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Abstract: In this paper, we addressed the issue of maintaining a desirable level of performance in
the presence of actuator faults and deception attacks in nonlinear multi-agent systems (MASs). These
problems are critical for the stability and coordination of MASs that are increasingly used in robotics,
autonomous vehicles, and industrial automation. Our aim was to design control strategies that, in the
presence of these challenges, guarantee practical finite-time stability and robust tracking performance.
To accomplish this, a distributed adaptive fuzzy control scheme based on backstepping was developed.
Fuzzy logic systems were utilized to capture the complex system’s unknown nonlinearities, while
adaptive laws were designed to estimate and mitigate actuator gain and bias faults. A Nussbaum-
type function was introduced to address unknown control directions resulting from deception attacks.
Stability was verified by the Lyapunov theory. The suggested approach ensured that it was a finite-
time stable method, and every signal in the closed loop was found to be semi-globally uniformly
eventually bounded. Our control strategy, compared to published approaches, improved convergence
time by approximately 38% and tracking accuracy of approximately 35% under the same conditions
of simultaneous actuator faults and deception attacks.
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1. Introduction

In control theory, multi-agent systems (MASs) have emerged as a major area of interest because
they provide a means of modeling the distributed, coordinated behavior of multiple autonomous
agents. Such systems are used extensively in the domains of autonomous vehicles, smart grids,
industrial automation, and aerospace systems. Nonetheless, there are challenges with most of the
real-life applications of MASs because of diverse real-life problems such as nonlinear dynamics,
actuator failure, external disturbances, cyber-attacks, and communications limitations.

Actuator faults are quite common and some of the worst issues that directly impact system
reliability. In response to this, some fault-tolerant control (FTC) strategies have come up. As an
instance, Sun et al. [1] introduced an adaptive consensus under which they addressed the actuator
faults and output limits in nonlinear MASs. The authors produced a predefined-time controller to be
used in the domain of aerospace, which can overcome the actuator fault and rate gyro failure in
heavy-lift launch vehicles [2]. Zhao and Yang [3] presented the adaptive FTC mechanism, robust to
Denial-of-Service (DoS) attacks that have become an emerging menace on the internet, especially the
cyber-physical systems. It has also been found that fault detection with the help of signal analysis [4],
can be effectively employed in early diagnosis in the industrial sphere.

The scope of intelligent control techniques has increased, and strategies that deal with fault
situations have been implemented as Al-based. A survey presented by Jiang et al. [5] entailed
data-driven methods of fault handling in industrial systems, including generative Al and foundation
models. Furthermore, to enhance the efficiency in communication of MASs, a new scheme of the
double event-triggered control under actuator faults was established by Luo and Ye [6]. High-end
Gaussian model approaches have been suggested for risk-conscious motion planning in the intelligent
transport systems [7] and automatic tracking systems [8], have enhanced industrial task-based
performance.  Another field of application of fuzzy finite-time regulators is presented by
Ding et al. [9], who developed the fuzzy finite-time controller of heavy trucks to maintain the lane and
prevent the vehicle from rolling.

Fuzzy control is useful when it comes to the development of uncertain nonlinear systems. Wu and
Tong [10] proposed a fuzzy adaptive controller that can control periodic actuator faults of MASs.
Related concepts were generalized to actuator-hysteretic systems through pseudoinverse control [11],
and Lurie-type systems had their sampled-data-based stability framework introduced [12]. Due to
combined failures of sensors and actuators, Ye et al. [13] used a matrix-pencil-based event-triggered
controller to deal with them. Application to prediction and diagnostics, Wavelet-guided neural
networks [14], and adaptive sliding mode control [15] have also been applied. Type-3 fuzzy logic
control strategies have been applied to offshore systems (e.g., wind turbines) [16], and actor-critic
reinforcement learning improved the performance of electro-hydrostatic actuators [17]. In their work,
Ye et al. [18] introduced decentralized approaches in prescribed-time control in large-scale systems,
and Wang et al. [19] addressed sampled-data output feedback design of aperiodic systems. The idea
behind collaborative robots suggested robust constraint-following control schemes, which were
experimentally proven in [20]. In systems having a hybrid actuator fault, Zhang et al. [21] proposed
finite-time cooperative fault-tolerant control. Moreover, multi-objective fuzzy optimization has been
applied in complex aviation scheduling [22].

Real-time diagnostics in mechanical systems [23] are also developed based on a digital twin.
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The classical fault-tolerant control procedures continue to be significant (the classic study was by Li
and Wang [24]), and the prescribed performance control using fuzzy-based controls has been applied
to the robotic manipulators [25]. Deng and Yang [26] investigated adaptive fault-tolerant control of
MAS:s in the nonlinear dynamics case and with multiple failures of the actuators. There has been the
emergence of unsupervised methods of deep learning, like fault diagnosis based on transfer learning
and transformers [27]. Further, unknown control directions and actuator failure, event-triggered
control, and advanced signal processing have enhanced the identification of rotating machinery
faults [28,29]. Faults in PMSM systems have been improved by lightweight fusion models [30], and
adaptive fuzzy cooperative control has been implemented on uncertain nonlinear MASs with actuator
faults [31].

The security issue has necessitated the study of resilient control algorithms in deception and DoS
attacks. Bai et al. [32] created a finite-time fuzzy secure control protocol of MASs against deception
attacks. Lin and Qian [33] extended the adaptive control theory to the nonlinearly parameterized
systems. Researchers looking at prescribed-time control, [34] and [35], focus on achieving state
convergence within a predefined, fixed time regardless of initial conditions. In contrast, the finite-time
control approach used in this paper ensures that system states converge in finite time, but the settling
time depends on initial conditions and system parameters. Although our method does not enforce a
fixed upper bound on convergence time, it achieves practical finite-time stability and is well-suited for
nonlinear multi-agent systems affected by actuator faults and deception attacks. Ye et al. [30]
introduced higher-order prescribed-time and exponential stabilization algorithms to a system that
works on interconnected systems, even in the case of unknown control gains. Additionally, united
fault diagnosis methods were used in battery energy storage systems [37], and Zhou and Tong [38]
introduced a fuzzy adaptive resilient formation control strategy toward MASs in the event of DoS
attacks, where the best fuzzy approximation and attack-resilient logic were together. Most of the
available methods either consider perfected communication channels or ignore the combined impact
of actuator malfunctions, fuzzy uncertainty, and DoS attacks. Moreover, in these extreme mixed
conditions, most designs do not offer finite-time performance guarantees.

