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Abstract: Rotavirus remains a leading cause of gastroenteritis in children under five in low- and
middle-income countries due to waning immunity and incomplete vaccine coverage. To address this,
we propose a mathematical model to analyze the transmission dynamics with primary and booster
vaccination strategies. The model is formulated using the fractal-fractional derivative in the Caputo-
Fabrizio sense, which allows for the incorporation of memory effects and hereditary properties in
disease evolution. The population is structured into five compartments, including booster-immunized
individuals. We derive the disease-free and endemic equilibrium points and analyze their local
stability. The basic reproduction number is computed to determine the threshold conditions for disease
persistence. We establish the existence and Hyers-Ulam (H-U) stability of the model, and validate
the results through numerical simulations using the Adams-Bashforth method (ABM), confirmed by
comparison with Runge-Kutta 4th Order (RK-4) solution plots to assess the booster vaccination impact.
The results reveal that booster immunization plays a significant role in reducing the infection burden,
thereby highlighting its relevance in public health planning.
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1. Introduction

Rotavirus is one of the primary causes of acute gastroenteritis in infants and young children
worldwide. First identified in 1972 by Bishop and colleagues, the virus is recognized by its
characteristic wheel—like shape under an electron microscope. It causes severe gastrointestinal
symptoms—most notably vomiting and recurrent watery diarrhea-which can lead to life-threatening
dehydration, especially among children under five years of age [1,2]. Nearly 95% of children globally
are estimated to contract rotavirus by the age of three, with the most vulnerable age group being
between four and 36 months [3]. Symptoms typically appear within 48 hours of exposure and can
persist for up to eight days, often including fever, abdominal pain, nausea, and dehydration [4—6].

Rotavirus is primarily transmitted through the fecal-oral route via contaminated hands, surfaces, and
objects; additionally, respiratory secretions may contribute to its spread [7—10]. With an incubation
period of approximately two days [11-13], the disease poses a global health burden that is not
significantly reduced by sanitation alone. Its incidence remains comparable in both developed and
developing countries, thus emphasizing the importance of immunization. In response, the World Health
Organization (WHO) recommended the inclusion of rotavirus vaccines in all national immunization
programs as early as June 2009 [14].

Mathematical modeling has become an indispensable tool [15—17]. These models allow researchers
to analyze the disease dynamics, forecast outbreaks, and evaluate the impact of various interventions.
Modeling complex biological processes has become increasingly tractable with the advancement of
computational tools. Several studies have focused on rotavirus transmission. For instance, [18]
analyzed the combined effects of breastfeeding and vaccinations, while others proposed optimal control
strategies, identified risk factors, and evaluated alternative treatment pathways [19, 20].

To enhance biological realism, some models have introduced vaccinated compartments. In [29], the
following classical integer-order model was proposed to incorporate vaccinations:

S =1-10+pV(E)—[qlt) + (+ ]S,

V(t) = 10+ {S (1) = [sql (1) + (p + N] V (D),

1) = [gS () + sqV(t) — (A + 6 + )] I(1), (1.1)
R(t) = §1(t) — rR(?),

S0)=So, V(O =Vo, I100) =1, RO =R.

The parameter definitions for this model are listed in Table 1. Building on this framework, Eiman et
al. [30] extended the system using a fractional-order approach, analyzed the existence and uniqueness
of the solutions, and explored its qualitative behavior on subintervals of time.

In recent years, fractional-order and fractal-fractional differential equations have gained traction
in biological modeling due to their ability to capture memory and hereditary effects [21, 23, 25]. In
particular, the Caputo-Fabrizio (CF) derivative has proven effective in modeling short-term memory in
biological processes, thereby utilizing its non-singular exponential kernel. Recent applications include
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hepatitis B treatment modeling [26] and the analysis of impulsive systems in Banach space using CF
and Atangana-Baleanu derivatives [28].

Despite the global rollout of rotavirus vaccines, periodic outbreaks continue to occur, often due to
waning immunity and limited coverage. A typical rotavirus outbreak lasts between 4-6 weeks [27].
These challenges are especially prevalent in low- and middle-income countries. As a response, several
health authorities now recommend booster doses to prolong protection [31-34]. However, the long-
term epidemiological effects of booster vaccinations remain poorly understood-particularly in the
context of immune memory and time-varying transmission dynamics.

Traditional integer-order models often lack the flexibility to represent such complexities. Therefore,
there is a growing need for advanced modeling approaches that incorporate both temporal memory
and population heterogeneity. In this study, we propose a novel rotavirus transmission model using
the fractal-fractional Caputo-Fabrizio derivative (FFCFD). This framework allows us to examine the
influence of memory effects and booster vaccination strategies on disease dynamics. Our goal is to
assess the long-term role of booster doses in suppressing outbreaks and to offer quantitative insights
that can guide immunization policies.

