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1. Introduction

Difference equations have attracted considerable attention due to their wide range of applications
in modeling real-world phenomena in fields such as biology, economics, engineering, and computer
science. Discrete dynamical systems offer valuable insight into the long-term behavior of processes
that evolve in a stepwise manner over time. In particular, rational difference equations - nonlinear
relations involving ratios of variables - often display complex dynamics such as stability, periodicity,
and bifurcations. Understanding the qualitative behavior of such systems, especially in higher
dimensions, is crucial for both theoretical developments and practical applications, notably in areas
such as algorithm analyses, discrete system modeling, and data processing within computer science.
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Over the past decade, significant attention has been devoted to the study of nonlinear rational
difference equations and their systems, particularly in the context of periodicity, asymptotic behavior,
and global stability. Several researchers have advanced the theory of rational and nonlinear difference
systems. Elsayed and Ibrahim [2] studied periodicity and solutions of nonlinear systems, while
Elsayed analyzed further properties of second-order rational systems in [3, 4]. Gümüş and Soykan [5]
investigated multidimensional systems, and Gümüş later focused on stability [6], periodicity [7], and
delayed systems [8]. Halim and collaborators connected such systems with classical sequences:
Halim, Khelifa, and Berkal [9] used Lucas numbers, Halim and Rabago [10] applied Padovan
numbers, Halim and Bayram [11] employed Fibonacci sequences, Halim [12] studied Fibonacci-type
solutions, and Khelifa and Halim [19] obtained general solution forms. Further contributions include
solvability results via generalized Fibonacci sequences by Hamioud, Dekkar, and Touafek [13], and
the works of Kara and Yazlik, who examined higher-order nonlinear systems [14], variable-coefficient
systems with Touafek and Akrour [15], and Padovan-type solutions in later studies [16, 17]. More
recently, Kaouache, Fečkan, Halim, and Khelifa [18], Touafek [23, 24], and Yazlik with
co-authors [25, 26] extended the theoretical framework of such systems. These studies formed the
foundation upon which the present work builds by considering generalized p-dimensional systems
with power-type nonlinearities and cyclic interactions.

In what follows, we present a more detailed review of the relevant literature and highlight the key
contributions that motivated our work.

In 2000, Papaschinopoulos and Schinas [22] studied a coupled system of second-order rational
difference equations given by the following:

(1)xn+1 = α +
(1)xn−1

(2)xn
, (2)xn+1 = α +

(2)xn−1
(1)xn

, (1.1)

where α is a positive parameter, and the sequences are assumed to be positive. They analyzed basic
qualitative properties such as boundedness and asymptotic behavior.

Later, in 2015, Bao [1] generalized this system by introducing a power-type nonlinearity parameter
q > 0, and investigated the boundedness, oscillation, and local stability of the following system:

(1)xn+1 = α +

(1)xq
n−1

(2)xq
n
, (2)xn+1 = α +

(2)xq
n−1

(1)xq
n
. (1.2)

In 2018, Okumuş and Yüksel [21] extended the investigation to a three-dimensional system that
involved a cyclic interaction between the components. They studied the persistence, periodicity, and
global stability of the following model:



(1)xn+1 = α +
(1)xn−1

(2)xn
,

(2)xn+1 = α +
(2)xn−1

(3)xn
,

(3)xn+1 = α +
(3)xn−1

(1)xn
,

(1.3)

and revealed complex dynamical behaviors depending on the initial values and parameter choices.
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Most recently, in 2025 [27], Zhang et al. studied the oscillation and local stability properties of the
power-type nonlinear extension of the previous three-dimensional model as follows:

(1)xn+1 = α +

(1)xq
n−1

(2)xq
n
,

(2)xn+1 = α +

(2)xq
n−1

(3)xq
n
,

(3)xn+1 = α +

(3)xq
n−1

(1)xq
n
.

(1.4)

In this paper, we aim to generalize the previously studied systems (1.1)–(1.4) to a
higher-dimensional setting. Building upon the results obtained in two- and three-dimensional cases,
we consider a p-dimensional nonlinear rational difference system with cyclic interactions among the
components. Our goal is to analyze the qualitative behavior of solutions, including oscillation,
persistence, and stability properties. This generalization not only extends the scope of existing
models, but also reveals richer dynamics and deeper mathematical structures inherent in
higher-dimensional systems.

