
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(9): 20157–20198.
DOI: 10.3934/math.2025901
Received: 21 June 2025
Revised: 09 August 2025
Accepted: 29 August 2025
Published: 03 September 2025

Research article

Dynamic analysis of a fractional-order SEAIR model for influenza
transmission with optimal control and stochastic stability

Hanyun Zhang, Guoqin Chen, Xingxiao Wu, Yanfang Zhao* and Yujiao Wang*

School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650500, China

* Correspondence: Email: zhaoyf 1979@163.com, wangyujiao5730@163.com.

Abstract: Understanding the dynamic characteristics of infectious disease transmission is key to
designing effective control strategies. To this end, we proposed a Caputo fractional-order SEAIR
model to study the transmission of influenza. First, the existence, uniqueness, and non-negativity of the
model’s solution were proven, ensuring its biological plausibility. Then, the basic reproduction number
R0 was derived using the next-generation matrix method, the existence and stability of equilibrium
points were analyzed, and bifurcation phenomena in the model were proven. Next, vaccination and
isolation were considered control strategies, and the existence of optimal solutions was discussed. The
optimal control strategies were derived using the Pontryagin maximum principle. Through numerical
simulations, the dynamic behavior of the controlled model under different initial values and η values
was further analyzed. In addition, the stability of the stochastic model when η = 1 was studied, as
well as the dynamic characteristics of the stochastic model under different influenza mortality rates
(d). Finally, real influenza patient data was used for parameter estimation to validate the accuracy and
predictive capability of the deterministic model. The research results indicated that early detection
and treatment helped significantly reduce the transmission range, thereby facilitating better control of
influenza. In areas with high population density, a single control strategy may not be sufficient to
effectively curb the spread, thus requiring a combination of multiple strategies to achieve better control
outcomes.
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1. Introduction

Influenza is an acute respiratory infectious disease caused by viruses from the Orthomyxoviridae
family, primarily types A and B, which are the major pathogens responsible for seasonal influenza in
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humans [1]. Typical clinical symptoms include fever, cough, and sore throat [2]. Influenza is highly
contagious and has widespread effects, having caused several global pandemics throughout history, the
most severe of which was the 1918 ‘Spanish flu,’ which is estimated to have resulted in around 50
million deaths [3]. Each pandemic imposes a significant burden on public health systems and poses
a major challenge to socio-economic stability [4]. Influenza not only threatens individual health but
also places considerable strain on healthcare infrastructure [5]. Therefore, a comprehensive study of
the biological mechanisms of influenza viruses, the development of effective vaccines and antiviral
treatments, and raising public awareness of preventive measures are key strategies for mitigating the
risks of future influenza pandemics.

Mathematical modeling, particularly through compartmental models, plays a crucial role in the
study of influenza virus transmission dynamics. These models serve as essential quantitative tools
for characterizing transmission mechanisms, forecasting epidemic trends, and evaluating intervention
strategies. Building on the classical SIR model, Casagrandi et al. [6] proposed an extended
SIRC model that considers individuals recovered from different influenza strains to study the
epidemiological significance of antigenic drift in influenza A viruses. Their model revealed complex
dynamical features, including chaotic behavior and multistable periodic outbreaks. Expanding on
this, Mohammad et al. [7] integrated vaccination into their influenza model and demonstrated the
significant impact of immunization on transmission dynamics. Andreu-Vilarroig et al. [8] further
introduced seasonal variations and immune decline, providing in-depth insights into their effects on
influenza transmission. In a broader context, Ndendya et al. [9, 10] developed a series of ODE
models specifically targeting the transmission mechanisms of various infectious diseases, including
rabies and conjunctivitis. Together, these models offer a multidimensional understanding of the factors
influencing infectious disease spread, greatly advancing theoretical insights into epidemic transmission
mechanisms.

Although ODE models have achieved significant results in influenza transmission research, they
have certain limitations in capturing complex dynamics, memory effects, and nonlinear behaviors.
With the development of fractional calculus, fractional-order models have become increasingly
widespread in the simulation of infectious disease transmission, particularly the Caputo derivative
model, which is widely used due to its compatibility with traditional initial conditions. This model
can more accurately describe systems with memory effects and historical dependencies [11] and
has shown unique advantages in simulating complex biological processes. Research indicates that,
compared to integer-order models, fractional-order models perform better in data fitting and the precise
characterization of infectious disease transmission mechanisms, providing more detailed and accurate
tools for epidemic analysis and prediction [12–14].

The application of fractional-order differential equations in infectious disease modeling has made
significant progress, particularly in three key areas. In the theoretical realm, Deressa et al. [15]
and Soulaimani et al. [16] laid a rigorous mathematical foundation for epidemic control by
conducting stability analysis based on Lyapunov functions and deriving optimal control strategies using
Pontryagin’s maximum principle. Moreover, Malmir [17] introduced a new fractional-order control
method, expanding the application of fractional calculus in epidemic management. In terms of model
development, Babrhoui et al. [18] and Zhao et al. [19] proposed innovative fractional-order SEAIR
and SIDAR frameworks, providing a more accurate representation of infectious disease transmission
dynamics. Furthermore, Angstmann et al. [20, 21] derived a fractional-order infectious SIR model
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based on stochastic processes, which provides a new perspective for a deeper understanding of the
behavior of fractional-order infectious disease models. In the domain of numerical methods, Momani
et al. [22] successfully applied the Laplace residual power series method to obtain effective numerical
solutions for fractional-order systems. Research findings show that fractional-order models outperform
traditional integer-order models in terms of fitting accuracy and the predictive assessment of control
interventions.

As research progresses, an increasing number of researchers have incorporated control measures
into influenza transmission models, exploring optimal control strategies and control intensities.
Lamwong et al. [23] considered isolation interventions as a control strategy and mathematically derived
the control intensity that achieves the best effect with the lowest cost. Yang et al. [24] combined
vaccination and antiviral treatment as a joint control strategy for influenza, and they found that early
vaccination followed by treatment throughout the infection process could slow down or eradicate
influenza transmission. Chen et al. [25] combined vaccination and isolation as control strategies,
and their research showed that the joint implementation of both strategies resulted in the best control
outcomes. Xiao et al. [26] and Moon [27] studied fractional optimal control problems with terminal
and state constraints, further establishing a theoretical foundation for analyzing systems under complex
conditions. Additionally, Song et al. [28] studied the conserved quantities for Hamiltonian systems on
time scales, providing further theoretical support for the development of optimal control theory.

In addition, disturbances in ecosystems, such as climate change, resource fluctuations, and sudden
catastrophes, can lead to changes in key parameters. To accurately describe the impact of these
perturbations on system dynamics, some researchers have extended epidemic models into stochastic
differential equation frameworks that incorporate environmental noise terms, enabling a more precise
analysis of influenza transmission mechanisms. Farah et al. [29] developed a stochastic dual-strain
influenza model that includes both resistant and non-resistant strains, and found that the decline of
influenza is due to favorable environmental conditions. Su et al. [30] proposed a stochastic influenza
model that combines human mobility with the Ornstein-Uhlenbeck process, exploring the impact
of random factors such as population mobility on influenza transmission, and derived conditions
for influenza extinction. Khan et al. [31] established a probabilistic threshold model using the
stochastic basic reproduction number to systematically assess how parameter variations under different
environmental scenarios affect population persistence and extinction risk. These studies provide a solid
theoretical foundation for the quantitative design of ecological control strategies.

In this paper, we establish a SEAIR model based on the Caputo fractional-order calculus, aiming
to explore the influenza transmission mechanisms from three aspects. First, the model reveals the
complex transmission mechanisms of influenza between susceptible individuals, exposed individuals,
asymptomatic infected individuals, symptomatic infected individuals, and recovered individuals, and
analyzes the impact of key parameters on the transmission. Second, we discuss influenza control
strategies such as vaccination and quarantine, simulate the effects of intervention measures during an
epidemic, and evaluate the optimal control strategies. Finally, using the model, we consider the impact
of random factors on influenza transmission, further deepening the understanding of transmission
dynamics. In this study, we aim to provide a theoretical foundation for epidemic control and offer
scientific insights for optimizing intervention strategies.

The chapters of this paper are organized as follows: In Section 2, we introduce the construction
of the Caputo fractional-order SEAIR model. In Section 3, we analyze the complex dynamics of the
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model. In Section 4, we explore the optimization strategy when immune vaccination and isolation are
used as control measures and derive the optimal solution. In Section 5, we examine the stochastic
stability of the model at equilibrium. In Section 6, we perform parameter estimation and curve fitting
using real data. In Section 7, we summarize the major conclusions.

2. Establishing model structure and preliminary concepts

2.1. Establishing model structure

In 2021, Basnarkov [32] proposed a SEAIR epidemic model, namely,

Ṡ (t) = −aAS − βIS , Ė (t) = aAS + βIS − δE,

Ȧ = δE − pA − qA, İ = pA − νI, Ṙ = qA + νI,
(2.1)

where S (t), E(t), A(t), I(t), and R(t) represent susceptible, exposed, asymptomatic, symptomatic, and
recovered individuals, respectively. The contact rate between asymptomatic carriers and susceptibles
is a. Other parameters are defined in Table 1.

Table 1. Definitions of parameters in model (2.2).

Parameter Definition
Λ The constant input of population
β Effective contact rate
α Infection suppression coefficient
d Population mortality rate
σ The transition rate of recovered individuals back to the susceptible
δ The proportion of exposed individuals who become infected
k The proportion of asymptomatic individuals among those exposed who become infected
q Asymptomatic-to-recovered transition rate
ν The rate at which symptomatic infections transition to recovered states
u Illness and death rates among individuals presenting symptoms due to infection
p The incidence of transitioning from asymptomatic to symptomatic infection status

Based on model (2.1), we consider the following points:

• Population mobility and the birth of new individuals affect the total population dynamics.

• Considering that the time for asymptomatic carriers to transition to symptomatic carriers is
short, and that asymptomatic carriers have a low viral load with their immune system effectively
controlling the virus, resulting in a lower transmission rate, we therefore neglect the transmission
impact of asymptomatic carriers on susceptible individuals.

• When symptomatic individuals come into contact with susceptible individuals, the susceptible
individuals become exposed. With the rise in symptomatic cases, preventive strategies like
mask usage and home confinement play a key role in minimizing transmission risk. Therefore,
using βS I/(1 + αI) with a saturation effect to describe the impact of symptomatic individuals on
susceptible individuals is more reasonable [15].
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• All groups face the same natural death risk.

• Traditional ODE models struggle to capture the hereditary and memory effects of infectious
diseases, while the Caputo fractional-order model can more accurately handle these
characteristics, overcoming the limitations of traditional models [33].

