, quarantined (isolated), and recovered at any time t, respectively. The
operator NCF Dα0 denotes the NCF fractional derivative of order α ∈ (0, 1). This fractional derivative
introduces memory effects into the system via a normalized, non-singular kernel, allowing the model
to reflect how previous states influence current epidemic dynamics.

The first equation models the depletion of susceptible individuals due to infection. The second
equation captures the growth of infectious individuals by new infections and their removal via recovery
and isolation. The third equation describes the flow into and out of the quarantined compartment,
governed by the isolation and quarantine recovery rates. The fourth equation tracks the accumulation
of recovered individuals from both infectious and quarantined classes. The initial conditions S 0, I0,
Q0, and R0 set the initial state of the population, with all compartments assumed non-negative and
summing to N0.

By extending the classical SIR model to incorporate quarantine and memory effects through the
NCF derivative, this formulation enables the modeling of key control interventions and the retention of
epidemic memory, including the impact of past exposures, the effectiveness of isolation, and changing
recovery rates. As α→ 1, the NCF-SIQR model recovers the classical SIQR model with integer-order
derivatives. The use of a normalized kernel ensures the overall memory contribution is well-scaled. It
avoids the mathematical singularities of classical fractional operators, thereby improving the model’s
ability to capture and predict realistic epidemic processes involving quarantine and isolation.

4. Comparison to classical and Caputo–Fabrizio Models

This section provides a comparative overview of the standard SIQR model, its Caputo fractional
formulation, the CF version, and the NCF-SIQR model (see Table 1).
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Table 1. Comparison of different SIQR models.

Model Kernel type Advantages Disadvantages Application notes
Classical
SIQR

Integer-order
derivative

Simple formulation;
well-understood
theory; fast
computation

Cannot capture
memory effects or
non-exponential
waiting times

Suitable for short-
term outbreaks with
negligible historical
dependence

Caputo
Fractional
SIQR

Power-
law kernel
(singular)

Captures long-
memory effects;
flexible modeling

kernel singularity
causes
computational
challenges;
interpretation
less intuitive

Useful for diseases
with strong long-
term memory in
dynamics

CF
Fractional
SIQR

Non-singular
exponential
kernel

Avoids kernel
singularity;
computationally
efficient

kernel not
normalized scaling
of memory effects
can be inconsistent

Appropriate for
modeling fading
memory without
singularity issues

NCF
Fractional
SIQR
(Proposed)

Non-singular
exponential
kernel with
normalization

Retains
computational
efficiency;
normalized
kernel ensures
consistent scaling
and interpretability;
physically realistic
memory weighting

Slightly higher
computation than
unnormalized CF

Ideal for epidemic
modeling with
fading memory and
intervention effects
such as quarantine

4.1. Classical SIQR model

The classical SIQR model with integer-order derivatives is:

dS
dt
= −βS I,

dI
dt
= βS I − (γ + δ)I,

dQ
dt
= δI − ηQ,

dR
dt
= γI + ηQ,

where S (t), I(t), Q(t), and R(t) denote the susceptible, infectious, quarantined, and recovered
compartments, respectively. Here, β is the infection rate, γ is the recovery rate from the infectious
class, δ is the isolation (quarantine) rate, and η is the recovery rate from the quarantined class.

AIMS Mathematics Volume 10, Issue 9, 20235–20261.



20240

4.2. Caputo fractional SIQR model

The Caputo fractional SIQR model replaces the integer-order derivatives with Caputo fractional
derivatives (0 < α < 1):

CDα0S (t) = −βS (t)I(t),
CDα0 I(t) = βS (t)I(t) − (γ + δ)I(t),

CDα0 Q(t) = δI(t) − ηQ(t),
CDα0R(t) = γI(t) + ηQ(t),

where the Caputo derivative [24] is defined as

CDα0u(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−αu′(s) ds.

4.3. Caputo–Fabrizio fractional SIQR model

The CF-SIQR model uses the CF fractional derivative:

(CF Dα0S )(t) = −βS (t)I(t),
(CF Dα0 I)(t) = βS (t)I(t) − (γ + δ)I(t),

(CF Dα0 Q)(t) = δI(t) − ηQ(t),
(CF Dα0R)(t) = γI(t) + ηQ(t),

where

(CF Dα0u)(t) =
1

1 − α

∫ t

0
e−µα(t−s)u′(s) ds, µα =

α

1 − α
.