The remainder of the paper is organized as follows: In Section 2, we present the mathematical
formulation of the proposed model; Section 3 addresses the basic mathematical analysis, including
equilibrium points, the basic reproduction number, and a stability analysis; Section 4 lays the
foundation with essential definitions and preliminary findings; Section 5 explores the existence of
solutions, thus providing a critical framework for the analysis; Section 6 investigates the stability of
the solutions; a numerical scheme is demonstrated in Section 7, which details the computation of
the numerical solutions; in Section 8, these solutions are simulated and visualized, accompanied by
detailed discussion and interpretation, thus yielding critical insights into the underlying dynamics; and
finally, Section 9 summarizes the major findings.

2. Model formulation

In this section, we formulate our proposed model by introducing a booster vaccination class in the
model studied in [29,30] to evaluate its long-term role in disease suppression and provide quantitative
insights to optimize immunization policies. We propose the following system of differential equations
(DEs) governed by the FFCF operator to model the transmission dynamics of a disease with booster
vaccination:

PrErDres iy = (1 =08 + pV(1) = [g1(1) + (£ + NIS (),

FECDIAV(E) = 10+ £5 () = (59l(@) + (p + r 4 1 )V(D),

FECE DA (1) = (qS ) + sqV () + )(qB(t))I(t) — (L +6+ DI, @.1)
FFCEDIEAR(t) = 61(t) — rR(1),

FECE D) = V() - (xal0) + r)BO),

with the initial conditions:

S0)=Sy, VO)=Vy,, 100 =1, R®O) =Ry, B@O)=DBy.
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In the proposed model, the notion ¥ Dt

briefly described below.

denotes the FFCF differential operator. The model is

2.1. Model’s description

In the formulated model, the total population N at any given time ¢ is divided into five compartments:
susceptible (S), infected with rotavirus (/), vaccinated (V), recovered (R), and who received booster
doses, namely SVIRB. Owing to the short incubation period of rotavirus, the model assumes that
individuals exposed to the virus move directly to the infectious stage with certainty, thereby omitting
an explicit exposed class. Individuals recovering from infection join the R compartment at a recovery
rate 9, and exit this class through natural death occurring at a rate r.

Although maternal antibodies acquired through breastfeeding may provide some degree of passive
immunity against rotavirus [35], the model incorporates active immunization both at birth and among
susceptible individuals. The inflow into the susceptible class is given by (1 — 7)0, while the vaccinated
class receives new individuals at the rate 76, thus reflecting immunization at birth. In addition,
susceptible individuals can be vaccinated at a rate S, but immunity from vaccination wanes over
time at a rate p. The parameter ¢, with 0 < ¢ < 1, captures the reduction in infection risk due to
vaccination.

Disease-induced mortality is accounted for by the parameter A, and recovery from infection occurs
at a rate 6. Disease transmission follows a mass-action incidence form, represented as ¢S/, where
g signifies the effective transmission rate per contact. Furthermore, individuals transition from the
vaccinated group to the booster class at a rate nV. This booster class experiences a reduction due to
infection, which occurs at a rate ygl B, as well as through natural deaths, which is modeled by rB.

2.2. Parameter descriptions

The values of the parameters used in the model are listed in Table 1. These values were selected to
observe the qualitative behavior of the system under various fractal-fractional orders. No real-world
data fitting or statistical estimation was performed.

Table 1. Parameters and their description.

Parameters Definition Parameters values | Reference
N Total population 1000 Assumed
0 The rate at which new individuals enter the population 0.04109 day™! Assumed
T The entry rate of individuals through vaccination 0.01884 people day~! | Assumed
r Natural mortality rate 0.00003653 day ™! Assumed
A Disease-induced death rate 0.00004466 day™! [29]

q The transmission rate of infection 0.001599 day~! Assumed
0 The rate of recovery from infection 0.1667 day~! Assumed
S Proportionate reduction in infection risk 0.01 day™! [29]

p The rate at which vaccinated individuals lose immunity 0.002778 day™! [29]

e Vaccination rate 0.01884 day~! Assumed
n Booster vaccination rate 0.001 day™! Assumed
X Booster infection risk factor 0.0005 day™! Assumed
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Our work distinguishes itself by (1) incorporating booster immunization as a separate compartment,
and (i1) using the FFCF operator to evaluate long-term memory effects. These additions demonstrate
the novelty and depth of our approach.

3. Equilibrium points and basic reproduction number

In this section, we analyze disease-free equilibrium (DFE) and compute the basic reproduction
number Ry.
At the DFE, there is no infection in the population. Therefore, we set the following:

I,=0, R,=0.
From the model, setting all derivatives to zero yields the following equilibrium equations:
(1-1)0+ pVy —(+1rS; =0,
0+S,—(p+r+n)V, =0,
nVo — xqByl; — rB; =0.
From the third equation, we directly get the following:

%=g%-
Now, solve the first two equations. From the first equation,
g (I-18+ pV;
o L+ '
Substituting this expression for § ; into the second equation yields the following:

(I -1+ pV;

Tir )z(p+r+n)V{)".