Therefore, we developed the following Caputo fractional-order SEAIR model for infectious disease
transmission 

CDη
t S (t) = Λ −

βS I
1+αI − dS + σR,

CDη
t E(t) =

βS I
1+αI − (δ + d)E,

CDη
t A(t) = kδE − (p + q + d)A,

CDη
t I(t) = (1 − k)δE + pA − (ν + d + u)I,

CDη
t R(t) = qA + νI − (σ + d)R.

(2.2)

The schematic diagram of the influenza model (2.2) is shown in Figure 1, and the parameter definitions
are provided in Table 1. The model (2.2) is a Caputo fractional-order influenza model that captures
nonlocality and memory effects, effectively describing history-dependent features of influenza, such as
latency and immune delay. Clearly, when η = 1, model (2.2) reduces to a ODE influenza model, which
indicates that the fractional-order influenza model is more flexible in characterizing the transmission
mechanism of influenza and can more accurately predict the trends of influenza spread.

In Figure 1, susceptible individuals S maintain a constant total population input Λ. Some
susceptible individuals, after effective contact with symptomatic infectives I, transition to the exposed
class E, a process governed by the saturated infection rate βI

1+αI . As the virus spreads, exposed
individuals transition into infected classes, including asymptomatic individuals A and symptomatic
individuals I. Asymptomatic individuals A either transition to symptomatic individuals I or directly to
recovered individuals, depending on their immunity. On the other hand, symptomatic individuals I may
either die due to severe illness or recover through timely medical treatment. Recovered individuals,
although healthy, may revert to susceptible individuals due to a weakening immune system. A certain
proportion of natural deaths occur within each group.

S E

A

I

R

Figure 1. Flow chart of SEAIR transmission.
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2.2. Preliminary concepts

Definition 2.1 ( [34]). Let f : Cn[t0,∞) → R and its fractional Caputo derivative of order η > 0 is
defined as

Dη f (t) =
1

Γ(n − η)

∫ t

t0

f (n)(τ)
(t − τ)η−n+1 dτ,

where the set of n-times continuously differentiable functions on the interval [t0,∞), denoted as
Cn[t0,∞), uses the Gamma function Γ(n). Here, n ∈ N+ such that n − 1 < η < n, with t > t0.
When 0 < η < 1, the definition of the function takes a distinct form

Dη f (t) =
1

Γ(1 − η)

∫ t

t0

f ′(τ)
(t − τ)η

dτ.

Lemma 2.1 ( [35]). For f ∈ C1[a, b] and α within the interval (0, 1].
(i) For all t ∈ [a, b] with Dα f (t) ≥ 0, f (t) exhibits monotonic non-decreasing behavior.
(ii) If Dα f (t) ≤ 0 holds true for every t ∈ [a, b], f (t) exhibits monotonic ascent.

Lemma 2.2 ( [36]). Let x : [t0,∞)→ R be a continuous function that satisfies{
Dαx(t) + λx(t) ≤ µ,
x(t0) = x0,

(2.3)

where α ∈ (0, 1], λ, µ ∈ R, λ , 0 and t0 ≥ 0 is the initial time. Then we obtain

x(t) ≤
(
x0 −

µ

λ

)
Eα [−λ(t − t0)α] +

µ

λ
.

Lemma 2.3 ( [37]). Let us examine a polynomial expression

P(x) = xn + c1xn−1 + c2xn−2 + · · · + cn = 0. (2.4)

The criteria ensuring all roots of (2.4) meet

|arg(x)| >
ηπ

2
(2.5)

are:

• With n = 1, the prerequisite for condition (2.4) is that c1 must exceed zero.

• For n = 2, (2.5) is met if the Routh-Hurwitz criteria are met or if c1 is negative and 4c2 exceeds
c2

1
2 .

• For n = 3, if D(P) > 0, the Routh-Hurwitz criteria c1, c3 > 0 and c1c2 > c3 are both necessary
and sufficient for (2.5). When the discriminant D(P) is negative, two scenarios emerge:

– If c1 ≥ 0, c2 ≥ 0, and c3 > 0, along with η < 2
3 , then inequality (2.5) is satisfied.

– Conversely, if c1 < 0 and c2 < 0, while η > 2
3 , every root of P(x) = 0 will meet the inequality

| arg(x)| < ηπ

2 .

If D(P) < 0, c1, c2 ≥ 0 and c1c2 = c3, (2.5) holds when η ∈ [0, 1).
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• For all n, cn must be positive as a prerequisite for (2.5).

Lemma 2.4 ( [39]). Examine the following fractional-order model

Dηz(t) = g(t, z), z(t0) = z0 and t0 > 0, (2.6)

where η ∈ (0, 1] and g : [t0,∞) ×Ω→ Rn. If g(t, z) in Eq (2.6) satisfies the local Lipschitz condition in
z, then (2.6) exists a unique solution on [t0,∞) ×Ω.

3. Dynamical analysis of model (2.2)

Before analyzing the dynamics of model (2.2), it is necessary to verify the existence, uniqueness,
non-negativity, and boundedness of its solutions to ensure the biological relevance of model (2.2).

3.1. Existence and uniqueness of the solution

Theorem 3.1. The model (2.2) has a unique solution at each time point t > t0, for any initial condition
Xt0 = (S t0 , Et0 , At0 , It0 ,Rt0) ∈ Ω.

Proof. Take Y = (S , E, A, I,R), Z = (S 1, E1, A1, I1,R1) ∈ Ω. We consider the function H : Ω → R5,
where

H(X) = (H1(X),H2(X),H3(X),H4(X),H5(X))

and
H1(X) = Λ −

βS I
1+αI − dS + σR,

H2(X) =
βS I

1+αI − (δ + d)E,
H3(X) = kδE − (p + q + d)A,
H4(X) = (1 − k)δE + pA − (ν + d + u)I,
H5(X) = qA + νI − (σ + d)R.

For all Y,Z ∈ Ω, it holds that

||H(Y) − H(Z)|| = | − (
βS I

1 + αI
−

βS 1I1

1 + αI1
) − d(S − S 1) + σ(R − R1)| + |(

βS I
1 + αI

−
βS 1I1

1 + αI1
)

− (δ + d)(E − E1)| + |kδ(E − E1) − (p + q + d)(A − A1)|
+ |(1 − k)δ(E − E1) + p(A − A1) − (ν + d + u)(I − I1)|
+ |q(A − A1) + ν(I − I1) − (δ + d)(R − R1)|
≤ 2β|S I − S 1I1| + d|S − S 1| + σ|R − R1| + (δ + d)|E − E1| + kδ|E − E1|

+ (p + q + d)|A − A1| + (1 − k)δ|E − E1| + p|A − A1| + (ν + d + u)|E − E1|

+ q|A − A1| + ν|I − I1| + (σ + d)|R − R1|

≤ α|S − S 1| + (2σ + d)|R − R1| + (2δ + d)|E − E1| + (2p + 2q + d)|A − A1|

+ (2ν + d + u)|I − I1| + 2Q2β[|S − S 1| + |I − I1|]
≤ (d + 2Q2β)|S − S 1| + (2σ + d)|R − R1| + (2δ + d)|E − E1|

+ (2p + 2q + d)|A − A1| + (2ν + d + u + 2Q2β)|I − I1|

≤ K||Y − Z||.
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Based on the upper bounds of the Lipschitz constants for the individual equations in the system, the
overall constant is obtained

K = max{d + 2Q2β, 2σ + d, 2δ + d, 2p + 2q + d, 2ν + d + u + 2Q2β}.

Therefore, for any X,Y ∈ Ω, we have

‖H (X) − H (Y)‖ ≤ K ‖X − Y‖ .

This implies that H(X) satisfies the local Lipschitz’s condition on [0,+∞) × Ω. By Lemma 2.4,
model (2.2) has a unique solution for any given initial condition Xt0 ∈ Ω. �

3.2. Non-negativity and boundedness solutions

To ensure the stability and viability of the solutions to the model, the population sizes must remain
strictly positive and within a bounded region. Therefore, the set Ω+ = {(S , E, A, I,R) ∈ Ω | S > 0, E >

0, A > 0, I > 0,R > 0} is defined to represent the solutions of model (2.2) that satisfy the non-negativity
and boundedness constraints.

Theorem 3.2. For t > 0, each solution of model (2.2) initiated in Ω+ remains non-negative.

Proof. Let Xt0 = (S t0 , Et0 , At0 , It0 ,Rt0) ∈ Ω+ be the initial condition for model (2.2). Based on
model (2.2), we obtain

DηS
∣∣∣
S t0 =0

= Λ + σR > 0, DηE
∣∣∣
Et0 =0

=
βS I

1 + αI
≥ 0,

DηA
∣∣∣
It0 =0

= kδE ≥ 0, DηI
∣∣∣
It0 =0

= (1 − k)δE + pA ≥ 0, DηR
∣∣∣
Rt0 =0

= qA + νI ≥ 0.

According to Lemma 2.1, for t ≥ t0, S (t) > 0, E(t) > 0, A(t) > 0, I(t) > 0, and R(t) > 0. Therefore,
under the constraints of Ω+, the solutions of model (2.2) will always remain within Ω+. Next, define

N(t) = S (t) + E(t) + A(t) + I(t) + R(t)

and
DηN = DηS + DηE + DηA + DηI + DηR = Λ − dN − uI,

⇒ DηN + dN + uI = Λ,

⇒ DηN + dN ≤ Λ.

By Lemma 2.2, as t → ∞, we have

lim
t→∞

N(t) =

(
N(t0) −

Λ

d

)
Eα [−d(t − t0)] +

Λ

d
.

The solution of the model (2.2) for Xt0 will always remain within Ω and satisfy 0 ≤ S + E + A + I + R ≤
Λ
d . �

The above analysis shows that model (2.2) is biologically meaningful. Next, we explore the
dynamical characteristics of model (2.2).
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3.3. Basic reproduction number

The basic reproduction number [38] R0 represents the average number of new infections that a single
infected individual may cause in a susceptible population. It is an important indicator for assessing
whether a disease will spread or decline. Specifically, if R0 < 1, the disease will disappear from
the population; if R0 > 1, the disease will continue to spread within the population. Next, the next-
generation matrix method [40] is utilized for calculating R0. Let

φ =


βS I

1+αI
(1 − k)δE
qA + νI

 , ψ =


(δ + d)E

(p + q + d)A
(ν + d + u)I

 .
The model (2.2) reaches an optimal condition known as the disease-free equilibrium (DFE) P0 =(

Λ
d , 0, 0, 0, 0

)
. At this stable state, the model shows no signs of infection. Accordingly, the Jacobian

matrices for the functions φ and ψ evaluated at P0 take the following form

F =


0 0 βΛ

d
(1 − k)δ 0 0

0 q ν

 ,V =


δ + d 0 0

0 p + q + d 0
0 0 ν + d + u

 .
The R0 of model (2.2) is defined as

FV−1 =


0 0 βΛ

d(ν+d+u)
(1−k)δ
δ+d 0 0
0 q

p+q+d
ν

ν+d+u

 ,
thus, R0 =

βΛ

d(ν+d+u) .