4.4. Normalized Caputo–Fabrizio SIQR model

The NCF-SIQR model is given by:

(NCF Dα0S )(t) = −βS (t)I(t),
(NCF Dα0 I)(t) = βS (t)I(t) − (γ + δ)I(t),

(NCF Dα0 Q)(t) = δI(t) − ηQ(t),
(NCF Dα0R)(t) = γI(t) + ηQ(t),

where

(NCF Dα0u)(t) =
1

(1 − α)Cα(t)

∫ t

0
e−µα(t−s)u′(s) ds, Cα(t) =

1
α

(1 − e−µαt).

5. Theoretical analysis

We establish the existence and uniqueness of solutions to the NCF-SIQR system, thereby providing
a foundation for the mathematical validity of the model. The demonstration relies on fixed-point theory
and essential characteristics of the NCF fractional operator.
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5.1. Existence and uniqueness of solutions

Before analyzing the dynamics, we establish that the NCF-SIQR model admits a unique global
solution. This guarantees the mathematical consistency and reliability of the system.

Theorem 1. There exists a unique global solution (S , I,Q,R) to the NCF-SIQR system on the interval
[0,T ].

Proof. We rewrite the NCF-SIQR model using properties of the NCF operator (see [9]):

S (t) = S 0 + (1 − α)Cα(t)
[
−βS (t)I(t)

]
+ α

∫ t

0
Cα(τ)

[
−βS (τ)I(τ)

]
dτ,

I(t) = I0 + (1 − α)Cα(t)
[
βS (t)I(t) − (γ + δ)I(t)

]
+ α

∫ t

0
Cα(τ)

[
βS (τ)I(τ) − (γ + δ)I(τ)

]
dτ,

Q(t) = Q0 + (1 − α)Cα(t)
[
δI(t) − ηQ(t)

]
+ α

∫ t

0
Cα(τ)

[
δI(τ) − ηQ(τ)

]
dτ,

R(t) = R0 + (1 − α)Cα(t)
[
γI(t) + ηQ(t)

]
+ α

∫ t

0
Cα(τ)

[
γI(τ) + ηQ(τ)

]
dτ,

where Cα(t) is the normalization function of the kernel.
Let X = [C([0,T ])]4, the Banach space of continuous vector-valued functions on [0,T ] with norm

∥U∥ = max{∥S ∥∞, ∥I∥∞, ∥Q∥∞, ∥R∥∞}.

Define the nonlinearities as
f1 = −βS I,

f2 = βS I − (γ + δ)I,
f3 = δI − ηQ,

f4 = γI + ηQ.

Define the operator T on X by:

T


S
I
Q
R

 (t) =


S 0 + (1 − α)Cα(t) f1(S (t), I(t),Q(t),R(t)) + α

∫ t

0
Cα(τ) f1(S (τ), I(τ),Q(τ),R(τ)) dτ

I0 + (1 − α)Cα(t) f2(S (t), I(t),Q(t),R(t)) + α
∫ t

0
Cα(τ) f2(S (τ), I(τ),Q(τ),R(τ)) dτ

Q0 + (1 − α)Cα(t) f3(S (t), I(t),Q(t),R(t)) + α
∫ t

0
Cα(τ) f3(S (τ), I(τ),Q(τ),R(τ)) dτ

R0 + (1 − α)Cα(t) f4(S (t), I(t),Q(t),R(t)) + α
∫ t

0
Cα(τ) f4(S (τ), I(τ),Q(τ),R(τ)) dτ


We will show T is a contraction on a suitable subset of X by proving each f j is Lipschitz continuous
on bounded sets. Let DM = {(S , I,Q,R) ∈ X : ∥S ∥, ∥I∥, ∥Q∥, ∥R∥ ≤ M} for some M > 0.

