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1. Introduction

The Black-Scholes model [1] has had a significant impact on financial economics by providing a
fundamental framework for option pricing. Despite its theoretical and computational simplicity, the
model is based on several assumptions that significantly contrast with real market conditions. These
limitations include constant volatility, constant interest rates, no transaction costs, and the absence
of arbitrage opportunities. Perhaps one of the most important but often ignored limitations of the
Black-Scholes model was its assumption of a risk-free environment in which counterparty default
is impossible. In real markets, financial derivatives are contracts between two parties, and either
party may default before settlement, resulting in significant losses to the non-defaulting party. This
vulnerability became painfully evident during the 2008 global financial crisis, which exposed the
systemic consequences of neglecting counterparty default risk.

To overcome the limitations associated with neglecting default risk, the concept of “vulnerable
options” was introduced. Vulnerable options are derivatives whose payoffs explicitly account for the
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possibility of default by the counterparty. Johnson and Stulz [9] pioneered the modeling of vulnerable
options using structural approaches. Subsequently, many studies have developed their framework by
incorporating various extended models such as correlated default risk, stochastic default barriers, and
jump-diffusion processes to capture default dynamics more accurately [10, 12, 21]. Recent literature
has emphasized the importance of incorporating stochastic volatility into vulnerable option pricing
models. Stochastic volatility models, such as those developed by Heston [7], effectively capture the
dynamic nature of market volatility and significantly improve the accuracy of option pricing. Numerous
researchers have therefore combined stochastic volatility frameworks with default risk modeling to
more effectively price vulnerable options.

Among these contributions, Yang et al. [19] first studied the application of stochastic volatility to
vulnerable option valuation, employing a fast mean-reverting framework to derive asymptotic pricing
expansions. This line of research has been developed by various additional investigations. Wang
et al. [13] examined models characterized by short-term mean-reverting volatility, while Lee and
Kim [11] employed a multiscale generalization of the Heston model to address defaultable options.
Further extensions include the work of Wang [15], who introduced a stochastic volatility model that
captures leverage effects and stochastic correlation, and Xie and Deng [18], who proposed a stochastic
volatility with Markov regime-switching and utilized the fast Fourier transform (FFT) for efficient
computation. Yun and Kim [20] used a two-factor stochastic volatility model for valuing the vulnerable
option with hybrid default risk. In addition, several researchers recently investigated the valuation of
vulnerable options with liquidity risk under the stochastic volatility model [5, 8].

In addition to stochastic volatility models, recent studies have highlighted the importance of rough
volatility frameworks. Empirical evidence shows that volatility is not smooth but rather rough, a feature
that has been extensively studied in the literature. Gatheral et al. [3] provided strong evidence that
volatility is rough using high-frequency data. Xiao and Yu [16, 17] developed asymptotic theories
for fractional Vasicek models, while Wang et al. [14] applied the fractional Ornstein–Uhlenbeck
process to model and forecast realized volatility. Although our study focuses on stochastic volatility
with a stochastic long-term mean, the integration of rough volatility into the pricing of vulnerable
options remains an interesting direction for future research. Motivated by these results, this paper
further develops the pricing of vulnerable options by adopting an improved stochastic volatility model
proposed by He and Chen [4], which incorporates a stochastic long-term mean in volatility dynamics.
Their model addressed a critical limitation in the Heston [7] framework by allowing the long-term
mean of volatility to follow a stochastic process, rather than remaining constant. This modification
enables more accurate modeling of the term structure of implied volatility and variance swap curves.
That is, the stochastic long-term mean enhances the model’s flexibility, better capturing the empirical
features of the volatility surface and implied volatility term structure. Despite these advancements,
the model of He and Chen [4] only deals with default-free European options, missing an important
feature of counterparty default risk. In this paper, we address this essential absence. Specifically, we
provide the explicit pricing formula of a vulnerable option under the stochastic volatility model with a
stochastic long-term mean.

