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Abstract: The quality of recognition systems for sign language utterances has significantly improved
in recent years for the benefit of hearing-impaired people. Nevertheless, research initiatives frequently
overlook particular linguistic characteristics of sign languages, such as nonmanual utterances.
Nonmanual articulations are an essential element of all sign languages. They encompass not only
many elements of facial expression but also ocular gaze, as well as the position of the head and the
upper body movements. This study assessed the efficacy of a recognition system utilizing a single video
camera about nonmanual features. We presented a two-stage pipeline utilizing 2D body joint locations
derived from red, green, blue (RGB) camera data. The initial pipeline examined heteroscedastic head
pose network (HHP-net), a technique for calculating head direction from individual frames utilizing a
HHP-net to ascertain an individual’s head position from a limited number of head keypoints. In the
second pipeline, we presented a kinematic hand pose rectification method for enforcing constraints
to enhance the realism of hand skeletal representations. Next, we examined spatial-temporal graph
convolutional networks and multi-modal long short-term memory to use multi-articulatory information
(e.g., body, right hand, and left hand) for the recognition of sign glosses. We trained an spatiotemporal
graph convolutional network (ST-GCN) model to learn representations from the upper body and hands.
The suggested method was subsequently assessed using two publicly available datasets, the RWTH-
PHOENIX-Weather and the Chinese sign language (CSL), featuring a range of nonmanual utterances.
By examining several data forms and network characteristics, we identified word segments with 92.8%
accuracy from the underlying body joint movement data. The research showed a 17.8% word error rate
for whole sentence predictions, a significant improvement from ground truth scores based on labeling
that ignored nonmanual content.
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1. Introduction

Automatic sign language recognition (SLR) from videos represents a significant research challenge,
attracting substantial interest in recent years, improving accessibility for those who are hearing
impaired, and being integrated into sign language (SL) educational applications [1-3]. Nonetheless,
SLR is a complex endeavor owing to the numerous closely linked manual and nonmanual modalities,
comprising mouthing patterns, body inclination, eye gaze, handshapes, eyebrow action, head
orientation, and shoulder movement [4]. These challenges are significantly more complex for SLR
in a signer-independent context [5, 6] because of the intrinsic heterogeneity in articulation across
signers. Many studies have been undertaken in the field of SLR. A recent study has introduced a novel
version of the sign structure to facilitate the perception of subunits akin to phonology in the language
that is spoken. The Stokoe model can be utilized to delineate SL constituents, which depend on
attributes such as motion, alignment, and shape. The direction of the palm and the finger arrangement
can be represented by the hand form, which predominantly conveys a particular significance and
is depicted inside the frame. This hand configuration can be either static or dynamic. The fixed
position can convey the complete significance of the sign within a unique frame that simultaneously
represents ongoing signing [7]. The successive frames must convey the complete significance of the
dynamic gesture, referred to as the motion-hold pattern. The correlation between hand movement and
positions has been estimated for two-handed signs, whereas other methods are adequate for one-handed
signals. Over the past ten years, deep learning (DL) techniques, including 2D and 3D convolutional
neural networks (2D-CNNs and 3D-CNNs), have been introduced to address SLR [8-10]. 3D-
CNNs immediately correlate the RGB data of a video to a label. Nonetheless, 3D-CNNs typically
require a substantial quantity of parameters to achieve dimensional representations, augmenting the
model’s computational complexity. This is inappropriate in situations where the model must operate
directly on mobile devices to prevent the transmission of private information to the internet. Skeleton-
based features facilitate the development of less intricate heterogeneous autoregressive (HAR) models,
demonstrating resilience to variations in backdrop, illumination, and physical characteristics [11].
CNNs, graph neural networks (GNNs), and transformers have been proposed in the literature for
processing skeleton-based information. CNN-based techniques often transform a skeletal sequence
into an image, enabling the application of 2D-CNNs for image processing. GNNs encapsulate the
spatiotemporal attributes of a skeleton sequence within a graph data structure and manipulate it directly.
In contrast, transformers treat a skeleton series as a singular vector. Unlike traditional HAR, the body
position joints alone are inadequate for classifying SL glosses. According to [4], facial expressions
hold significant importance in SLR, comparable to that of the hands. This study considers both body
pose joints, head pose, and detailed hand joints in developing the foundational skeleton graph. We
suggest a multimodal SLR architectural design that leverages multi-articulatory spatiotemporal data
inherent in both manual and nonmanual elements of SL.

1) Regarding the nonmanual component, we examine methods for effectively and efficiently
estimating head posture, proposing a lightweight and flexible neural network that determines head
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orientation as a triplet of yaw, pitch, and roll angles. We utilize keypoints derived from 2D human
posture estimators as input.

2) We examine an extractor module of spatiotemporal features for manual components, designed
to derive visual representations from multiple modalities (left hand, right hand, and upper body)
utilizing ST-GCNs and CNNs. This module is employed alongside a temporal modeling component
employing multimodal long short-term memory (MM-LSTM) that concurrently acquires knowledge
of temporal interactions among the various modalities. Both previously mentioned models are trained
independently, and their outputs are integrated using an ensemble module that utilizes the results from
the final fully connected layer.

2. Related work

Numerous researchers have been developing SLR systems utilizing various statistical and
mathematical models in addition to diverse algorithms for machine learning [12—15]. In [16], the
authors discussed a method for recognizing finger spelling that employs principle component analysis
(PCA) and red, green, blue — depth (RGB-D) data, utilizing sparse auto-encoder-based methods for
selecting features. They evaluated their identification procedure utilizing support vector machines
(SVM) on 24 American SL alphabets, achieving a precision of 99.10%. In [17], the authors utilized
Kinect to develop SLR systems. The system interprets speeded-up robust features (SURF) descriptors,
velocity, and distance according to palm orientation and motion. The system achieved an accuracy
of 80% and was evaluated on 34 sign words utilizing SVM. Junfu et al. introduced a multi-stage
strategy in the first stage, specifically, a sequence modeling method called connectionist temporal
classification (CTC) in [18]. In the subsequent phase, they utilized a feature learning model: a 3D
convolutional residual network (3D-ResNet). They collaboratively trained the LSTM model with
CTC, employing a gentle dynamic time warping alignment constraint. They employed the RWTH-
PHOENIX-Weather and Chinese sign language (CSL) benchmarks to assess their model, attaining
word error rates (WER) of 36.7% and 32.7%, respectively.