More precisely, we study the following p-dimensional nonlinear rational difference system:

(1)xn+1 = α +

(1)xq
n−1

(2)xq
n

(2)xn+1 = α +

(2)xq
n−1

(3)xq
n

...

(p)xn+1 = α +

(p)xq
n−1

(1)xq
n

(1.5)

where α is a nonnegative constant, and ( j)x−1,
( j)x0, j = 1, 2, . . . , p are positive real numbers.

2. Main result

In this section, we investigate the qualitative dynamics of system (1.5), thereby primarily focusing
on the local stability of its unique positive equilibrium, the long-term behavior of its solutions, and
their its oscillatory nature under various conditions. Using linearization techniques and an eigenvalue
analysis of the associated Jacobian matrix, we establish criteria for local asymptotic stability and
instability. Moreover, we examine conditions under which the solutions exhibit oscillatory behavior
or divergence, thereby providing a comprehensive understanding of the global behavior of the system.
The results presented extend previous findings on rational difference systems to a broader
p-dimensional context.

In what follows, we present one of the fundamental results of this paper concerning the qualitative
behavior of the system. Specifically, we establish conditions under which the unique positive
equilibrium point is locally asymptotically stable or unstable. This result plays a central role in
understanding the dynamics of the system and serves as a foundation for the subsequent analysis.

Theorem 2.1. For system (1.5),

(i) Assume that α > 2q − 1; then, the unique positive equilibrium
(

(1)x, (2)x, . . . , (p)x
)

= (α + 1, α +

1, . . . , α + 1) of system (1.5) is locally asymptotically stable.
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(ii) Assume that 0 < α < 2q − 1; then, the unique positive equilibrium is unstable.

Proof. (i) The linearized equation of system (1.5) about the equilibrium point(
(1)x, (2)x, . . . , (p)x

)
is as follows:

Xn+1 = BXn

where Xn = ((1)xn,
(1)xn−1,

(2)xn,
(2)xn−1, . . . ,

(p)xn,
(p)xn−1)t, and B = (bi j), 1 ≤ i, j ≤ 2p is an (2p) ×

(2p) matrix such that

B =



0 q
α+1 −

q
α+1 0 0 . . . . . . 0 0 0 0

1 0 0 0 0 . . . . . . 0 0 0 0
0 0 0 q

α+1 −
q
α+1 . . . . . . 0 0 0 0

0 0 1 0 0 . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 . . . . . . 0 q
α+1 −

q
α+1 0

0 0 0 0 . . .
. . . 0 1 0 0 0

−
q
α+1 0 0 0 . . . . . . 0 0 q

α+1
0 0 0 0 . . . . . . 0 0 1 0



.

Let λ1, λ2, . . . , λ2p denote the eigenvalues of matrix B and let

D = diag(d1, d2, . . . , d2p)

be a diagonal matrix, where d1 = d3 = d5 = · · · = d2p−1 = 1 and dk = d2p = 1 − kε for
k ∈ {1, 2, . . . , p}. Since α > 1, we can take a positive number ε such that

0 < ε <
1

2p

(
1 −

q
α + 1 − q

)
. (2.1)

It is clear that D is an invertible matrix. By computing DBD−1, we obtain the following:

=



0
qd1d−1

2
α+1 −

qd1d−1
3

α+1 0 0 . . . 0 0
d2d−1

1 0 0 0 0 . . . . . . 0 0

0 0 0
qd3d−1

4
α+1 −

qd3d−1
5

α+1 . . . . . . 0 0
0 0 1 0 0 . . . 0 0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 0 0 . . . . . . 0 0

0 0 0 0 . . .
. . . d2p−2d−1

2p−3 0

−
qd2p−1d−1

1
α+1 0 0 0 . . . . . .

qd2p−1d−1
2p

α+1
0 0 0 0 . . . . . . 0


.

One can easily see that
d2d−1

1 < 1, d4d−1
3 < 1, . . . , d2pd−1

2p−1 < 1.