The rest of this paper is organized as follows. In Section 2, we introduce the mathematical model
for vulnerable options and the stochastic volatility model of [4] to incorporate counterparty default
risk. In Section 3, we derive a formula for the characteristic function of the underlying log-price and
an explicit pricing formula for vulnerable option prices. In Section 4, we provide some numerical
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examples to show the movements of the option prices, including the impact of mean reversion using
the formula in Section 3. Finally, we present the concluding remarks in Section 5.

2. Model

In this section, based on the work of He and Chen [4], we introduce a stochastic volatility model
that incorporates a stochastic long-term mean for pricing of vulnerable options.

We define S t as the market value of the underlying asset and V(t) as the market value of the asset
of the option writer. The dynamics of S t and V(t) are modeled directly under the risk-neutral measure
Q. Following the model of He and Chen [4], the dynamics of S t and V(t) are given by the following
stochastic differential equations (SDEs):

dS (t)
S (t)

= r dt +
√

v1(t) W1(t), (2.1)

dV(t)
V(t)

= r dt +
√

v2(t) W2(t), (2.2)

dvi(t) = ki (θi(t) − vi(t)) dt + σi

√
vi(t) dBi(t), (2.3)

where r is the risk-free rate, ki (i = 1, 2) denotes the mean-reversion speed, and σi (i = 1, 2) are the
constant volatilities of volatilities. In addition, θi(t) (i = 1, 2) are the stochastic long-term means of the
variance process and are given by

dθi(t) = λidt + γidZi(t), i = 1, 2, (2.4)

where λi (i = 1, 2) and γi (i = 1, 2) are constants governing the drifts and volatilities of the long-term
mean processes. Moreover, the correlation structure among the standard Brownian motions is given by

dW1(t) dW2(t) = ρ dt,

dW i(t) dBi
t = ρi dt, i = 1, 2, (2.5)

with all other pairs being uncorrelated.
Note that if x(t) = ln(S (t)), then

dx(t) =
(
r −

1
2

v1(t)
)

dt +
√

v1(t) dW1(t), (2.6)

and if y(t) = ln(V(t)), then

dy(t) =
(
r −

1
2

v2(t)
)

dt +
√

v2(t) dW2(t). (2.7)

3. Valuation of vulnerable options

In this section, we derive the characteristic function for the log-prices x(t) and y(t). Using this
function, we provide an explicit pricing formula for vulnerable options.
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3.1. A characteristic function

We consider the conditional joint characteristic function h(ϕ1, ϕ2, τ), which is defined as:

h(ϕ1, ϕ2, τ) = EQ
[
e−

∫ τ
0 r ds+iϕ1 x(t)+iϕ2y(t) | x(t), y(t), v1(t), v2(t), θ1(t), θ2(t)

]
, (3.1)

where τ = T − t, T is time to maturity, and EQ[·] denotes the expectation under the measure Q.

Theorem 1. Suppose that the underlying asset prices follow the dynamics given in (2.1) and (2.2).
Then the joint characteristic function of (x(t), y(t)) is given by

h(ϕ1, ϕ2, τ) = exp
(
A(ϕ1, ϕ2; τ) +

2∑
i=1

Bi(ϕ1, ϕ2; τ)vi(t)

+

2∑
i=1

Ci(ϕ1, ϕ2; τ)θi(t) + iϕ1x(t) + iϕ2y(t)
)
, (3.2)

where

A(ϕ1, ϕ2; τ) =
∫ τ

0

{ 2∑
i=1

(
λiCi(ϕ1, ϕ2; s) +

1
2
γ2

i Ci(ϕ1, ϕ2; s)2
)

+ ir
2∑

i=1

ϕi − ρϕ1ϕ2

√
ψ1s + β1

√
ψ2s + β2 − r

}
ds,

Bi(ϕ1, ϕ2; τ) =
2
σ2

i

(
α̃i − δi

sinh(δiτ) + δ̃i cosh(δiτ)
cosh(δiτ) + δ̃i sinh(δiτ)