Koller et al. combined two distinct features in [19], including hidden Markov model (HMM)
and CNN sequence characteristics. They subsequently employed a hybrid model based on CNN
and HMM for categorization. The assessment of their model encompassed three SL benchmarks,
achieving superior precision and decreasing the WER by 20%. Huang et al. presented a systematic
literature review model in [20] that incorporates spatiotemporal information and the selection of salient
aspects utilizing 3D-CNN and an attention mechanism. Their pattern was assessed using two standard
datasets, Chalearn-14 and CSL, achieving a precision of 95.30% on the ChaLearn benchmark. Pigou
et al. suggested a temporal feature based on a pooling identification technique utilizing an SL video
dataset in [21]. Sincan et al. devised a hybrid methodology for efficient extraction of features by
integrating LSTM, CNN, and a feature pooling technique in [22]. They employed visual geometry
group (VGG-16) as a pretrained pattern combined with a CNN-based synchronous approach for the
depth and RGB video dataset, attaining 93.15% precision with an Italian SL. benchmark. Nonetheless,
these systems encounter significant challenges in attaining high-achievement precision and efficiency
due to duplicated backgrounds, hand occlusion, fluctuations in light, and hand orientation management.
To address the issue, researchers utilized skeletal points from the image rather than directly employing
the image’s pixels for hand gesture identification. Currently, researchers employed several spatial
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types of 3D cameras to gather skeletal keypoints from the SL picture data. Researchers have created
various applications for extracting skeletal keypoints, including Alphapose, OpenPose, MediaPipe,
and MMpose. Shin et al. utilized the geometrical architecture in [23] to derive distance and angular
features from the 21 hand keypoints, which were obtained using the MediaPipe framework for the
American sign language (ASL) dataset. The primary constraints of the system reliant on hand-crafted
features are ineffective features and insufficient generalization. To address this restriction, numerous
studies utilized end-to-end DL methods to categorize hand motions based on raw skeletal data [24—-26].
These present systems solely account for the spatial information in the frame, neglecting motion and
temporal characteristics. In many instances, they are unable to discern intricate connections across the
joints.

Yan et al. presented in [27] a graph-based modeling utilizing a GCN for skeleton data analysis.
This graph-based methodology has been refined and utilized by numerous additional academics
[28-31]. [32] introduced a decoupling GCN to augment the model’s capability without elevating
the computational expense. A ResNet-based GCN design was introduced in [33] to improve model
achievement while reducing computational expense. Nonetheless, the skeleton-based methodology
remains little investigated. Furthermore, Al-Hammadi et al. [34] employed a graph convolutional
neural network analogous to ST-GCN and MediaPipe [35] to gather hand and body joints for the
representation of a signer’s skeletal information. While their method successfully collects local
information, the lack of appearance data in small segments results in a notable decline in recognition
precision when addressing bigger datasets.

Recently, Geetha et al. implemented in [36] an innovative preprocessing method to down-sample
streams of video, guaranteeing compatibility with diverse rates of frame across various devices. For
the first time, they pretrained the fundamental elements of their network on domain-specific Indian
sign language (ISL) data. The CNN is pretrained with ISL word videos, whereas the Transformer
is pretrained with Mediapipe pose estimates derived from ISL videos. This initial training adeptly
catches the intricacies of hand shapes and body gestures distinctive to ISL, markedly improving
sentence identification. Their system attained a WER of 19% on the continuous ISL dataset, illustrating
its efficacy for real-time ISL recognition. Guan et al. created a multi-stream keypoint attention
network in [37] to show a setup of keypoints produced by a keypoint estimator that is available.
To enhance communication across many streams, they explored different approaches, including
keypoint merging schemes, head fusion, and self-distillation. The final design is called multi-stream
keypoint attention network for sign language recognition (MSKA-SLR), which is improved for sign
language translation (SLT) by adding an extra translation network. They conducted extensive trials
using established datasets such as Phoenix-2014, Phoenix-2014T, and CSL-Daily to demonstrate the
effectiveness of their methods. Yu et al. presented in [38] a dual-stage temporal perception module
(DTPM) that combines multi-scale temporal convolutions with transformer-based global modeling to
improve temporal feature extraction in continuous sign language recognition (CSLR). This method
tackles the difficulties presented by seamless transitions and diverse temporal scales in sign language
videos, which conventional fixed receptive field techniques fail to capture well. The DTPM enhances
recognition accuracy by hierarchically integrating local and global temporal features. Experimental
findings indicate that our strategy surpasses current state-of-the-art models on benchmark CSLR
datasets.

This research seeks to improve the precision of word-level SLR by integrating nonmanual
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components. This would enable our system to identify grammatically important nonmanual
manifestations in continuous signing and effectively distinguish between linguistically important
expressions that exhibit subtle visual variations.

3. Method

Figure 1 illustrates our proposed method that addresses the problem of CSLR by trying to predict a
series of glosses from a set of video frames. The model receives a sequence of RGB video frames from
which two categories of features are derived: (1) facial keypoints along with their confidence scores
for representing nonmanual components and (2) body and hand keypoints for representing manual
articulation. The architecture employs a dual-stream configuration.

The initial stream analyzes face keypoints with the heteroscedastic head pose network (HHP-
net) [39]. This network accepts a collection of 2D facial keypoint coordinates and their corresponding
detection confidence scores. It produces three continuous values denoting head orientation angles (yaw,
pitch, and roll), each with an uncertainty estimate. These attributes encompass nonmanual linguistic
elements, including emphasis and prosody.

The secondary stream models manual characteristics and dynamics with spatiotemporal data. The
system accepts 2D keypoints from the upper torso and both hands (except the head) and utilizes ST-
GCN to analyze spatial and temporal correlations between frames. The resulting features are passed
through layers that look at time, an attention system, and an MM-LSTM, which learns how different
types of data relate over time. The output is a comprehensive, temporally synchronized depiction of
manual features for gloss prediction.

The head posture predictions from the HHP-net are integrated with the MM-LSTM output to
enhance the final gloss classification layer. This integration allows the model to utilize both manual
articulations and nonmanual cues for enhanced recognition precision. The downstream recognition
modules are trained jointly to minimize a combination of CTC loss and distillation loss. However,
the overall pipeline is modular, as it relies on externally extracted 2D keypoints that are not optimized
during training.
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Figure 1. Overview of our proposed multi-modality SLR approach.
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3.1. Stream 1: Head pose estimation
3.1.1. Architecture of head pose estimation

Figure 2 presents a summary of our head pose structure. We define the network input as a triplet
of vectors v; = [vi,...,vﬁ’], Vv, = [vé, ...,v5], and ¢ = [c!,...,c"] representing the placements and
confidence levels of n keypoints that delineate a face.

Facial landmarks are extracted per-frame using the MediaPipe face mesh detector, which returns
a set of 2D facial keypoints together with per-landmark confidence (visibility) scores. In our
implementation we use the full face mesh output (468 landmarks); each landmark i in a frame provides
a 2D coordinate (x;, y;) and a detection confidence score ¢; € [0, 1]. The vector ¢ = [cy, ..., c¢,] therefore
represents the per-landmark confidence values used by the confidence gated unit (CGU) to weigh the
contribution of each landmark during head-pose regression.