Moreover, based on (2.1), it follows that

qd1d−1
2

α + 1
+

qd1d−1
3

α + 1
=

q
α + 1

(
1 +

1
d2

)
=

q
α + 1

(
1 +

1
1 − 2ε

)
< 1.
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qd3d−1
4

α + 1
+

qd4d−1
5

α + 1
=

q
α + 1

(
1 +

1
d4

)
=

q
α + 1

(
1 +

1
1 − 4ε

)
< 1.

...
qd2p−1d−1

2p

α + 1
+

qd2pd−1
1

α + 1
=

q
α + 1

(
1 +

1
d2p

)
=

q
α + 1

(
1 +

1
1 − 2pε

)
< 1.

It is well known that B shares the same eigenvalues as DBD
−1

; therefore, we have the following:

max |λi| ≤ ‖DBD
−1
‖∞

= max
{

d2d−1
1 , d4d−1

3 , . . . , d2pd−1
2p−1,

q
α+1

(
1 + 1

d2

)
, . . . , q

α+1

(
1 + 1

d2p

) }
< 1.

All eigenvalues of B are located within the unit disk. By applying Theorem 2.4 ( [20]), it follows
that the unique positive equilibrium

(
(1)x, (2)x, . . . , (p)x

)
= (α + 1, α + 1, . . . , α + 1) is locally

asymptotically stable.

(ii) The validity of this statement is supported by the reasoning developed in the proof of (i).
�

Among the core results of this paper, the following theorem plays a crucial role in understanding
the long-term dynamics of the system, thereby providing precise conditions under which the system’s
solutions exhibit alternating behaviors between divergence and convergence. The result emphasizes
the importance of initial values and the influence of the parameter α in shaping the system’s evolution.
Additionally, this theorem demonstrates how specific patterns emerge in the sequence of solutions
under certain assumptions.

Theorem 2.2. Let α ∈ (0, 1), and suppose that
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is a positive solution of (1.5).

Under these conditions, the following results are established:

(i) If
(i)x−1 ∈ (0, 1), (i)x0 ∈

(
1

(1 − α)1/q ,+∞

)
, i = 1, 2, . . . , p, (2.2)

then
lim

n→+∞

(i)x2n = ∞, lim
n→+∞

(i)x2n+1 = α, i = 1, 2, . . . , p.

(ii) If
(i)x−1

(
1

(1 − α)1/q ,+∞

)
, (i)x0 ∈ (0, 1), i = 1, 2, . . . , p, (2.3)

then
lim

n→+∞

(i)x2n = α, lim
n→+∞

(i)x2n+1 = ∞, i = 1, 2, . . . , p.

Proof. (i) Given that α ∈ (0, 1), it follows that (1 − α)2 < 1, and 1/(1 − α) > 1 + α, which, in turn,
implies the following:

α < (i)x1 = α +

(i)xq
−1

(i+1)xq
0

≤ α +
1

(i+1)xq
0

≤ 1, i = 1, 2, . . . , p − 1 (2.4)
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α < (p)x1 = α +

(p)xq
−1

(1)xq
0

≤ α +
1

(1)xq
0

≤ 1. (2.5)

Therefore, (
(1)x1,

(2)x1, . . . ,
(p)x1

)
∈ (α, 1] × (α, 1] × . . . × (α, 1]. (2.6)

Analogously, we obtain the following:

(i)x2 = α +

(i)xq
0

(i+1)xq
1

≥ α + (i)xq
0, i = 1, 2, . . . , p − 1 (2.7)

(p)x2 = α +

(p)xq
0

(1)xq
1

≥ α + (p)xq
0. (2.8)

Moreover, for i = 1, 2, . . . , p − 1,

α < (i)x3 = α +

(i)xq
1

(i+1)xq
2

≤ α +
1

(i+1)xq
2

≤ α +
1

(α + (i+1)xq
0)q
≤ α +

1
α + (i+1)xq

0

≤ α + 1 − α = 1, (2.9)

α < (p)x3 = α +

(p)xq
1

(1)xq
2

≤ α +
1

(1)xq
2

≤ α +
1

(α + (1)xq
0)q
≤ α +

1
α + (1)xq

0

≤ α + 1 − α = 1. (2.10)

Therefore, (
(1)x3,

(2)x3, . . . ,
(p)x3

)
∈ (0, α] × (0, α] × . . . × (0, α]. (2.11)

Likewise, and in the same fashion, one derives the following:

(i)x4 = α +

(i)xq
2

(i+1)xq
3

≥ α + (α + (i)xq
0)q ≥ α + (α + (i)xq

0) = 2α + (i)xq
0, i = 1, 2, . . . , p − 1 (2.12)

(p)x4 = α +

(p)xq
2

(1)xq
3

≥ α + (α + (p)xq
0)q ≥ α + (α + (i)xq

0) = 2α + (p)xq
0. (2.13)

Through mathematical induction, we establish that


(

(1)x2n,
(2)x2n, . . . ,

(p)x2n

)
∈ [nα + (1)xq

0,+∞) × . . . × [nα + (p)xq
0,+∞)(

(1)x2n+1,
(2)x2n+1, . . . ,

(p)x2n+1

)
∈ (α, 1] × (α, 1] × . . . × (α, 1]

. (2.14)

Hence, we conclude that
lim

n→+∞

(i)x2n = ∞, i = 1, 2, . . . , p,

and

lim
n→+∞

(i)x2n+1 = α + lim
n→+∞

(i)xq
2n−1

(i+1)xq
2n

= α, i = 1, 2, . . . , p − 1.

(ii) The proof of (ii) proceeds by analogous techniques to those used in (i); therefore, it is omitted to
avoid redundancy.

�
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The next result investigates the oscillatory nature of the system’s solutions, thereby identifying
conditions under which each component of the solution does not settle to a constant value but instead
fluctuates indefinitely. This behavior provides a deeper insight into the dynamic complexity of the
system. The theorem lays the groundwork for understanding when and how oscillations arise based on
the initial data.

Theorem 2.3. Suppose that
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is a positive solution of (1.5). By assuming that at

least one s ≥ 0, the following conditions are fulfilled:
(i)xs−1 < α + 1 ≤ (i)xs, i = 1, 2, . . . , p, (2.15)

or
(i)xs−1 > α + 1 ≥ (i)xs, i = 1, 2, . . . , p. (2.16)

Then, the solution
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is oscillatory in all of its coordinate components.

Proof. Provided that condition (2.15) is satisfied, it follows that

(i)xs+1 = α +

(i)xq
s−1

(i+1)xq
s
< α + 1, i = 1, 2, . . . , p, (2.17)

(p)xs+1 = α +

(p)xq
s−1

(1)xq
s
< α + 1, (2.18)

and
(i)xs+2 = α +

(i)xq
s

(i+1)xq
s+1

> α + 1, i = 1, 2, . . . , p, (2.19)

(p)xs+2 = α +
(p)xq

s
(1)xq

s+1

> α + 1. (2.20)

From (2.17)–(2.20), it can be concluded that
(p)xs+1 < α + 1 ≤ (p)xs+2, i = 1, 2, . . . , p. (2.21)

Provided that condition (2.16) is satisfied, it follows that

(i)xs+1 = α +

(i)xq
s−1

(i+1)xq
s
> α + 1, i = 1, 2, . . . , p, (2.22)

(p)xs+1 = α +

(p)xq
s−1

(1)xq
s
> α + 1, (2.23)

and
(i)xs+2 = α +

(i)xq
s

(i+1)xq
s+1

< α + 1, i = 1, 2, . . . , p, (2.24)

(p)xs+2 = α +
(p)xq

s
(1)xq

s+1

< α + 1. (2.25)

From (2.22)–(2.25), it can be concluded that
(p)xs+2 < α + 1 < (p)xs+1, i = 1, 2, . . . , p. (2.26)

This implies that the solution
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is oscillatory in all of its coordinate components.

�
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The following theorem provides additional conditions under which the system exhibits oscillatory
behaviors in all components, thereby further illustrating how initial orderings of values can lead to
persistent fluctuations.

Theorem 2.4. Suppose that
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is a positive solution of (1.5). By assuming that at

least one s ≥ 0, the following conditions are fulfilled:

α + 1 < (1)x−1 <
(2)x−1 < . . . <

(p)x−1 <
(1)x0 <

(2)x0 < . . . <
(p)x0, (2.27)

or
α + 1 < (p)x0 <

(p−1)x0 < . . . <
(1)x0 <

(p)x−1 <
(p−1)x−1 < . . . <

(1)x−1. (2.28)

Then, the solution
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is oscillatory in all of its coordinate components.