)
,

Ci(ϕ1, ϕ2; τ) =
2ki

σ2
i

(
α̃iτ − ln

(
cosh(δiτ) + δ̃i sinh(δiτ)

))
, (3.3)

with

α̃i =
1
2

(ki − iρiσiϕi), (3.4)

δi =

√
α̃2

i +
σ2

i

4
ϕi(ϕi + i), (3.5)

δ̃i =
α̃i

δi
, for i = 1, 2. (3.6)

βi = θi(t) and ψi = λi, for i = 1, 2. (3.7)

Proof. By applying the Feynman–Kac formula, we derive the following PDE that governs the
characteristic function h(ϕ1, ϕ2; τ)

−
∂h
∂t
+ rh =

1
2

v1
∂2h
∂x2 +

1
2

v2
∂2h
∂y2 +

1
2

2∑
i=1

σ2
i vi
∂2h
∂v2

i

+
1
2

2∑
i=1

γ2
i
∂2h
∂θ2

i

+ ρ1σ1v1
∂2h
∂x∂v1

+ ρ2σ2v2
∂2h
∂y∂v2

+ ρ
√

v1v2
∂2h
∂x∂y
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+

(
r −

1
2

v1

)
∂h
∂x
+

(
r −

1
2

v2

)
∂h
∂y

+

2∑
i=1

ki (θi − vi)
∂h
∂vi
+

2∑
i=1

λi
∂h
∂θi

, (3.8)

with the terminal condition

h(ϕ1, ϕ2; 0) = exp (iϕ1x(T ) + iϕ2y(T )) . (3.9)

Following the affine framework in [2], we assume that the characteristic function h takes the following
form:

h(ϕ1, ϕ2; τ) = exp
(
A(ϕ1, ϕ2; τ) +

2∑
i=1

Bi(ϕ1, ϕ2; τ)vi(t) +
2∑

i=1

Ci(ϕ1, ϕ2; τ)θi(t)

+ iϕ1x(t) + iϕ2y(t)
)
. (3.10)

Substituting this affine form into the PDE gives:

−
∂A
∂t
−

2∑
i=1

∂Bi

∂t
vi −

2∑
i=1

∂Ci

∂t
θi + r

= −
1
2

2∑
i=1

viϕ
2
i +

1
2

2∑
i=1

σ2
i viB2

i +
1
2

2∑
i=1

γ2
i C2

i + i
2∑

i=1

σiρiϕiviBi

− ρϕ1ϕ2
√

v1v2 + i
2∑

i=1

(
r −

1
2

vi

)
ϕi +

2∑
i=1

ki(θi − vi)Bi +

2∑
i=1

λiCi. (3.11)

Since
√

v1(t)v2(t) is nonlinear in v1(t) and v2(t), we adopt the approximation method proposed by [6],
which exploits the mean-reverting nature of the volatility process. Accordingly, for i = 1, 2, we
approximate √

vi(t) ≈
√
θi(t) ≈

√
ψiτ + βi,

where βi = θi(t) and ψi = λi. This approximation leads to a system of five ordinary differential equations
with respect to τ derived from (3.11), associated with A(ϕ1, ϕ2; τ), Bi(ϕ1, ϕ2; τ), and Ci(ϕ1, ϕ2; τ) for
i = 1, 2, which are given as follows:

∂A
∂τ
=

2∑
i=1

(
λiCi +

1
2
γ2

i C2
i

)
+ ir

2∑
i=1

ϕi − ρϕ1ϕ2

√
ψ1τ + β1

√
ψ2τ + β2 − r, (3.12)

∂Bi

∂τ
=

1
2
σ2

i B2
i + (iρiσiϕi − ki) Bi −

ϕi

2
(ϕi + i), i = 1, 2, (3.13)

∂Ci

∂τ
= kiBi, i = 1, 2. (3.14)