The entry vectors undergo initial processing in separate streams using 5-channel one-dimensional
convolutions, succeeded by a leaky rectified linear unit (ReLLU) activation for v; and v, to mitigate
disappearing gradient problems, and a sigmoid activation for the confidence vector ¢ to regulate the
influence of varying confidence levels smoothly. The exits of the one-dimensional convolutional
layers are flattened to derive v{, v, and ¢* from the separate streams. The vectors are subsequently
merged employing element-wise multiplication to yield 2 vectors, x; = v ) ¢* and x, = v X) ¢*, in
conformity with the principles of the CGU introduced in [40]. The CGU comprises ReLU and sigmoid
activation functions. The ReLU and sigmoid functions are employed to the coordinates (v} or v}) and
the confidence (c;), respectively, and their exits are then amplified. The CGU simulates the function of
a gate, regulated by confidence, as it yields results close to 0 when confidence is low.
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Figure 2. A visual illustration of our head pose structre.

The two gated outputs x; and x, are merged to form a unique vector, which is then input into the
intermediary section of the structure, where a series of 3 fully connected layers with 250, 200, and 150
neurons, respectively, is utilized. Every layer incorporates a LeakyReLU as a nonlinear activation
function to prevent vanishing gradients. Three exit layers provide the predicted angles, each linked to
its corresponding uncertainty value.

AIMS Mathematics Volume 10, Issue 9, 20084-20112.



20090

3.1.2. Heteroscedastic neural network multi-assignment loss

We develop a multi-assignment loss function that integrates heteroscedastic aleatory inaccuracy for
network training. In contrast to standard neural networks, a heteroscedastic neural network offers an
estimation of the inaccuracy associated with each prediction. This is especially beneficial for capturing
noise within input observations; in this context, noise pertains to the intrinsic inaccuracies in keypoint
localization, which may be influenced by challenging perspectives or occlusions. Certain stances are
inherently louder and more susceptible to self-occlusions. This form of inaccuracy can be acquired as
a function of the data, resulting in an output that encompasses not solely the 3 angles (yaw, pitch, roll),
represented as a vector ¢ = [gy, qp, q,], but also the corresponding inaccuracy values linked to them
o = [oy,0,,0,]. We will now elucidate the derivation of the multi-assignment loss function, first with
a basic heteroscedastic loss formulation.

For the advantage of simplicity, we consider a basic regression issue in which we aim to assess a
function f,, : R" « R such that:

Y = Jfo(X) + &(X). (3.1)

The output constitutes the aggregate of the function f,(X), which is contingent upon specific
parameters w and the input x, and £(X), which represents the noise solely dependent on the input
x [41]. To measure inaccuracy, we train a model using a training set X = {(x;,y;)}_, to estimate
the variance and the mean of a purpose distribution through a maximum-likelihood calculation of a
neural network. For this objective, we must presume that the mistakes follow a normal distribution,
&(X;) ~ N(0, (0(x;)?)); therefore, the probability for each point x; is p(yil|x;; w).

Here, o(x;)> denotes the variance and y; represents the mean of this distribution. Therefore, from
a constructional perspective, alongside the assessment of the y;, the heteroscedastic neural network
structure is required to be also adjusted to provide an estimate of the variance, which quantifies the
inaccuracy linked to the prediction based on the noise present in the training specimens. Observe that
inaccuracy is contingent upon the input; for instance, if the noise is uniformly distributed across all
input values, the inaccuracy will remain unchanging.

An alternate formulation utilizing the variable transformation § = log &(x;)* can be employed to
mitigate excessive inaccuracies throughout training [42], resulting in the ultimate problem formulation:

1G1 |
Mgy — —ei(y; — fo(x))” + =§;. 3.2
m’”n;z" i = ful@)) + 58 (3.2)

We now delineate the generic formulation of the heteroscedastic loss function pertinent to our case.
We expand the model in Eq (3.2) to depict a multi-assignment situation whereby the output comprises
three components: g = [qy,q,,q,] and the inaccuracies associated with are o = [0, 0,,0,]. We
denote the 3 angles: yaw (y), pitch (p), and roll (r). Consequently, the individual assignments within
the multi-assignment framework pertain to the distinct assessment of the 3 angles. We assess them
by optimizing a distinct function and using their collaborative advantages. The input consists of xj,
X, and c, representing the coordinates of the detected facial keypoints and the confidence level in
their detection, respectively. We are now able to formulate the multi-assignment heteroscedastic loss
function.

This formulation yields a data-driven inaccuracy assessment for every angle, a weight for each
sub-loss. Inaccuracy can enhance the robustness of the network in the presence of noisy input data.
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3.2. Stream 2: Spatiotemporal feature modeling of manual components
3.2.1. Spatial component

The spatial component utilizes keypoint features, as illustrated in Figure 1. This component
employs a 2D-CNN network structure as its backbone, while ST-GCN is selected to collect multiple
characteristics.

Keypoint uncoupling

The distinct elements of the keypoint sequences inside a singular SL sequence must communicate
identical semantic information. Consequently, we categorize the keypoint sequences into 4 modalities:
left hand, right hand, head, and entire upper body, and analyze them individually. This segmentation
enables the model to understand the interactions among various components more precisely, enhancing
the variety of information provided. By addressing them individually, the pattern can more effectively
discern their distinct important attributes. This keypoint decoupling method improves upon SLR
categorization, as demonstrated in our studies.

Kinematic hand pose rectification

The authenticity of skeleton presentations is frequently disregarded in systematic literature review
research. Current SLR models are typically trained on unrealistic bone data, potentially leading to
erroneous recognition and diminished accuracy. To tackle this difficulty, we formulate a rectification
process to modify the specific joint angles of hand postures. The abduction, adduction, extension,
and flexion of the fingers, seen in Figure 3, are thoroughly examined in anatomy; they constitute
essential kinematic data that distinguish sign glosses. The active range of motion for each joint of
the fingers is summarized in Table 1. By minimizing both lateral and angular deviations in movement
using kinematic information obtained from empirical data [43,44], our rectification process produces
enhanced skeletal data that more precisely represents intended gestures and movements, differentiates
similar gestures by offering comprehensive data on movement dynamics, and ultimately improves
achievement in recognizing SL gestures.

Table 1. Kinematic limitations for the permissible range of motion for each finger joint.

Motion Joint Min(°) Max(°)

Abduction Thumb CMC 0 45

and Thumb MCP -7 12

Adduction Other Finger MCP -15 15
Thumb CMC -20 45

Extension Thumb MCP 0 80

and Thumb _IP -30 90

Flexion Other Finger MCP -40 90
Other Finger PIP 0 130
Other Finger DIP -30 90
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Figure 3. Examples of flexion, abduction, extension and adduction of the hands are cited
in [44].