For all (S 1, I1,Q1,R1), (S 2, I2,Q2,R2) in DM:

| f1(S 1, I1,Q1,R1) − f1(S 2, I2,Q2,R2)| = |− βS 1I1 + βS 2I2|

= β|S 2I2 − S 1I1|

= β|S 2(I2 − I1) + (S 2 − S 1)I1|

≤ β(|S 2||I2 − I1| + |I1||S 2 − S 1|)
≤ 2βM∥(S 1, I1,Q1,R1) − (S 2, I2,Q2,R2)∥,
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| f2(S 1, I1,Q1,R1) − f2(S 2, I2,Q2,R2)| = |βS 1I1 − (γ + δ)I1 − [βS 2I2 − (γ + δ)I2]|
= |β(S 1I1 − S 2I2) − (γ + δ)(I1 − I2)|
≤ β(|S 1||I1 − I2| + |I2||S 1 − S 2|) + (γ + δ)|I1 − I2|

≤ (2βM + γ + δ)∥(S 1, I1,Q1,R1) − (S 2, I2,Q2,R2)∥

| f3(S 1, I1,Q1,R1) − f3(S 2, I2,Q2,R2)| = |δI1 − ηQ1 − [δI2 − ηQ2]|
= |δ(I1 − I2) − η(Q1 − Q2)|
≤ δ|I1 − I2| + η|Q1 − Q2|

≤ (δ + η)∥(S 1, I1,Q1,R1) − (S 2, I2,Q2,R2)∥,

| f4(S 1, I1,Q1,R1) − f4(S 2, I2,Q2,R2)| = |γI1 + ηQ1 − γI2 − ηQ2|

= γ|I1 − I2| + η|Q1 − Q2|

≤ (γ + η)∥(S 1, I1,Q1,R1) − (S 2, I2,Q2,R2)∥.

Let LM be the largest of the coefficients above. For any U1,U2 ∈ DM,

∥T (U1) − T (U2)∥ ≤ KLM∥U1 − U2∥,

where K depends on T , α, and the kernel normalization. By choosing T sufficiently small so that
KLM < 1, T is a contraction on DM. By Banach’s fixed-point theorem, there is a unique fixed point
(solution) in DM on [0,T0] for some T0 > 0. Since the solutions remain non-negative and bounded by
the total population (which is conserved in SIQR models), the local solution can be extended step by
step to the whole interval [0,T ]. □

5.2. Positivity of solutions

Before proceeding, it is essential to verify that the solutions of the NCF-SIQR model remain non-
negative for all time, as required by the biological interpretation of the compartments.

Theorem 2. If S 0, I0,Q0,R0 ≥ 0, then, S (t), I(t),Q(t),R(t) ≥ 0 for all t ≥ 0.

Proof. Suppose, for contradiction, that there exists a first time t∗ > 0 such that one of the compartments
becomes negative after being nonnegative for all t < t∗.
At t∗ the system satisfies:

NCF DtS (t) = −βS (t)I(t),
NCF DtI(t) = βS (t)I(t) − (γ + δ)I(t),

NCF DtQ(t) = δI(t) − ηQ(t),
NCF DtR(t) = γI(t) + ηQ(t).

If S (t∗) = 0 or I(t∗) = 0, the corresponding derivative is 0; if Q(t∗) = 0, the derivative is δI(t∗) ≥ 0; and
if R(t∗) = 0, the derivative is γI(t∗) + ηQ(t∗) ≥ 0. In all cases, the derivative is nonnegative, preventing
the variables from crossing below zero.
This contradicts the assumption of negativity at t∗. Hence, S (t), I(t),Q(t),R(t) ≥ 0 for all t ≥ 0. □
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5.3. Boundedness (population conservation)

It is essential to ensure that the total population remains bounded and conserved over time. We
establish that the sum of all compartments in the NCF-SIQR model does not exceed the initial
population.

Theorem 3. Let N(t) = S (t) + I(t) + Q(t) + R(t). Then, N(t) = N0 for all t ≥ 0.

Proof. Add the four equations of the NCF-SIQR system:

(NCF Dα0S ) + (NCF Dα0 I) + (NCF Dα0 Q) + (NCF Dα0R) = 0.

By linearity of the NCF derivative,
(NCF Dα0 N)(t) = 0.

