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Abstract: A case of a Pfaff transformation is given by the following:

lvm. _ -1 l,m. X
S A R =)

In this paper, when m is a negative integer, we define the Gaussian hypergeometric series as follows:

2FT( [,m : )_ N (l)k(m)kxk

X = ’
2m Z4 k1(2m)

which is well-defined, as it is a terminating hypergeometric series since the summation is only for
k = 0,..,—m; additionally, the fact that 2m is a negative integer does not make any harm. With this
definition, if we take m = —1 and [ = 1, then the left-hand side is a terminating hypergeometric series

equal to 1 + %C, while the right-hand side is also a terminating hypergeometric series, but has 1 as the
3x-2
2(x— 1)?
this case of the Pfaff transformation does not hold for any positive integer / and for any negative integer
m. Additionally, an analysis aims to solve this situation. In fact, we give a new expression V™ (x)

depending on /, m, and x such that

pole of multiplicity 2 given by — More generally, with the definition above, we prove that

(1-»" zFr( L rxl) = zFT( L ;x) + VI (),
for any positive integer / and for any negative integer m. As a very interesting consequence we present
a corollary from the boundary conditions, thereby providing the following:

(1) an expansion of x?"*! as a sum of two terminating hypergeometric series (with symmetric values)
with the coeflicients given in the integer sequence A046899 (these coefficients can be found in Pascal’s
triangle as an inclined column);
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(2) an expansion of x*"*!(x — 2) as a sum of two terminating hypergeometric series (with symmetric
values) with the coefficients given in the integer sequence A033184.

Keywords: hypergeometric series; terminating hypergeometric series; Pfaff transformation; Gauss’s
hypergeometric theorem; binomial sums; integer sequences; differential equation
Mathematics Subject Classification: 05A10, 05A19, 15A24, 33C05

1. Introduction

In 1797, Johann Friedrich Pfaff stated the following transformation:

2F1(l’:l;X):(l—x)_lel(l’n_m' a ) (L.1)

n x—-1

If we take n = 2m, then (1.1) becomes

l’m. _ —] l,m. X
S R !

In this paper, when m is a negative integer, we define the Gaussian hypergeometric series as follows:

2FT( [,m : )_ N (l)k(m)kxk

X| = s
!
2m  k!(2m),
which is well-defined, as it is a terminating hypergeometric series since the summation is only for
k = 0, ..,—m; additionally, the fact that 2m is a negative integer does not make any harm. If we take
m = —1 and [ = 1, then the left-hand side is a terminating hypergeometric series equal to 1 + —, while

the right-hand side is also a terminating hypergeometric series, but has 1 as the pole of multiplicity 2
3x-2
iven by ———.
given by 1)

Remark 1. When m is a negative integer, then the Gaussian hypergeometric series can be defined as
follows:

I,m .o Dk
F ;x| =1 .
() = im 3 (3

Then the series is not a terminating hypergeometric series,

2FT( [,m : )_ N (l)k(m)kxk

X = ’
2m £ 1(2m)

which is well-defined, as it is a terminating hypergeometric series since the summation is only for
k = 0,..,—m; additionally, and the fact that 2m is also a negative integer does not make any harm.
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More generally, if we take / as a positive integer and m as a negative integer, then the left-hand side is
Im ) O (Dr(myxt

om ¥ = 24" Qmyk] , which is a polynomial in

a terminating hypergeometric series equal to ,F| (

. ) _ Im x 1 <« (De(m)x*
. l * 4 . —
x of degree m; whereas, the right-hand side (1 — x)™ » F ( m Yo 1) “d— kEO 2mCe — kL

is also a terminating hypergeometric series, but has 1 as the pole of multiplicity / — m (—m is a positive
integer).

Thus, when n = 2m, (1.1) does not hold for a positive integer / and for a negative integer m. This
paper seeks to solve this situation. We give a new expression V" (x) depending on I, m, and x such

that
ILm x I,m
1-x)"F | 27— =F | 27 x|+ vim(x),

for any positive integer / and for any negative integer m.