Note that the corresponding boundary conditions are specified by

A(ϕ1, ϕ2; 0) = B1(ϕ1, ϕ2; 0) = B2(ϕ1, ϕ2; 0) = C1(ϕ1, ϕ2; 0) = C2(ϕ1, ϕ2; 0) = 0. (3.15)
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The ODE for Bi(ϕ1, ϕ2; τ), i = 1, 2, is a standard Riccati equation with constant coefficients, and its
closed-form solution is given by

Bi(ϕ1, ϕ2; τ) =
2
σ2

i

(
α̃i − δi

sinh(δiτ) + δ̃i cosh(δiτ)
cosh(δiτ) + δ̃i sinh(δiτ)

)
, (3.16)

where, for i = 1, 2,

α̃i =
1
2

(ki − iρiσiϕi), (3.17)

δi =

√
α̃2

i +
σ2

i

4
ϕi(ϕi + i), (3.18)

δ̃i =
α̃i

δi
. (3.19)

The solution for Ci(ϕ1, ϕ2; τ) is obtained by solving the first-order linear ODE:

Ci(ϕ1, ϕ2; τ) =
2ki

σ2
i

(
α̃iτ − ln

(
cosh(δiτ) + δ̃i sinh(δiτ)

))
. (3.20)

Finally, A(ϕ1, ϕ2; τ) is obtained by directly integrating its differential equation:

A(ϕ1, ϕ2; τ) =
∫ τ

0

{ 2∑
i=1

(
λiCi(ϕ1, ϕ2; s) +

1
2
γ2

i Ci(ϕ1, ϕ2; s)2
)

+ ir
2∑

i=1

ϕi − ρϕ1ϕ2

√
ψ1s + β1

√
ψ2s + β2 − r

}
ds.

This completes the proof. □

3.2. Vulnerable option pricing

In this subsection, we obtain the pricing formula of a vulnerable European option under the
structural model, using the model proposed in the previous section. We now consider a vulnerable
option with maturity T . Under the structural model, the default event occurs if the option issuer’s asset
V(t) falls below the default boundary D. Then the option price at time 0 under measure Q is given by

C = e−
∫ T

0 rdsEQ

[
(S (T ) − K)+

(
1{V(T )>D} +

(1 − α)V(T )
D

1{V(T )<D}

)]
, (3.21)

where K is the strike price, α is the deadweight cost, and 1{·} is the indicate function. Using the
characteristic function in Theorem 1, we can obtain the analytic pricing formula of the vulnerable
option under the proposed model shown in the following Theorem.

Theorem 2. The pricing formula for a vulnerable European option at time 0 under the proposed model
is presented as

C = e−rT [J1 − J2 + J3 − J4] , (3.22)

AIMS Mathematics Volume 10, Issue 9, 20219–20234.



20225

where

J1 = erT × h(−i, 0,T ) × Φ1(x(T ), y(T )),
J2 = K × Φ2(x(T ), y(T )),

J3 = erT ×
1 − α

D
× h(−i,−i,T ) × Φ3(x(T ),−y(T )),

J4 = erT × K ×
1 − α

D
× h(0,−i,T ) × Φ4(x(T ),−y(T )),

with

Φ1(x(T ), y(T )) = 1 − F1(x(T ); ln K) − F1(y(T ); ln D) + F1(x(T ), y(T ); ln K, ln D),
Φ2(x(T ), y(T )) = 1 − F2(x(T ); ln K) − F2(y(T ); ln D) + F2(x(T ), y(T ); ln K, ln D),
Φ3(x(T ),−y(T )) = 1 − F3(x(T ); ln K) − F3(−y(T );− ln D) + F3(x(T ),−y(T ); ln K,− ln D),
Φ4(x(T ),−y(T )) = 1 − F4(x(T ); ln K) − F4(−y(T );− ln D) + F4(x(T ),−y(T ); ln K,− ln D),

and for j = 1, 2, 3, 4,

F j(x(T ), y(T ); x, y) = −
1
4
+

1
2

F j(x(T ); x) +
1
2

F j(y(T ); y)