The only solution with N(0) = N0 is N(t) = N0 for all t. By positivity, all variables remain bounded
above by N0. □

5.4. Equilibria and disease-free invariance

Setting all derivatives to zero in the NCF-SIQR model, the equilibrium satisfies I∗ = 0 and Q∗ = 0,
with S ∗ + R∗ = N0. Thus, the only equilibrium is the disease-free state, (S ∗, I∗,Q∗,R∗) = (S ∗0, 0, 0,R

∗
0),

where S ∗0 + R∗0 = N0.
Suppose the initial conditions satisfy I0 = 0 and Q0 = 0. In that case, all solutions remain disease-

free for all time, as the right-hand sides of the equations prevent the generation of new infections in the
absence of initially infectious or quarantined individuals.

5.5. Stability of the disease-free equilibrium

Next, we examine the stability of the disease-free equilibrium (DFE) to determine the conditions
under which the infection dies out in the NCF-SIQR model.

Theorem 4. The disease-free equilibrium (S ∗, I∗,Q∗,R∗) = (N0, 0, 0, 0) of the NCF-SIQR model is
locally asymptotically stable if R0 =

βN0
γ+δ
< 1, and unstable if R0 > 1.

Proof. Consider the general NCF-SIQR model:

(NCF Dα0S )(t) = −βS (t)I(t),
(NCF Dα0 I)(t) = βS (t)I(t) − (γ + δ)I(t),

(NCF Dα0 Q)(t) = δI(t) − ηQ(t),
(NCF Dα0R)(t) = γI(t) + ηQ(t),

where δ is the rate of quarantine and η is the recovery rate from quarantine.
The DFE is (S ∗, I∗,Q∗,R∗) = (N0, 0, 0, 0).
Consider small perturbations near the DFE:

S (t) = N0 + s(t), I(t) = 0 + i(t), Q(t) = 0 + q(t), R(t) = 0 + r(t),

where |s(t)|, |i(t)|, |q(t)|, |r(t)| are small.
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Linearizing around the DFE and neglecting higher-order terms:

(NCF Dα0 s)(t) = −βN0i(t),
(NCF Dα0 i)(t) = βN0i(t) − (γ + δ)i(t),
(NCF Dα0q)(t) = δi(t) − ηq(t),
(NCF Dα0r)(t) = γi(t) + ηq(t).

The subsystem that governs the dynamics of infection is:

(NCF Dα0 i)(t) = [βN0 − (γ + δ)]i(t).

The corresponding characteristic equation for the linearized system is:

λ = βN0 − (γ + δ).

For the fractional system, the DFE is locally asymptotically stable if the fundamental part of λ is
negative, i.e.,

βN0 − (γ + δ) < 0 =⇒ R0 =
βN0

γ + δ
< 1.

Thus:

• If R0 < 1, all solutions decay to zero and the DFE is locally asymptotically stable.
• If R0 > 1, at least one mode grows, and the DFE is unstable.

□

6. Numerical method

Let T > 0 be the final simulation time and N ∈ N the total number of time steps. Define a uniform
time grid with step size h = T/N and tn = nh, n = 0, 1, . . . ,N.

6.1. Discretization of the NCF derivative

The NCF derivative at tn is approximated by

(NCF Dα0u)(tn) ≈
1

(1 − α)Cα(tn)

n−1∑
k=0

e−µα(tn−tk)[uk+1 − uk],

where Cα(tn) = 1
α
(1 − e−µαtn) and µα = α

1−α .

6.2. Numerical scheme for the SIQR model

For each variable u ∈ {S , I,Q,R}, the update at tn is given by

un = u0 +
1

(1 − α)Cα(tn)

n−1∑
k=0

e−µα(tn−tk)[uk+1 − uk],

where u0 is the initial value. The right-hand sides at each step depend on the current values of S , I, Q,
and R.
Step-by-step implementation:
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1) Initialization: Set S 0, I0, Q0, R0, and model parameters β, γ, δ, η, α. Compute µα.
2) Time stepping: For n = 1 to N:

(a) Compute Cα(tn) = 1
α
(1 − e−µαtn).

(b) For each k = 0 to n − 1, calculate the kernel e−µα(tn−tk).
(c) Evaluate increments:

S k+1 − S k = −hβS kIk,

Ik+1 − Ik = h[βS kIk − (γ + δ)Ik],
Qk+1 − Qk = h[δIk − ηQk],
Rk+1 − Rk = h[γIk + ηQk].