As a very interesting consequence, we give a corollary coming from the boundary conditions
thereby providing
(1) an expansion of x as a sum of two terminating hypergeometric series (with symmetric values)
with the coefficients given in the integer sequence A046899

o+l _ n+1n n+k\ o n+k —k k
2= (k= 1) Z( L )x +Z( i )x” (x — D,

k=0 k=0

2n+1

where the first terms are written as
x=1x-1+1,

X=(x+2)(x-1D*+1x+2(x-1),
X = +3x+6)(x— 1) + 1x2 +3x(x— 1) + 6(x — 1),
X =1 +4x2 + 10x +20)(x — D* + 173 + 42 (x = 1) + 10x(x = 1)* + 20(x — 1)°,

and the colored coefficients can be found in Pascal’s triangle

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 20 15 6 I;

and (2) an expansion of x***!(x—2) as a sum of two terminating hypergeometric series (with symmetric
values) with the coefficients given in the integer sequence A033184

x2n+l(x _ 2) — (x _ 1)n+2 Z ﬂ( %/ln:kk )xn—k _ Z k+1 ( 2nl’l_—kk )Xk(.x _ 1)}1—](’

k:0n+1 k:0n+1
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where the first terms are written as
x(x-2)=1(x-1)7>-1,
Px-2)=Ox+Dx-17>-1x—1(x-1),
X(x=2)=(Ix+2x+2)(x = D* =152 = 2x(x = 1) = 2(x = 1),
X (x=2)= (2 +32 +5x+5)(x = D* = 1x° = 3x%(x = 1) = 5x(x — 1) = 5(x = 1)?,

and the colored sequence of numbers is exactly the integer sequence A033184.
Appearing frequently in physical problems, Gauss’s hypergeometric function (Gauss 1812,
Barnes 1908) is

a,b (@)n(D)n 2"
JF) ( ; ) - 3 @D 7 (12)
c e (), n!
where (a), is the Pochhammer symbol defined for any complex number a # 0 by
_Jat@a+1)---(a+n-1), neN,
(@) = { 1, n=0, (1.3)

which, in terms of the well-known Gamma function, (a),, is represented by

_T(a+n)
(@) = T

The three parameters a, b, and care typically rational numbers and examine (1.2) in terms of the
complex variable z. This expression is well defined, provided that ¢ is not a negative integer. Its radius
of convergence is 1, assuming that a and b are not negative integers. If a or b is a negative integer,
then the infinite series becomes a polynomial. Gauss’s hypergeometric function is a solution of the
following second-order linear ordinary differential equation (ODE):

z@—lm”+ﬁa+b+1y—c%huwg:o. (1.4)

Researchers in the fields of classical orthogonal polynomials, special functions, and related
disciplines have undoubtedly relied on foundational results, including linear and quadratic
transformations of (1.2) such as the Gauss identity, the Chu-Vandermonde identity, and the quadratic
transformation formulas for (1.2). These identities and transformation formulas serve as essential tools
for both students and researchers. Their origins trace back to the pioneering work of Gauss [10] and
Kummer [14]. Subsequently, Whipple [19-21] and Bailey [6—8], among others, expanded these results
to include higher-order hypergeometric functions, which have since found broad applications.

However, none of the former researchers have considered isolated and/or non-defined cases,
including, but not limited to, the following:

where 7 is a positive integer and
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where n and a are negative integers, which forms the central focus of this paper.

Hypergeometric function transformations, in which the argument is a free variable, are more
manageable than general identities. One could reasonably hope to enumerate or otherwise characterize
the class, say, of all two-term function transformations. In fact, the two-term transformations related
to the Gauss hypergeometric function ,F;(x) to ,F;(R(x)), where R is a rational map of the Riemann
sphere to itself, are now fully classified. Besides the celebrated transformation of Euler,

2F1(l’:;X):(l—x)n_[_szl(n_l’n_m;X), (1.5)

n

in which R(x) = x, and (1.1), in which R(x) = Ll’ there are transformations of a larger mapping
x —
degree (deg(R) > 1), which were classified by Goursat [11]; for example,

1 1 2
zFl(lz’n”j;x):<1—§>-’zFl( 2 (52 )) (1.6)

2
where R(x) = (%) , see [2,4,5].

Quadratic transf)g)rmations are among the most popular, which were originally worked out by
Gauss [9] and Kummer [14], and were concisely proven by Riemann [17]. Recently, Goursat’s
classification was completed by enumerating the transformations of ,F(x) without a free parameter,
most of which have a quite large degree. Several of the quadratic and cubic transformations of , F;(x)
have analogues on the level ;F,(x) which were discovered by Whipple [19, 20] and Bailey [6-8].
However, no clear analogues have previously been found at levels above ,F;(x) of the remaining
»F1(x) transformations, in particular, the degree-1 transformations of Euler and Pfaff.