−
1

2π2

∫ ∞

0

∫ ∞

0

(
Re

[
e−iϕ1 x−iϕ2y f j(iϕ1, iϕ2)

ϕ1ϕ2

]
− Re

[
e−iϕ1 x+iϕ2y f j(iϕ1,−iϕ2)

ϕ1ϕ2

])
dϕ1dϕ2,

F j(x(T ); x) =
1
2
−

1
π

∫ ∞

0
Re

[
e−iϕ1 x f j(iϕ1, 0)

iϕ1

]
dϕ1,

F j(y(T ); y) =
1
2
−

1
π

∫ ∞

0
Re

[
e−iϕ2y f j(0, iϕ2)

iϕ2

]
dϕ2,

where F j(x(T ), y(T ); x, y) is the distribution function of x(T ) and y(T ), F j(x(T ); x) and F j(y(T ); y) are
the marginal distributions of of x(T ) and y(T ), respectively, and

f1(iϕ1, iϕ2) :=
h(ϕ1 − i, ϕ2,T )

h(−i, 0,T )
, f2(iϕ1, iϕ2) := erT × h(ϕ1, ϕ2,T ),

f3(iϕ1, iϕ2) :=
h(ϕ1 − i,−ϕ2 − i,T )

h(−i,−i,T )
, f4(iϕ1, iϕ2) :=

h(ϕ1,−ϕ2 − i,T )
h(0,−i,T )

.

Proof. We first rewrite the price of the option in the following form

C = e−rT EQ

[
(S (T ) − K)+

(
1{V(T )>D} +

(1 − α)V(T )
D

1{V(T )<D}

)]
= e−rT EQ

[
(ex(T ) − K)+1{y(T )>ln D}

]
+

(1 − α)
D

e−rT EQ
[
ey(T )(ex(T ) − K)+1{y(T )<ln D}

]
= e−rT EQ

[
(ex(T ) − K)1{x(T )>ln K,y(T )>ln D}

]
+

(1 − α)
D

e−rT EQ
[
ey(T )(ex(T ) − K)1{x(T )>ln K,y(T )<ln D}

]
= e−rT [J1 − J2 + J3 − J4] , (3.23)

AIMS Mathematics Volume 10, Issue 9, 20219–20234.



20226

where

J1 = EQ
[
ex(T )1{x(T )>ln K,y(T )>ln D}

]
,

J2 = K · EQ
[
1{x(T )>ln K,y(T )>ln D}

]
,

J3 =
(1 − α)

D
· EQ

[
ex(T )+y(T )1{x(T )>ln K,y(T )<ln D}

]
,

J4 =
(1 − α)

D
K · EQ

[
ey(T )1{x(T )>ln K,y(T )<ln D}

]
.

We complete the proof by calculating J1, J2, J3, and J4. To derive J1, we introduce a new measure
Q1 defined by

dQ1

dQ
=

ex(T )

EQ [
ex(T )] .

Then, under the measure Q1, the joint characteristic function of x(T ) and y(T ) is given by

f1(iϕ1, iϕ2) = EQ1
[
eiϕ1 x(T )+iϕ2y(T )

]
= EQ

[
ex(T )

EQ [
ex(T )]eiϕ1 x(T )+iϕ2y(T )

]
=

h(ϕ1 − i, ϕ2,T )
h(−i, 0,T )

, (3.24)

where the function h is defined in Theorem 1. Using the function f1(iϕ1, iϕ2), we can derive J1 as
follows.

J1 = EQ
[
ex(T )1{x(T )>ln K,y(T )>ln D}

]
= EQ

[
ex(T )

]
EQ

[
dQ1

dQ
1{x(T )>ln K,y(T )>ln D}

]
= EQ

[
ex(T )

]
EQ1

[
1{x(T )>ln K,y(T )>ln D}

]
= erT × h(−i, 0,T ) × Φ1(x(T ), y(T )). (3.25)

We calculate J2 similarly as

J2 = KEQ
[
1{x(T )>ln K,y(T )>ln D}

]
= K · Φ2(x(T ), y(T )), (3.26)

where f2(iϕ1, iϕ2) is defined by

f2(iϕ1, iϕ2) = EQ
[
eiϕ1 x(T )+iϕ2y(T )

]
= erT h(ϕ1, ϕ2,T ).