In research, the adaptive fault-tolerant controllers have been addressed in nuclear energy systems
with a view to enhancing robustness and accuracy of tracking performance in cases of actuator and
sensor faults. In order to manage control rod drive mechanism (CRDM) faults, Hui and Yuan [39]
developed the adaptive fault-tolerant controller of a modular high-temperature gas-cooled
reactor (MHTGR) that includes prescribed performance functions that form part of a neural network.
It was based on this development that Hui et al. [40] came up with an adaptive active fault-tolerant
control strategy through dynamic surface control that can achieve effective load-following behavior
even with the occurrence of both matched and unmatched faults. Further on, a finite-time
super-twisting sliding mode control with an extended state observer was used in [41] to control a load
follower of a pressurized water reactor (PWR) that achieves faster convergence and fault-resistant
control. These studies motivate the creation of frameworks of resilient control schemes in nonlinear
multi-agent systems with actuator faults and deception attacks.

The proposed framework is an adaptive fuzzy finite-time control strategy that simultaneously
addresses actuator faults and deception in Figure 1.
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Figure 1. Framework of paper.

The primary contributions of this activity are that the main results formulated are exclusive to
current studies and original, not only on the theoretical level but also regarding their application:

e Unlike most researchers who handle either actuator faults (e.g., [10, 24]) or deception attacks
(e.g., [3,38]) in isolation, we propose a distributed adaptive fuzzy finite-time control framework
capable of simultaneously handling both actuator faults (gain and bias) and deception attacks in
nonlinear MASs.

e To tackle the challenges of unknown control directions introduced by deception attacks, we
employ a Nussbaum-type function, a technique not fully exploited in similar works
(e.g., [28, 32]). This design significantly enhances robustness without relying on prior
knowledge of attack parameters.

e Our adaptive laws separately estimate actuator gain and bias faults, improving upon prior
works [10, 26] that use aggregate or partial compensation. This detailed modeling results in
more accurate control compensation and enhanced resilience.

e In contrast to many studies that guarantee asymptotic convergence [1, 6, 24]), we prove finite-
time convergence of tracking errors using Lyapunov-based techniques with hybrid uncertainties,
ensuring semi-global uniform ultimate boundedness (SGUUB).

e We validate the proposed method through simulation of a nonlinear MAS with time-varying
actuator faults and deception attacks, demonstrating faster convergence and better tracking
accuracy than conventional approaches.

This paper is organized in the following way: In Section 2, we define the problem and provide
preliminaries, which are system modeling, network topology, and fuzzy approximation. Section 3
builds up the proposed adaptive fuzzy finite-time secure design of actuator faults and deception attacks
control. Section 4 identifies which system is stable, that is, the closed-loop system, based on the
Lyapunov theory. Section 5 contains our simulation results to prove the usefulness and benefits of the
proposed method. Lastly, Section 6 is the conclusion of the paper and the description of the potential
future research directions. Table 1 shows the nomenclature used throughout this paper.
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Table 1. Nomenclature.

Symbol Description Unit

X; State of the i-th follower agent Depends on system (e.g., m, m/s)
Xo State of the leader agent Same as x;

u;(1) Control input for agent i N or N-m

ulf ) Faulty control input under actuator fault Same as u;

pi(xi, m;) Actuator gain fault function Dimensionless

(1) Actuator bias fault Same as u;

v,.(2) Reference signal Depends on system (e.g., m or rad)
S Upper limit of integration in Nussbaum function Dimensionless (s, if integrating over time)
e(t) Tracking error Same as x;

Y(s) Nussbaum-type function Dimensionless

K; Internal variable in Nussbaum function Dimensionless

6;(x;) Unknown smooth nonlinear function Depends on x;

0; Estimated nonlinear function Same as 6;

i(x;) Gaussian membership function Dimensionless

Wi Fuzzy rule weight Dimensionless

Vik Adaptive gain parameter Dimensionless or variable-specific
si(1) Sliding surface for agent i Same as x;

Vi Lyapunov candidate function J (Joules) or dimensionless

a;, A;, ¢, 0j, Vi
Xi

Design constants
Auxiliary tracking error

Dimensionless
Same as x;

Ep(t) DoS attack active time intervals s (seconds)
Ey(0) Normal communication intervals s (seconds)
t, T Time, DoS attack duration s (seconds)

2. Problem formulation and preliminaries

2.1. System descriptions

Suppose M followers exist, labeled as agents 1 to M, and a leader. The dynamic models of M

followers are considered as

Xik = Xigs1 + x(D0;1(xi ),
xi,m; = ulf + {i,m;(t)gi,m,'(-xi,mi),

Yi = Xi1,

k=1,...,m,~—1,

where x;; represents the state variable of follower i at level k, x;;,; is the next stage in the system
dynamics, ;4(f) is a time-varying uncertainty introducing external disturbances,#, x(x;) is a nonlinear
smooth function, u{ is the faulty control input, affected by actuator fault, and y; = x;; is the output
equation defining the system’s measured output.

Deception attacks corrupt the system, states, and control inputs. The state under attack is given by

X = Tt xix + Xige (2.2)

where I';(7) denotes the deception signal, which captures the effect of external cyber-attacks that tamper
with sensor data or communication signals. It corrupts the transmitted information without affecting
the physical actuator directly.
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The attack-modified state is rewritten as

Xt = g,
where g; = I;(¢) + 1.
The control input under attack is described as

U™ = d(nyu; + Q(Xim,), (2.3)

1

where d(f) denotes an unknown and time-varying function that introduces distortion into the control
input, whereas Q(x;,,,) represents an unknown yet bounded function.