Let us go back to (1.1), which was given in [1, p. 68], and [13, Formula 9.131] or [15, Formula 22].
This identity comes as a direct consequence of the Euler integral by replacing ¢ by 1 — s:

a,b \ _ I'(c) lb—l ne=b-1/1 _ _-a
zFl( . ’Z)_—F(b)l“(c—b)fot (1-1 (1 —zt)™“dt, (1.7)

where Re(c) > Re(b) > 0.
The first most striking and intriguing fact in (1.1) is that when we take n = 2m in (1.1), we find the
same values of the parameters / and m in both sides of (1.1):

ZFT(l’m;z)=(1—z)_leT(l’m' : ) (1.8)

2m 2m ' z-1

The second most striking and intriguing fact in the Pfaff transformation is that when we take m = —n,
where n is any positive integer, the left hand side (LHS) of the identity (1.8) is a polynomial in z,

whereas the right hand side (RHS) is a product of two rational fractions a and a polynomial with

Z ~Y
the variable p— for any positive integer u.
7—

This paper aims to solve this situation. In fact, we give a new expression V" (z) depending on [, m,
and z such that
Ibm z l,m
N wf b . — 2 I . (Lm)
(1 Z) ZF]( 2m ’Z—l) ZF]( 2m ’Z)+V (Z)’
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for any positive integer / and for any negative integer m.
Now, let us now recall some preliminaries on the convergence of (1.2). With the ratio test, it is not
difficult to verify the following for the infinite series (1.2):

e it is convergent for all values of z, provided | z |< 1, and divergent when | z |[> 1;

e it is convergent for z = 1, provided Re(c — a — b) > 0, and divergent when Re(c —a — b) < 0;

e it is absolutely convergent for z = —1, provided Re(c — a — b) > 0, convergent but not absolutely
for —1 < Re(c —a — b) <0, and divergent Re(c —a — b) < —1.

We remark that almost all elementary functions of mathematics and mathematical physics are either
special cases or limiting cases of Gauss’s hypergeometric function. For more details on Gauss’s
hypergeometric function, we refer to the standard text of Rainville [18]. The reminder of this paper
is organized as follows: in Section 2, we give the main result together with the boundary conditions.
Section 3, will be devoted to a corollary and an application; in Section 4 we summarize new findings
and future recommendations.

2. Main result

We have explained that the Pfaff transformation

I, IR S
2FT( m;z)=(1—z)le1( m Z)

2m 2m ‘z—1

is NOT true for / and —m positive integers. In the following theorem, we give the right transformation
for this situation, which constitutes our main result.

Theorem 1. Form € {...,—4,-3,-2,-1}, 1 € {1,2,3, ...},

IL,m Z L,m
N * > . — * > . (,m)
(I-2) 2F1( om ’z——l) 2F1( om ,Z)+V (2), (2.1)
where
24 [+ (-1 l L1 (2 \2
() R —— > ( )(2) 1 X oF] % -

1-(-1)'z I+1 (IT-I,m—g_ 2 2)

2 2( 2 )-m 2F ! 2 Ll (2.2)

Remark 2. e The new result V“"(z) presented in this theorem is different from the one given in
[2,3,5]. In fact, the expression given here is the double (two times) of the expression given
therein.

o All the series that will be considered in the sequel are terminating hypergeometric series, (i.e., a
series with finitely many terms) and the variable 7z should not be 0 and 1.

o In the sequel, we take | = u, and m = —n.

e For numerical application, please refer to Appendix 1.
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Proof of Theorem 1. Let us replace m by —n, where n is a positive integer. Let us denote by the
following:

< U,—n
Ql(u,n,Z): 2F1( —2]1 ;Z),

0,2 = (1 -2 zFf( o i)

n z-1
and
I S DA R G V) u p—glu_y (20
Q3(u,n,z) a (Z— 1)“+"F(n+ %) 2 (2_Z)(E)n+l 2F1( % ’(E - 1) )
RS 1 lu _p_uw ()2
(2 ) Z(u+ )n2Fl( 27 ; 2 ;(E—l) )} (2.3)

The following proof does not include the case where u is not a positive integer.
For any positive integer u greater than 2 (u =3,4,5,...), we consider the following relation:

(z—1f(n,u) - ( zf(n—l u)+ f(n,u—2)=0, n>2. 2.4

To complete the proof of Theorem 1, we need the following steps:
Step 1. We prove that Q;(u, n, z), Q»(u, n, z), and Qs(u, n, z) fulfill this relation (2.4).
Step 2. Then, we prove that
@ O1(u,1,2) — O(u, 1,2) — Qs(u, 1, z) = 0, depending on whether u is odd or even,
® 012.n,2) = 0x(2,n,2) = 03(2,n,2) = 0, forn > 1,
G 0:(,n,2) — 0x(1,n,2) — O3(1,n,2) = 0, forn > 1. O

Step 1. Let us begin by proving that Q,(u, n, z) fulfills the relation (2.4). In fact, for n > 2, we have the
following

z—1DOi(u,n,z) — ( P )z 200(u,n—1,2) + O1(u—2,n,2)

n+u-— 12 S u,—n+1 S u—2,-n
= G- 1>2F( 2 ’Z) ETEPR F(—2n+2’z)+2Fl( e ’Z)

y -2, n_ u,—n n+u—-1, _(u-n+1
- “Fl( ) ( ’Z)—zFl( 2 ’Z)wn—_zz ZFI( “n+2 ’Z)

_ (z N (u)l(—n)l z L (o (=n) z R 0 GO/ W A O G O Z’”'l)
n

(=2m); 1! (=2n), 2! 7 (-2n),-1 (n—=D!  (2n),
N (((u —2)1 —()E=m z N ((u = 2)2 = ()2)(—n)2 é - ((u = 2)y = (Wy)(—n), ﬁ)
(—2n); 1! (—2n), 2! (-2n), n!
_ntu- 1 ( 2, (W) (=n+ 1) i + (U)o (—n + 1)2é A Wpi(—n+ 1), 7! )
dn -2 ¢ (-2n+2); 1! (2n+2), 2! (2n+2),.1, (m-D')’

(1) The terms of z' are 1 and— (- 2)(1 2::)1)( 1 ik with sum O.
—Zn))
W= 1 (=1 = @i )M 1

(=2n) kI (=2n)s1 (k+ DY

(2) For 2 < k < n, the terms of z* are and

AIMS Mathematics Volume 10, Issue 9, 20140-20156.
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_I’L+Lt— 1 (W)p—1(—n + 1) 1
dn-2 (2n+2py k-1
(3) The terms of Z,H_l (l’l +u-— 1)(u)n 1(—11 + 1)n 1 (u)n(_n)n

T@n—2)2n+ 22— 1) T n—2n,
Now, we prove that Q»(u, n, z) fulfills the relation (2.4). In fact (2.4) with Q,(u, n, 7) becomes the

following:

with sum 0.

, with sum O.

(z=DQx(u,n,z) - ( )z 20x(u,n = 1,2) + Qo — 2,1, 2)
_ —u u,—-n 2 n+u-1, u u,—n+1
=(z- D -2) 2F1( _on ’Z—l)_ In—2 Z(1-2) zFl( o402 ,z)
w2 u—2,-n 2
+(1 Z) 2F1( - ’—Z—l).

Here, a change of variable ¢ = and a simplification by (1 — )“~2 give the following:

Z_

L u,—n ntu—-1, _(u-n+1 Ju—2,-n
“—UzFl( 2 ”)‘4,1—_2’ ZFI( 2 +2 ’f)+ ZFI( 2 ’f)’
which is exactly (2.4) with Q;(u, n, t).

The last step is to prove that Q;(u, n,z) fulfills the relation (2.4). We share Qs3(u,n,z) into two
quantities, depending on whether « is even or odd, as follows:

2VE - I (1t (2 )2)
(z = 1)**"I(n + 3) ’ ’

~ \/_(g)u+2n—l 7z u+1 l_u,—l’l—ﬂ . o) 2
QOxn(u,n,z) = - ( —1)“+”F(n+2)2( > )nZFl( 202 ,(——1) )

We prove the result for O3, and follow the same steps for the proof of Q3.
Let us prove that Qs;(u, n, z) fulfills the relation (2.4). In fact, (2.4) with Qs;(u, n, z) becomes the
following:

Q3l(ua n, Z) =

and

1

(z= 1)Q3i(u,n,2) = (”‘ 0 2Qs1(u,n = 1,2) + Q31 (u = 2,1,2)