70+ (
From this, we obtain the following:

O +rr)+{pVi=p+r+m+nV;.

Solve for Vj:
. 0 +r7)
O+ -Lp

Now, substitute V; into the expressions for S and By, to obtain the following:

_ p({+r7)
0 [(1 o+ (p+r+)(d+r)—¢ p]

l+r

B = no({ + rr)
" rlpr+mC+r—-{p]

So =

2
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Hence, the DFE point is as follows:
EO = (589 VE)F’ 0, 09 BS) ’

with V;j, §§, and Bj as given above.

To find the endemic equilibrium E* = (§*, V*, I*, R*, B*), we set the right-hand sides of the model
system to zero as follows:

0=((1-00+pV' —[qgl"+(+1]S",
0=10+¢S"—(cql" + p+r+n) V",

0=(qS"+s¢qV*" +xqB)I"— (1 + 6+ I, 3.1
0=46I"-rR",

0=nV*—(xql" +r)B".

From the 1st equation,

1 -7)0+ pV*
= u (3.2)
g+ +r
From the 2nd equation,
0+{S*
el __TOHEST (3.3)
sqlI*+p+r+nq
From the 4th equation,
ol
R = . (3.4)
r
From the 5th equation,
V*
B=—1__ (3.5)
xql* +r
Substitute B* in the third equation of the system, we obtain the following:
qS*+ng*+Xq( ):/1+6+r. (3.6)
xql* +r
From (3.2), substitute the expression for S * into (3.6), we obtain the following:
1-1)0+ pV* Vv
—( 00+ p +cgV* + XY A+0+r. (3.7)
gl*+ ¢ +r xql*+r
Let us isolate V* from the above equation:
1-1)0
i =0f *L+gq+ﬂ =A+6+r. (3.8)
g+ +r gl + ¢ +r xql* +r
Solve for V*: 1 g
A+o+r— %
. _ q r
V= qp +oq+ x4qn (3-9)
qgl* + ¢ +r xql* +r
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Now, plug §* from (3.2) into (3.3) as follows:

L (A =D0+pV)

™ I +7+
V= grri+r (3.10)
sqlI*+p+r+ng

Multiply both sides by the denominator, isolate V*, and equate with (3.9). This yields a rational
expression in /*. After algebraic simplification, we obtain the following polynomial:

P(I") = A5(I')? + Ay(I")? + A\ T" + A = 0, (3.11)
where
Ay = xq* [(+ A+ 6+ 1) +6Lq],
Ay = q[({ + A +8+ 1) (p+r+0) +6Lq(p +r+m) +xq"10)]

Ar=qnol(A+6+ (1 - 1) +q(p +r+n)],
Ag=—1n0A+6+r)-1)(p+r+n).
The endemic equilibrium exists if and only if the polynomial P(I*) has at least one positive real root.
This root can be used to compute all remaining equilibrium variables: S*, V*, R*, and B*.

To confirm the existence of positive real roots of the polynomial, we use Descartes’ rule of signs.
We see that

(3.12)

Ay =x@ [+ A+ +71) +¢lq] >0,

Ay = q[({ +A+8+1)(p+r+m) +5lq(p+r+m) +xgn0| > 0,
Ay =gnd[(A+8+ 1 -7)+¢q(p+r+m] >0,
Ag=—n0A+6+r(1-1)(p+r+n) <O0.

(3.13)

Thus, there is one sign change. Hence, by Descartes’ rule of signs [36], the polynomial P(/*) has
exactly one positive real root. Therefore, the system has a unique endemic equilibrium point.

Basic Reproduction Number: Ry :
We use the next generation matrix method to derive R,. From the third equation, we have the following:

dl
E = (qS +ng+)(qB—(/l+5+r))I.

From this equation, we can define the new infection vector as
F =[qS1 + xqBI + ¢qV1],

and the transition terms as
YV =A+6+nr)l.

At the DFE, I = 0, and we use S, V;; as DFE values.

Using Ry = %, we have the following:

g ((1-10+pV; [ n] )
Ry = - =V, 3.14
0 /1+6+r( {+r M 0 ( )
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where
. 0 +r7)

O prranC+n-Lp

The expression for R, determines whether the infection will spread in the population or die out. If
Ry < 1, the DFE point will be asymptotically stable; if Ry > 1, it will be unstable, and the disease will
spread within the population.

In the following figure, we demonstrate the sensitivity analysis of the basic reproduction number R
with respect to the booster vaccination rate 7.