(d) Compute the sums:

sumS =
n−1∑
k=0

e−µα(tn−tk)[S k+1 − S k],

sumI =
n−1∑
k=0

e−µα(tn−tk)[Ik+1 − Ik],

sumQ =
n−1∑
k=0

e−µα(tn−tk)[Qk+1 − Qk],

sumR =
n−1∑
k=0

e−µα(tn−tk)[Rk+1 − Rk].

(e) Update:

S n = S 0 +
1

(1 − α)Cα(tn)
sumS,

In = I0 +
1

(1 − α)Cα(tn)
sumI,

Qn = Q0 +
1

(1 − α)Cα(tn)
sumQ,

Rn = R0 +
1

(1 − α)Cα(tn)
sumR.

3) Repeat until n = N.

6.3. Consistency and accuracy

The proposed numerical method for solving the NCF-SIQR system utilizes the rectangle (left-
point) rule to approximate the convolution integral present in the NCF fractional derivative, thereby
achieving first-order accuracy in time. As the time step h → 0, the discrete sum converges to the
continuous integral, ensuring the consistency of the scheme for all compartments of the model. For
higher accuracy, the trapezoidal rule can be employed, yielding a second-order method. Notably, in
the classical limit as α→ 1, the normalization factor Cα(tn) approaches tn, the memory kernel vanishes
for earlier steps, and the method reduces to the explicit Euler scheme for the standard SIQR model.
While decreasing the time step h improves the numerical accuracy for the variables S , I, Q, and R, it
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also increases the computational cost, since the memory term requires summing over all previous steps
to account for history-dependent effects.

6.4. Comparison with standard Caputo and Caputo–Fabrizio methods

To understand the impact of kernel normalization, one can also simulate:

• The SIQR model with the standard Caputo derivative (power-law kernel):

CDα0u(tn) ≈
1

Γ(1 − α)

n−1∑
k=0

(tn − tk)−α[uk+1 − uk],

where u stands for S , I, Q, or R.
• The unnormalized CF SIQR model, which uses an exponential kernel without the normalization

factor.

Simulations reveal that:

• The NCF-SIQR model, through kernel normalization, can shift both the timing and magnitude of
the epidemic peaks in the I and Q compartments compared to the unnormalized CF and standard
Caputo SIQR models.
• For the same fractional order α < 1, the NCF kernel leads to epidemic curves that may exhibit

earlier or delayed peaks, depending on parameters, highlighting the importance of normalization.
• At very low values of α, all fractional SIQR models retain pronounced memory effects, but the

normalization in the NCF approach guarantees that the total memory weight sums to one, which
can make the resulting dynamics more interpretable and physically realistic.

Overall, the NCF-SIQR numerical method effectively incorporates memory effects using a
normalized kernel. Proper choice of time step, validation against the classical SIQR model, and
direct comparison to standard Caputo and CF results provide insight into the influence of memory
normalization on epidemic dynamics in quarantine-type compartmental models.

7. Numerical simulations and discussion

To comprehensively investigate the impact of memory effects and kernel normalization in epidemic
modeling, we conducted a series of numerical experiments using the NCF fractional SIQR model. All
simulations employ the discretization scheme detailed in Section 6, with model parameters and initial
conditions reflecting realistic epidemic scenarios.

Unless otherwise specified, the infection rate was set to β = 0.4, the recovery rate from the infectious
class to γ = 0.15, the isolation rate to δ = 0.1, and the recovery rate from quarantine to η = 0.05. The
initial population fractions were chosen as S (0) = 0.97, I(0) = 0.01, Q(0) = 0.01, and R(0) = 0.01,
and the final simulation time was T = 20 days with a time step h = 0.05. The primary focus was
on fractional orders α = 0.95, 0.80, 0.75, representing a transition from nearly classical dynamics to
regimes dominated by memory effects.

Figures 2–6 present the compartmental evolution of the classical SIQR model compared to the
fractional NCF-SIQR model at various values of α. For the integer-order model (Figure 2), the
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infectious population exhibits a sharp early peak, while the quarantined class rises correspondingly. By
contrast, in the NCF-SIQR model (Figures 3–6), decreasing the fractional order α delays and flattens
the epidemic peak. Stronger memory effects (smaller α) cause the epidemic to progress more gradually,
resulting in reduced peak infectious and quarantined populations.