Actuators may fail due to bias and gain faults, which are the two most common types of actuator
faults that commonly occur in practice, expressed as [31]

ul (1) = pi(Xi i) + £i(0), (2.4)

where u; is the intended control input designed for system stability, p;(x;,,) represents the actuator
gain fault, satisfying 0 < p;(x;,,,) < 1, and {;(¢) represents the actuator bias fault, which introduces an
external disturbance. These faults directly affect the actuator output and are independent of network
transmission. Our actuator fault model is nonlinear and state-dependent, using p;(x;, f) and {;(¢), and our
approach is agent-wise and decentralized, making it more suitable for distributed multi-agent systems.

Considering deception attacks and actuator faults, the compromised MASs (2.1) dynamics are
rewritten as

Xik = Xigr1 + &8 Xip + &ilix(DOp(xip), k=1,...,m;—1,
Kim = id(O(oit; + &) + 8i&F Ximy + 8ilimy(DO:m;(Xim;) + 8:O(Xim,), (2.5)

Vi = Xi1.

Assumption 2.1. The faulty actuator dynamics can be written as

2i(1) = gi(0) (1 + Ag (1)) + Ay (1), (2.6)

where A, (t) denotes a time-varying gain fault, while A, (t) corresponds to a time-varying bias fault.
As a result, the control input Ti(f) is influenced by a non-zero gain distortion 3(t), which satisfies

0 < |&®| < &, with g: representing an upper bound reflecting the extent of the actuator fault. It
&i(0)
IEC
not rise too_quickly. The adjustment to the output gain d(t) is assumed to be in a known interval,
é < d(f) < d, due to the fault. To keep things concise, we call the bounded gain distortion cigl. for the

rest of the paper.

is also ensured that the rate of gain change is bounded by ‘ ‘ < g?, making sure that the gain does

Lemma 2.1. For a continuous function Y(u,v) € R, there exist positive functions u(u) > 0 and v(v) > 0
such that

1Y (u, v)| < u@v(v). 2.7

In the presence of an actuator fault, modeled by a time-varying gain deviation A4 (t) and a bias
disturbance Ay, (1), the affected function is expressed as

P, v,1) = Y, V)1 + Ag (D) + Ay (1), 2.8)
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Accordingly, under such actuator faults, the following inequality holds:
¥, v, D] < p)v@)(1 + Ag (1) + 1A, (D). (2.9)

Definition 2.1. [33] Consider a continuous function W(s) : R — R that satisfies the following
conditions:

1 S
lim sup(— f P(n) dn) = too, (2.10)
S —o0 S b

1 S
lhnhﬁ(—v[ Tﬁﬂdn):—am 2.11)
S —>o0 S b

It is important to note that although the Nussbaum function is commonly used to handle unknown
control directions, its effectiveness depends on the assumption that the control gain does not cross or
reach zero. In this work, we do not assume that the actuator gain becomes zero. Instead, we assume
that the gain affected by faults or deception attacks remains strictly positive but unknown, i.e., it lies
within a known positive interval. Therefore, while attacks or faults may alter the magnitude or the
sign of the control input, they do not make the gain vanish. This ensures that the use of the Nussbaum
function remains valid in our control design.

Definition 2.2. The smooth saturation function is defined as
Si
1+ s’

sat(s;) = (2.12)

It is differentiable everywhere, continuous, and bounded, meaning that it can be implemented in
real-world practical control functions. It makes sure that the control input is smooth and not of the
chattering nature that characterizes the discontinuous sign(s) function.

Lemma 2.2. Consider the nonlinear system affected by actuator faults:

A7) = h(z(1) + k(z(D) [n(D)v(T) + £(T)] (2.13)

where h(z) is a smooth nonlinear function representing the nominal system dynamics, k(z) is the control
input gain matrix, n(x) € (0, 1] denotes the unknown control effectiveness due to gain faults, and &(t)
represents a bounded bias fault with ||£(t)|| < &°. Consider there exists a continuously differentiable,
positive definite Lyapunov function V(z) : R™ — Ry, such that its derivative along the system satisfies

V) + a1 V@) + V() +A <0, (2.14)

where @y > 0, @ > 0, A > 0,0 < r < 1, and 0 < u < 1. Hence, the system is considered
to exhibit practical finite-time stability, where its trajectories ultimately enter and remain within a
bounded region specified as

. . A A ’
}LIR V(x(r)) < mln{(1 =y ((1 —,U)a’z) } (2.15)

Furthermore, the finite settling time T is bounded by
VI=r(T, 1 Vi=r(T
ln('ual ( o)+6¥2)’ To + ln(a'l ( 0)+ﬂa2)}, (2.16)
pai(l =r) @ ai(l1-r) Has

where T is the initial time and V(1) is the initial value of the Lyapunov function.

T, Smax{T0+
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Lemma 2.3. [33] Leta,BeR, 0<y <1, and?d € [0, 1]. Assume that the control input applied to the
actuator is affected by an additive fault term ¢(t). Under these assumptions, the following inequalities

are satisfied:
lo” =B < 2! = BP, (2.17)

la + B° < lal’ +|B1°. (2.18)

Suppose the actual input to the system is given by

V() = v(t) + ¢(2). (2.19)

Then, for any continuously differentiable Lyapunov function W(z), the time derivative along the
system trajectories satisfies the following inequality:

W(z) < VW(2) gz, v(0) + IVW (@)l - [(2)]. (2.20)

Lemma 2.4. [33] Let a,b,0 > 0 be given positive constants. For any real variables y,y € R with
actuator fault, the following inequality holds:

0 b(1
G et 4 ¥|w|“+b) GO 221)

-6
a+b a+b

e’ < (1 +p,-(xi,mi))(

2.2. Network topology

Consider a directed graph G = (H, D) representing the communication topology in the MAS, where
H={1,2,...,N,N +1,..., M} is the set of all agents, with the first N nodes representing followers,
and the remaining M — N nodes representing leaders, and D C H X H is the edge set. A directed edge
(u, k) € D means that agent k can receive messages from agent u. Followers are connected in a closed
ring such that each follower i communicates with its neighbor i + 1 mod N, ensuring redundancy.
Each leader is directly connected to a subset of followers, forming a star structure where leaders act as
control reference sources, shown in Figure 2.

o
% o

Figure 2. Network topology.
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The adjacency matrix A = [a,] € R** is defined as:
Let b,, > 0 if the pair (v, u) belongs to the set D, and b,, = 0 otherwise. The Laplacian matrix can
be expressed as

M
L=D-8, D-=diagd,....dy), di= Z bi;. (2.22)
j=1

J#i

Next, we define the Laplacian matrix £ in block form, which can be written as

r=|boae Ty =Ly ] (2.23)

B 0(M—N)><N 0(M—N)><(M—N)

where chcle represents the cyclic communication topology among follower nodes, L characterizes the
influence from leader nodes to followers. The bottom blocks are zero matrices, reflecting that leader
nodes do not receive information from others.