ﬁ(z)wzn 12 —Z)fg)nu 2F1( 1- 52‘,1;2“ -n ;(2 )2)
(z = 1" T(n+3) 3

Cntu—1 2VA) R -9 145y _(2 )2

20n—1)°  (z- )T - 1) oF 1( ’ )

=z-1)

2\/_( )32 = (B -4 _p (2 2
2F1( 2 32 S 1 )
I'(n+ 2) 5 Z
4Nr($),(5) 32 - 2)
If we take the common factor 272 away, we obtain the following:
r(% + 1)(Z _ 1)n+u—1) y g
n+u-1
(z- D051u,n,2) - =———7" 03 (u,n— 1,2) + Q31 (u — 2,1, 2)
22n-1)
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2n + u)z? 1 -4,
BTSN

The change of variable z = ﬁ, (as we are considering only real cases and terminating hypergeometric
series we assume ¢ > (), and some simplifications lead to the following:

2n+u -4, Lu_p 2(n+u-1 -4 3u_p -4 u_p
2 2 2
_ (2n+u)(1 . (1-5H0-n) 7 . (1-5H2-HEE-mEE —n) 7 .
ou-2 3 1! 33 21
2 252
(I =9so(5E —n)uy 452 (I=9u (5 —n)uy 5! )
Dz 53— (D) (G- D!
_(2n+2u+2)(1+ (1 —§)(3%"—71)£+ 1-5H2-3 (tf—n)(%—n)ﬁJr
u—2 3 1! 3%5 21
2 2x2
. (1 -5 035 —n)uy 4372 N (1-9u (5 -y 451 )
()5 5-2) Dy 45— D!
+(1 . 2- %)(%—n)i . 2-9HB-HE -G -ne .
3 1! 355 2!
2 252
s QC-5us(Ft—nus 153 N (1 -5 o(F =y 4572 )
(3)s3 5= (3)12 3~ 2)!
{4 2-3 (%—H)ﬁJr (2—5)(3—5)(3%—1’1)(5%"—”)ﬁ+
3 T s 21
.\ C-5us(G—mus 152 (1= —n)u,y 37! )
()53 53! s £-2)!

where u is an odd positive integer. In the aforementioned expression, we have the following:

e the terms with 7° are (E‘utzz';) ,— (2”(;3;)2 " and 1, with sum 0;
e the sum of terms with X, and 1 < k < 5 — 21is given by

2n +u) (1 = (5 — n) _QCn+2u+2)(1 - O —n)
u—2 (%)kk'

(2 = Hu(E4 - n) _ (2= 91 (B = )y _o

(3)ek! (r (k= 1!

b

e the sum of terms with #>~! is given by

Cntu) 1= 1(F =t Qn+2u+2) 1=5)s 1 CF =g 2=5so(F-m)ss
u—2 (3)s-1(4-1)! (3)1-2(4-)! '

3
u-2 (5)e-1(e-p)!
Volume 10, Issue 9, 20140-20156.
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Remark 3. We follow the same steps to prove that Q3 (u, n, z) fulfills the relation (2.4) when u is an
odd positive integer.

Step 2. We need to prove the following:
O 01w, 1,2) — O2(u, 1,z) — O3(u, 1,z) = 0, for u is odd or even;
O 012,n,2) — 02(2,n,2) — 03(2,n,z) =0 forn > 1;
O 01(1,n,2) — 02(1,n,2) — O3(1,n,z) = 0 forn > 1.
Let us prove the first one, i.e.,

O 01(1,n,2) = Ox(1,n,2) — Q3(1,n,z) =0 forn > 1.

Lemma 1. For u = 1 and for any n > 1, we have the following interesting result:

~ 1’ -n z 1 -n (_n)n Z2n+]
_ 1 * . _ * ’ . —
(1 Z) 2F1 ( on —Z — 1) 2F1 ( o ,Z) (_2n)n (Z — 1)n+1 . (25)

Proof of Lemma 1. To prove

_ l,-n z 1,-n (-n), z"*!
1= 1 F* s : _ F* ’ : — ,
(=27 F, ( -2n z7- 1) 271 ( -2n Z) (=2n), (z — 1)r*!

it is equivalent to prove

72 = —(_2n)"((z— 1" zFT( 1_2_,,7 ;L) +(z - )", F ( 1,—n ;z)).