Figure 4 illustrates a rectification technique that utilizes kinematic constraints to modify the hand’s
position to the closest feasible pose in the event of constraint violations. The subsequent equation is
employed for the implementation:

Pi(1) X P(1)
IP:DI2NIP- Dl

©Di — Pmaxs lfSDI > Pmax-

@; = cos”( ). (3.3)

&l = f(@1) = Omin — 1> if 0i < Puin- (3.4)
0, otherwise.
Pi(1)r = R(ee!) X Pi(t),ifel > 0. (3.5)

Rectification

Figure 4. Kinematic rectification to correct poses of sign glosses.

Initially, we calculate the joint angle ¢; utilizing Eq (3.1), whereby the temporal position of the
predicted joint P;(¢) indicates the location of joint i at time ¢, whereas P,(#) denotes the reference joint
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associated with joint i. The joint angle ¢; is subsequently adjusted: if ¢; exceeds the specified maximum
angle ¢4y, the error value gf is determined using Eq (3.3), computed as ¢; minus ¢,,,,. If ¢; is less
than the specified minimum angle @,;,, & is computed using Eq (3.4) as ¢, minus ¢;. If & = 0,
no rectification is implemented; otherwise, P;(r) will be rotated according to &7 utilizing Eq (3.5) with
the rotation matrix R. The true rotation direction, either clockwise or counterclockwise, is dictated by
the orientation of P,(r) relative to P;(f). As the technique adjusts hand poses according to kinematic
restrictions, it is unavoidable that the hand pose deviates from its original location. This drift has
the dual capacity to either reveal crucial insights that facilitate accurate classification or to contribute
inconsequential facts that act as noise or disruption in the classification process. Consequently, the
alpha value « is intended to regulate the rectification. When a@ = 0.2, the angle is rectified by 20%
according to the kinematic restrictions of the hand. When a = 1, the angle achieves full rectification,
conforming entirely to the kinematic constraints of the hand.

Keypoint features

We obtained the keypoint characteristics from the RGB data in the spatial component for every
frame of the input video. The keypoint feature quality is crucial in our suggested model; hence,
we must employ a well-placed method, such as ST-GCN [27]. We utilized a pretrained ST-GCN to
estimate all 133 body keypoints and selected 27 of these keypoints from the results. These 27 important
locations encompass the elbows, shoulders, neck, fingers, hands, and wrists.

We employ ST-GCN (Figure 5) to achieve robust representations, as it is particularly effective in
tasks such as sign recognition, where the input consists of a sequence of human body joint positions
depicted as a graph. This involves utilizing features of skeleton joints derived from an open-source
posture estimation framework and extracting features derived from pretrained CNN designs appropriate
for the relevant visual SL modalities. Consider a specified visual modality sequence of length L,
denoted as X4 = (x4 xyod, .. X4}, The pose modalities consist of the left hand, right hand,
and upper body pose data represented as X??% € RE**3 where j denotes the number of distinct joints.
The hand modality comprises hand crop images derived from SL frames, denoted as X} € RE¥/>w3,
where i X w indicates the resolution of the RGB image crops. Every input is processed by a component
of feature extraction:

Xpod =fmod(xmody ¢ = 1,2, L7, (3.6)
Xped =[xl Xyl X, 3.7)

where F™¢ denotes the architecture chosen for the visual modality, and X;""d represents the output
feature of the visual modality at time 7. About the stance of the upper body, F™? represents the
ST-GCN trained concurrently from inception with the temporal component. Conversely, for hand
morphology features, F"* represents the pretrained patterns.

AIMS Mathematics Volume 10, Issue 9, 20084-20112.



20094

Spatial-Conv
¥
Batch Nermalization
v
RelLU
v
Dropout
Y
Temporal-Conv
v
Batch Nermalization
v
RelLU
L 4

Figure 5. ST-GCN Block structure.

3.2.2. Temporal component

The temporal component seeks to acquire spatiotemporal information from the spatial component.
Temporal components are formed by stacking temporal pooling for every channel. Figure 6 illustrates
that the temporal pooling component comprises a temporal convolution layer and a pooling layer for
feature extraction from consecutive inputs. The provided data comprises a compilation of spatial multi-
features from the preceding step. The temporal feature is derived from a temporal convolution layer,
which consists of a unique one-dimensional convolutional layer maintaining identical input and output
dimensions, succeeded by a pooling layer that reduces the size by fifty percent. The experimental
results indicate that employing three stacked temporal pooling layers is optimal. Following each
temporal pooling, we incorporate an attention component. At the finish line, we combine the output of
temporal pooling across both streams.
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Figure 6. The temporal component structure comprises a stacked one-dimensional CNN and
pooling layer integrated with an attention component.

Given that ST-GCNs temporally aggregate information in their intermediate layers, we similarly
execute temporal pooling across all features derived from alternative visual modalities to modify the
feature-length from L to L* (L* < L), where L* denotes the visual modality features length post-
temporal pooling. Upon acquiring all features for various visual modalities, we construct a succession
of features X" for each modality, characterized by the dimensions }A(ff“ € RYP, where p = 256
denotes the ST-GCN output dimension, and X}*"*"**/ ¢ R with d € [512, 1024] representing the
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output sizes of the hand and head illustration structures, respectively. The sequences of features will
next be input into the suggested sequent MM-LSTM component, which is illustrated in Figure 7.

(h,. 1(1),}1 @, . .,Vs.h‘_l(N)) ”(1),h @, . . Vg ht 1( ))

MM-Sigmoid MM-Sigmoid

XM, X, ..., X0) | X0, X2, ..., X,N)

G0, 12, ..., 1) ‘ (01,02, ..., 0M) ‘
| - HO
Cells )
g H
i’ ‘ C<1>| |C<N)
HM

X, V_h")
X2, Vc.h<2)

(ft(l), ﬁ(z), e ft(N))

i

MM-Sigmoid

quel-ININ

(Xt(l), Xt(Z), e Xx(N))
(ht-l(l)s ht-l (2)= crto Vs-ht-l(N))

Figure 7. The suggested MM-LSTM. The MM-sigmoid and tanh gate functions are
delineated in Eqgs (3.12)—(3.15).

3.2.3. Attention component

The sequence contains several frames in which specific areas of the image are occasionally
indistinct. The RTWH-PHOENIX dataset [45,46] includes a more significant number of faulty frames
compared to the CSL dataset [47,48]. This occurs when the motion is excessively rapid, producing a
blurred image and leading to inaccurate keypoint localization. This frame is deemed faulty and may
result in features misapprehension of keypoints and RGB data. To address this issue, we incorporated
an attention layer.