2.3. Fuzzy approximation model (FAM)

Since the non-linear functions in system (2.5) are not explicitly known, fuzzy approximation models
are utilized to approximate them. The rule base is constructed using fuzzy IF-THEN rules, which take
the following form:

R; ey is I, is Th,... 1, is T4, then y is P (2.24)

m?

In this forrnl_llation, t = (t1,...,t,)" and y denote the input and output of the FAM, respectively. The
fuzzy sets 77 and P/ are defined by their corresponding membership functions 7,,(¢;) and np;(y), where
i=1,...,m. l
The system receives its actual control input 1/ (¢) through the combination of an actuator fault signal
with the original input.
w! (1) = (1 = 8(e)u(), (2.25)

where u(?) is the designed control input and 6(¢) € [0, 1] represents the unknown time-varying fault
signal. When 6(¢) = 0, the actuator is fully functional; when 6(¢) = 1, a complete loss of actuator
effectiveness occurs. The fuzzy approximation model (FAM) with an actuator fault is written as

S i w,©
y(t, u) = 6,(u) ’;y# (2.26)
j=1 WO
where fuzzy basis functions are expressed as
® Hri(4)
wi) = —= (2.27)

Z Q@)
i=1

where ¢ = (11,0, ...,1,)" is the input vector to the fuzzy logic system (FLS), y,; is the representative
output for rule j, uzi (¢;) is the membership function for the i-th input corresponding to rule j, and 6,(u)
is the actuator fault factor. When 0,(u) = 1, the actuator is fault-free; deviations from 1 indicate the
presence and level of fault (e.g., 6,(#) < 1 may indicate actuator degradation).
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Lemma 2.5. [33] For any continuous function ¢(v) defined over a compact domain D, and for any
given positive scalar 8, there exists a fuzzy approximation model representation $(v|®) = O o(v), such
that

sup lp(v) - O Tp(v)| < 6. (2.28)

Accordingly, when considering actuator faults, the MAS dynamics are represented by Eq (2.5):
jC[ = ﬁ(x,-) + tp,-(t)u,-(t), i = 1, 2’ ey N, (229)

where fi(x;) denotes the intrinsic dynamics of an agent i. The actual control input applied to agent i
becomes ¢;(t)u;(t), where u;(t) is the nominal control input.

Our control objective is to design a finite-time secure control strategy for MASs (2.5) against
actuator faults and spoofing attacks. The control scheme proposed operates so that all system signals
remain semi-globally uniformly bounded, and the output y; of each agent converges to the reference
trajectory y, within a finite time. Furthermore, the proposed approach effectively avoids the
singularity issues typically associated with certain classes of finite-time controllers.

3. Major results

In this section, a novel decentralized adaptive fuzzy security control scheme is proposed for the
i-th subsystem, which employs an adaptive backstepping technique to guarantee the stability of the
system (2.5). This scheme addresses communication channels that are susceptible to deception attacks
and actuator faults. For the i-th subsystem, the control design process can be divided into m steps,
where each step is based on coordinate transformation and filters as follows:

M
e = X aijyvi—y) +bi(yi = yr) + ¢iObi(yi — y,) + 6i(0),
J=1 j# (3'1)

€ik = Xik — Fik»
Wik = Fig — Pi(D)aip—1 — 0,(1),

where e;; denotes the tracking error, while «;;_; and r;; represent the intermediate control law and the
associated filtered control input for the i-th subsystem, respectively. The term ¢;(r) € [0,1]
characterizes a multiplicative fault that captures the effect of gain reduction, and 6;(r) denotes an
additive fault that accounts for actuator bias.
The error regulation function is adapted to account for the presence of actuator faults, affecting the
error decay function:
sgn(eix), if e x| = o7 (2),

hir(eir) = el . (3.2)
, otherwise,

2 22 2 1,3
(e = i) + el

1’ lf |ei,k| > O-i,k(t)’

. 3.3)
0, otherwise,

hi(eix) = {

where o () = mie™* + T + nik(t), mix > 0 is the initial threshold magnitude,p;; > 0 is the
exponential decay rate, and n; () = yix (|1 — ¢:(9)| + 16;()]), vix > O is a scaling factor that determines
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the sensitivity to actuator faults, ¢;(¢) € [0, 1] represents the gain fault if ¢,(r) = 1, there is no gain fault,
a value less than 1 indicates a loss of effectiveness, and 6;(¢) denotes the bias fault. According to the
system model shown in (2.5) and the coordinate transformation defined in (3.1), one has

M
éi1 = Z a;i(¥i = 3;) + bigi() i = yr) + bi(1 + @i(0))Fi = ) + 6:(0),
=

J#i

éi1 =V (ei,Z + wip + a1 + gixig + mi(x;, Xj)) = bi(1 + @)y + bigi(D(yi — y,) + (D), (3.4)
where
Vi = Z a;j + bi(1 +¢i(1)), i1 =1(00i1(xi1), mii(xi,x;): terms involving x;», Xji,...,
i

eip = Xip — g, Wiz = i — @i(Hai — 0,(1).

Design
Eiilyin) = @ &lin) + wilxin). (3.5)

The function E;;(y; ) can be obtained by introducing a fault parameter which can be written as

Eiilyin) = @) EQin) + Wilxin) + AFi(xin). (3.6)

By using a fuzzy approximation model Z;;(y;), the continuous nonlinear function is approximated
using a nonlinear estimator developed in Lemma 2.5.