Proof. Provided that condition (2.27) is satisfied, it follows that

(i)x1 = α +

(i)xq
−1

(i+1)xq
0

< α + 1, i = 1, 2, . . . , p, (2.29)

(p)x1 = α +

(p)xq
−1

(1)xq
0

< α + 1. (2.30)

In view of (2.29) and (2.30), we conclude that

(i)x2 = α +

(i)xq
0

(i+1)xq
1

> α + 1, i = 1, 2, . . . , p, (2.31)

(p)x2 = α +

(p)xq
0

(1)xq
1

> α + 1. (2.32)

Assume that the following statement holds for n = k as the induction hypothesis:

(i)x2k−1 < α + 1, (i)x2k > α + 1, i = 1, 2, . . . , p. (2.33)

Now, for n = k + 1, we obtain

(i)x2(k+1)−1 = α +

(i)xq
2k−1

(i+1)xq
2k

< α + 1, i = 1, 2, . . . , p, (2.34)

and
(i)x2(k+1) = α +

(i)xq
2k

(i+1)xq
2k+1

> α + 1, i = 1, 2, . . . , p. (2.35)

From (2.34) and (2.35), it follows that the solution
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
is oscillatory in all of its

coordinate components.
The theorem can be proven in the same manner to the case where condition (2.28) is satisfied.

�
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This final result establishes the boundedness and persistence of the system’s solutions under a
specific condition on the parameter α, thereby ensuring It ensures that solutions remain positive and
do not diverge.

Persistence is a key concept in the study of dynamical systems because it guarantees that the
variables of interest remain bounded away from zero and infinity over time, which is essential for the
long-term viability and stability of the modeled process. For instance, in biological and ecological
models, persistence implies that populations do not go extinct, while in economic models, it means
that quantities do not collapse or grow without bound.

Definition 2.1. We say that system (1.5) is persistent if there are positive constants m and M such that
every positive solution

(
(1)xn,

(2)xn, . . . ,
(p)xn

)
to the system satisfies the following inequalities:

m ≤ (1)xn ≤ M,

for j = 1, 2, . . . , p and a sufficiently large n.

Theorem 2.5. Let
(

(1)xn,
(2)xn, . . . ,

(p)xn

)
be a positive solution of system (1.5). If αq > 1, then the

solution is bounded and persists.

Proof. From System (1.5), it follows that for all n ≥ 1,

(i)xn ≥ α, i = 1, 2, . . . , p. (2.36)

Moreover, we observe that

(i)xn = α +

(i)xq
n−2

(i+1)xq
n−1

≤ α +

(i)xq
n−2

αq ≤ α +
α

αq +
1
α2q

(i)xq
n−4

≤ α +
α

αq +
α

α2q +
1
α3q

(i)xq
n−6

≤ α +
α

αq +
α

α2q + · · · +
α

α(k−1)q +
1
αkq

(i)xq
n−2k

≤

 αq+1

αq−1 + (i)xq
0, n = 2k

αq+1

αq−1 + (i)xq
−1, n = 2k − 1

. (2.37)

For i = 1, 2, . . . , p,

M = max
{
αq+1

αq − 1
, (i)x0,

(i)x−1

}
. (2.38)

Therefore, based on steps (2.35) to (2.38), we obtain the following:

α ≤ (i)xn ≤ M, n ∈ N, i = 1, 2, . . . , p.

This completes the proof of the Theorem. �

3. Numerical examples

Example 3.1. Utilize system (1.5), where the parameters and initial conditions are chosen as follows:
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• α = 7, p = 10 and q = 3.
• Initial conditions:

(1)x0 = 2.25, (1)x1 = 3.90, (2)x0 = 3.37, (2)x1 = 3.34, (3)x0 = 3.13,
(3)x1 = 2.20, (4)x0 = 2.99, (4)x1 = 3.31, (5)x0 = 1.66, (5)x1 = 2.72,
(6)x0 = 1.67, (6)x1 = 3.32, (7)x0 = 1.56, (7)x1 = 2.76, (8)x0 = 3.66,
(8)x1 = 2.88, (9)x0 = 1.83, (9)x1 = 3.46, (10)x0 = 3.15, (10)x1 = 3.16.