Figure 2. The Classical SIQR Model 3.1.

Figure 3. The Infectious population for different values of α.
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Figure 4. The Susceptible population for different values of α.

Figure 5. The Quarantined population for different values of α.

Figure 6. The Recovered for different values of α.

Figures 7–10 illustrate the influence of both memory and infection rate. Surface plots of peak
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values Imax, Qmax, S min, and Rmax as functions of α and β reveal that higher memory (lower α) and
smaller infection rates consistently yield less severe outbreaks. In contrast, large α and high β values
recover the classical epidemic dynamics with rapid transitions and higher peaks in the infectious and
quarantined classes.

Figures 11–14 examine the sensitivity of epidemic outcomes to varying initial proportions of
infectious (I0), susceptible (S 0), quarantined (Q0), and recovered (R0) individuals. While early-stage
epidemic trajectories are shifted by these variations, the long-term qualitative behavior is primarily
governed by the memory parameter α and the epidemiological rates (β, γ, δ, η). This indicates that
memory effects dominate initial-condition sensitivity, offering more robust predictions under parameter
uncertainty.

Figure 7. Peak infectious cases Ipeak as a function of fractional order α and infection rate β.

Figure 8. Peak Susceptible cases S peak as a function of fractional order α and infection rate
β.
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Figure 9. Peak Quaeantined cases Qpeak as a function of fractional order α and infection rate
β.

Figure 10. Peak recovered cases Rpeak as a function of fractional order α and infection rate
β.

Figure 11. Effect of varying initial infectious proportion I0 on the time evolution of
infectious cases I(t).
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Figure 12. Effect of varying initial susceptible proportion S 0 on the time evolution of
susceptible cases S(t).

Figure 13. Effect of varying initial quarantined proportion Q0 on the time evolution of
recovered cases Q(t).

Figure 14. Effect of varying initial recovered proportion R0 on the time evolution of
recovered cases R(t).
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The simulations confirm that the NCF derivative substantially modifies epidemic dynamics
compared to classical and unnormalized fractional SIQR models. Normalization ensures a consistent
weighting of historical states, yielding more interpretable and physically realistic predictions.
Importantly, quarantine efficacy is magnified under strong memory regimes, as delayed epidemic peaks
provide more time for intervention strategies to take effect. The NCF-SIQR model thus provides a
flexible and powerful framework for exploring the interplay between memory, quarantine, and disease
progression, with valuable implications for both theoretical analysis and public health forecasting.

To validate the proposed numerical scheme, an ANN was designed and implemented to approximate
the compartmental solutions of the NCF-SIQR model. The dataset used for ANN training was
generated entirely from high-precision numerical simulations based on the fractional Adams–Bashforth
method. The generated data were systematically divided into three non-overlapping subsets: 70% for
training, 15% for testing, and 15% for validation. This split ensures that the network is trained on a
sufficiently large dataset, while retaining independent subsets for unbiased evaluation of generalization
capability. Each subset was analyzed under distinct fractional-order settings to examine the ANN’s
ability to handle variations in the memory parameter α.

For formalization, we define the ANN mapping as

F : X −→ Y,

where X denotes the input space (e.g., discrete time points tn) and Y represents the corresponding
approximated solution values for the SIQR compartments (S , I,Q,R). The training objective is to
minimize the Mean Squared Error (MSE) loss function:

MSE =
1
n

n∑
i=1

(yi − ŷi)2 ,

where yi are the reference values obtained from the numerical scheme and ŷi are the predicted outputs
from the ANN.

The chosen network architecture is a fully connected feedforward neural network consisting of
one input layer, two hidden layers with 10 neurons each, and one output layer. Nonlinear sigmoid
activation functions are applied in the hidden layers to capture complex dynamics, while a linear
activation function is used in the output layer to preserve the continuous range of model solutions.
The selection of this relatively compact architecture is based on the trade-off between representational
capacity and computational efficiency.

The network is trained using the Levenberg-Marquardt optimization algorithm with
backpropagation, a learning rate of 0.01, and a maximum of 1000 epochs. To prevent overfitting,
early stopping is employed: the training process halts if the validation loss does not improve over
10 consecutive epochs. Initial network weights are assigned using the Nguyen–Widrow initialization
method to accelerate convergence and improve the starting point for optimization. Training is
performed in MATLAB R2024a on a workstation equipped with an Intel Core i7 processor and 16 GB
RAM, ensuring reproducibility and efficient execution.