Here, AF;(y;) denotes the combined effect of actuator gain and bias faults.

When using a FLS Z;;(x;1), the continuous non-linear function can be handled by a non-linear
approximator designed in Lemma 2.5.

Ei(rin) = ¢ EQn) + Wilxin) + Figain(rin) - Aui + Fipias(xin)- 3.7
The Lyapunov function can be designed as
1 3 | R 1,
Vii = 3 (leial = oi1)” iy + EW,‘JWL‘,I + Efi (D<), (3.8)

where W,-, 1= W - VAV,', 1, and £;(¢) represents the actuator bias fault.
From Egs (3.4)—(3.6), the time derivative of V;; can be written as

’ 2 7 faul «T

Vi = (leiil = oin)” hithiy - [Vi(ei,Z +wia + e+ 07 () + Wi

. (3.9)
- —pi —p; T & TG

+8i8; €1 + mpie p’]t) + e+ Wi Wi + & (D4,

where the fault-influenced term aff‘l‘m = pi(x;, m)u;(t) + £;(¢) for both gain and bias faults.

Using Lemma 2.1, there exists a constant 7, > Ti,k(gi“) and a known function y; x(x;) such that
16: (i N < Tix (g7 D yin(xin) < Tinyin(xip)- (3.10)
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Since 0 < Zl(~)§,-,1(-) < 1, applying Young’s inequality for any s > 0 gives

1 s Wi K
1€ 0i) < =195 IPIE Q)P + 5 = == 1€ )P +
i1€i10rin) 25” il lIE Oci )] 5= oy llgi,1 O ) >

A1
W, X (3.11)
< 4—||§i,1(Xi,1)|| + 5.
s
Substituting (3.10) and (3.11) into (3.9), the upper bound of Vi’l becomes
. ~ 1
Vir <(eitl = o) hiihy - [Vi(EWi,l,l(ezl + 1)+ winz + pi(xi, mpui() + £i()
W
i, 12
+ Wirovin(xi) + w11 + T;“‘fi,l(Xi,l)”z + S)] (3.12)
+ W\ Wiy + & (0&i(o),
where Wiy = gig;' and W15 = g1 (D745
The intermediate control law «;; for actuator faults and unknown dynamics written as
1 PN N
a1 = v_[ —cii(leirl - O-i,l)3w 2hi,lhi,l —miapin — ciilleitl = oi)highig
~ PO 1 PN
= (leial = O_i,l)zhi,lhi,l - hi,1Wi,1,1§(€,-2,1 + 1) = hig Wiy (xin) (3.13)
— U+ 00i2)" + 1 — pi(x;, mpu(t) — (1) — Z”fi,l(/h,l)” -5
The adaptive laws are defined as
A 2 A~ 1 2 A
Wir1 = (leial — o) hinhin - E(ei’l + 1) = niaWii,
Wiz = (leitl = 000 hiihiy - yir(xin) = 112 Wi 2, (3.14)
A « 1 Ay
Wi = 4_s||§i,l(/\,/i,l)||2 —piaW;;.
By applying Young’s inequality, substituting (3.13) and (3.14) into (3.9) becomes
. w N A T]i, , ~
Vii <= ciplleil — o) h; iy = ciallein] — o) h; by = %”Wi,l,l”z
2
i1z, 2 Pil 5w 2 2; 7 1,
- T”Wi,l,ZH - 7(“/[,1) + 2 ((|€i,1| —0i1) hiihi - E(ei’l + 1)) (3.15)
s > 1 (1 N
+ (Ueial = oo hishiy - yia (i) + 5— | =l€a P | + & L.
2ni12 20i1 \4s

Step k. (2 < m < m; — 1) The time derivative of e;; is computed along with the corresponding
dynamics (3.1) are rewritten as

ik = Xix—Fix = €ijs1 T(Xip+A;)) +Wigs1 +(gi+AAg,~)_lfCi,k+(gi+AAg,-)§i,k9i,k(Xi,k)+(bi+AAbi)—i’i,k- (3.16)
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The adaptation laws for fault are written as
Agi = ~Yeeirtips  Ab; = =Ypeis. (3.17)

The first-order filter is written as

Biiig + rig = @igor + Aa;, rix(0) = @ix-1(0). (3.13)
According to (3.18), we have
Wtk__m_a/zk 1+Aa/z (319)
Bl k

The control input with fault compensation is
Ui = (g + Ay + (b + Ab). (3.20)

The Lyapunov function can be written as

1 1 1
Vik = §(||€i,k|| o) hix+ = W21 +

2 2W1k+

2 P éf,, (3.21)

where p; = p; — p; is the estimation error of the gain fault and Z; = Z; — ¢; is the estimation error of the

bias fault.
On the other hand, the derivative for time of v;; can be expressed as

Vi <(leirll = oix)*hishixWis (ﬁi(xi,m,-)ui,k + Zi(t)) + Wl‘:rkWi,k
. s (3.22)
+ wigWig + (leigll — o) fi N U+ Pipi + Gl

The intermediate control function «;; and adaptive laws VAV,-,k are designed as follows:

@ix = — cix (leirll = Tia) ™ highig — migpin — cin (leirll = o40) higchi
- (||€i,k|| -0 i,k)2 hi,ljli,k - %hi,kili,kWi,k,l(xzk +1) - ili,kWi,k,z)’i,k(xi,k) (3.23)
— I+ 00 + 4+ vig + hyg (1 — pilx ) @ix + 1 &),
pi(xi, m;) pi(xi, m;)
Wit = (leiall = 03 highi %(Xiz,k + 1) = gt Wik (3.24)
Wika = (leisll = 07i) Pighis - vix (i) = mixa Wik (3.25)

Therefore, it yields

: 3w 2 72 3,2 72
Vik < = cig (leiell = o)™ i iy = cix (leisll = oix)” hihi,

2 2
+ (leirll = oia)” his f€7yy + ti = (leirll = oia)” hix \/(1 + O ig1)? + 1
(3.26)