(_n)n z—1 -2n
Expanding both , F| above we should prove that (see [12] for the inverse summation)
2n+1 _ _ 1+l C n+k n—k n n+k n—kc, _ 1\k >
27 == 1) kzz(;( r )z +kZ:(;( i )z z-1" n>0, (2.6)

which can be done by induction.
For n = 0, we have the following:
=(-1D+1.

We suppose the property fulfilled for n and we prove that it is true for n + 1.

Let us start from z?z>**!, which can be written as (z(z -1+ z)zz"“, where

3 (z(z N +z)((z 1y Zn:( n ;{— k )Zn—k N Zn:( n _/: k )Zn—k(z B 1)k)

k=0 k=0
C k C k k
:(Z _ 1)n+2 Z ( n -l: )Zn+l—k + (Z _ 1)n+l Z ( n+ ) n+1 k Z( n+ ) n+l—k(Z _ 1)k+1
k=0 k=0 k=0

S n+k _
+;( ' )Zn+1 k(Z—l)k

_ ne2 _n+l ne2 S n+k nil—k | _n+l S n+k n+l—k k
=(z-D"Z"" +(@z-1) Z( I )z +7 +Z( L )z z-1

k=1 k=1

_1\n+l n n+k n+1-k n n+k n+l-=ke_ — 1yk+1
+ (-1 Z( i )z +k_( L )z (z — D,

k=0 =0

AIMS Mathematics Volume 10, Issue 9, 20140-20156.
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Using

we obtain

2n+3 _ ¢, 1\n+2 n+l _1\nt2 " n+k+1 _ n+k n+1-k n+1
7 == D"+ (- D) Z(( K ) (k—l z +z

k=1
S ([ n+k+1 R ik, g 1yt Stk i
B S
k=1 k=0
n ( n-;{-k )Zn+1—k(z_ 1y
k=0
—( _ 1\n*2 ” n+k+1 n+l-k _ _1\nt+2 ” n+k n+1-k
=@z 1) Z( L )z (2= 1) Z(k_l 2
k=0 k=1
- +k+1 - +k
+ Z( n ) )Zn+1—k(Z _ 1)k _ Z( Z_ | )Zn+1—k(Z _ l)k
k=0 =1
+ (- 1y Z( n-}l{-k )Zn+l—k+Z( n-]:k )Zn+]—k(z_ 1y,
=0 k=0

When we add the (n + 1) term in the first and third summations, we obtain the following:

n+1
+k+1 2n+?2
Z2n+3 =(z - 1)n+2 Z ( n ) )Zn+1—k —(z- 1)n+2( n )

n+1
k=0

S n+k S n+k+1 2n+2
_ _1\n+2 n+1-k n+l-ke_ _ 1\k _ _1yn+l
e Bt e B e (07 e

k=1
( n -;c_ k )Zn+l—k(Z _ 1)k+1.

_ u n+k ntl—ko, 1Nk 1yt - n+k n+1-k C
Z(k_l)z =D -y [T ) P

k=1 k=0 =0

The last step is to prove that

_(Z—l)n+2( 2”:2 )_(Z_l)n+22( Zi_llc )Zn+1—k_( 2n+2 )(Z_l)n+1

n+1 n+1
k=1
_ i n+ k n+1,k( _ 1)k + ( _ 1)n+1 i n+ k n+1-k + i n+ k n+17k( _ 1)k+l _ O
k-1 Z Z Z k Z k Z Z = VU.
k=1 =0 k=0
Using
ne2 o n+k nil—k n+l O n+k nl—k
Rl VA O IR S R Vol B B
k=2 k=1
n+l S n+k n+2—k nt1 S n+k n+l—k n+l O n+k n+l—k
SR VAR S I SR GRS Vi O I EA R O Vi B IR
k=2 =2 k=1
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n—1

n n—1
n+lZ(n+k+1 ) n+l—k+(Z_1)n+lZ(Zill()zn+l—k+(z_1)n+l (n-;;

k=1 k=2 k=1
n—1

( 1)n+l n +Z(Z _ 1)n+l( nz_nl ),

and

S n+k ) Nk S nAk ) vk gl 2nt 1
Z( i )z R AR S I G R VAEE/CE Vi It I

k=0 k=1
we get the desired result (for more information, see the Appendix 2).

Another interesting case is when u = 2.