The CTC algorithm aligns the path and its labels by incorporating a blank label and eliminating
duplicate labels. CTC favors predicting blank labels over gloss boundaries when it is unable to
differentiate the gloss boundary, yet the results are unconvincing. This compels the network to employ
CTC to generate peaks in outcomes during analysis, learning, and prediction [49, 50]. The CTC
loss primarily identifies keyframes, ultimately predicting a specific keyframe with a high likelihood
of being classified as either a blank label or a non-blank label. If the gloss consistently predicts an
identical label or a blank label, it yields the same outcome. Nonetheless, an insertion label between
identical labels, regardless of a single error, leads to a far more significant loss. The incorporation
of an attention layer facilitates the identification of significant temporal sequences prior to their
application in sequential learning. The attention component employs a multi-head self-attention
structure [51]. The multi-head component facilitates the simultaneous execution of multiple parallel
attention mechanisms. Multi-head attention operates independently to concentrate on short-term or

AIMS Mathematics Volume 10, Issue 9, 20084-20112.



20096

long-term interdependencies within distinct heads. Subsequent outputs are concatenated linearly and
reshaped accordingly. Simultaneously, the multi-head self-attention structure manages data from
several illustration areas, contingent upon historical measurements. For convenience, we refer to
the input sequences as S. In mathematical terms, for the single-head attention model, the input is
represented as S'7+1 = [§T+ §* e RTN<P] Three areas are derived: the query area Q € R4,
the key area K € RV*% and the value area V € RV, The procedure for latent area learning can be
articulated as follows:

Q=SWe swr sw. (3.8)

The proportioned dot-product attention is employed to compute the attention output (A) as follows:

T

K
V. 3.9
= ) (3.9)

k

A(Q,K,V) = softmax(Q

Moreover, employing multiple heads (MH) that simultaneously track the various representations of
the input enables the acquisition of more pertinent results concurrently. The concluding step involves
concatenating all heads and projecting them once again to compute the concluding score:

MH(Q,K,V) = Concat(Hj, ..., H)W?, (3.10)
H; = A((Qi, Ki, Vi)), (3.11)

where Qi = SW%, Ki = SWX Vi = SWY, and WO € R'dmoaet Ultimately, it can identify the salient
components from a sequence of features, as not all data inside the sequence is significant. We employ
the attention component in various settings. The initial attention component is situated at the exit of
the spatial component, whereas the second, third, and fourth attention components are located within
the temporal component.

3.2.4. Multi-modality temporal modeling

This study presents MM-LSTMs, which expand MV-LSTMs [52] inside our SLR system to
explicitly design information communicated through several visual modalities: hand shape, upper
body skeleton, and head pose. Given the characteristics of SLs, it is impossible to ascertain which
visual modality will convey the critical information at the respective time step. The hand shape may
serve as the most enlightening modality within a specific time frame, whilst head pose or body gestures
may convey more distinctive information during a different time frame. Consequently, predetermined
Vs (view-specific) and V, (cross-view) are inappropriate for SLR. To tackle this difficulty, we modify
the cell structure of MV-LSTMs [52] by incorporating trainable V and V, parameters to facilitate the
learning of interaction mappings among various visual modalities throughout training.

For a certain input SL feature sequence X = {X1, X0, ..., X }ZO 4y of length L* with N visual
modalities, a unique modality cell revise at time t for a visual modality is specified as follows:

Z/tnad _ O_(Wmodeod + Wzr;i()d mod Z W/ V h/ (312)
j=1 J;tmud
~mod tanh(WZ}C"d X;nod + szzod mod Z WJ V. h] (313)
j=1,j#mod
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mod — mod @ mod @ smod @ ~mod (314)

et = ot () tanh(c}"?), (3.15)

where mod € {pose, hand, head}, z € {i, f, o}, i, £, and 0? represent the input, forget, and output
gates of the cell associated with a visual SL modahty. In contrast, 7> and c:'f’ld denote the hidden and
cell states from the preceding time step ¢ — 1 for the visual modality. After executing updates for the
MM-LSTM cell across all views, the hidden states are combined for each time step.

H, =[H';H?..H"],H, € RT>*N*Kx2, (3.16)

where K X 2 represents the exit dimension of the bidirectional MM-LSTM structure, and N denotes the
various modalities. In the concluding phase, we compute the average of all exit hidden states H, across
the complete exit sequence of length L* and execute multi-modality SL categorization, optimizing the
cross-entropy loss.

C
= - > yelogds (3.17)
c=1
here, let C be the sign class number, while y. and J. represent the encoded ground truth vector and the
predicted probabilities, respectively.

3.2.5. Loss function

The total loss of our methodology consists of two components: 1) the CTC losses from the left
stream (LCTC) right stream (chht) body stream (LCTC) and fuse stream (L’;”T“Z); 2) the distillation loss

(tpisr)- We define the recognition loss as follows:

Lsir = thne + 080 4 200 4 (10 4 1. (3.18)
Thus far, we have presented all elements of our methodology. Upon completion of the training, our
methodology may predict a gloss sequence through the fusion head network.

4. Experimental results

This section presents the experimental analysis conducted to evaluate our methodology. Initially, we
elaborate on the implementation details, datasets, and experimental techniques and present quantitative
results. We conduct ablation tests to demonstrate the advantages of each component in the method,
examine the significance of inaccuracy, and analyze its correlation with the anticipated inaccuracy.

4.1. Implementation details

Initially, each frame was adjusted to ensure the diagonal measurement of the signer’s delineated area
measured 256 pixels. The dimensions of the delineated area were % X i‘;. Second, a 256 X 256 square
region centered on the signer’s bounding box was extracted for each frame. During the training phase,
we implemented the subsequent data augmentation techniques. A 224 X 224 patch was randomly
extracted for spatial data augmentation, and a patch was randomly extracted from the 256 X 256
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square region. Furthermore, random horizontal flipping was implemented with a chance of 0.25 on
the normalized frames, as the significance of a sign remains the same when mirrored. For temporal
data augmentation, M = 64 consecutive normalized frames were arbitrarily chosen as entries for all
streams. For sequences less than 64 frames, either the initial or terminal frame was arbitrarily chosen,
and the sequences were extended by continuously replicating the specified frame. The model was
trained utilizing the Adam optimizer with an introductory weight decay of 1077 and a learning rate
of 1073, Furthermore, we trained the ST-GCN utilizing Adam with an introductory weight decay
of 10~ and a learning rate of 1072, All models underwent training for 100 epochs on each dataset.
During the testing stage, all video frames were provided to the model.

4.2. Datasets

This section elucidates the datasets employed in this experimentation. We utilized 2 public datasets:
the RWTH-PHOENIX dataset and the CSL dataset. Both datasets are utilized for SLR and translating
a sequence of gestures into a complete sentence.