The basic reproduction number R0 plays a critical role in the spread of influenza. When R0 < 1, the
influenza will gradually decline, while when R0 > 1, it may outbreak. However, whether an outbreak
occurs also depends on other key factors. To better understand this process, we conducted a numerical
simulation to study the impact of different d values on R0 under fixed ν and u, as well as the effects
of parameters Λ and β. The results are shown in Figure 2. The analysis indicates that as Λ and β

increase, R0 also increases. Furthermore, as d increases, the values of Λ and β at R0 = 1 also rise.
This suggests that moderately increasing the natural mortality rate of the population helps to control
influenza spread. However, our goal is to control the spread of influenza while minimizing natural
mortality, which requires reducing Λ and β values by reducing inter-regional movement and lowering
contact between susceptible individuals and infected persons.

To determine the internal equilibria of the model (2.2), we define

Λ −
βS I

1+αI − dS + σR = 0,
βS I

1+αI − (δ + d)E = 0,
kδE − (p + q + d)A = 0,
(1 − k)δE + pA − (ν + d + u)I = 0,
qA + νI − (σ + d)R = 0.

(3.1)

Solving Eq (3.1) yields Theorem 3.3.
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Figure 2. The impact of changes in parameters Λ and β on R0, with ν = 0.5 and u = 0.6
fixed.

Theorem 3.3. If
R0 > (δ + d) (p + q + d)/δ (p + q + d − kq − kd) > 1,

then model (2.2) has an endemic equilibrium (EE) P∗ = (S ∗, E∗, A∗, I∗,R∗).

Proof. Based on the second equation of Eq (3.1), we have

E =
βS I

(δ + d) (1 + αI)
. (3.2)

Similarly, the third equation of Eq (3.1) leads to

E =
p + q + d

kδ
A, (3.3)

thus,
βS I

(δ + d) (1 + αI)
=

p + q + d
kδ

A. (3.4)

Furthermore, by combining the third and fourth equations of Eq (3.1), it can be obtained that

δE − (q + d) A − (ν + d + u) I = 0. (3.5)

Substituting (3.2) into (3.5) gives

A =
δβS I

(q + d) (δ + d) (1 + αI)
−
ν + d + u

q + d
I. (3.6)

Similarly, substituting (3.6) into (3.4) yields

S =
(δ + d) (p + q + d) (ν + d + u) (1 + αI)

δβ (p + q + d − kq − kd)
. (3.7)

Additionally, by combining the first and fifth equations of Eq (3.1), we get

Λ −
βS I

1 + αI
− dS +

σqkδβS I
(p + q + d) (σ + d) (δ + d) (1 + αI)

+
σνI
σ + d

= 0. (3.8)
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Substituting (3.7) into (3.8), we can derive

I∗ =
Λ − M4

M1 − M2 − M3
,

where

M1 =
(β + dα) (δ + d) (p + q + d) (ν + d + u)

δβ (p + q + d − kq − kd)
, M2 =

σqk (ν + d + u)
(σ + d) (p + q + d − kq − kd)

,

M3 =
σν

σ + d
, M4 =

d (δ + d) (p + q + d) (ν + d + u)
δβ (p + q + d − kq − kd)

.

To ensure biological significance, I∗ > 0, which means

(M1 − M2 − M3)(Λ − M4) > 0.

Let M = M1 − M2 − M3, then

M =
M5

δβ (σ + d) (p + q + d − kq − kd)

=

[
(σ + d) (β + dα) (δ + d) (p + q + d) − δβσqk

]
(ν + d + u) − σνδβ (p + q + d − kq − kd)

δβ (σ + d) (p + q + d − kq − kd)
.

This means that the sign of M is determined by M5. Since

M5 = ν
(
σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
+ σδβkdν − σδβkq (d + u)

+ q
(
σδβ + σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
(d + u)

+
(
σδβ + σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
(d + u) (p + d)

≥ ν
(
σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
+ σδβdν − σδβq (d + u)

+ q
(
σδβ + σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
(d + u)

+
(
σδβ + σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
(d + u) (p + d)

≥ ν
(
σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
+ σδβdν

+ q
(
σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
(d + u)

+
(
σδβ + σδdα + δdβ + d2αδ + σdβ + σd2α + d2β + d3α

)
(d + u) (p + d)

> 0.

This indicates that M > 0. Therefore, Λ > M4, i.e.,

R0 >
(δ + d) (p + q + d)

δ (p + q + d − kq − kd)
= φ > 1. (3.9)

When Eq (3.9) holds, we can derive

S ∗ = N (1 + αI∗) , E∗ =
βS ∗I∗

(δ + d) (1 + αI∗)
,
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A∗ =
kδβS ∗I∗

(δ + d) (p + q + d) (1 + αI∗)
, R∗ =

βS ∗I∗

σ (1 + αI∗)
+

dS ∗ − Λ

σ
.

Obviously, S ∗ > 0, E∗ > 0 and A∗ > 0 hold. From R∗ > 0, we have

Λ − M4

M1 − M2 − M3
>

Λ − M4

M1
. (3.10)

Through simple calculation, it can be concluded that Eq (3.10) holds, i.e., R∗ > 0. Based on the above
analysis, if Eq (3.9) holds, model (2.2) has an internal equilibrium P∗. �

3.4. Stability of the equilibria

To analyze the model (2.2), we next examine its stability at P0 and P∗. The Jacobian matrix of
model (2.2) is

J(S , E, A, I,R) =


−

βI
1+αI − d 0 0 −

βS
(1+αI)2 σ

βI
1+αI −(δ + d) 0 βS

(1+αI)2 0
0 kδ −(p + q + d) 0 0
0 (1 − k)δ p −(ν + d + u) 0
0 0 q ν −(σ + d)


.

Theorem 3.4. The DFE P0 of model (2.2) is locally asymptotically stable, provided that R0 < φ (see
Figure 3).

Proof. The Jacobian at P0 is

J(P0) =


−d 0 0 −

βΛ

d σ

0 −(δ + d) 0 βΛ

d 0
0 kδ −(p + q + d) 0 0
0 (1 − k)δ p −(ν + d + u) 0
0 0 q ν −(σ + d)


.

The calculation yields that J(P0) has two eigenvalues, i.e., λ1 = −d and λ2 = −(d+σ), whose arguments
are greater than ηπ

2 . Additionally, the remaining eigenvalues of the matrix J(P0), denoted as λi (i =

3, 4, 5), can be obtained from the eigenvalues of the matrix

J1 =

 −(δ + d) 0 βΛ

d
kδ −(p + q + d) 0

(1 − k)δ p −(ν + d + u)

 .
The characteristic equation is λ3 + a1λ

2 + a2λ + a3 = 0, where

a1 = δ + 3d + p + q + ν + u > 0,

a2 = (δ + d)(ν + d + u) + (p + q + d)[(δ + d) + (ν + d + u)] +
βΛδ

d
(1 − k) > 0,

a3 = (δ + d)(p + q + d)(ν + d + u) +
βΛδ

d
(q + d)(k − 1) −

βΛδp
d

= (δ + d)(p + q + d)(ν + d + u) + R0δ(ν + d + u)[(q + d)(k − 1) − p]
= (ν + d + u)(δ + d)(p + q + d) + R0δ[(q + d)(k − 1) − p].
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Considering the Routh–Hurwitz criteria applied to fractional differential equations as per [41], it
follows that | arg(λi)| >

ηπ

2 (i = 3, 4, 5). Consequently, all stability criteria are satisfied, confirming
that under η ∈ (0, 1) and

R0 <
(δ + d)(p + q + d)
δ[(q + d)(1 − k) + p]

= φ,

the DFE P0 is locally stable. �

Figure 3. The dynamic behavior of model (2.2) when 1 < R0 < φ. Parameters: Λ = 1,
β = 0.2, α = 0.3, d = 0.2, σ = 0.7, δ = 0.5, k = 0.4, p = 0.3, q = 0.2, ν = 0.3, and u = 0.3.

Remark 3.1. According to Theorem 3.4, when R0 < φ, within a certain neighborhood of the DFE P0,
the flu will naturally fade away without the need for control measures.

Theorem 3.5. The equilibrium P∗ is locally asymptotically stable when d1, d2, d3, d4, d5 > 0.

Proof. The Jacobian at P∗ is
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J(P∗) =


−θ1 − d 0 0 −θ2 σ

θ1 −(δ + d) 0 θ2 0
0 kδ −(p + q + d) 0 0
0 (1 − k)δ p −(ν + d + u) 0
0 0 q ν −(σ + d)


,

where

θ1 =
βI∗

1 + αI∗
, θ2 =

βS ∗

(1 + αI∗)2 .

Thus, the characteristic equation is λ5 + d1λ
4 + d2λ

3 + d3λ
2 + d4λ + d5 = 0, where

d1 = 2Q1 + Q2 + Q3 + θ1 + d,

d2 = Q1Q2 + Q1Q3 + Q2Q3 + Q1 + (Q1 + 1)(θ1 + d) − θ2(1 − k)δ,
d3 = Q1Q2Q3 + θ2kδp + Q1(θ1 + d)(Q1 + Q2 + Q3) − θ2(1 − k)δ(θ1 + Q1 + d),
d4 = (θ1 + Q1 + d)(Q1Q2 + Q1Q3 + Q2Q3 + Q1 + d)[Q1Q2Q3 + θ2kδp − Q2θ2δ]

+ Q1(θ1 + d)(Q1Q2 + Q1Q3 + Q2Q3) + (1 − k)δθ1θ2Q1 − θ2(1 − k)δ,
d5 = Q1Q2Q3 − Q2θ2(1 − k)δ + (1 − k)δQ2θ1θ2,

Q1 = δ + d,Q2 = p + q + d,Q3 = ν + d + u,Q4 = σ + d.

Remark 3.2. Theorems 3.3 and 3.5 indicate that when d1 > 0, d2 > 0, d3 > 0, d4 > 0, d5 > 0,
and R0 > (δ + d) (p + q + d)/δ (p + q + d − kq − kd) , if no control measures are taken, the flu will
outbreak, and eventually, the five groups will coexist.