Lemma 2. For u =2 and for any n > 1, we have the following result:

2on 2\ pf2en ) (nm D=2
-2n “z-1 22 o ) T (=2n), (z—1)m2°

(1-272 zFT(

which is equivalent to

Nk+1(2n-k SNk+1(2n—k
2n+1 _ — _ n+2 n—k _ ke, _ n—k
7= =@E-1 Zn+l(n—k )Z Zn+l(n—k )Z(Z D™

k=0 k=0

Now, let us prove the following:
@ Oi1(u,1,2) — Os(u, 1,2) — O3(u, 1,z) = 0, for any odd number u (i.e., u = 1,3,5,...); and
O 0i(u,1,2) — 02(u, 1,2) — O3(u, 1,7) = 0, for any even number u (i.e., u = 1,3,5, ...).

Lemma 3. For n = 1, and for any odd number u > 1, we have the following interesting result:

u+l 1-u u 2
z SL-1-4 (2 1(u+2)z— uz + 2
) A1 F(Z’ 2;——1): - .
Z(2(Z— 1)) (Dot 3 (z ) 2 (z— D+ 2
For n = 1, and for any even number u > 2, we have the following interesting result:
u+l —1- 2
L1-4 (2 1(u+2)z— uz+2
- 2),F 2 2 =-1 ): - .
@ Z)(z( 1)) u(u +2)2 1( ! (z ) 2 (z- D! 2

If we put % —1=tand, t # —1,where p €N, then the two equations above become

e ( -p,-p-3 -zz) Qp+2-0(t+ 1?2+ 2p+2+1)(t — 1)*P*2
2471 1 ) =

> 4p + 4 ’

and

Cpmp=2 N\ Qp+3+0(— 1P+ Qp+3 -+ 1)
tzFl( 3 2 ;[):

> 8(p+ D(p+2)

when u =2p + 1 and u = 2p + 3 respectively.

k)Zn+l—k
+1 n+k+1 n+k n+k ]k wil [ n 2n
ot (T R et e e 2)

2.7)

(2.8)
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Proof of Lemma 3. The proof of this Lemma can be derived from the following known hypergeometric
identities:

e some properties of Jacobi polynomials with negative parameters depending on the degree of the

polynomials,
. _(a+ ), -n,n+a+p+1 1-x\
JacobiP(n,a, B, x) = 0 2F1( o+l ' ), (2.9)
o the three term recurrence relation fulfilled by Jacobi polynomials
2(n+ a + 1)JacobiP(n,a, B, x) — 2(n + 1)JacobiP(n + 1, a, 3, x)
=2n+a+pL+2)(1—-x)JacobiP(n,a + 1,8, x); and
e the identities [16, 15.4.7 and 15.4.9],
1 1L+ + (1 —1)2
zFl(aa+ ;tz):( ) ( ) ,
3 2
= 1 tl—2a_ 1_t1—2(1
(@t ) (i
5 2(1 - 2a)t
O

Summary 1.

e We have proven that Q1(u, n, z), Q»(u, n, z), and Qs(u, n, z) fulfill the relation (2.4):

(z—1f(n,u) - ( zf(n—lu)+f(nu—2) 0, n>2.
e From the two corollaries (i.e., the boundary conditions), if we have f(n,1), n > 2, then we get
f(n,3), n > 2, with the only value of f(1,3).
e If we have f(n,3), n > 2, then we get f(n,5), n > 2, with the only value of f(1,5) etc...
o If we have f(n,2), n > 2, then we get f(n,4), n > 2, with the only value of f(1,4).
o If we have f(n,4), n > 2, then we get f(n,6), n > 2, with the only value of f(1,6) etc...
This procedure generates all the terms f(n, u), n,u > 1.

Remark 4. Gauss stated the following result on hypergeometric series:

c—a-b>0.

a,b \ _ T('(c—a-b)
ZFI( ’1)‘r(c—a)r(c—b)’

When t = +1, the result of Lemma 3 coincides with Gauss’s result. In fact, for t = 1, we have

—p—p-3 2p+1
S O %Q=fﬁﬁ—3, (2.10)
p+1

2

and

3 22p+1
; 1) =

=+ . 2.11
ST 11
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3. Corollary and application

The first corollary comes from the change of variable z — Ll
7—

Corollary 1. We have the following equality:

Ox(u,n,2) = (1 — 201 (u n, ——),

z—1

01, n,2) = (1 — 2" Qs m, Z_ilx
O3, n,2) = —(1 — 2™ Q3. m,

Z
7- 1)'
Proof. In fact, we have the same expressions for the parameters in Q; and Q, but with different
variables, i.e.,