To derive J3, we introduce a new measure Q3 defined by

dQ3

dQ
=

ex(T )+y(T )

EQ [
ex(T )+y(T )] .

Then, under the measure Q3, the joint characteristic function of x(T ) and y(T ) is given by
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f3(iϕ1, iϕ2) = EQ3
[
eiϕ1 x(T )−iϕ2y(T )

]
= EQ

[
ex(T )+y(T )

EQ [
ex(T )+y(T )]eiϕ1 x(T )−iϕ2y(T )

]
=

h(ϕ1 − i,−ϕ2 − i,T )
h(−i,−i,T )

. (3.27)

Using the function f3(iϕ1, iϕ2), we can derive J3 as follows.

J3 =
1 − α

D
EQ

[
ex(T )+y(T )1{x(T )>ln K,y(T )<ln D}

]
=

1 − α
D

EQ
[
ex(T )+y(T )

]
EQ

[
dQ3

dQ
1{x(T )>ln K,y(T )<ln D}

]
=

1 − α
D

EQ
[
ex(T )+y(T )

]
EQ3

[
1{x(T )>ln K,−y(T )>− ln D}

]
= erT ×

1 − α
D
× h(−i,−i,T ) × Φ3(x(T ),−y(T )). (3.28)

Similarly, we can obtain the form of J4 as

J4 =
(1 − α)

D
K · EQ

[
ey(T )1{x(T )>ln K,y(T )<ln D}

]
,

=
1 − α

D
EQ

[
ey(T )

]
EQ

[
dQ4

dQ
1{x(T )>ln K,y(T )<ln D}

]
=

1 − α
D

EQ
[
ey(T )

]
EQ4

[
1{x(T )>ln K,−y(T )>− ln D}

]
= erT ×

1 − α
D
× h(0,−i,T ) × Φ4(x(T ),−y(T )), (3.29)

where

dQ4

dQ
=

ey(T )

EQ [
ey(T )] .

This completes the derivation of the pricing formula presented in Theorem 2.
□

4. Numerical examples

In this section, we examine the behavior of vulnerable option prices under the proposed stochastic
volatility model with stochastic long-term mean. The numerical results demonstrate how various model
parameters affect option values and highlight the importance of incorporating both stochastic volatility
and stochastic long-term mean in vulnerable option pricing.

Based on the study of He and Chen [4] using the data of the real market, we choose the base case
parameters used in our numerical experiments in Table 1. We set both the underlying asset S (0) and
the option writer’s asset V(0) to 100, with a strike price K = 100 and default boundary D = 80.
The risk-free rate is r = 0.01, maturity T = 0.5 years, and deadweight cost α = 0.2. The volatility
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parameters are initialized with v1(0) = v2(0) = 0.1 and long-term means θ1(0) = θ2(0) = 0.2. The
mean-reversion speeds are set to κ1 = κ2 = 5, indicating relatively fast mean reversion. The correlation
parameters ρ1 = ρ2 = 0.1 and ρ = −0.05 capture the interdependencies between the Brownian motions,
while the drift and volatility parameters of the long-term mean processes are set to λ1 = λ2 = 0.1 and
γ1 = γ2 = 0.01, respectively.

Table 1. Parameter values of options in the base case.

Parameter Value Parameter Value
S (0),V(0) 100 r 0.01

α 0.2 T 0.5
K 100 D 80

ρ1, ρ2 0.1 ρ -0.05
v1(0), v2(0) 0.1 λ1, λ2 0.1
θ1(0), θ2(0) 0.2 σ1, σ2 0.1
κ1, κ2 5 γ1, γ2 0.01

Unless otherwise stated, all numerical results are generated using the analytical pricing formula
from Theorem 2. The double integrals within the formula are evaluated using “double quadrature
methods”, which allowed for efficient and stable computation of the option values. This methodology
confirms that our model can be implemented with reasonable computational effort. We carry out Monte
Carlo simulation with time step ∆t = 1/252 and 50,000 sample paths using the Euler-Maruyama
scheme to verify our analytical pricing formula. The results are presented in Table 2.