Next, applying Lemma 2.3, we establish P∗ is locally asymptotically stable provided that
d1, d2, d3, d4 and d5 are positive. �

To analyze the global stability of P0 and P∗, we present Lemma 3.1.

Lemma 3.1 ( [42]). Consider R as a compactly enclosed subset. For every solution to Dx(t) = h(t, x),
beginning in R, stays in R for all time. Additionally, suppose u(x) : R → R is a continuous function
satisfying Du(x) ≤ 0. Consider the maximal invariant set M defined by {x | Du(x) = 0}. It follows
that any trajectory x(t) starting within R converges toM as t → ∞. Furthermore, ifM reduces to the
singleton {0}, then x(t) asymptotically approaches zero over time.

Lemma 3.2 ( [39]). For any Φ ∈ R with continuous differentiability of order η, where 0 < η < 1, the
result holds true for all t > t0.

Dη
[
Φ(t) − Ψ

(
1 + ln

Φ(t)
Ψ

)]
≤

(
1 −

Ψ

Φ(t)

)
DηΦ(t).

Theorem 3.6. If R0 < 1, P0 is globally asymptotically stable for model (2.2).

Proof. For analyze the global asymptotic stability of P0, we define the Lyapunov function as

L1(S , E, A, I,R) = E + A + I. (3.11)
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It is evident that L1 is positive definite when S , E, A, I, R ∈ R+.

DηL1(S , E, A, I,R) = DηE + DηA + DηI

=
βS I

1 + αI
− (δ + d)E + kδE − (p + q + d)A + (1 − k)δE + pA − (ν + d + u)I

≤
βΛI

d
− dE − (q + d)A − (ν + d + u)I

= −d(E + A) −
(
ν + u + d −

βΛ

d

)
I − qA. (3.12)

Thus, if ν + u + d − βΛ

d > 0, then DηL1(S , E, A, I,R) < 0, which implies that if R0 < 1, the DFE P0

is globally asymptotically stable. �

Theorem 3.7. When R0 > φ, P∗ is globally asymptotically stable within model (2.2) (see Figure 4).
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Figure 4. The dynamic behavior of model (2.2) when R0 > φ. Parameters: Λ = 10, β = 0.2,
α = 0.3, d = 0.2, σ = 0.7, δ = 0.5, k = 0.4, p = 0.3, q = 0.2, ν = 0.3, u = 0.3.

Proof. Define the Lyapunov function as

V1(t) = S − S ∗
(
1 + ln

S
S ∗

)
, V2(t) = E − E∗

(
1 + ln

E
E∗

)
,
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V3(t) = A − A∗
(
1 + ln

A
A∗

)
, V4(t) = I − I∗

(
1 + ln

I
I∗

)
, V5(t) = R − R∗

(
1 + ln

R
R∗

)
.

The calculation yields

DηV1(t) ≤
(
1 −

S ∗

S

) (
Λ − dS −

βS I
1 + αI

+ σR
)

= dS ∗
(
2 −

S
S ∗
−

S ∗

S

)
+

βS ∗I∗

1 + αI∗

(
1 −

S ∗

S
+

1 + αI∗

1 + αI

( I
I∗
−

S I
S ∗I∗

))
+ σR∗

(
1 +

R
R∗
−

S ∗

S
−

RS ∗

R∗S

)
,

DηV2(t) ≤
(
1 −

E∗

E

) (
βS I

1 + αI
− dE − δE

)
=

βS ∗I∗

1 + αI∗

(
1 −

E
E∗

+
S I(1 + αI∗)
S ∗I∗(1 + αI)

−
E∗S I(1 + αI∗)
ES ∗I∗(1 + αI)

)
,

DηV3(t) ≤
(
1 −

A∗

A

)
(kδE − (p + q + d)A) = (p + q + d)

(
1 −

A∗

A
−

EA∗

E∗A
+

E
E∗

)
A∗,

DηV4(t) ≤
(
1 −

I∗

I

)
[(1 − k)δE + pA − (u + ν + d)I] = (u + ν + d)

(
1 +

1
E∗

+
A
A∗
−

I
I∗
−

I
A∗I∗

)
I∗,

DηV5(t) ≤
(
1 −

R∗

R

)
[νI + qA − (d + σ)R] = νI∗

(
1 +

I
I∗
−

R∗I
RI∗
−

R
R∗

)
+ qA∗

(
1 +

A
A∗
−

R
R∗
−

R∗A
RA∗

)
.

(3.13)

By the arithmetic-geometric mean inequality [43], the solution is

2 −
S
S ∗
−

S ∗

S
≤ 0, 1 −

S ∗

S
+

1 + αI∗

1 + αI

( I
I∗
−

S I
S ∗I∗

)
≤ 0, 1 +

R
R∗
−

S ∗

S
−

RS ∗

R∗S
≤ 0,

1 −
E
E∗
−

E∗S I(1 + αI∗)
ES ∗I∗(1 + αI)

+
S I(1 + αI∗)
S ∗I∗(1 + αI)

≤ 0, 1 −
A∗

A
−

EA∗

E∗A
+

E
E∗
≤ 0,

1 +
1
E∗

+
A
A∗
−

I
I∗
−

I
A∗I∗

≤ 0, 1 +
I
I∗
−

R∗I
RI∗
−

R
R∗
≤ 0, 1 +

A
A∗
−

R
R∗
−

R∗A
RA∗

≤ 0.

Then, we can obtain DηV ≤ DηV1 + DηV2 + DηV3 + DηV4 + DηV5 ≤ 0. When S = S ∗, E = E∗, A =

A∗, I = I∗,R = R∗, Dη
t V = 0. By LaSalle’s Invariance Principle [42], the equilibrium P∗ is globally

asymptotically stable. �

Remark 3.3. Theorem 3.6 states that when R0 < 1, the trajectories of model (2.2) will stabilize at the
DFE P0, regardless of the initial condition. In other words, without control measures, the flu will be
naturally controlled. On the other hand, Theorem 3.7 indicates that when R0 > φ, the trajectories of
model (2.2) will stabilize at the EE P∗, meaning that without control measures, the flu will spread.

To further verify the correctness of the above theoretical results and to study the impact of η on the
dynamical behavior of model (2.2), we use the FDE12 method to solve the fractional-order derivatives
and visualize the results in Figures 3 and 4. As shown in the figures, when R0 < φ, model (2.2)
stabilizes at the DFE P0; when R0 > φ, it stabilizes at the EE P∗, further confirming the validity of
the theoretical analysis. Additionally, it can be observed that as η increases, the system stabilizes more
rapidly, which is attributed to the memory effect inherent in fractional-order models. The figures also
indicate that the integer-order model is merely a special case of the fractional-order model, suggesting
that the latter is more flexible and capable of adapting to more complex scenarios.
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Moreover, to further analyze the impact of η and β on the dynamics of model (2.2), we fix the
other parameters in model (2.2) and analyze the maximum values of each variable at the steady state of
model (2.2) as η and β change, as shown in Figure 5. From the figure, we observe that as η increases,
the number of susceptible individuals at the steady state of model (2.2) increases, while the numbers
of the other four groups decrease. This is due to the fact that the steady state of the influenza model is
influenced by past states. Additionally, we can see that the impact of β on the steady state of model (2.2)
is the opposite of that of η, and when β is small, its impact on the steady state is also smaller. This
further emphasizes that reducing the effective contact rate between symptomatic infected individuals
and susceptible individuals is an important approach to controlling influenza.

Figure 5. The maximum value of each variable in model (2.2) at a stable state as parameters
β and η vary, with other parameters fixed at d = 0.1, a = 0.01, σ = 0.1, k = 0.5, p = 0.01,
q = 0.3,Λ = 0.5, δ = 0.2, ν = 0.3, and u = 0.2.

AIMS Mathematics Volume 10, Issue 9, 20157–20198.



20174

3.5. Sensitivity analysis

Based on the above analysis, we can conclude that when R1 < 1, the flu will subside, whereas when
R1 > 1, the flu will outbreak, with

R1 =
βΛδ (p + q + d − kq − kd)

d (δ + d) (p + q + d) (ν + d + u)
.

Sensitivity analysis helps reveal the impact of model parameters on R1 and flu transmission. Through
this analysis, we can identify which parameters and initial conditions play a crucial role in the model’s
output and highlight the parameters that require more attention and precise computation [44, 45]. In
the normalized forward sensitivity analysis, the sensitivity index of R1 depends on the variation of
parameter i, expressed as ρR1

i = ∂R1
∂i ×

i
R1

, where i represents any parameter in R1. For example, the
sensitivity index of R1 with respect to parameter β is given by ρR1

β = ∂R1
∂β
×

β

R1
= 1. The sensitivity

indices for other parameters are also calculated in a similar manner, with the results shown in Table 2.
Additionally, the sensitivity indices of all parameters have been visualized, as shown in Figure 6.
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Figure 6. Sensitivity analysis plot of R1 regarding the parameters of model (2.2).

Table 2. Calculate the parameter values of the R1 sensitivity index and their corresponding
sensitivity index values.

Parameter Value Sensitivity index Parameter Value Sensitivity index
β 0.1 1 d 0.01 -1.3512
Λ 100 1 k 0.5 -0.5
δ 0.05 0.1667 ν 0.04 -0.5714
p 0.02 0.1667 u 0.02 -0.2857
q 0.03 -0.1250
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As shown in Figure 6, the continuous influx of population (Λ), the effective contact rate between
symptomatic infected individuals and susceptible individuals (β), and the natural mortality rate of the
population (d) have a significant impact on the spread of influenza. Among them, Λ and β promote
the spread of influenza, while d acts to suppress it. Therefore, in controlling the spread of influenza,
measures such as temporarily closing areas where influenza outbreaks occur, limiting the large-scale
movement of the population to reduce the continuous influx of people, and implementing measures
like wearing masks and home isolation to reduce the effective contact rate between symptomatic
infected individuals and susceptible individuals can be effective. However, this does not imply that
other parameters are unimportant for influenza transmission. For example, antiviral medications can
be used to increase the rate at which symptomatic infected individuals transition to recovery (ν), which
is also an important method for controlling the spread of influenza.

3.6. Bifurcation analysis

Bifurcation is an important dynamical behavior in influenza models. Bifurcation phenomena
indicate that the dynamical behavior of model (2.2) can change significantly with small perturbations
in one or more parameters. This sensitivity reflects the inherent complexity of influenza transmission.
Moreover, by analyzing these bifurcation phenomena, we can gain a deeper understanding of influenza
transmission mechanisms, while providing more precise control directions for influenza management.
For example, if small perturbations in the effective contact rate β between susceptible and symptomatic
infected individuals can lead to influenza outbreaks, then measures such as promoting mask-wearing
in public or home isolation can be implemented to reduce or cut off the transmission of influenza.