In Figure 1, we see that as i increases, the value of Ry monotonically decreases. This indicates that
a higher booster coverage contributes to a lower transmission potential of the disease. The plot clearly
illustrates that booster vaccination is an effective intervention. By maintaining a moderate-to-high
value of 7, the infection can be significantly suppressed or even eliminated.

25F

15

R0 (Basic Reproduction Number)

o ! T T T
0 0.002 0.004 0.006 0.008 0.01
1 (Booster vaccination rate)

Figure 1. Effect of booster vaccination rate 7 on Ry.

In Figure 2, we demonstrate the sensitivity analysis of the basic reproduction number R, with respect
to the booster transmission risk factor y.

20

18

16r

14 -

12

. . . .
0 0.2 0.4 0.6 0.8 1
x (booster transmission risk)

Figure 2. Effect of booster transmission risk factor y on R,.
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From Figure 2, we observe that the booster transmission risk factor y has a significant impact on Ry.
A higher y implies a lower efficacy of booster immunization in reducing transmission. Similarly, when
x = 0, the booster class does not contribute to transmission. As y — 1, the contribution of the booster
class to transmission significantly increases, thus raising R,. For large values of y, the booster shots
may fail to prevent infection, possibly due to waning immunity or a poorly matched vaccine strain.

To discuss the stability at equilibrium points, we compute the Jacobian matrix as follows.

[0 Oh Of 9K Ofi]

S 9V 9 PR 9B
0h 0h dfh Ofh Of
LD
_|on o s ohs Of
J=1% 5] IR . (3.15)

av IB

8 b L Oh On
y av OR OB
ofs  Ofs Ofs Ofs  Ofs
- aS av ol OR dB -

Compute the partial derivatives as follows:

—r—¢-1Iq p -Sq 0 0
4 —n—r—p-Iqg —-Vgg 0 0

J = Iq Iqg Sqg—-6—-A—-r+Byg+Vgs O Ivqg |. (3.16)
0 0 0 —r 0
0 n Byq 0 —-r—-1Iyq

At the DFE point E, the Jacobian matrix is given by the following:

-(r+9) P =4S o 0 0

4 —(m+r+p) -sqVo 0 0

J(Ey) = 0 0 @So+sqVo+xqBy) —(A+d6+r) 0 O
0 0 0 -r 0

0 n xqBo 0 -r

The third eigenvalue, associated with the infected class , is as follows:
A3 =(qS0+5qVo + xqBo) — (1 +6 + 7).
We may write the equation as follows:

_ (@S0 +6qVo + xqBo)(A + 6 +71)

A3
A+6+71)

—A+0+rN=AU+06+r(Ry—1),

which is negative if and only if Ry < 1.
To analyze the remaining four eigenvalues, we consider the following two submatrices.
The top-left 2 X 2 submatrix for the (S, V) subsystem is as follows:

=+ P
A=l e

The trace and determinant of A are

Tr(A) =-Qr++n+p)<0, det(A) =@+ +r+p)— pl>0,respectively.
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Therefore, both eigenvalues of A have negative real parts.
The bottom-right 2 X 2 submatrix for the (R, B) subsystem is as follows:

D= [_r 0 ] .
n —-r
This is a lower triangular matrix with both diagonal entries equal to —r < 0. Hence, both eigenvalues
of D are —r.

As aresult, all eigenvalues of the Jacobian matrix at the DFE point are negative when Ry < 1, which
implies that E| is locally asymptotically stable under this condition.

4. Materials and methods

In the following section, we present the necessary theoretical background and analytical tools.
These include definitions from fractal-fractional calculus that involve FFCFDs and fractal-fractional
Riemann-Liouville (FFRL) integrals with various kernels.

Definition 4.1. [21] Let Q(u) be a continuous function and fractally differentiable on the interval (a, b)
of order A. Then, its FFCFD derivative of order « with an exponential decay kernel is given by the
following:

M (K)

FFCFDK AQ(,U) Q(y) exp (——(/J y)) dy, M E [0, T], (41)

where 0 < x, A < 1, and M(k) is a normalization function such that M(0) = M(1) = 1.

Definition 4.2. [21] Let Q(w) be a continuous function and fractally differentiable on the interval (a, b)
of order A. Then, its FEFCFD of order « is defined using a power-law kernel as follows:

1 mod
FFCEDAQ (1) = Q —y)7*d 0, T 4.2
(1) -0 J, o O —=y)"dy, wuel0,T], (4.2)
where 0 < k, A <1, and
d Q(u) — Qy)
— Q) = lim ——— 7, 4.3
e ) i 4.3)

Definition 4.3. [21] Let Q € C(0, T); then, the FFRL integral of the function Q(u) with an exponential
decay kernel is given by the following:

A(l - A-1Q) Lambd #
(1-0u*'QG) _ « Lam af T

FFRL yk,A _
0w = =4 M)

4.4)

Definition 4.4. [21] Let Q € C(0, T); then, the FFRL integral of the function Q(u) with a power-law
kernel is given as follows:

FFRLIK’AQ(/,L) — A f'u(u _ y)K—lyA—IQ(y)dy' (45)
') Ja
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Theorem 4.5. (Krasnoselskii’s fixed point theorem) [22] Let (X, ||.||) be a Banach space, and let ‘B be
its nonempty closed convex subset. Let Q| and Q, be the two operators that map ‘B into X such that

e Qix + Q,y whenever x,y € B;
e Qy is a contraction mapping; and

e Q, is a continuous and compact.
Then, there exists z € B such that 7z = Qz + Q,z.