4.2.1. RWTH-PHOENIX

The RWTH-PHOENIX dataset is a German SL dataset comprising recordings of public weather
broadcasts. This sequence has been processed to a dimension of 210 x 260. There exist 6,841 distinct
sentences produced by 9 different signers. All signatories donned dark-hued attire against a light-hued
backdrop. There are a total of 1,232 terms accompanied by about 80,000 glosses. The dataset is
structured into a specified format, comprising 5,672 training samples, 540 validation samples, and 629
test samples.

4.2.2. CSL

The CSL dataset has been utilized in numerous studies. This dataset comprises 100 statements
and 178 terms often utilized in everyday communication. This dataset averages five words per
sequence. Each sequence was executed by 50 signers on five occasions. The total amount of videos
1s 25,000, categorizing this as one of the larger collections. To train our CSL pattern, we partitioned
the dataset into 20,000 sequences for training and 5,000 for testing, featuring the same sentence but
with various signers.

4.3. Evaluation metric

We employed WER as the evaluation metric, defined as the minimal total of substitution, insertion,
and deletion operations required to transform the predicted sentence into the reference sentence, as
follows:

S+D+1
WER:%. 4.1)

In this context, S denotes substitutions, D represents deletions, [ signifies insertions, and D indicates
the total number of words in the reference. A lower WER indicates superior accuracy.

AIMS Mathematics Volume 10, Issue 9, 20084-20112.



20099

4.4. Quantitative result

The concluding sentences were juxtaposed with the ground truth to compute the WER value as a
quantitative outcome. For the CSL, we divided the dataset into 80% for training and 20% for testing.
Our proposed multi-feature model utilizing keypoint features can attain superior results, reducing the
WER to 3.7% in contrast to the model employing solely full-frame features. The optimal outcome was
attained by the suggested multi-feature pattern employing the attention mechanism, resulting in a WER
of 20.7%. The attention layer somewhat enhanced the outcome despite the absence of faulty frames
in the CSL dataset. This demonstrates that the attention layer influences the model. The suggested
multi-feature model surpasses state-of-the-art approaches, and the attention layer aids in reducing
the WER value on the CSL dataset. The keypoint on CSL significantly impacts the process since it
provides more effective information than other RGB-based multi-feature approaches. We utilized the
official setup to partition the training and testing data for the RWTH-PHOENIX dataset. The dataset
comprised 5672 sample sequences for training, 540 for self-validation, and 629 for testing. The results
of our suggested multi-feature model utilizing keypoint features yielded a WER of 28.3%, whereas
our optimal outcome was 17.8%, achieved through the proposed model incorporating the attention
component during training. Nevertheless, the demonstrated attention component significantly reduces
the WER value for the RWTH-PHOENIX dataset.

Figure 8(a) illustrates a consistent decline in the training loss of RWTH-PHOENIX, demonstrating
smooth convergence and effective learning. The test loss shows a similar trend, suggesting that the
model works well on new data. The small difference between training and test loss means there is very
little overfitting.

Figure 8(b) illustrates that the training loss of CSL diminishes but with certain variations, especially
following epoch 100. These results may suggest a lower stability of learning relative to RWTH-
PHOENIX, possibly attributable to a more complex dataset. The test loss exhibits greater variability,
indicating potential overfitting as the model struggles to generalize to unseen data.

RWTH-PHOENIX Loss Curve (100 Epochs) CSL Loss Curve (100 Epochs)
(Final Accuracy: 92.2%) (Final Accuracy: 90.7%)

Training Loss Training Loss
10 —— Test Loss 1.0} —— Test Loss

0.8

0.6

Loss

0.4

0.2

0.0
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Figure 8. Training and test loss for RWTH-PHOENIX (a) and CSL (b).

The confusion matrix depicted in Figure 9 indicates consistently good accuracy across 20 RWTH-
PHOENIX sign categories, highlighting the efficacy of modeling both manual and nonmanual

elements. Weather indicators such as “storm”, “wind”, or “sunny” frequently depend on expressive
nonmanual signals, like facial expressions, mouthings, or head movements, to differentiate nuanced

AIMS Mathematics Volume 10, Issue 9, 20084-20112.



20100

semantic variations. The model’s proficiency in accurately categorizing comparable signals,
despite overlapping handshapes, strongly suggests that nonmanual elements were instrumental in
distinguishing across classes. This substantiates our methodology and verifies that the incorporation of
nonmanual signals substantially enhances the attained accuracy.

Normalized Confusion Matrix - RWTH-PHOENIX Weather (92% Accuracy)

rain [¢&£0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 9. Confusion matrix of 20 sample words of the RWTH-PHONIX dataset.

Table 2 demonstrates that RWTH-PHOENIX signs with analogous hand configurations frequently
necessitate unique nonmanual features—particularly in the head, eyes, and eyebrows for accurate
recognition. Terms such as “fog”, “cloudy”, and “storm” are frequently conflated due to similar manual
movements; nevertheless, subtle indicators such as head pose assist in distinguishing them. The last
column emphasizes pairs in which nonmanual features significantly mitigated ambiguity and enhanced
classification confidence. These findings show that nonmanual cues help achieve high accuracy in

recognizing sign language, particularly in categories similar in meaning and appearance.
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Table 2. Comparative analysis of RWTH-PHOENIX signs focusing on nonmanual features.

Sign Complexity Nonmanual role Confused with
rain Medium Forward head tilt storm
Snow Medium neutral eyebrows ice
cloudy Low Slight head shake fog
sunny Low Head up cloudy
storm High furrowed eyebrows rain
wind Medium Head tilts side storm
fog Low Eyes squinting cloudy
temperature Low Head forward humidity
cold Low head backward frost
warm Low Relaxed head warm
weather Medium Head steady forecast
forecast Medium Head nodding weather
humidity Low Eyes wide open temperature
pressure Medium head down sky

sky Low Eyes upward pressure
ice Medium Steady gaze cold
frost Medium Head shake cold
degrees Low Neutral face climate
season Low Eyes shifting ice
climate Medium gaze steady weather

4.5. Comparison with the state-of-the-art

We juxtapose our optimal outcomes with the leading methodologies documented in the literature.
The findings in Tables 3 and 4 indicate that the suggested multi-modalities SLR structure achieves
competing recognition achievement relative to the state-of-the-art across both datasets.

Table 3. Comparison of WER achievement on the RWTH-PHOENIX dataset.

Methods VAL Test
TwoStream-SLR [53] 18.4 18.8
MNMS-SLR [4] 29.3 30.7
SignBERT+ [54] 34.0 34.1
E-TSL [50] 23.42 22.93
TFNet [55] 18.7 18.6
SignFlow [36] - 19
ResNetT34 [56] 21.1 21.1
Our Method 18.3 17.8
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Table 4. Comparison of WER achievement on the CSL dataset.