Table 2. Monte carlo simulation for option pricing.

Parameter Value Analytical Monte Carlo Std. Error Relative Error
T 0.5 10.83 11.05 0.09 0.020
T 1 15.43 15.7 0.14 0.017
T 1.5 18.58 19 0.19 0.022
D 70 11.4 11.55 0.09 0.013
D 80 10.83 11.02 0.09 0.017
D 90 10.12 10.45 0.08 0.032

V(0) 70 8.32 8.47 0.07 0.018
V(0) 80 9.37 9.58 0.08 0.022
V(0) 90 10.21 10.54 0.08 0.032

Figure 1 illustrates the relationship between option prices and time to maturity for different default
boundaries (D = 70, 80, 90), including no default risk. The results show that option prices increase
with time to maturity for all default boundaries, exhibiting a concave shape where the rate of price
increase diminishes as maturity extends. Lower default boundaries result in higher option prices, as
the probability of default decreases when the option writer’s asset has more room to fluctuate before
reaching the default threshold. The differences in option prices across various default boundaries
become more pronounced for longer maturities, suggesting that the impact of credit risk becomes
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more significant as the time horizon extends.
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Figure 1. Option prices against the time to maturity with different D.

Figure 2 demonstrates how option prices vary with the initial value of the option writer’s asset
V(0) for different default boundaries, including no default risk.. The option prices increase consistently
with V(0), as higher initial asset values reduce the probability of default. The sensitivity to V(0) is
particularly pronounced when V(0) is close to the default boundary, where small changes in the initial
asset value can significantly affect the default probability. For V(0) values well above the default
boundary, the option prices converge toward the risk-free value, indicating that credit risk becomes
negligible when the option writer is financially strong. Lower default boundaries show steeper price
increases, particularly in the region near the boundary, reflecting the nonlinear nature of default risk.

The impact of the stochastic long-term mean parameters is examined in Figure 3, which shows
the effects of the drift parameters λ1 and λ2. Option prices increase linearly with λ1, ranging from
approximately 8 to 12.5 as λ1 varies from −0.5 to 0.5. This positive relationship reflects the fact that
a higher drift in the underlying asset’s long-term volatility mean tends to increase the option value
through enhanced upside potential. In contrast, option prices decrease with λ2, falling from about 11.4
to 10.5 over the same range. This negative relationship occurs because a higher drift in the option
writer’s long-term volatility mean increases the uncertainty about the writer’s asset value, thereby
raising default risk and reducing the option value. The opposite effects of λ1 and λ2 highlight the
asymmetric roles of volatility in vulnerable option pricing.

Figure 4 analyzes the sensitivity to initial volatility values v1(0) and v2(0). Option prices increase
substantially with v1(0), rising from about 10 to 13 as v1(0) increases from 0.05 to 0.3. This strong
positive relationship reflects the fundamental option pricing principle that higher volatility of the
underlying asset increases option value due to the asymmetric payoff structure. The effect of v2(0)
on option prices is much more modest, with prices increasing only from 10.45 to 10.95 over the same
range. This weaker sensitivity suggests that when the option writer’s asset is sufficiently above the
default boundary, variations in its volatility have limited impact on the option value. The contrasting
sensitivities to v1(0) and v2(0) underscore the different mechanisms through which volatility affects
vulnerable option prices.
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Figure 2. Option prices against the initial values V(0) with different D.
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(a) Price of the option varying with λ1.
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(b) Price of the option varying with λ2.

Figure 3. Option prices against the drifts of the long-term mean processes.
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Figure 4. Option prices against the initial values of the volatility processes.