Definition 4.6. [24] The Adams-Bashforth method to numerically solve ordinary differential equations
can be described by the following scheme:

.
Xes1 = Xe+h Z a; f(te—i, Xe-i),
i=1

where x, represents the numerical approximation at time #,, 7 denotes the time step size, f(x, ) is the
given ordinary differential equation, and a; are method-specific coefficients that depend on the order of
the method.

Lemma 4.7. The solution of

DO = (), ke (0,1],
QO0) = Qo
is given by
A t -1 xk—1
QN =Qy+— | *'-x"h(x)dx, teT. (4.6)
I'() Jo
Proof. We omit the proof as it is straightforward. O

5. Existence results of the proposed model

We proceed with the fixed point theory and a functional analysis to examine the existence,
uniqueness, and stability of solutions for the proposed model (2.1).
Let the interval [0, T'] be represented by I; we define a suitable Banach space accordingly as follows:

B=CLRH)XCILR)XxC,R")xC(,R") xC([,R")
equipped with the norm
1] = max {|S )l + [Vl + ()] + IR@)| + B},
S,V,ILR,B € B.

AIMS Mathematics Volume 10, Issue 9, 20025-20049.
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Problem (2.1) can be formulated as follows:

FECEDRAQ(p) = Qi(u, S, V. LR, B),
FFEE DA Q) = Qo (1, S, V. 1, R, B),
DN = Q. S, VLR, B), (5.1)
FFCFDZ’AQ(/J) = Q4(ﬂa Sa ‘/7 Ia Ra B)a
FFEE DA Q) = Qs(u, S, V. 1, R, B).

Its compact form is given by the following:

FFCF 1yk,A _ g(u, Q(u)),
D,u Qu) = {Q(O) = Qo pel (5.2)

where the vector Q(u) = (S, V, I, R, B) denotes the variable with the specific initial condition €, and
the variable function g takes the form:

Qi (1, S,V,I,R,B)
(.S, V,I,R,B)
8, Q) = | Qsu,S,V,LLR,B) |,
Q4. S,V,1,R, B)
Qs(u,S,V,I,R, B)

and
(1 =70+ pV(@)—[ql(t) + ([ +1r]S©®)
gl w0 +250) - (sal )+ (p + 7+ VO f/ ;’
Qu) = Q3 | = (qS () +¢qV(1) +XqB(f))1(t) —A+o+nI) |,Q=| I
S 51(¢) — rR(1) R
Q5 BO
VO - (xal® + By
Lemma 5.1. Problem
A e, O0<k, A<, ifuel0,T],
FFCFD# Q) = { a0) = Oy, (5.3)
has the solution
N A
QG = 0 + BUZOHT G0 KA (T el (5.4)

M(x) M) Jo

Corollary 1. By Lemma 5.1, the solution to the problem (5.2) of the proposed model can be expressed
as follows:
A = e, Q) - kA

U
— Kk—1
Q) = Qo + M0 + M ), Y g, Q)dy, pel (5.5)
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We introduce the operator W : B — B by

_ A —op g, Q) kA (*
W(Q) = Qp + Mo + M Jo YT e, Qy)dy, uel

To obtain the results, we need to take the following necessary assumptions:

(A1) Let there exist some constants say L, > 0 such that for Q, Qe B, we have
1901, Q1) = 81, QI < L = O
(A2) Assume that there exist constants Cy, and M, > 0 such that
lg(u, Q)| < Cel Q)| + M,

Theorem 5.2. If assumptions (A1)—(A;) hold, then problem (5.2) has at least one solution.

Proof. We change (5.2) into a fixed point problem by the following:
Q=WQWw), Qe

We consider a close ball ®y = {Q € B : ||Q]| < 0} with

MgA A-1 K
§ Q] + 375 ((1 — T +T¥)
> — .
1= 355 (1= TA! + %)

We take the operator W as the sum of the two sub operators W; and W, such that

N A = p" g(u, Q)
M(k) ’

WiQ(w) = {Qo

and ’
— & Kk—1

WzQ(/u)—{ M0 fo Y gy, Q(y))dy.