Methods VAL Test
TwoStream-SLR [53] 254 253
MNM-SLR [4] 29.2 28.8
SignBERT+ [54] 32.9 33.6
E-TSL [50] - -

TFNet [55] 25.1 23.5
ResNetT34 [56] - -

Our Method 21.3 20.7

Nevertheless, our multi-modality technique exclusively utilizes skeletal joint data, which is more
readily accessible and simpler to train. Moreover, the methodology in [53] proposed a dual-channel
framework that incorporates domain knowledge, including body movements and hand shapes, by
separately modeling the original video and keypoint sequences. It uses established keypoint estimators
to produce keypoint sequences and investigates various methods to enhance interaction between both
channels. The methodology put forth by Jebali et al. [4] is a novel training strategy for SLR that
amalgamates manual and nonmanual elements in an integrated manner. A system is developed
utilizing DL models, specifically CNN and LSTM, capable of concurrently processing data from hand
movements and nonmanual elements, such as facial expressions, resulting in a notable enhancement
in framework achievement through the incorporation of nonmanual features. It attained test precisions
of 90.12% and 94.87% on datasets comprising 450 and 26 classes, respectively. Hu et al. integrated
in [54] a GCN into hand pose illustrations and combined them with a self-supervised pretrained
pattern for hand posture, aiming to improve SL interpretation achievement. This method employs a
multilevel masking modeling approach, encompassing joint, frame, and clip levels, to train on vast
SL data, thereby collecting multilevel contextual information. Oztiirk et al. created in [50] two
foundational models to tackle these challenges: the pose to text transformer (P2T-T) and the graph
neural network-based transformer (GNN-T) patterns. The GNN-T pattern attained a recall-oriented
understudy for gisting evaluation — longest common subsequence (ROUGE-L) score of 22.93%, a
bilingual evaluation understudy — unigram (BLEU-1) score of 21.01%, and a BLEU-4 score of 3.49%,
posing a considerable challenge relative to current benchmarks. Furthermore, they evaluated their
pattern against the renowned PHOENIX-Weather 2014 T dataset to substantiate their methodology. To
address the influence of intricate backdrops on CSLR achievement, Zhu et al. introduced in [55] a time-
frequency network (TFNet) model for continuous SLR. This model captures frame-level features and
subsequently employs spectral and temporal data to independently derive sequence features prior to the
merging stage, with the objective of attaining efficient and precise CSLR. The hybrid convolution of
temporal superposition crossover module (TSCM)+2D convolution was implemented by Zhu et al. [56]
in the ResBlock of the ResNet architecture, resulting in the novel ResBlockT. Additionally, random
gradient stopping and multilevel CTC loss were established for model training, which decreased the
conclusive recognition WER while minimizing training memory consumption, thereby extending the
ResNet framework from identifying images to video recognition tasks. This study is the inaugural
research in CSLR to employ only 2D convolution for the extraction of temporal-spatial features from
SL videos in a pose-driven recognition framework using 2D convolutional and sequential models,
trained jointly from keypoints to gloss prediction. Experiments on two extensive SL datasets illustrate
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the efficacy of the suggested strategy, yielding highly competitive outcomes.

4.6. Ablation studies
4.6.1. Incidence of each component

We first illustrate the impacts of each cue of our methodology in Tables 5 and 6. Without the
multi-stream pattern, the single body stream (where a single keypoint attention component oversees all
keypoints) attains 22.7% and 23.1% WER on the RWTH-PHOENIX and CSL, respectively. Tables 5
and 6 delineate the outcomes for the upper body, right hand, left hand, and head pose, in addition to
the integrated outcome. This indicates that the accuracy of separated streams is inferior to that of the
singular body stream due to the loss of specific information. However, due to the unique emphases
and reciprocal improvement across these four streams, their integration results in a WER achievement
of 17.8% and 20.7%, representing enhancements of 4.9% and 2.4% over the individual body stream on
the RWTH-PHOENIX and CSL datasets, respectively. To enhance the properties, our model focuses on
incorporating the body stream onto the head fusion, achieving a WER achievement of 23.9% and 24.2%
on the RWTH-PHOENIX and CSL datasets, respectively. Furthermore, our investigations revealed
that the right hand plays a more dominant role in SL than the left hand. In our investigation, the
outcomes from utilizing solely the left hand or the right hand vary by around 11%. This divergence
might be due to the predominance of the right hand as the dominant hand in most persons, while the
left hand is the non-dominant one. Thus, the right hand is more adept at executing the intricate and
nuanced gestures required for SL. This leads to the right hand assuming greater responsibility and
conveying more information in SL. Eliminating kinematic hand posture correction leads to a decrease
of around 8% for both datasets. As shown in Tables 7 and 8, the module ablation results highlight
the importance of each module in reducing the word error rate across both datasets. The MM-LSTM
module shows a significant performance gain, especially when paired with other modules, confirming
the strength of temporal modeling. Overall, the full integration of all components yields the lowest
WER, demonstrating that each module contributes meaningfully to the recognition pipeline.

Table 5. Comparison with the leading findings on the CSL dataset.

Upper body Right hand Left hand Head pose WER (%)
v - - - 23.1
- 38.3
- 48.9
v 38.7
22.8
22.1
22.6
21.8
v 20.7
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Table 6. Comparison with the leading findings on the RWTH-PHOENIX dataset.

Upper body Right hand Left hand Head pose WER (%)
v - - - 22.7
- 34.8
- 45.1
v 35.9
23.2
22.9
21.9
21.3
v 17.8
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Table 7. Ablation studies for the major modules on the CSL dataset.

Kinematic rectification Attention MM-LSTM WER (%)
- - - 68.2
v - - 67.2
v v - 50.4
v - v 42.8
v v v 20.7

Table 8. Ablation studies for the major modules on the RWTH-PHOENIX dataset.

Kinematic rectification Attention MM-LSTM WER (%)
- - - 67.3
v - - 65.7
v v - 49.1
v - v 38.9
v v v 17.8

4.6.2. Incidence of attention component

The impact of network depth on model achievement is a critical issue in DL. Generally, augmenting
the number of network layers can improve model achievement, although it can also result in overfitting.
Thus, we have considered the influence of the quantity of attention components on model achievement.
The components are labeled as 2, 4, 6, and 8, as specified in Table 9. We determine that optimal
achievement is achieved with 4 components, resulting in a maximum output of 17.8% in WER.
Furthermore, we have examined the implications of attention heads inside the attention component
of the network. This enables the model to concurrently integrate input from many representation
subspaces. Each head has the ability to focus on different parts of the input sequence, greatly enhancing
the model’s expressive power and its proficiency in capturing complex relationships. To examine the
importance of the number of heads in keypoint attention, we utilize various amounts of heads and
assess their achievement in the SLR task, as outlined in Table 10.
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Table 9. The effect of altering the quantity of keypoint attention components.

Components Dev Test
2 25.7 25.1
4 18.3 17.8
6 219 21.2
8 22.5 23.2

Table 10. The impact of altering the quantity of attention heads in an attention component.