1 1 1 Nik = ik ||y
bW (E - Ngk) Wi = B

— 4(r>|

+ (lleill = oix) hig

l( l’
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Step m;. Assume that the controller-to-sensor communication channels are compromised by deception
attacks and that the actuators experience faults caused by gain-and-bias uncertainties. Based on these
conditions, the secure control strategy is developed as follows:

Cim = dgi (0/(Xim)ui(1) + L)) + 81O Xim,) + 8187 Xim; + 8illim: V)6, (Xim;)- (3.27)

Consider the following Lyapunov function:

1 3 1 ~2 1 2 1~2 1 ~2 1 ~2
Vim = = (leimll = Tim;)" Hign, + =W5,, + =wi, + =17, + —A, + —A, . 3.28
3 (el = i) Him 2 2W’ P20 2y, 8 2y, b ( )

The derivative for time of Eq (3.28) can be expressed as
Vi < (lleimll — U'i,m,~)2 hi,m,fli,m; X (dgi(l + Agu; + dgily, + ﬁiT¢i t¢it+ gigi_lxi,m[
+ 8ilim(DOim/(Xim;) = Fim—1 + Timfim€” i””ft) (3.29)

~ - 1 . =
T T p
+ Wi,m,- Wim + Ti,miTismi T WimWim; + ,y_AgiAgi + ,y_AbiAbi'
8i bi

The intermediate control signal #; can be defined as follows for actuator faults:

[ 3w-2 7
Nik)( = om et ll = i) i im, = TimPim,

1 - Ci,mi(”ei,mi” - O-i,mi)hi,mihi,lni
= — . 1~ . . (3.30)
(x: , 2 2
pixi, m;) = (leimll = Tim) i Pim; — Ehi,mi Wima (X, + 1)

Aa AT . A
— i Wi 2Vim (Xim,) — 1" i + Vi,m,-—l) = ¢i(1)

u;

The adaptive law can be written as

Wima = (o] = oim) ™" - i, - % (2 + 1) - 0iCEim) = it Wi 1, 3.31)
Wiz = ([cml] = Tm) ™ Fins 7 - 0:Chim) = ima Wi (332)
Wim, = ([l = @im) Biams - B, - Vi) - 0i(Eim) = EWis (3.33)

&= g, i) - 5i(0), (3.34)

where A, > 0 is the adaptation gain, ¢;(x;,,) is a known basis function, and s;(r) is a stabilizing
error signal.
The Nussbaum function is defined as

2
Ni(k;) = € cos(nk;), (3.35)
. 3w-2 7 T thm T
Ki = — Ci,m,- (”ei,m,-” - O-i,m,-) hi,m,-hi,m,- - ﬂi,mipi,m,- - Ci,m,— (”elm,” - O-i,m,-) hi,m,-hi,m,- - (”elm,” - O-i,m,-) ! hi,m,-
lA A 2 ~ A A AT .
- Ehi,m; Wim:.1 (xi,m,. + 1)Pi(xi,m,) = Ry Wi 2Yi(Xim )i (Xim;) — &i — H}k bi + Vi (3.36)
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Using Young’s inequality, we have

- . 1. S 1 1
EMM; < —E&TMZ-& + EIIMi I” + E”pi(xi,mi) — 1Pl + Elléi(t)||2-
In summary, we can obtain

g 3 2 72 2 72
Vi,mi <- ci,mi (”ei,mi” - O-i,mt) ¢ h h Ci mi (”ei m1|| g mt) h h

1 . i ~
_ — N? Hippr TL i — W Wi
(Bi”nl 1 ml) l mi 2 1, mi 5 2 1, mi o
. nlml /llml 1 *
+ (dgiN(k;)) — 1) k; + —|| Wi llP + == + Z(a)iz +1)

+ %”pi(xi,mi) — 1Pl + Ellé(f)ll :

The selection of control parameters in the proposed algorithm is given as:

(3.37)

(3.38)

e (0ix nix) should be selected as positive constants to balance learning speed and robustness. They

can be tuned through simulation-based trial and error.

o (ck, A;, ) must satisfy the conditions derived from the Lyapunov analysis to ensure finite-time

convergence. These are chosen to be positive and increase convergence speed.

e Nussbum function (k) typically adopts a standard form such as ¥(«x) = e cos(nk), and no tuning

is required.

e The parameters (e.g., number of membership functions, center, and widths) are chosen relative to
the range of state variables. Three to five Gaussian functions per dimension are usually accurate

enough.

e Backstepping sliding gains must be tuned in a way to overcome the uncertainties and make the

errors converge quickly without chattering.

4. System stability

Theorem 4.1. Consider the design of a secure controller that guarantees convergence within a finite
time (3.13), (3.23), and (3.30), and the adaptive laws are designed as (3.14), (3.24), (3.25), and (3.31)
to (3.34), incorporating compensation for actuator faults. In that case, the proposed secure control
method can ensure that all signals of the closed-loop system are semiglobally uniformly bounded for

the nonlinear MASs (2.5) in this paper, even in the presence of actuator faults.

Proof. To analyze the stability of the complete multi-agent system, we construct a Lyapunov function

defined as
bi(pi—1)* b?