Several steps are involved in accomplishing the proof.
Step 1: W,Q(w) + W, Q(u) € ©y. For u € I, Q € Oy, with (A,), we have the following:

AL — g, Q@) L KA s
M(x) M) Jo

U
¥ gy, Q) dy

W1 (1) + WoQ ()| = ‘Q(llo) +

AL =0 19 Q)] | kA
M) M) Jo

Y 'g, Q(y))dy‘

< Qo +

M,A _ o CA _ .
S|Q0|+M§K)((1—K)TA 1+T)+Mg(K)((1—K)TA '+ T9)0 <0

Hence, W, Q(u) + WrQ(u) € Oy.
Step 2: W, is a contraction.

(5.6)

(5.7)

(5.8)

(5.9)
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Foru e, Q,Q, € O, then

Al = k)it
W21 0) = Wi = max (192a0) = Qatu) + =8 16s. 2 40) = gl Qa4
‘ 5.10
< (1 A(l - K)TA_ng) IIQ Q ” ( )
+ - .
= M(K) 1 2
If1+ % < 1, then W, is a contraction.

Step 3: In this step, we demonstrate the relative compactness of W,. Specifically, we show that W, is
continuous, uniformly bounded on ®y, and equi-continuous.

W, is continuous due to the continuity of g(u, Q(u)).

W, is uniformly bounded on @y :

For u € I, Q € ®y, we consider the following:

KA " k—1
IWQ W] = —— | ¥ 180, Q) dy
M(x) Jo
A (5.11)
< (Cqlo1+ Mmy) ol <o
Thus, W, is uniformly bounded on ®y.
Next, we need to establish equi-continuity.
Let u,, up € T with u, < w,. Then,

WL KA M Al KA ‘ A-l

2Q () = W (uo)ll - < M o y Ig(y,Q(y))ldy—W ; Y lg(n, Q(y)l dy
< KA( e amldy - [ g0, )
S fo Y lg(n, Q(y))l dy fo Y lg(r, Q(n)l dy
= ﬁ((ﬂby\ - (:ua)A) (Cge + Mg)

— 0asu, - ug,.

This proves that W, is equi-continuous. Thus, W is relatively compact by the Arzeld-Ascoli theorem,
and its complete continuity is ensured by the aforementioned steps. By Theorem 4.5, it follows that
there is at least one solution for problem (5.2). |

Lg
M(x)

Theorem 5.3. Under assumption (A,) and the condition

(A (1-k)TAM + KTA) < 1, the problem
of model (5.2) has a unique solution.

Proof. For u €1, Q,Q, € By, we have the following:

1—
WO () - WO )| < max[( ) A g @1 (1)) = 001, ()
pel | M(k)
b DA e ) - g () d
M@© J, Y g, Q1(y) — g(y, a(y)ldy
1 —x)L
< max [%M’H 191 (0) — Qa0
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kL, T T
T 20 - (0|
Hence,
IwQ, — Al()(A(l K)TA4-+KTAMKL-QﬂL
(A (1-x)T '+ KTA) < 1, W is a contraction; thus, the solution of model (5.2) is unique.

]
6. Hyers-Ulam (H-U) stability

In this section, we investigate Hyers-Ulam (HU) stability of the proposed problem. H-U stability
ensures the robustness of the system’s solutions under small perturbations, which is crucial in real-
world epidemic modeling due to uncertainties in the data, parameters, or initial conditions. This implies
that the predicted trajectories of infected or immunized individuals remain reliable even under slight
variations, thus supporting the model’s practical applicability in policy planning.

We adopted the following definitions from the manuscript [37].

Definition 6.1. The model prescribed by (5.2) is said to be HU stable if there is a real number ¢ > 0
such that for each € > 0, any solution € B of the inequality

'PFFCFDZ,AQ(IJ) - g(,u,Q(,u))' <€ pel,

and the unique solution Q € B of the model (5.2) satisfy the following inequality:

Hﬁ - QH < ce, uel,

where _ e
M) S (0) (,uS V.,T,R, B)

N V) | V(0) N Qz(u S.V,I,R,B)

Qu =| 1w [.QO)=| T |.wQw)=| &S, V.I,R,B)

R(u) R (0) 94(u S,V,I.R,B)

B(u) B (0) Qs(u,S,V,I,R,B)

Remark 1. Let there exist a small perturbation ¥ € B such that
)Yl <e peliand
(i) D) = g, Q) + (), p e L

A perturbed problem solution is derived by Remark 1 as follows:

{ PFFCFDZ,AQ(/J) = g(u, Q(w)) + P(w),

Q0) = Q) > 0. ©.1

Lemma 6.2. The solution of problem (6.1) that has a perturbation function Y(u) is provided by the
Jollowing:

— — —_ A-1 o) —
Q) = Gy + MU0 B Q)+ 60) | KA (T oo G + WOy, pel (62)
M) Mo Jy
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Proof. The proof can be obtained using Lemma 5.1. O

Theorem 6.3. Under assumption (A,) and the condition ML(gK 5

is H-U stable.