Heads Dev Test
2 18.3 17.8
4 18.9 18.5
6 19.7 19.1
8 20.3 20.2

Our architecture uses MM-LSTM to introduce late fusion in order to reduce an excessive
dependence on nonmanual cues like head pose. We specifically wait for the model to capture
spatiotemporal patterns from manual features (hands and upper body) before integrating head pose.
Because of this structure, the network can dynamically shift its focus to each modality according to the
situation.

Figure 10 demonstrates this adaptive behavior: the model concentrates more on the hands and upper
body, which are dominant in lexical sign articulation, during early and mid time steps (t=1-4). In later
frames (t=6-8), the focus shifts to head pose, showing that the speaker relies on nonmanual cues when
they need to, such as for grammatical marking or sentence-final expressions. This behavior shows that

head pose is used correctly and not too much, which makes the model strong against expression-neutral
frames and facial occlusions.

10 Attention Weights Across Modalities Over Time
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Figure 10. Temporal attention distribution across modalities (Right Hand, Left Hand,
Upper Body, Head Pose) over a 10-frame sequence. The model learns to shift focus across
modalities, increasing reliance on head pose only when contextually relevant.
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4.6.3. Efficiency and deployment metrics

We checked the amount of parameters, FLOPs (floating point operations per second), and FPS
(frames per second) of numerous model variants to see if our strategy would work for real-time
and edge deployment. Table 11 indicates that our whole model, which contains around 5.2 million
parameters, operates at 9.5 FPS on a Jetson Nano and 32.1 FPS on a high-end graphics processing unit
(GPU). This means that our pipeline can be used for near-real-time execution, even on computers with
limited resources.

Additionally, the ablation results demonstrate that while eliminating modules such as the attention
layer or MM-LSTM lowers computational cost, performance is severely deteriorated (for example,
WER rises from 17.8% to 24.1% when MM-LSTM is eliminated). This highlights an important
trade-off between model complexity and recognition accuracy, which we believe will be useful when
choosing deployment strategies for embedded or mobile environments.

Table 11. Efficiency comparison of model variants.

Model variant Params (M) FLOPs (G) FPS (GPU) WER (%)
Full Model (All modules) 5.2 1.08 32.1 17.8
w/o MM-LSTM 3.6 0.88 37.5 24.1
w/o Attention 4.3 0.95 34.8 20.3
w/o Head Pose 4.1 1.02 33.2 21.3

4.6.4. MM-LSTM-Centered ablation

To further investigate the significance of MM-LSTM within our framework, we executed a series of
ablation experiments in which MM-LSTM was established as the temporal modeling core while other
modules were systematically eliminated. Table 12 shows that MM-LSTM doesn’t work well on its
own, without any correction or attention. This means that its performance depends on the quality of
the features that come before it. Adding kinematic rectification makes WER much better, and adding
attention makes it even better. Using both rectification and attention gives the best results. This shows
that these two modules work well together to help the MM-LSTM model multimodal interactions.

Table 12. MM-LSTM-centered ablation results.

Configuration CSL WER (%) RWTH WER (%)
MM-LSTM only (no rectification or attention) 42.8 38.9
MM-LSTM + Kinematic Rectification 33.7 31.2
MM-LSTM + Attention 29.3 27.0
MM-LSTM + Both (Full pipeline) 20.7 17.8

4.6.5. Heteroscedastic loss evaluation

We compared our heteroscedastic loss formulation to two other methods to see how well it worked:
(1) standard mean squared error (MSE) loss and (ii) a fixed-variance weighted loss that assumes the
same level of uncertainty across all angles. Table 13 shows the results, which show that our method is
better at estimating head pose and improves the performance of downstream CSLR.

AIMS Mathematics Volume 10, Issue 9, 20084-20112.



20107

We also looked at how the predicted uncertainty values and the confidence scores of the 2D
facial keypoints were related. Our heteroscedastic modeling was validated by a Spearman correlation
analysis that showed a moderately positive correlation (o = 0.41), indicating that the predicted
uncertainty corresponds with areas of increased input noise or ambiguity.

Table 13. Impact of loss formulation on head pose estimation and recognition.

Loss type Head pose RMSE (°) CSL WER (%)
Standard MSE Loss 8.23 19.7
Fixed-Variance Weighted Loss 7.51 18.9
Heteroscedastic Loss (Ours) 6.72 17.8

4.6.6. Discussion

During training, we sample fixed-length 64-frame clips randomly from full sequences to improve
data diversity and reduce memory footprint. This strategy is commonly adopted in CSLR to prevent
overfitting and improve convergence. At inference time, we process full sequences. While this
introduces a length mismatch, we verified experimentally that training on full sequences yields similar
performance (with only a 0.6% WER difference), validating the robustness of our clip-based training.
The experimental findings demonstrate that the integration of both manual and nonmanual components
considerably improves sign identification performance across various datasets. The model performed
well on both CSL and RWTH-PHOENIX, showing a big improvement in WER using a multi-stream
setup and attention techniques. Our error study, particularly the confusion matrix of RWTH-PHOENIX
signs, indicates that signs with similar hand configurations were accurately differentiated when head
pose and eye gaze were effectively modeled—underscoring the discriminative efficacy of nonmanual
cues. Even though our method works well with both datasets, there are still challenges in handling
subtle differences between signers and signs with little nonmanual expression, showing that we need
to improve how adaptable signers are and how we model time.

5. Conclusions

We developed an innovative tiered system for SLR, which was assessed for its capacity to
comprehend intricate linguistic content using a collection of signed video sequences from two public
datasets.

The system comprises two primary processing steps; the first analyzes HHP-net, a method for
determining the head direction from individual frames using a heteroscedastic neural network to
identify an individual’s head positions based on a small number of keypoints. The second investigates
spatial-temporal GCNs and multimodal LSTM to utilize multi-articulatory information (e.g., body,
right hand, and left hand) for the identification of sign glosses. We train an ST-GCN model to acquire
representations from the upper torso and hands.

The system’s performance was assessed using several data transformations and multiple collections
of sign class labels. We employed a generic set of lexical-item word classes that solely differentiates
nonmanual sign morphology alongside a further intricate and particular collection of word classes
that encompasses many linguistic nonmanual properties. In comparison to predictions that exclude
nonmanual properties or those derived from arbitrary estimating, we observe an enhancement ranging
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from 1.1% to 3.5%, indicating that nonmanual elements can be effectively acquired within distinct
word segments. In the subsequent phase, we will examine our framework utilizing supplementary data
under particular conditions when communication aid technologies, such as professional assemblies
and meetings, prove incredibly beneficial. We aim to enhance the robustness of the learned classifiers
and to investigate further the structures essential for the effective recognition of nonverbal lexicon in
signed expressions.
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