The purpose of the ANN in this work is solely as a high-fidelity solution approximator, reproducing
the temporal dynamics of the NCF-SIQR model obtained from numerical simulations. It is not intended
for parameter estimation or direct prediction from empirical epidemiological datasets. This controlled
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setting allows for the direct assessment of how well the ANN can replicate solutions governed by
fractional-order memory effects.

The theoretical foundation for employing such a network lies in the universal approximation
theorem, which guarantees that a feedforward network with at least one hidden layer can approximate
any continuous function on a compact domain, provided that there are sufficient neurons and
appropriate activation functions. In this context, the ANN is expected to learn the mapping between
time and compartment values for different fractional orders, effectively capturing both smooth and
rapidly varying solution profiles.

Performance evaluation is conducted using multiple metrics, including the final MSE, regression
plots comparing predicted and reference values, and error distribution histograms. Low MSE values,
regression lines closely aligned with the 45◦ reference line, and tightly clustered error distributions
confirm that the ANN successfully replicates the numerical solution trajectories of the NCF-SIQR
model across different memory regimes. The statistical results demonstrate the robustness, consistency,
and accuracy of the ANN-based solution approximation approach.

(a) (b)

(c) (d)

Figure 15. Statistical performance of the proposed model is illustrated through: (a) mean
squared error, (b) regression outcomes, (c) error distribution histogram, and (d) ANN training
performance.

Figure 15(a) illustrates the model’s performance at the 46 epoch, where an MSE of approximately
4.4428e-06 was achieved. The training progression is shown in Figure 15(b), while Figure 15(c)
presents the error histogram, indicating a minimum value of 0.000393 as the most accurate outcome
observed in this experiment. Figure 15(d) demonstrates both the prediction errors and the best fit for
the training and testing datasets. Additionally, Figure 16 displays the regression analysis applied to the
complete dataset, which includes both the training and testing sets. The close alignment of the data
points with the regression line confirms the model’s strong training performance. The coefficient of
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determination R is approximately equal to 1.

Figure 16. Dynamic visualization of regression results using ANNs applied to the proposed
system.

Figure 17(a) presents the model’s performance at the 37 epoch, with a reported MSE of 1.5705e-
09. Training progression is displayed in Figures 17(b) and 17(c). The error distribution is shown in
Figure 17(d), where the minimum value recorded in this experiment is 4.2e-06. Figure 17(d) also
illustrates the best alignment between the model predictions and the actual values for both training and
testing datasets, along with their respective errors. The regression outcomes for the training, testing,
and overall data are summarized in Figure 18. The concentration of data points along the regression
line confirms that the ANN was trained successfully. The correlation coefficient R obtained is 1.
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(a) (b)

(c) (d)

Figure 17. Statistical performance of the proposed model is illustrated through: (a) mean
squared error, (b) regression outcomes, (c) error distribution histogram, and (d) ANN training
performance.

Figure 18. Dynamic visualization of regression results using ANNs applied to the proposed
system.

AIMS Mathematics Volume 10, Issue 9, 20235–20261.



20256

Figure 19(a) presents the model’s accuracy at epoch 104, yielding an MSE of approximately
1.9118e-13. The progression of the training phase is depicted in Figures 19(b) and 19(c). The
error histogram, shown in Figure 19(c), reveals a minimum error value of -8.6e-09. Figure 19(d)
demonstrates the best fit between the predicted and actual data for both training and testing, alongside
their corresponding errors. Additionally, the regression analysis for the complete dataset is presented
in Figure 20. The precise alignment of the data points along the regression line indicates that the neural
network was trained effectively. The resulting correlation coefficient R is approximately equal to 1.

Figure 21(a) illustrates the model’s performance at the 101 epoch, yielding an MSE of
approximately 5.2028e-13. The training dynamics are presented in Figure 21(b), while the error
distribution is depicted in Figure 21(c), where the minimum error recorded is 1.04e-08. Figure 21(d)
shows the best alignment between predicted and actual data for both training and testing sets, along
with corresponding error measurements. The regression analysis, covering all phases of training
and testing, is displayed in Figure 22. The precise alignment of data points along the regression
line confirms that the ANN has been trained effectively. The correlation coefficient R obtained is
approximately 1.