L u,—n
O1(u,n,z) = 2F1( o ;z),
I TR
QZ(usn’Z)_(l_Z) 2F1( _2n 92_1)5

which become

Z « U,—N Z
Ql(u’n7z__1): 2F1( ; )’

—2n "z7-1
z P
Outun 5= =2 50 )

Finally, .
Qs(u,n, Z—_l) =—(- Z)"QS(M, n,z)

can be easily checked. If we denote by 7'(z) = Ll then 7' is a Mobius transformation such that
Z —_—
ToT =id. m]

4. Conclusions
The Pfaff transformation

. ab w [ ac—=b x
2F1( c ;x):(l_x) 2F1( 5 )

c x—1

is not true for ¢ = 2b and the negative integer b. In this paper, a new expression V“?(x), depending on
a, b, and x was given, in this paper so that

ZFT( Cl,b ,X) :(1 _x)—a 2Fb]k( a,b . X )+V(a,b)(Z)

2b 2b T x-1

becomes true for every positive integer a and for every negative integer b.
We are sure that this new result can be widely applied, especially in number theory. Moreover, we
can state the following two open problems:
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e With the expression V@b (x), depending on a, b, and x, we believe that

1 )
for p, m positives integers; and

o If we take a positive integer and b, ¢ negative integers such that ¢ < b < 0 in the general Pfaff
transformation can be written as

.| ab v [ ac—=b x
2F1'( . ;X)=(1—X) 2F1( ; ),

c x—1

then the above transformation does not hold. For example, if we take a = 1, b = —1, and ¢ = -3,
the left-hand side is a polynomial of degree 2, whereas the right-hand side is a rational fraction
with a pole of multiplicity 2. Is it possible to explicitly give the expression V@?)(x) such that

« Cl,b —a * Cl,C—b X a,b,c
zFl( . ;x)=<1—x> zFl( . ;x_1)+v<’b’>(x>

holds for any a positive integer and b, ¢ negative integers such that ¢ < b < 0.
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Appendix 1.

In this appendix, we write the expressions of Q1, 02, and Q3 (this latter is split into two expressions
depending on the parity of u) given in the proof of Theorem 1 and the reader can be assured by the
correctness of our result.
> restart;
> Q1 := (u,n,z)— > hypergeom([u, —n], [-2 * n], 2);
> 02 := (u,n,z)— > (1 — ) % hypergeom([u, —n), [-2 * n], z/(z — 1));
> 031 := (u,n,2)— > 2% ((1/2) )™ Dy (z = )" W% (2 -2) %
xpochhammer((1/2) * u,n + 1) * hypergeom([1 — (1/2) xu, 1/2 —n — (1/2) * u],

[3/2], (2 — 2)*/2)/GAMMA(n + 1/2);

> 032 := (u,n,2)— > =2 % ((1/2) % )2 % (z = )" % \n

s« pochhammer((1/2) = u + 1/2,n) * hypergeom([—n — (1/2) s« u, 1/2 — (1/2) * u],
[1/2],(2 = 2)*/2%)/GAMMA(n + 1/2);

> factor(simplify(Q2(1,1,z) — Q1(1,1,z) — 032(1, 1, 2)));

> factor(simplify(Q2(2,1,z) — Q1(2,1,z2) — 031(2, 1, 2))).

Appendix 2.

In this appendix we provide the expressions given in page 12 and the reader can be assured by the
correctness of our result.
> restart;
> EXPRESSIONI := n— —(z— 1)"*?xbinomial 2+n+2, n+1)—(z— )"« (sum(binomial(n+k, k—1)*
2170 k= 1..n))—(z= 1) " Vxbinomial 2+n+2, n+1)—(sum(binomial(n+k, k—1)*(z—1)F 710k =
1..n)) + (z = DYDY « (sum(binomial(n + k, k) * 2"'7P k = 0..n)) + sum(binomial(n + k, k) = (z — 1)**D %
710 k= 0..n);
> factor(simplify(EXPRESSION1(3))); (This compilation will give 0)
> restart;
> EXPRESSION?2 :=n— —(z — D™V % z % binomial2 * n + 1,n + 1) — (sum(binomial(n + k,k — 1) *
(z = DF s 210k = 1..n)) + sum(binomial(n + k, k) = (z — DD % 704170k = 0..n);
> factor(simplify(EXPRESSION2(5))); (This compilation will give 0).
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