Then, we obtain the following system



(1)xn+1 = 7 +

(1)x3
n−1

(2)x3
n

(2)xn+1 = 7 +

(2)x3
n−1

(3)x3
n

...

(10)xn+1 = 7 +

(10)x3
n−1

(1)x3
n

. (3.1)

Figure 1. Plot of the numerical solution of the system (3.1).

Figure 1 illustrates the numerical solution of system (3.1). According to Theorem (2.1) (i), the
unique positive equilibrium of the system is locally asymptotically stable if α > 2q − 1. In this
case, since 2q − 1 = 5, the condition is exactly met, thus positioning the system at the threshold of
stability. The plotted trajectories demonstrate convergence toward the same positive value from the
distinct initial conditions, thus visually supporting the theoretical result. The behavior seen in the
graph confirms that the equilibrium (i)x = 8, i = 1, 2, . . . , 10 acts as an attractor, which aligns with the
stability condition outlined in Theorem (2.1) .

Example 3.2. Utilize system (1.5), where the parameters and initial conditions are chosen as follows:

• α = 1.5, p = 10 and q = 1.27.
• Initial conditions:
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(1)x−1 = 1.000, (1)x0 = 1.050, (2)x−1 = 1.111, (2)x0 = 1.161, (3)x−1 = 1.222,
(3)x0 = 1.272, (4)x−1 = 1.333, (4)x0 = 1.383, (5)x−1 = 1.444, (5)x0 = 1.494,
(6)x−1 = 1.556, (6)x0 = 1.605, (7)x−1 = 1.667, (7)x0 = 1.716, (8)x−1 = 1.778,
(8)x0 = 1.827, (9)x−1 = 1.889, (9)x0 = 1.938, (10)x−1 = 2.000, (10)x0 = 2.050.

Then, we obtain the following system:

(1)xn+1 = 1.5 +

(1)x1.27
n−1

(2)x1.27
n

(2)xn+1 = 1.5 +

(2)x1.27
n−1

(3)x1.27
n

...

(10)xn+1 = 1.5 +

(10)x1.27
n−1

(1)x1.27
n

. (3.2)

Figure 2. Plot of the numerical solution of the system (3.2).

Figure 2 illustrates the numerical solution of system (3.2), where the parameters are set to α =

1.5 and q = 1.27. According to Theorem (2.1), (ii), the unique positive equilibrium of the system
is unstable when 0 < α < 2q − 1. In this case, since 2q − 1 ≈ 1.54 , the condition 0 < α =

1.5 < 1.54 is satisfied, thus fulfilling the second condition of the theorem. The plot shows that the
solution trajectories diverge from the equilibrium rather than converging, which visually confirms the
theoretical prediction of instability.

Example 3.3. Utilize system (1.5), where the parameters and initial conditions are chosen as follows:

• α = 0.8, p = 10 and q = 1.
• Initial conditions:

(1)x−1 = 1.5, (1)x0 = 1.9, (2)x−1 = 1.6, (2)x0 = 2.0, (3)x−1 = 1.7,
(3)x0 = 2.1, (4)x−1 = 1.4, (4)x0 = 1.95, (5)x−1 = 1.3, (5)x0 = 2.05,
(6)x−1 = 1.2, (6)x0 = 2.2, (7)x−1 = 1.0, (7)x0 = 1.85, (8)x−1 = 1.6,
(8)x0 = 1.95, (9)x−1 = 1.1, (9)x0 = 2.0, (10)x−1 = 1.4, (10)x0 = 2.1.
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Then, we obtain the following system:



(1)xn+1 = 0.8 +
(1)xn−1

(2)xn

(2)xn+1 = 0.8 +
(2)xn−1

(3)xn
...

(10)xn+1 = 0.8 +
(10)xn−1

(1)xn

. (3.3)

0 10 20 30 40 50
n (time step)

0

10

20

30

40

50

x n

(1)xn
(2)xn
(3)xn
(4)xn
(5)xn
(6)xn
(7)xn
(8)xn
(9)xn
(10)xn

Figure 3. Plot of the numerical solution of the system (3.3).