(a) (b)

(c) (d)

Figure 19. Statistical performance of the proposed model is illustrated through: (a) mean
squared error, (b) regression outcomes, (c) error distribution histogram, and (d) ANN training
performance.
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Figure 20. Dynamic visualization of regression results using ANNs applied to the proposed
system.

(a) (b)

(c) (d)

Figure 21. Statistical performance of the proposed model is illustrated through: (a) mean
squared error, (b) regression outcomes, (c) error distribution histogram, and (d) ANN training
performance.
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Figure 22. Dynamic visualization of regression results using ANNs applied to the proposed
system.

7.1. Linking machine learning applications and the S.A.F.E. framework

To enhance the real-world relevance and AI alignment of this work, we emphasize that the
application of ANNs to the fractional SIQR model extends beyond merely approximating solutions. In
contemporary epidemic forecasting, machine learning approaches—such as ANNs, LSTM, and GRU
architectures have been widely used to predict infection curves, estimate unknown parameters from
incomplete data, and support decision-making under uncertainty. Reinforcement learning has also
been employed to optimize intervention strategies. These applications demonstrate the growing role of
AI in shaping epidemiological modeling and public health responses.

Furthermore, the methodology presented in this paper aligns with the S.A.F.E. machine learning
framework, which promotes the development of models that are Secure, Accountable, Fair, and
Explainable. In terms of security, the ANN models in this study are trained exclusively on
synthetic simulation data, thereby avoiding privacy risks and minimizing the potential for data
misuse. Accountability is ensured through a thoroughly documented modeling pipeline, including
the specification of training procedures, neural architecture, and performance metrics such as mean
squared error and regression outcomes, which enable reproducibility and auditability. The fairness
component is addressed through the use of unbiased, deterministic datasets, although the approach’s
structure permits the future integration of real-world data while enabling fairness monitoring across
compartments, such as the infectious, quarantined, and recovered populations. Finally, explainability
is incorporated through the use of visual diagnostics, including error histograms, regression plots,
and performance trajectories. While the current ANN implementation primarily functions as a
solution approximator, future extensions may incorporate interpretability tools, such as SHAP values
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or attention mechanisms, to better understand the model’s internal reasoning.
By embedding these S.A.F.E. principles into both the design and evaluation of the machine learning

component, this work contributes to the development of transparent and trustworthy AI systems in
the context of epidemic modeling, supporting the broader movement toward responsible artificial
intelligence in health research.

8. Conclusions

This study developed and rigorously analyzed a fractional-order SIQR epidemic model using
the NCF derivative, establishing key theoretical results such as existence, uniqueness, positivity,
and boundedness to ensure the model’s mathematical validity. The proposed numerical scheme
effectively captured the influence of memory effects and kernel normalization, with comparative
simulations highlighting clear differences between the NCF-SIQR model and its classical and
unnormalized fractional counterparts. Coupling the model with ANNs enabled accurate approximation
of compartmental solutions, thereby validating the robustness of the numerical method. The results
demonstrate that both quarantine efficacy and fractional memory effects play a critical role in
shaping epidemic dynamics, reducing peak infectious cases and accelerating recovery under suitable
conditions. Looking ahead, potential extensions of this work include applying the NCF-SIQR model
to real epidemic datasets for parameter estimation and predictive forecasting, integrating optimal
control theory to design effective intervention strategies, and expanding the model to more complex
compartmental structures such as SEIQR, vaccination, asymptomatic carriers, or demographic
effects. Additional future directions involve incorporating network-based or spatially heterogeneous
formulations for multi-region epidemic spread, coupling the framework with uncertainty quantification
and Bayesian inference to facilitate robust decision-making under incomplete or noisy data, and
exploring advanced machine learning architectures, such as LSTM, GRU, and transformer-based
models, to enhance predictive accuracy and interpretability. By combining rigorous fractional-order
modeling with machine learning techniques, the proposed framework presents a promising approach
for enhancing epidemic forecasting and facilitating the development of effective, evidence-based public
health interventions.
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