Figure 5 investigates the effects of the volatility parameters γ1 and γ2 of the long-term mean
processes. The results show a moderate positive relationship between γ1 and option prices, with values
increasing from 10.64 to 10.84 as γ1 rises from 0.05 to 0.25. Similarly, γ2 has a slight positive effect,
with prices rising from 10.825 to 10.855. The relatively small sensitivities to these parameters suggest
that the volatility of the long-term mean has a second-order effect compared to the level parameters.
This finding indicates that while the stochastic nature of the long-term mean is important for model
completeness and empirical fit, its volatility has a more subtle impact on option prices compared to
other model parameters.

0.05 0.1 0.15 0.2 0.25
10.64

10.66

10.68

10.7

10.72

10.74

10.76

10.78

10.8

10.82

10.84

O
p

ti
o

n
 P

ri
c
e

 (
C

)

(a) Price of the option varying with γ1.

0.05 0.1 0.15 0.2 0.25
10.825

10.83

10.835

10.84

10.845

10.85

10.855

O
p

ti
o

n
 P

ri
c
e

 (
C

)

(b) Price of the option varying with γ2.

Figure 5. Option prices against the volatilities of the long-term mean processes.
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These numerical results provide important insights for practitioners in vulnerable option pricing
and risk management. The strong sensitivity to default boundaries emphasizes the critical importance
of accurately assessing and monitoring the credit quality of option writers. The asymmetric effects of
various volatility parameters highlight the complex interactions between market risk and credit risk
in vulnerable options. The results also demonstrate that the proposed model with stochastic long-
term mean can capture rich dynamics that simpler models might miss, particularly in scenarios where
volatility clustering and time-varying volatility means are relevant. Furthermore, the analysis reveals
that parameters affecting the underlying asset generally have stronger impacts on option prices than
corresponding parameters for the option writer’s asset, except when the writer is close to financial
distress.

5. Conclusions

In this paper, we have developed a comprehensive framework for pricing vulnerable options under a
stochastic volatility model with stochastic long-term mean. By extending the model of He and Chen [4]
to incorporate counterparty default risk, we provide a more realistic and flexible approach to valuing
options in the presence of both market risk and credit risk. Our main contributions and findings can be
summarized as follows.

We derived closed-form solutions for the characteristic function and explicit pricing formulas for
vulnerable European options under the proposed model. The incorporation of stochastic long-term
mean in the volatility dynamics allows our model to better capture empirical features of financial
markets, including the term structure of implied volatility and time-varying volatility clustering. The
analytical tractability of our solutions makes the model practical for real-world applications, avoiding
the computational burden often associated with numerical methods.

Our numerical analysis reveals several important insights into the behavior of vulnerable option
prices. First, the default boundary has a crucial role in determining option values, with lower
boundaries leading to significantly higher prices due to reduced default risk. This finding emphasizes
the importance of careful credit assessment and monitoring in vulnerable option pricing. Second, we
observe asymmetric effects of volatility parameters, where parameters related to the underlying asset
generally have stronger impacts than those related to the option writer’s asset. This asymmetry becomes
less pronounced when the writer’s asset approaches the default boundary, highlighting the nonlinear
nature of credit risk.

The incorporation of stochastic long-term mean parameters introduces additional flexibility in
capturing market dynamics. We find that the drift parameters λ1 and λ2 have opposite effects on option
prices, reflecting their different roles in the pricing. While λ1 increases option values through enhanced
volatility of the underlying asset, λ2 decreases values by increasing uncertainty about the writer’s
creditworthiness. In addition, the volatility parameters of the long-term mean processes (γ1 and γ2)
have more modest effects.

This research significantly advances the analytical framework for valuing vulnerable options,
particularly in environments characterized by stochastic volatility and a stochastic long-term mean. The
explicit pricing formula offers a computationally efficient method for financial practitioners to assess
counterparty credit risk embedded in derivative contracts. Future research could explore extensions to
include other complexities such as jump-diffusion processes, stochastic interest rates, or liquidity risk.
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