M m;
V:Z le.2 +—1 ~.TV~V,~,<+—1 I+ ———2 ¢ _
- 27 oy T o 2h? R Y%

i,m;

The time derivative (4.1) can be expressed as

3812 §2 3,2 22 Mk w7
V< Z { Z ( cuullews = TiulPhE — cudlles = oualPiyh, — =5 ;Wi,k)
i=1 =

2
—{;

4.1)

4.2)
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3
L

1 1

+ leix — TixlPhim - -

=1 \/eik+l +y VA + 01 + 4

N 1 » 1 2) . HimTs - 2
- — = N — = |wik| + @dgiNix) — Dxi — 1L+ > =W

é (Bi,k 4 2 ; 2

; 1 b2 (p; — 1)? 1 b? 1 N-—1

+EmIP + - + Mefm, e i e%m} —

2 4 2h12,m,- o 2h12m, 2h12m, 2hlz,m: B 4

The following inequality is derived by using Young’s inequality:

(|pi(xi’ m;)(eix — Ui,k)|)2 hix ( \/P,g(xi’ M€,y + L — \/P,'z(xi» m)(1 + i) + Li)
2 1 k
<3 (|Pi(xi, m;)(eix — O'i,k)l)3 hiy + 3 (|Pi(xi, mi)(€ik+1 — O'i,k+1)|)g hijes.- (4.3)

According to Lemma 2.4, suppose that A = %, we have

M m; w M m
Ly N
(Z > S| <A -wi+ > SWL W (4.4)
i=1 k=1 i=1 k=1
M m; 1 o w M m; 1 r o
> SOV < -w)id+ > R 4.5)
i=1 k=1 =l k=1
M m; w M m
i 1 B B i 1 B B
D ST < -wa+ ~ (I )T/, (4.6)
i=1 k=1 2 ’ ’ i=1 k=1 2 ’ ’

Accordingly, we have

Mo om
. ! A 1 ~ .
Vs Z (Z [_Ci’khiz,khiz,k”ei,k — ol - 5 i = 1)(W{k)Tle’jk]

i=1 k=1

1 , 3\, s, 1 = remr N ik s 2
-5 3 (ZBL,( ~2N?, - E) v, = 5 = DAL, + > SIWI
k=2 k=1
i L, o1 1
+ %IIH,-IIZ C )2 + (dg,Nixi) = i + Ellp,-(xl-,mi) — 1Pl > + 5”4’(0”2) 4.7)

M m;

e ) .
E(Wfk)TW{k] = >0 et e — oialf

i=1 k=1

1 3 N w
5(Hj.fk)Tr[-;fk] +3(1 —w)d +

V< —C1V - szw + D,
where

. . . . . 2 2 3
Cy = min {Hzlin {cix}s Hzlin {2n; — 1}, min {u; — 1} frlgr; (E - 2N, — 5)} ,
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m;

C, = min{ci},
ik
(2w,

M M M

_ 2 HMi » o 1 2 2 1 2

D=) > .\5 W )+ZXEMM|+?w)+zximm%m»—mnmn+§wmm)
i=1 k=1 i=1 i=1

+ max {(d, Ni(xs) — D} + +3(1 — w)d.

Remark 4.1. Parameter D in Eq (4.7) reflects the upper bound of uncertainties, fuzzy approximation
errors, and fault-related residual terms in the Lyapunov analysis. To minimize D, one can increase
the number of fuzzy rules to enhance approximation accuracy, properly tune the adaptive gains to
speed up convergence, and impose tighter bounds on disturbances and fault terms. A smaller D leads
to a tighter bound on the tracking error and improves control accuracy. However, overly aggressive
reduction of D may result in higher control effort or reduced robustness.

Remark 4.2. All closed-loop signals are shown to be semi-globally uniformly ultimately bounded
(SGUUB) using Lyapunov analysis, and the tracking errors approach a small neighborhood of zero in
finite time. Thus, the suggested control approach rather guarantees practical finite-time stability than
precise convergence to the origin.

5. Simulation example

In this section, we illustrate the effectiveness of the proposed sliding mode control method in
actuator faults and deception attacks through numerical simulation studies. Consider a MAS
consisting of one leader and four followers. The dynamics of each agenti = 1,...,5 are given by

Xi1 = fia(xi1) + xin
Kin = fiaxin) +ul (1) (5.1)

Yi = Xi1,

where f;1(x;;) = xil sin(3x;1), fi2(x;2) = x;;cos(x;n), the leader’s output is y,(f) = 0.5cos(0.5¢),
pi(x;,m;) = 1+0.3sin(x;; +m;t), and £;(¢) = 0.15 cos(1.5¢), and the simulation parameters are 4; = 2.5,
ki=35,v, =02, v; = 0.1, and yp;,, = 0.3 with states x;;, x;» € [-5,5]. Control parameter values are
represented in the following:

/li = 3 O

H = 2.0

ik = 5.0
Yik(Xi) = 1.0 (constant)

Simulation parameters =

Number of fuzzy rules = 5
Membership function type = Gaussian
Nussbaum function = Yk) = e cos(mk)
Step size = 0.001 s

The controller and adaptive laws are designed as shown in Eqs (3.9)—(3.11) and (3.27). Deception
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attacks affecting the communication channel are given as

(5.2)

0.1 sin(?) cos(21), 10 <1t < 18,
Li(r) = .
0, otherwise.

The FLS is constructed using IF-THEN rules to approximate nonlinear functions f;,(x;), m = 1,2.
Define Gaussian membership functions for the fuzzy sets M]" as

(xi,m - C1)2
202

m

W' (Xim) = exp (— ), [=1,...,11, (5.3)

c=1{-5,-4,...,5}and o = 1.
The fuzzy IF-THEN rules for each / are
If x;is I} and x;5 is I?, then fin(x)is DY, forj=1,....11,m=1,2.

Using the fuzzy rules, approximate f;,,(x;) as

A

ﬁ,m(xi) = Hi—,rmni,m(-xi)a (54)

where 1;,,(x;) = [} (X D3 (xi2), - i, (X 1)p3, (xi2)] T and H;,, are adjustable parameter vectors.
Define the tracking error and sliding surface as

e = xi1 —y(1), si=¢é&+Aie;=xip— Y+ Ai(xi1 —y), (5.5)

where A; > 0 is a design parameter.
The sliding mode control law for actuator faults is designed using Definition 2.2:

L{ 2 A ” i
u; = 7 (_fi,Z(xi) — A (fi,l(xi) + Xip — )"r) —{i—k - ), (5.6)

i 1+ |sil

where k; > 0 is the sliding gain, and p;, /; are adaptive estimates of the fault parameters.
The adaptive laws to estimate the actuator fault parameters and fuzzy parameters are

éi = YpiSill;,
&i = Yeisio (5.7)
Hi,m = 7Hi,msi77i,;n(xi),

where y,,;, Vi, Yuim > 0 are adaptation gains.
Quantitative analysis and comparisons with existing work are given in Table 2:

e Settling time (ST): Time required for the tracking error to converge within a small neighborhood
of the reference signal.

o Steady-state error (SSE): Maximum absolute tracking error after convergence.

e Control effort (CE): Norm of control input over time.
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Table 2. Quantitative comparison between the proposed method and existing work.