Theorem 3.8. Model (2.2) undergoes equilibrium bifurcation at R0 = φ.

Proof. In Theorem 3.3, we have proved that model (2.2) has a DFE P0, and if R0 > φ, there exists
an EE P∗. That is, if R0 < φ, model (2.2) has only one equilibrium; when R0 > φ, there are two
equilibria, therefore model (2.2) undergoes equilibrium bifurcation at R0 = φ. It is worth noting that
when we fix other parameters and use any single parameter from R0 = φ as the bifurcation parameter,
a single-parameter equilibrium bifurcation will occur. For example, fixing other parameters and using
Λ as the bifurcation parameter, model (2.2) undergoes equilibrium bifurcation at

Λ = Λ∗ =
d (δ + d) (p + q + d) (ν + d + u)

δβ (p + q + d − kq − kd)
.

Similarly, when fixing the remaining parameters and using multiple parameters from R0 = φ as
bifurcation parameters, model (2.2) will exhibit bifurcation phenomena. For instance, when using
d and β simultaneously as bifurcation parameters, bifurcation occurs when d and β satisfy the equation
β =

d(δ+d)(p+q+d)(ν+d+u)
δΛ(p+q+d−kq−kd) , as shown in Figure 7A; likewise, when using β and Λ as bifurcation parameters,

bifurcation occurs when β and Λ satisfy

βΛ =
d (δ + d) (p + q + d) (ν + d + u)

δ (p + q + d − kq − kd)
,

as shown in Figure 7B. �

Theorem 3.9. Model (2.2) undergoes a transcritical bifurcation near the DFE P0 when R0 = φ.
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Proof. According to Theorem 1, if R0 < φ, model (2.2) has only one DFE; if R0 > φ, there exists one
DFE and one EE. Moreover, Theorems 2 and 3 indicate that when R0 < φ, the DFE of model (2.2)
is locally asymptotically stable; when R0 > φ, the EE of model (2.2) is globally stable. That is, near
R0 = φ, the stability of model (2.2) changes. Based on reference [46], we can infer that model (2.2)
undergoes a transcritical bifurcation at R0 = φ, as shown in Figure 8B. Now, keeping other parameters
fixed and using only β as the bifurcation parameter, model (2.2) undergoes a transcritical bifurcation at
β =

d(δ+d)(p+q+d)(ν+d+u)
δΛ(p+q+d−kq−kd) , as shown in Figure 8A. By substituting the specific values of the fixed parameters

from Figure 8 into R0 = φ, we can determine that model (2.2) undergoes a transcritical bifurcation at
R0 = 3.75 and β = 0.45. �

Figure 7. The bifurcation of model (2.2), where Region I represents only one DFE, Region
II represents one DFE and one EE, and Region III represents sensitivity to bifurcation
parameters, where slight perturbations can change the number of equilibria. Parameters:
[A] α = 0.5, σ = 0.2, δ = 0.3, k = 0.7, p = 0.2, q = 0.1, ν = 0.2, u = 0.3, d = 0.1. [B]
α = 0.5, σ = 0.2, δ = 0.5, k = 0.8, p = 0.2, q = 0.1, ν = 0.2, u = 0.1, and Λ = 7.
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Figure 8. The transcritical bifurcation of model (2.2) with the bifurcation parameter β, and
the other parameters fixed as Λ = 2, α = 0.5, d = 0.3, σ = 0.2, δ = 0.3, k = 0.7, p = 0.2,
q = 0.1, ν = 0.2, and u = 0.3.
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Remark 3.4. From Figures 7 and 8, we can see that when the effective contact rate (β) between
symptomatic infecteds and susceptibles is low, influenza does not outbreak. However, when β is large
enough, such that R0 > φ, an outbreak will occur, and the outbreak severity increases as β increases.
The impact of the constant input of susceptible individuals (Λ) on the influenza dynamics is similar to
that of β, while the natural death rate of the population (d) has the opposite effect.

4. Fractional optimal control

Early isolation or vaccination strategies play a crucial role in controlling the spread of influenza.
In this context, we incorporate these control strategies into the model. Specifically, early vaccination
and isolation help reduce the number of exposed individuals and assist in converting asymptomatic
infecteds into recoveries. To capture the effect of these control strategies, we introduce a control
function c(t) ∈ [0, 1]. However, due to the limited isolation spaces and medical resources, when
multiple exposed individuals are confined in the same space, some of them may convert into
symptomatic infecteds. Based on this, model (2.2) can be modified as

CDη
t S (t) = Λ −

βS I
1+αI − dS + σR,

CDη
t E(t) =

βS I
1+αI − (δ + c + d)E,

CDη
t A(t) = kδE − (p + q + c + d)A,

CDη
t I(t) = (1 + c − k)δE + pA − (ν + d + u)I,

CDη
t R(t) = (q + c)A + νI − (σ + d)R.

(4.1)

To obtain the optimal solution of model (2.2), define the objective function

O(c) = min
c

∫ T

0
L(E(t), A(t), I(t), c(t)) = min

c

∫ T

0

(
w1E(t) + w2A(t) + w3I(t) +

w4

2
c(t)2

)
dt, (4.2)

where w1, w2, w3, and w4 are positive weights associated with exposed individuals, asymptomatic
infected individuals, symptomatic infected individuals, and the treatment control parameter c(t),
respectively. w1 represents the cost impact of exposed individuals, w2 and w3 represent the cost
contributions of asymptomatic and symptomatic infected individuals, and w4 reflects the impact of
treatment control on the cost. The control level c(t) ranges within [0, 1], it reaches c(t) = 1 under
severe outbreak conditions and drops to c(t) = 0 when no infection is present.

4.1. The presence of optimal control

Let Φ be the control set, and there exists a c∗ ∈ Φ such that the O(c) is minimized, i.e.,

O(c∗) = min
c∈Φ

O(c). (4.3)

Theorem 4.1. If these conditions are all fulfilled:
(i) Φ and its associated state variables form a non-empty set;
(ii) Φ is both closed and convex;
(iii) The right-hand side of model (4.1) exhibits linearity in terms of the state and control set;
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(iv) The integral and L(E, A, I, c) is convex on Φ;
(v) There are defined positive constants k1 and k2, along with β > 1, for which L(E, A, I, c) satisfies

L(E, A, I, c) ≥ k1|c|β − k2, (4.4)

then there exists c∗ ∈ Φ such that O(c∗) = minc∈Φ O(c).

Proof. Based on the existence of bounded system solutions and the definition of the control set [47],
conditions (i) and (ii) hold. We focus on proving the last three conditions, and below is the proof for
condition (iii):

First, we simplify model to obtain DηX (t) = M (X) = NX(t) + O (X) , where

X (t) = (S (t) , E (t) , A (t) , I (t) ,R (t))T ,

N =


−d 0 0 0 0
0 δ + c + d 0 0 0
0 0 p + q + d 0 0
0 0 0 −(ν + α + u) 0
0 0 0 0 −(σ + d)


, O (X) =


Λ −

βS I
1+αI + σR
βS I

1+αI
kδE

(1 + c − k)δE + pA
(q + c)A + νI


.

Obviously, there exists a constant e∗, for which

S (t) , E (t) , A (t) , I (t) ,R (t) < e∗.

Let X1 (t) = (S 1 (t) , E1 (t) , A1 (t) , I1 (t) ,R1 (t)) and X2 (t) = (S 2 (t) , E2 (t) , A2 (t) , I2 (t) ,R2 (t)) . Thus,
the Holder inequality [48], yields

|O (X1) − O (X2)| = 2
β

α

∣∣∣∣∣∣ S 2I2
1
α

+ I2
−

S 1I1

1 + I1

∣∣∣∣∣∣ + σ |R1 − R2| + (1 + c)δ |E1 − E2|

+ (p + q + c) |A1 − A2| + ν |I1 − I2| .

Therefore,

|O (X1) − O (X2)| ≤ 2
β

α
|I1I2| |S 1 − S 2| + 2

β

α2 |I1| |S 1 − S 2| + 2
β

α2 |S 2| |I1 − I2| + σ |R1 − R2|

+ (1 + c)δ |E1 − E2| + (p + q + c) |A1 − A2| + ν |I1 − I2|

=

(
2
β

α
|I1I2| + 2

β

α2 |I1|

)
|S 1 − S 2| +

(
2
β

α2 |S 2| + ν
)
|I1 − I2| + σ |R1 − R2|

+ (1 + c)δ |E1 − E2| + (p + q + c) |A1 − A2|

≤ θ (|S 1 − S 2| + |I1 − I2| + |E1 − E2| + |A1 − A2| + |R1 − R2|) ,

where
θ = max

{
2
β

α
(e∗)2

+ 2
β

α2 e∗, 2
β

α2 e∗ + ν, (1 + c)δ, p + q + c
}
.

This implies |M (X1) − M (X2)| ≤ γ |X1 − X2| , where γ = max{θ, ‖N‖} < ∞. Thus, the function M is
Lipschitz continuous. This implies that condition (iii) is satisfied.
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Next, we demonstrate condition (iv). Let

L (t, E, A, I, c) = w1E + w2A + w3I +
w4

2
c2,

where c,m ∈ Ω and 0 ≤ n ≤ 1. To prove that L is convex, it suffices to demonstrate that

(1 − n) L (t, E, A, I, c) + nL (t, E, A, I,m) ≥ L (t, E, A, I, (1 − n) c + nm) ,

namely
(1 − n) L (t, E, A, I, c) + nL (t, E, A, I,m) − L (t, E, A, I, (1 − n) c + nm)

= (1 − n)
[
w1E + w2A + w3I +

w4

2
c2

]
+ n

[
w1E + w2A + w3I +

w4

2
c2

]
−

[
w1E + w2A + w3I +

w4

2
((1 − n) c)2

]
=

w4

2
c2 − n

w4

2
c2 + n

w4

2
m2 −

w4

2
((1 − n)c + nm)2

=
w4

2
(1 − n)n(c − m)2 ≥ 0.

This forms a convex function over Ω.
As L (t, E, A, I, c) is a convex function. Thus,

w1E + w2A + w3I +
w4

2
c2 ≥ k1|c|n − k2.