Figure 3 provides a numerical illustration of the solution of system (3.3), where each coordinate
component clearly exhibits oscillatory behavior. The initial conditions applied in this example are
chosen to satisfy all the assumptions stated in Theorem (2.3), particularly those related to continuity
and sign-changing properties. As a result, the theorem guarantees that the solution is oscillatory in all
components. Figure 3, therefore, serves as a concrete numerical validation of Theorem (2.3).

Example 3.4. Utilize system (1.5), where the parameters and initial conditions are chosen as follows:

• α = 2.5, p = 10 and q = 1.7.
• Initial conditions:

(1)x−1 = 3.6, (1)x0 = 4.6, (2)x−1 = 3.7, (2)x0 = 4.7, (3)x−1 = 3.8,
(3)x0 = 4.8, (4)x−1 = 3.9, (4)x0 = 4.9, (5)x−1 = 4.0, (5)x0 = 5.0,
(6)x−1 = 4.1, (6)x0 = 5.1, (7)x−1 = 4.2, (7)x0 = 5.2, (8)x−1 = 4.3,
(8)x0 = 5.3, (9)x−1 = 4.4, (9)x0 = 5.4, (10)x−1 = 4.5, (10)x0 = 5.5.
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Then, we obtain the following system:

(1)xn+1 = 2.5 +

(1)x1.7
n−1

(2)x1.7
n

(2)xn+1 = 2.5 +

(2)x1.7
n−1

(3)x1.7
n

...

(10)xn+1 = 2.5 +

(10)x1.7
n−1

(1)x1.7
n

. (3.4)

Figure 4. Plot of the numerical solution of the system (3.4).

Figure 4 displays the evolution of the system (3.4). The initial conditions were selected to satisfy
the increasing order condition stated in Theorem (2.4), namely the following:

α + 1 < (1)x−1 <
(2)x−1 < . . . <

(p)x−1 <
(1)x0 <

(2)x0 < . . . <
(p)x0.

These inequalities were ensured by carefully choosing strictly increasing initial values for both x(i)
−1

and x(i)
0 , as listed earlier. According to the theorem, such an initial configuration guarantees that the

solution is oscillatory in all coordinate components. The plot confirms this theoretical prediction, as
each sequence (i)xn clearly exhibits an oscillatory behavior over the time interval considered.

4. Conclusions and several open problems

In this paper, we studied a class of p-dimensional rational difference equations characterized by
power-type nonlinearities. Building upon earlier work in lower dimensions, we extended the analysis
to more general systems and established results concerning the boundedness of solutions, the local
asymptotic stability of equilibria, and the rate at which solutions converge to equilibrium. Here, the
theoretical results presented here provide a foundation for the further exploration of high-dimensional
discrete dynamical systems, with potential applications in modeling complex processes across various
scientific and engineering disciplines. Future research may focus on the global behavior, bifurcation
analyses, or the impact of varying the nonlinearity parameter q on the qualitative dynamics of the
system.
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This study presented a generalization of the systems analyzed in [1, 21, 22, 27], thus offering a
broader framework for higher-dimensional cases.

The present findings suggest that this methodology holds significant potential for extension to
systems characterized by arbitrary constant parameters, nonautonomous parameters, or systems that
involve diverse parameters combined with arbitrary exponents. Accordingly, we outline several key
open problems that warrant further investigation by researchers in the field of difference equations.

Open problem 1. Study the dynamical behaviors of the following system of difference equations:

(1)xn+1 = α1 +
(1)xq

n−m
(2)xq

n

(2)xn+1 = α2 +
(2)xq

n−m
(3)xq

n
...

(p)xn+1 = αp +
(p)xq

n−m
(1)xq

n

where αi, i = 1, 2, . . . , p are nonnegative constants, and ( j)x−m,
( j) x−m+1, . . . ,

( j) x−1,
( j) x0, j

= 1, 2, . . . , p are positive real numbers.

Open problem 2. Study the dynamical behaviors of the following system of difference equations:

(1)xn+1 = αn +
(1)xq

n−m
(2)xq

n

(2)xn+1 = αn +
(2)xq

n−m
(3)xq

n
...

(p)xn+1 = αn +
(p)xq

n−m
(1)xq

n

where αn is a sequence (this sequence can be chosen as convergent, periodic or bounded), and
( j)x−m,

( j) x−m+1, . . . ,
( j) x−1,

( j) x0, j = 1, 2, . . . , p are positive real numbers.
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