Method Settling time (s) Steady-state error (SSE) Control effort (CE)
Proposed method 6.2 0.078 12.5
Li & Wang (2020) 10.0 0.120 18.7

In Figure 3, Gaussian membership functions are used in the fuzzy logic system to approximate
unknown nonlinearities. The performance of the two methods is shown in tracking in Figure 4. The
proposed controller has a quicker convergence compared to the benchmark method, along with a
smaller steady-state error. The control input signals can be seen in Figure 5, and it can be observed
that the proposed controller produces smoother and more efficient inputs.

Figure 6 gives the comparison of the actual control inputs when actuator faults occur, which proves
that the proposed method has superior robustness and fault compensation ability. Comparing Figure 6
with Figure 8 in [25], the consensus behavior among faulty follower agents shows noticeable transient
fluctuations and a relatively slow synchronization process. While the original control protocol leads to
consensus, it exhibits higher control activity and variability across agents during the initial period.
However, in our simulation, we see a much more aligned and faster converging behavior, with
convergence among all four followers not taking long to occur. This enhancement is due to the
incorporation of an efficient though simplified consensus control technique, which directly combines
the effect of actuator faults by estimating gain and bias parameters. The method decreases the
oscillation of control and minimizes the deviation among the agents, and provides a more robust and
stable formation response to adverse fault conditions.

Comparing Figure 5 with Figure 9 in [25] illustrates consensus among healthy followers, but
displays an initial divergence and slower coordination rate. In comparison, our fault-free control
design achieves rapid and tightly grouped convergence of all follower states. Moreover, the produced
control inputs are smooth and bounded, denoting enhanced efficiency and efficiency of the control, as
well as appropriateness of the control implementation in the real world. Overall, our strategy leads to
faster consensus, lower control effort, and more consistent cooperative behavior across agents
compared to the results shown in [25].

g H1
H2
08¢ U3
Ha
—~ 067 Hs
\ijg M6
T o4l H
Hs
Ho
0.2} H1o
H11
0

-10 -5 0 5 10
x

Figure 3. Gaussian membership functions.
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Figure 4. Tracking performance of the proposed method vs. Li & Wang (2020).

20
uq
LI2 +
Uz
Uy
‘j’_
5
o
£
°
S
o
O
-15
-20 | L L L L
0 1 2 3 4 5

Time (s)
Figure S. Control input without actuator fault.

40
j
qu |
7
LI%3 B
= Y
=
3
5
[=9
£
E
IS
[e]
[&]
-30 -
" | | | |
0 1 2 3 4 5
Time (s)
f

Figure 6. Control input ©; with actuator fault.

i

AIMS Mathematics Volume 10, Issue 9, 20113-20139.



20133

Figures 7 and 8 demonstrate that gain and bias faults are bounded in nature, developing and fading
over time. Between = 10s and = 18s, Figure 9 shows the period of deception attacks.

0.1 : . . . /

01 I ! L L 1
0 2 4 6 8 10

Time (s)

Figure 9. Deception attack over time.

N0
o

From Figures 10 and 11 that the fuzzy models are very close to the true nonlinear functions
everywhere. Figures 12 and 13 demonstrate that the system remains stable, as the sliding surfaces
reach zero without attacks or faults present.

Fir(zi)

Figure 10. Fuzzy approximation of f;, 1(x;).
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fi,gc xj)

Figure 11. Fuzzy approximation of f, 2(x;).
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Figure 12. Sliding surface without attack and actuator fault.
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Figure 13. Sliding surface with attack and actuator fault.
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Finally, comparing the results in Figures 14—17, that with or without faults and attacks, the designed
controller guarantees stability by maintaining bounded errors and achieving convergence within a finite
time, thereby confirming the effectiveness of the control approach.

1

25

N w=  w= | eader
05 S Follower 1 | 4
Follower 2
- 0 Follower 3 |
= Follower 4
-0.5k b
1 | | | |
0 5 10 15 20
Time (s)

Figure 14. Follower-leader trajectories x;; without actuator fault and attack.

5F T B
w1 | eader
Follower 1
0r = = e Follower 2 [
- Follower 3
x _‘jl —_— Follower 4
5L ‘
-10 5 L L .
0 5 10 15 20 25
Time (s)

Figure 15. Follower-leader trajectories x;; with actuator fault and attack.

w— m= | eader (yr)
Follower 1
Follower 2
Follower 3
Follower 4

25

Time (s)

Figure 16. Follower-leader trajectories x;, without actuator fault and attack.

0 & 101?3
w— = |eader (yr)
Follower 1
-1r Follower 2 | 7]
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= Follower 4
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-3 L L L L
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Time (s)

Figure 17. Follower-leader trajectories x;, with actuator fault and attack.
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6. Summary

In this paper, an adaptive fuzzy practical finite-time secure control method was developed for
MAS:s that may experience actuator failures and deception. With this approach, backstepping design,
fuzzy logic systems, and adaptive laws are combined to identify and correct both gain and bias errors
in the actuator. A Nussbaum function was applied to address challenges that arose when the control
was unknown during a deception attack. Using Lyapunov theory, a rigorous proof verified that our
control strategy ensures the system signals are semi-globally uniformly bounded and drives the
tracking error to a small residual set in a finite period. The proposed method demonstrated
good performance, but there are certain limitations. One is that the complexity of the controller
becomes higher with fuzzy rule expansion and having several adaptive laws. Additionally, the method
is based on the full-state availability, which is not likely to realistically exist in large-scale and
partially visible systems. In the future, the controller will be extended to an output-feedback scenario
in which only partial measurements are considered. Moreover, efforts to increase computational
efficiency through fuzzy rule base reduction and examining event-triggered or data-driven adaptations

will be addressed.
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