In this case, by choosing k1 = w4
2 , any k2 > 0 and n = 2, condition (v) is satisfied. �

4.2. Optimal system

According to Theorem 4.1, model (4.1) has an optimal solution. To determine the explicit
expression for the optimal solution c∗(t), we define the associated Lagrangian L and Hamiltonian H as

L(E, I, c) = w1E + w2A + w3I +
w4

2
c2,

H(S , E, A, I,R, c, λ1, λ2, λ3, λ4, λ5)
= L(E, I, c) + λ1DηS + λ2DηE + λ4Dη + λ3DηI + λ4DηR,

where λi(t)(i = 1, 2, 3, 4, 5) is the adjoint variable. By further applying the Pontryagin maximum
principle [49, 50], the following state equation can be derived

Dηλ1(t) = −
∂H
∂S

= λ1(t)
(
d +

βI
1 + αI

)
− λ2(t)

βI
1 + αI

,

Dηλ2(t) = −
∂H
∂E

= −w1 + λ2(t)(d + c + δ) − λ3(t)kδ − λ4(t)(1 + c − k)δ,

Dηλ3(t) = −
∂H
∂A

= −w2 + λ3(t)(d + p + q + c) − λ4(t)p − λ5(t)(q + c),

Dηλ4(t) = −
∂H
∂I

= −w3 + λ1(t)
βS

(1 + αI)2 − λ2(t)
βS

(1 + αI)2 + λ4(t)(ν + d + u) − λ5(t)ν,

Dηλ5(t) = −
∂H
∂R

= −λ1(t)σ + λ5(t)(d + σ), (4.5)
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simultaneously satisfying the transversality condition λ1 (T ) = λ2 (T ) = λ3 (T ) = λ4 (T ) = λ5 (T ) = 0.
Let S̄ , Ē, Ā, Ī, R̄ represent the optimal solutions and λ̄1, λ̄2, λ̄3, λ̄4, λ̄5 be the solutions of the adjoint
model (4.5). Based on the principles of optimal control, we derive the Theorem 4.2.

Theorem 4.2. Let c∗ denote the optimal control parameter. Within the λ range that minimizes O, c∗ is
expressed as follows

c∗ = max

0,min


(
λ̄2 − λ̄4δ

)
Ē + λ̄3Ā

w3
, 1


 .

Proof. According to the necessary conditions of the control equation, ∂H
∂c = 0, we obtain c∗ =

(λ̄2−λ̄4δ)Ē+λ̄3Ā
w3

. From the preceding discussion, it follows that 0 < c < 1. Consequently, if c∗ < 0,
then c = 0; if c∗ > 1, then c = 1; otherwise c = c∗. Thus, the ideal range for c is 0 to

c∗ = max

0,min


(
λ̄2 − λ̄4δ

)
Ē + λ̄3Ā

w3
, 1


 .

�

To comprehensively study the impact of initial infection levels and the parameter η on influenza
control strategies, we conduct a numerical simulation analysis within the framework of optimal control
theory. Figures 9A, 10, and 11 illustrate the temporal evolution of the model’s state variables and
the objective function O under different initial infection levels, with initial state vectors given as
X01 = [100, 50, 40, 30, 20], X02 = [200, 80, 60, 40, 30], X03 = [400, 200, 150, 100, 80], and X04 =

[600, 300, 200, 150, 80]. In contrast, Figures 9B, 12, and 13 show the model’s dynamic response to
changes in the parameter η, with parameter values set to η1 = 0.7, η2 = 0.8, η3 = 0.9, and η4 = 1.

In Figures 9A, 10, and 11, regardless of the initial numbers of exposed individuals, symptomatic
infectives, and asymptomatic carriers, as long as the control strategy is appropriate, the optimal control
trajectory c(t) undergoes intense intervention in the early phase and gradually converges to a common
steady state. Furthermore, the objective function O rapidly decays and tends toward equilibrium.
This suggests that, in the actual control of influenza, government departments should invest sufficient
manpower and resources in the early stages of intervention. For example, early efforts can include
encouraging the public to purchase influenza antiviral drugs, get vaccinated, wear qualified masks,
and implement isolation measures. As the flu transmission situation changes, the intensity of control
measures can be adjusted appropriately to ensure that resources are not wasted while effectively
controlling the spread of influenza.

In contrast, Figures 9B, 12, and 13 indicate that as the value of η increases, a longer maximum
control duration and higher costs are required for influenza control. This reflects the complexity and
diversity of flu transmission. Influenza in different times and regions may require different orders
of flu models (represented by η) for prediction. The appropriate value of η can effectively predict
the transmission trend of influenza over a given period, thus helping to develop reasonable control
strategies. However, when the value of η is chosen incorrectly, it may lead to excessive or insufficient
control investments, wasting resources and potentially resulting in the failure of influenza control.
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Figure 9. The time series of the control parameter c(t) under different initial values and
parameters. [A] represents the time series for different initial values X0i (i = 1, 2, 3, 4) and
[B] represents the time series for different parameters ηi (i = 1, 2, 3, 4). The fixed parameter
set is Λ = 3.4, β = 0.3, α = 1.56, d = 0.02, σ = 0.45, δ = 0.35, k = 0.7, p = 0.25, q = 0.5, ν =

0.3, u = 0.2, and η = 0.99.
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Figure 10. The time series of the objective function O under different initial values.The
parameter set is the same as in Figure 9.
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Figure 11. Dynamic behavior of the model (2.2) under different initial values. The parameter
set is the same as in Figure 9.
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Figure 12. The time series of the objective function O under different values of η. The
parameter set is the same as in Figure 9.
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Figure 13. The dynamic behavior of model (2.2) at different η. The parameter set is the same
as in Figure 9.

5. Stochastic stability of model (2.2) at P∗ with η = 1

The transmission of influenza exhibits significant randomness, typically influenced by factors
such as the environment, policy changes, and resource availability. In modeling, stochastic models
are usually constructed by introducing small perturbations around the steady-state solution of the
deterministic model, combined with white noise. This white noise can be classified into two types:
One type perturbs one or more key parameters with white noise; the other type perturbs all model
parameters [51]. In this paper, we adopt the second type of model, aiming to investigate the fluctuation
effects of the entire system. Specifically, small perturbations will be introduced around the epidemic
equilibrium P∗ = (S ∗, E∗, A∗, I∗,R∗), with these perturbations being proportional to the deviations in
S (t), E(t), I(t), and R(t), corresponding to the deviations from S ∗, E∗, A∗, I∗, and R∗, respectively. In
this section, we consider only the special case where η = 1. Therefore, model (2.2) can be modified
as follows: 

dS =

[
Λ −

βS I
1+αI − dS + σR

]
dt + µ1(S − S ∗)dζ1,

dE =

[
βS I

1+αI − (δ + d)E
]
dt + µ2(E − E∗)dζ2,

dA =

[
kδE − (p + q + d)A

]
dt + µ3(A − A∗)dζ3,

dI =

[
(1 − k)δE + pA − (ν + d + u)I

]
dt + µ4(I − I∗)dζ4,

dR =

[
qA + νI − (σ + d)R

]
dt + µ5(R − R∗)dζ5.

(5.1)
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Here, µi (i = 1, 2, 3, 4) represents the non-negative intensities of environmental fluctuations.
Specifically, µ1 denotes the perturbation intensity when S (susceptible individuals) deviates from
its equilibrium value S ∗, which is closely related to external random factors such as environmental
changes, adjustments in public health policies, and resource allocation; µ2 represents the perturbation
intensity when E (exposed individuals) deviates from E∗, reflecting the impact of transmission
rate fluctuations, changes in exposure pathways, and other factors on the system; µ3 represents
the perturbation intensity related to asymptomatic carriers, such as undetected sources of infection,
activities of latent infections, or inadequate health monitoring; µ4 denotes the perturbation intensity
when I (infected individuals) deviates from its equilibrium value I∗, which is related to the disease
transmission rate, the effectiveness of treatment measures, isolation effects, and changes in public
health policies; µ5 describes the perturbation intensity when R (recovered individuals) deviates from
R∗, influenced by factors such as individual immune responses, fluctuations in vaccination rates,
and variations in treatment efficacy. ζ(t) = (ζ1(t), . . . , ζ5(t)) represents a five-dimensional standard
Brownian motion, modeling a white noise process. Both models have the same equilibrium P∗, and
when µi = 0 (i = 1, 2, 3, 4), model (2.2) degenerates into model (5.1). The above stochastic model (5.1)
can be expressed in the form of an Ito differential equation system as

dX(t) = f (X(t))dt + g(X(t))dζ(t), X(t0) = X0, t∈[t0,T ],

where X(t) represents the solution set of model (5.1), dζ = (dζ1, dζ2, dζ3, dζ4, dζ5)T . Additionally, we
introduce four new variables: z1 = S − S ∗, z2 = E − E∗, z3 = A − A∗, z4 = I − I∗, and z5 = R − R∗.
Linearizing around P∗ yields

dz(t) = f (z(t))dt + g(z(t))dζ, (5.2)

where z(t) = (z1(t), z2(t), z3(t), z4(t), z5(t))T .

f (z(t)) =


−c1z1 0 0 −c2z4 σz5

c3z1 −c4z2 0 c2z4 0
0 kδz2 −c5z3 0 0
0 (1 − k)δz2 pz3 −c6z4 0
0 0 qz3 νz4 −c7z5


,

g(z(t)) =


µ1z1 0 0 0 0

0 µ2z2 0 0 0
0 0 µ3z3 0 0
0 0 0 µ4z4 0
0 0 0 0 µ5z5


,

c1 =
βI

1 + αI
+ d, c2 =

βS
(1 + αI)2 , c3 =

βS
1 + αI

,

c4 = δ + d, c5 = p + q + d, c6 = ν + d + u, c7 = σ + d.

Clearly, model (5.1) has the same internal equilibrium as model (2.2), i.e., z(t) = 0.
Next, we analyze the situation where U ∈ C2(Θ), where Θ is the space of all (t,R4) combinations

and t0 ∈ R+. The function U is continuously differentiable of order two with respect to the z-direction.
In this case, Lemma 5.1 is invoked.

AIMS Mathematics Volume 10, Issue 9, 20157–20198.



20185

Lemma 5.1 ( [52]). Assume U(z, t) ∈ C2(Θ) to comply with the following inequalities

K1|z|p ≤ U(z, t) ≤ K2|z|p, (5.3)

LU(z, t) ≤ −K3|z|p,Ki > 0(i = 1, 2, 3), P > 0. (5.4)

Thus, model (5.2) demonstrates exponential p-stability beyond t = 0.

We introduce the operator L, i.e.,

LU(z(t), t) = Ut(z(t), t) + f T (z(t))Uz(z(t), t) +
1
2

trace
[
gT (z(t), t)Uzz(z(t), t)g(z(t), t)

]
,

where

Uz(z(t), t) = col
(∂U
∂z1

,
∂U
∂z2

,
∂U
∂z3

,
∂U
∂z4

,
∂U
∂z5

)
,Uzz(z(t), t) =

( ∂2U
∂zi∂z j

)
, i, j = 1, 2, 3, 4, 5.

By setting p = 2 in Eqs (5.3) and (5.4), we establish that the trivial solution of (5.2) achieves global
asymptotic stability in probability.

Theorem 5.1. The trivial solution of model (5.1) is asymptotically stable in the mean square sense
when

µ2
1 < 2

(
c1 − A2 − B2

)
, µ2

2 < 2
(
−D2 − E2 − c4

)
,

µ2
3 < 2

(
c5 −

1
2
− F2 −G2 − q

)
, µ2

4 < 2
(
ν − c6 − H2 −

1
2

)
, µ2

5 < 2
(
d − 3c7 − I2

)
,

where A, B, D, E, and F are subsequently determined.

Proof. We utilize the following Lyapunov function [30]

U(z, t) = U1(z, t) + U2(z, t) + U3(z, t) + U4(z, t), (5.5)

where

U1(z, t) =
1
2

(
z2

1 + z2
5

)
,U2(z, t) =

1
2

(
z2

2 + z2
5

)
,U4(z, t) =

1
2

(
z2

3 + z2
5

)
,U3(z, t) =

1
2

(
z2

4 + z2
5

)
.

It is straight forward to verify that inequality (5.3) holds when p = 2.
By applying the operator L, we obtain

LU1 = −

(
c1 −

1
2
µ2

1

)
z2

1 −

(
d −

1
2
µ2

5

)
z2

5 + qz1z3 + (ν − c2)z1z4

− (d + c1)z1z5 + qz3z5 + (ν − c2)z4z5.

(5.6)

Similarly, we have

LU2 =

(
−c4 +

1
2
µ2

2

)
z2

2 +

(
−c7 +

1
2
µ2

5

)
z2

5 + qz3z4 + (c2 + ν)z2z4

− c7z2z5 − c3z1z5 − c4z2z5 + qz3z5 + (c2 + ν)z4z5,

(5.7)
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LU3 =

(
q − c5 +

1
2
µ2

3

)
z2

3 +

(
−c7 +

1
2
µ2

5

)
z2

5 + kδz2z3 + νz3z4

+ kδz2z5 + (q − c5 − c7)z3z5 + νz4z5,

(5.8)

LU4 =

(
ν − c6 +

1
2
µ2

4

)
z2

4 +

(
−c7 +

1
2
µ2

5

)
z2

5 + (1 − k)δz2z4 + (p + q)z3z4

+ (1 − k)δz2z5 + (q + p)z3z5 + (ν − c6 − c7)z4z5.

(5.9)

Now, utilizing Eqs (5.6), (5.7), and (5.9) in (5.5) and simplifying, we obtain

LU = −

(
c1 −

1
2
µ2

1

)
z2

1 −

(
−c4 +

1
2
µ2

2

)
z2

2 −

(
−q + c5 −

1
2
µ2

3

)
z2

3

(
ν − c6 +

1
2
µ2

4

)
z2

4

−
(
d − 3c7 + 2µ2

5

)
z2

5 + Az1z3 + Bz1z4 + Cz1z5 + Dz2z3 + Ez2z4 + Fz2z5

+ Gz3z4 + Hz3z5 + Iz4z5,

(5.10)

where
A = q, B = ν − c2 − d − c1,C = −c3 < 0,D = kδ,

E = c2 + ν + (1 − k)δ, F = δ − c4 − c7,G = 2q + p + ν,

H = 4q + p − c5 − c7, I = 4ν − c6 − c7.

Utilizing the relationship between arithmetic and geometric means, we have

Az1z3 ≤ A2z2
1 +

z2
3

4
, Bz1z4 ≤ B2z2

1 +
z2

4

4
,Dz2z3 ≤ D2z2

2 +
z2

3

4
, Ez2z4 ≤ E2z2

2 +
z2

4

4
,

Fz3z4 ≤ F2z2
3 +

z2
4

4
,Gz3z4 ≤ G2z2

3 +
z2

4

4
,Hz3z5 ≤ H2z2

3 +
z5

4

4
, Iz4z5 ≤ I2z2

4 +
z5

4

4
.

Applying these relationships transforms (5.10) into

LU ≤ −
(
c1 − A2 − B2 −

1
2
µ2

1

)
z2

1 −

(
1
2
µ2

2 − D2 − E2 − c4

)
z2

2

−

(
c5 −

1
2
− F2 −G2 − q −

1
2
µ2

3

)
z2

3 −

(
ν − c6 − H2 −

1
2

+
1
2
µ2

4

)
z2

4

−

(
d − 3c7 + 2µ2

5 − I2 −
1
2

)
z2

5.

(5.11)

If µ2
1 < 2(c1−A2−B2), µ2

2 < 2(−D2−E2− c4), µ2
3 < 2

(
c5−

1
2 −F2−G2−q

)
, µ2

4 < 2
(
ν− c6−H2− 1

2

)
and µ2

5 < 2(d − 3c7 − I2), then from the above equations, we can express

LU ≤ −
(
P1z2

1 + P2z2
2 + P3z2

3 + P4z2
4 + P5z2

5

)
, (5.12)
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where

P1 = c1 − A2 − B2 −
1
2
µ2

1 > 0,

P2 =
1
2
µ2

2 − D2 − E2 − c4 > 0,

P3 = c5 −
1
2
− F2 −G2 − q −

1
2
µ2

3 > 0,

P4 = ν − c6 − H2 −
1
2

+
1
2
µ2

4 > 0,

P5 = d − 3c7 + 2µ2
5 − I2 −

1
2
> 0.

Define Φ = min{P1, P2, P3, P4, P5}, ensuring that Φ > 0. With this definition, Eq (5.12) can be
expressed as LU ≤ −Φ|z(t)|2. Therefore, inequality (5.4) holds, indicating that the trivial solution of
model (5.1) possesses asymptotic mean square stability. �

Remark 5.1. Theorem 5.1 shows that when µi is sufficiently small, under the influence of
random fluctuations (such as environmental changes, policy adjustments, or randomness in disease
transmission), the spread of infectious diseases like influenza will gradually stabilize and will not
experience uncontrolled outbreaks or extinction due to random disturbances.

To better understand the dynamic differences between the deterministic and stochastic models,
we perform numerical simulations of the stochastic model using the Euler-Maruyama discretization
scheme. The resulting phase-space trajectories and associated statistical characteristics are presented
in Figures 14–16. In Figure 14, the initial conditions are set as [12; 3; 6; 8; 12], and the parameters
are chosen as u = 0.8, µ1 = 0.8, µ2 = 0.89, µ3 = 0.75, µ4 = 0.87, and µ5 = 0.9.
Under the condition R0 > φ, the solution of the deterministic model converges to an EE point
P∗ = (9.43976, 47.4031, 0.185743, 2.74881, 1.47851), indicating that in the absence of stochastic
perturbations, influenza will persist at this equilibrium state over the long term. However, when
stochastic perturbations with intensities µi are introduced, the system trajectories no longer stabilize
at P∗ but instead exhibit sustained fluctuations around it. To characterize these stochastic dynamics,
we simulat the stationary probability density functions of the state variables. The results show that
the solution of the stochastic model is primarily concentrated around P∗, with the peak of the solution
corresponding to the location of the deterministic equilibrium in the figure. This indicates that, even
in the presence of environmental noise, the disease fluctuates around the EE level than completely
disappearing or leading to large-scale outbreaks.

Furthermore, to investigate the effect of the influenza mortality rate (u) on the stochastic model,
Figure 15 modifies the parameters from the conditions in Figure 14, reducing u from 0.8 to 0.2.
The numerical results show that as u decreases, the dynamic behavior of the stochastic model
exhibits significantly less randomness and fluctuation over time. This change suggests that during
an influenza outbreak, if sufficient medical conditions are in place and appropriate control measures
are implemented promptly, the impact of external random factors on the disease’s spread can be
significantly reduced, leading to more stable epidemic dynamics. This further emphasizes the
importance of taking swift and effective intervention measures early in an outbreak to reduce
uncertainty and optimize control outcomes.
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Figure 14. Dynamical behavior of model (2.2) and histograms with probability density
functions of state variables. Initial values [12, 3, 6, 8, 12], with fixed parameters β = 0.8, d =

0.16, k = 0.024, α = 0.3, σ = 0.6, p = 0.2, q = 0.13,Λ = 12, δ = 0.08, ν = 0.4, u = 0.8, µ1 =

0.8, µ2 = 0.89, µ3 = 0.75, µ4 = 0.87, and µ5 = 0.9.

Figure 15. Dynamical behavior of model (2.2) and histograms with probability density
functions of state variables. Parameters: u = 0.2. Other parameters are the same as in
Figure 14.
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Figure 16. Dynamical behavior of model (2.2) and histograms with probability density
functions of state variables. Parameters: µ1 = 0.4, µ2 = 0.4, µ3 = 0.4, µ4 = 0.4, and µ5 = 0.4.
Other parameters are the same as in Figure 14.

Furthermore, to analyze the effect of different stochastic intensities µi on the dynamics of
model (5.1), we keep all other conditions from Figure 14 unchanged, except for reducing all µi to
0.4. By comparing Figures 14 and 16, we observe that when the stochastic intensity is reduced,
the influence of random factors on the dynamics of model (5.1) also decreases. This will aid in the
control of influenza, meaning that if an outbreak occurs, timely and appropriate control measures by
the relevant authorities, along with active public cooperation, will significantly increase the chances of
controlling the influenza outbreak.

6. Real data example

Parameter estimation (PE) plays a vital role in validating the rationality of influenza transmission
models. The spread of influenza involves a variety of complex biological mechanisms, and accurately
abstracting these processes into mathematical models is inherently challenging. Through PE, key
model parameters can be determined based on real epidemiological data within a reasonable range,
thereby enhancing the model’s ability to capture the dynamics of influenza transmission. Accurate
parameter estimation not only improves the predictive accuracy of the model but also helps uncover
the underlying mechanisms of influenza spread, providing a scientific basis and decision support for
the formulation and optimization of control strategies.

In this section, we use four sets of real influenza-related data: (1) Global weekly B-type influenza
cases from week 21 to week 52 of 2021 [53]; (2) the number of positive A-type influenza specimens
in the United States from week 21 to week 52 of 2023 [54]; (3) global weekly A-type influenza cases
from week 21 to week 52 of 2021 [53]; and (4) confirmed A(H1N1) influenza cases registered in the
Bogotá metropolitan area of Colombia from week 17 to week 44 of 2009 [55]. The model parameters
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in model (2.2) are fitted using the least squares method, with the fitting results shown in Figure 17 and
the corresponding parameter values listed in Table 3.

Table 3. Model (2.2) obtains the corresponding parameter values through fitting with four
sets of real data.

Parameter Value (1) Value (2) Value (3) Value (4) Source
Λ 5.955913563771e+6 6.403864744384e+6 5.710931527482e+6 9.18806417e+2 Fitted
β 7.322600000000e-2 1.050110000000e-1 8.641400000000e-2 2.16000000e-4 Fitted
α 7.372409500000e+1 1.613820220000e+2 1.019088640000e+2 1.00000000e-6 Fitted
d 2.000000000000e-6 4.000000000000e-6 1.000000000000e-6 1.00000000e-6 Fitted
σ 3.013700000000e-2 4.577140000000e-1 2.729020000000e-1 1.00000000e-6 Fitted
δ 1.560000000000e-4 1.230000000000e-4 2.160000000000e-4 9.98558000e-1 Fitted
k 8.999920000000e-1 8.996340000000e-1 8.994210000000e-1 9.00000000e-1 Fitted
p 1.563700000000e-2 1.681800000000e-2 1.764300000000e-2 1.30000000e-5 Fitted
q 1.100000000000e-5 3.873300000000e-2 7.720000000000e-4 9.98376000e-1 Fitted
γ 3.416000000000e-2 2.895300000000e-2 1.000000000000e-6 9.99956000e-1 Fitted
u 3.931500000000e-2 3.486500000000e-2 1.000000000000e-6 9.99957000e-1 Fitted
η 7.787120000000e-1 8.337560000000e-1 7.839580000000e-1 9.85700000e-1 Fitted
S (0) 1.000000000000e+5 1.000000000000e+5 1.000000000000e+5 1.00000000e+5 Assumed
E(0) 1.000000000000e+3 5.000000000000e+2 5.000000000000e+2 5.00000000e+1 Assumed
A(0) 6.000000000000e+2 3.000000000000e+2 3.000000000000e+2 5.00000000e+1 Assumed
I(0) 5.130000000000e+2 4.100000000000e+1 6.300000000000e+1 4.00000000e+0 Assumed
R(0) 4.000000000000e+2 2.000000000000e+1 5.000000000000e+1 3.00000000e+0 Assumed

As shown in Figure 17, the model fits all four datasets well, demonstrating strong explanatory
power. Moreover, in all best-fitting scenarios, the fractional-order parameter η is not equal to 1,
indicating that the fractional-order differential model can better capture the complexity of influenza
transmission. This allows for more accurate predictions of future case numbers and provides deeper
insight into the underlying transmission mechanisms.

To further analyze the specific development trends of influenza and the impact of different η values
on the model dynamics, we incorporate the parameters fitted from model (2.2) into the model for
simulation. Specifically, we use the parameters fitted from the 2021 week 21 to week 52 global B-type
influenza case data and the 2009 Bogotá metropolitan area H1N1 influenza confirmed cases data from
week 17 to week 44 in Colombia, then apply FDE12 to plot the time series of each variable, as shown
in Figures 18 and 19.

From Figure 18, it can be observed that global A-type influenza cases will continue to rise in the
coming weeks. In Figure 19, it can be seen that in the following weeks, the influenza cases in Bogotá
will fluctuate and gradually stabilize over time. Further analysis of Figure 18 reveals that when η

exceeds the optimal fitted parameter value, the influenza control strategy faces issues. In the early
stages of the outbreak, an overly high η results in excessive government investment, leading to resource
waste. During the middle phase, insufficient investment may cause ineffective control, potentially
resulting in the failure of influenza control. As shown in Figure 4, under different η values, each peak
and trough in model (2.2) varies. This means that using inappropriate parameters to guide influenza
control could lead to resource waste at best, or, at worst, trigger an influenza outbreak.
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Figure 17. The fitting curves of model (2.2) with real influenza case data. [A] represents the
fitting curve of model (2.2) with real global influenza B case data from 2021 (weeks 21 to
52), [B] represents the fitting curve of model (2.2) with real influenza A positive specimens
in the U.S. from 2023 (weeks 21 to 52), [C] represents the fitting curve of model (2.2) with
real global influenza A case data from 2021 (weeks 21 to 52), and [D] represents the fitting
curve of model (2.2) with real confirmed H1N1 influenza A cases in the Bogotá Metropolitan
Area, Colombia (weeks 17 to 44, 2009).
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Figure 18. The dynamics of model (2.2) under different η values with the remaining
parameters fixed to those obtained from fitting with the 2021 global influenza B cases from
weeks 21 to 52.
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Figure 19. The dynamics of model (2.2) at different η values, with the other parameters
fixed to the values fitted from the number of reported confirmed H1N1 influenza cases in the
Bogotá Metropolitan Area, Colombia, from week 17 to week 44 in 2009.

7. Discussion and conclusions

In this study, we proposed a fractional-order SEAIR influenza model to analyze the transmission
dynamics of influenza. First, the existence, uniqueness, and non-negativity of the solution to
model (2.2) are proved, ensuring the model’s biological relevance. Then, the existence and stability
of the equilibrium points of model (2.2) are analyzed, and the expression for the basic reproduction
number (R0) is calculated. The study finds that the outbreak of influenza is not solely determined
by the simple relationship between R0 and 1. Specifically, when R0 < φ, model (2.2) has a locally
asymptotically stable DFE point P0; when R0 > φ, model (2.2) has a globally asymptotically stable EE
point P∗ and an unstable disease-free equilibrium point P0. This suggests that if R0 < φ, the influenza
will naturally fade without the need for control strategies; however, when R0 > φ, the influenza
will outbreak and cannot be controlled through natural processes. Therefore, the key to controlling
influenza lies in making R0 < φ.
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Subsequently, to further assess the importance of different parameters in the influenza transmission
process, we calculated the normalized forward sensitivity indices of the variables in model (2.2). This
helps identify the parameters that have the greatest impact on influenza transmission. The results
show that the inflow rate of susceptible individuals (Λ), the effective contact rate between symptomatic
infecteds and susceptibles (β), and the natural death rate (d) have the greatest sensitivity in model (2.2),
indicating that these three parameters play a key role in the spread of influenza. Therefore, in
subsequent control strategies, the focus should be on adjusting these parameters, such as reducing Λ

by restricting population movement, decreasing β through enhanced isolation measures, and lowering
the death rate (d) by improving public health measures, to effectively control the spread of influenza.

To further explore the specific effects of Λ, β, and d on the dynamics of model (2.2), we conducted
a bifurcation analysis. We found that model (2.2) undergoes a bifurcation of equilibrium points and
a transcritical bifurcation when R0 = φ. To validate the theoretical analysis, we performed numerical
simulations and plotted the bifurcation diagrams with Λ and β as bifurcation parameters (as shown
in Figure 7), as well as the transcritical bifurcation diagrams with β and d as bifurcation parameters
(as shown in Figure 8). From Figure 7, it can be seen that when Λ is sufficiently small, an increase
in β does not lead to an influenza outbreak, indicating that controlling the inflow and outflow of the
population in a region is an effective preventive measure. From Figure 8, it can be seen that when
β is sufficiently small, the influenza will not outbreak, further emphasizing the importance of control
measures such as home isolation and wearing masks in influenza prevention.

Considering the importance of control strategies such as early isolation and vaccination in influenza
control, we developed an influenza model (4.1) that incorporates these control strategies. Subsequently,
using optimal control theory, we proved the existence of an optimal solution for model (4.1) and
derived the expression for the optimal solution. To further analyze the impact of initial values and
the parameter η on control effectiveness, we conducted a numerical analysis using the particle swarm
optimization algorithm, examining how different initial values and the parameter η affect the control
intensity, the size of the objective function, and the dynamic changes of state variables. We found that
as the population size and η increase, the required maximum control duration and treatment costs also
increase. This indicates that limiting population movement and implementing home isolation measures
are crucial during an influenza outbreak. This also highlights the importance of developing more
scientifically sound and reasonable influenza models. Only by accurately predicting the development
trends of influenza can its spread be effectively controlled without unnecessary economic waste.

Moreover, the spread of influenza is accompanied by significant randomness. Therefore, based
on model (2.2), we introduced a small perturbation around the EE point and assumed that these
perturbations are proportional to the deviations of S (t), E(t), A(t), I(t), and R(t), thus establishing a
stochastic influenza model (5.1). Using stochastic process theory, we proved the conditions for P-index
stability and mean-square stability of model (5.1). Then, we conducted a numerical analysis to study
the impact of the fatality rate of the influenza virus on the randomness factors. We found that as the
fatality rate of the virus decreases, the impact of random factors on the spread of influenza diminishes.
This indicates that with timely control strategies and improved medical standards, influenza will be
more easily and effectively controlled.

In addition, to validate the effectiveness and universality of model (2.2), we used four sets of real
influenza-related data and fitted the corresponding parameter values using the least squares method,
visualizing the optimal curve as shown in Figure 17. From the figure, it can be seen that the fitting result
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is quite good, indicating that model (2.2) has a certain reference value for future influenza predictions.
Furthermore, we observed that the fitted parameter η values are all less than 1, which suggests that the
fractional-order influenza model can better adapt to the complex transmission dynamics of influenza.
Subsequently, we substituted two sets of fitted parameters into model (2.2) and used numerical analysis
to predict the future dynamics of influenza spread, as shown in Figures 18 and 19. From Figure 18,
it can be observed that the number of global influenza cases may continue to increase in the coming
weeks, while Figure 19 indicates that the number of influenza cases in the Bogotá metropolitan area of
Colombia will exist in the coming weeks but will decrease and show significant fluctuations.

Finally, considering that the spread of influenza is influenced by various factors such as seasonal
changes, age structure, spatial dynamics, and potential delays in reported data, these aspects have not
been addressed in the current study. Therefore, in future research, we focus on incorporating these
factors into the model to improve its accuracy and applicability. Additionally, we plan to further refine
optimal control theory in future work and explore innovative control strategies to better address the
challenges of influenza transmission. By doing so, we aim to make the model more comprehensive
in reflecting the complexities of influenza transmission, thereby providing scientific guidance for the
development of more precise intervention strategies and treatment plans. Furthermore, analyzing these
factors will help improve the timeliness and accuracy of influenza predictions, offering stronger support
for global influenza control efforts.
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