(A (1—-x)TM! + KTA) < 1, model (5.2)

Proof. Let 0,Q € Bbe unique and any solution of models (5.2) and (6.1), respectively. For u €
(u1, T], using (5.5) and (6.2), we have the following:

~ AQ = A~
[ - 2| < =2 [os, D) - g1, Q)| + 7 f 7 |oa, 8G0) — 0, Q)| dy
M(x) M(x) Jo
A = ui! KA f“ _q
— 0 YWl + — T Ywld
M N g J, R
L, Al ANl A(l = )TA! AL
SM(K)(A(I—K)T +x7) [@-0f + o aele
(6.3)
A further simplification implies the following:
A(Q-—)TM! A i
_ A0 | A 7
[a-<f < L< o * i) e. (6.4)
1= (375 (A (1 = ) A +&T™))
This implies that
Hﬁ - QH < Ce,
where
A(-)TM! A i
B ( o T Mwl )
c= T . (6.5)
I = (35 (A (1= ) TN +&TH))
This proves that model (5.2) is H-U stable. O

7. Numerical solution of (2.1)

In this section, we aim to find a numerical solution for model (5.2) under FFCFDs. To develop the
numerical scheme for the proposed model, we use the extended Adams-Bashforth method (ABM) with
piecewise Lagrange interpolation as used in [38]. To proceed, we first write the model in the following

form:
DS () = A, S, V. LR, B),

LDV = AptT Q. S, V. LR, B),
D) = A Q3w S, V, LR, B), (7.1)
““DiR(u) = Apt ' Qu(u, S, V. LR, B),
“CDB(u) = At ' Qs(u, S, V.1, R, B).

AIMS Mathematics Volume 10, Issue 9, 20025-20049.



20041

Applying the Caputo Fabrizio fractional integral to the system of Eq (7.1), we get the following:

Al = p*"'Qy(u, S, V,1,R, B) e
S =850+ 0,0, S,V,I,R, B)dy,
0) Mo M@© J, YTy )dy
Al = u*'Q3(u, S, V, IR, B) e
V=V(@0) + 500, S, V, IR, B)dy,
(0) o TR )dy
Al = p™ "' Qu(u, S, V, IR, B) o
1 =10)+ “Q4(0,S,V,I,R, B)dy, 7.2
0) Mo M@ J, YTy )dy (7.2)
Al = u*'Qs(u, S, V, 1, R, B) K
R =R(0) + “Qs(y,S,V,I,R, B)dy,
0 M0 M@ J, Y Qs(y )dy
Al = u' Q. S, V, 1, R, B) e
B = B(0) + (v, S,V,I,R, B)dy.
0) Mo M@ J, YTy )dy
At u = p,41, the scheme is given by the following:
A = 'Q(u,, S, V,1L,R, B) KA Ha
S = 5(0) + 4 + “10,(y,S,V.I,R,B)dy, . €l
0) M0 M YTy dy,  p
Al — ' Qs (ua, S, V,I,R,B) kA Ha
Vel = v(0) + “10:(y,S,V,I,R, B)dy, u,€l,
0) + M0 M YT Q5(y dy,  p
Al = b 'y, S, V,ILR,B) kA (M
I = 1(0) + a + “1Q4(y,S,V,I,R,B)dy, €l
0) M) M) YTy dy, p
A = Ou1Qs(u,, S, V, 1L, R, B) KA Ha
R = R(0) + z “10(y,S,V.I,R,B)dy, €l
0) M0 M) YT Qs(y dy,  p
Al - K)/JA_IQQ(/Ja,S, V,I,R, B) kA Ha
B! = B(0 4 <10 I,R,B)d €L
( )+ M(K) + M(K) y Z(y,Sa‘/v D) D) ) y’ lu €
(7.3)
Now, take the difference between the consecutive terms to obtain the following:
—K A-1 » a’ [1’ a’ a’ a A(I—K) A:IQ o ’Safl’vafl’lafl’Rafl’Bufl)
Sa+1 — S(O) + A0y ;ZIA(}/;(S — B) = e M(k)
K a+1 K
+M€() IQI()’, S V I R B)d)’, Mas Ha+1 € H’
—K . a’ (1, a’ a7 a A(l—K) [/1\—_]9~ o ,Sa_I,V“_I,]a_l,Rﬂ_I,Ba_l)
Va+] V(O) + ad )ﬂa I?}A(I/;(;j LR V) S M(x)
K a+1 K
M8<) 1Q3(y S VI R B)dya HMas Ha+1 € I[’
AU Q0. SV RUBY — A1=0)d Qa(pta-1. S Ve 1 R B
gt = 1O+ 7= o W (7.4)
MK(K) YU, S, V,I,R, BYdy, g a1 €1,
KAl aagaaa A(lK) Q o SalvallalRalBal)
Ra+1 R(O) + Al fiﬁ(l/;(s e L M(k)
K a+1 K
Ma) IQS()’,S V I R B)dy, Mas Hav1 € L
% ” a’ a’ a’ u, A(l K) Q a— Sa lva lla lRa lBa 1)
st _ B(0) + A= b :221?;(:; V4IRIBY A Qo lM(K)
K. a+1 K
MS() IQ (y S VI R B)dy, HMa> Ha+1 € L
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Integrating, and employing a Lagrangian interpolation to approximate the kernels leads to the
following:

S(0) + AU=Rph Q) (g S VICRYBY  AL=KpN T Q1 (a1, S Ve 1L R B
M(x) M(x)
1 — — — - —
ga+tl — A/z[\(/f();(Aﬂ)ﬂé\ IQI(ﬂa’Sa Ve, 4 R, B%) — A//[\(I;(()(Azﬂ) Qllgl(ﬂa—l»sa I’Va I’Ia I’Ra I’Ba 1)’
Mas Ha-1 € L
V(0) + A(=K)pb ' Q3 (ug, S,V 1,R, BY) A(l—K)#aAfllﬂs(ﬂa—l,Sa_l,Va_l,l"_l,R“_l,B“_l)
M(x) M(x)
1
yarl = A}\(/;)g(Aﬂ)ﬂ;\ IQ3(l1a,Sa Ve [¢ R4, Ba)_ A/;\(I;)(Azﬂ) ;\1193("1“ 1,54 1 , Ve 1 Nia 1 R 1 , B 1),
Mas Ha-1 € I[a
A=Kl ™ Qy (g, S, V414 R,BY  A(l— U Qy (a1, 8471 Vet o1 Re-1 paty
a+1 I(O) N Mt (Ap) M
I = 433 A ™ Qu s S VT R BY = 505 G0 Quptmr, S Vel 17 R, BT,
HMa> Ma-1 € I[,
RO0) + A=A Q5 (g SV IO RBY A=Kl Qs (ua-1.8 7 Ve 1L R B )
M(x) M)
1 - - - — -
R+l = A/;\(I;);(A/’l)ﬂg IQS(/'la’Sa Ve [¢, R4, Ba)_ A//]\(I](()(Azll)ﬂ;\ IIQS(,UQ_I’SLJ l’va 1’Ia I,Ra l’Ba 1)’
Has Ma-1 € L
B(O) + AU=ud ' (g S VAIRUBY  AU=0ud T Qo (pa-1.57 Ve 1L RLBYT)
M(x) M(x)
1 _ — — — — -
Bl = A,/[\(’;);(Aﬂ)ﬂiz\ 1QZ(ﬂaaSa Va Ia R¢ Ba)_ A//[\(I;)(Az/l)“il\ ]1QZ(IJa—1’Sa l’Va 1’Ia l’Ra l’Ba 1)’
Has Ma-1 € L.

(7.5)
This iteration scheme gives the numerical solution of the proposed mathematical model.

8. Simulations and discussion

In this section, using the parameters values in Table 1 and the initial conditions S(0)=850, V(0)=50,
1(0)=50, R(0)=40, and B(0)=10, we simulate the numerical results under fractional-order and fractal-
dimensional variations to observe the dynamics of different compartments of the proposed SVIRB
model. The simulations were performed using MATLAB R2023a.

To confirm the reliability of the proposed numerical method, we compare it with the Runge-Kutta
4th Order (RK-4) numerical method.

In Figure 3, we observe that the results of our simulations reveal a strong agreement between the
numerical solutions obtained using the ABM method and the classical RK-4 approach under integer-
order derivatives. Hence, the ABM method is well behaved. Previous investigations such as [39]
have similarly demonstrated the accuracy of the ABM method to solve the initial value problems, thus
supporting its application in the current context. Then, we proceeded to examine the effects of varying
the fractional order and fractal dimension independently. These parameters serve to represent key
epidemiological features in the model: The fractional order is associated with the memory or history-
dependence of disease transmission and immunity, while the fractal dimension characterizes structural
heterogeneity within the population, such as differences in social contact patterns, access to healthcare,
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or vaccine coverage.

1000

800 | 1
700 H 1

600 1
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500 = = =S-RK4|
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400 - = —V-RK4

Population

| - RK4
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100 B

0 100 200 300 400 500 600 700
Time in days

Figure 3. Solution plots of rotavirus-SVIRB model by RK-4 and ABM numerical methods.

In Figure 4, we investigate how changes in the fractional order influence the disease dynamics
while keeping the fractal dimension fixed. This allows us to isolate the impact of memory effects. The
evolution of the susceptible population (sub-figure 4a) shows a decrease as individuals either receive
vaccinations or become infected. Higher values of the fractional order lead to a more rapid stabilization
of this class, which indicates a quicker transition of individuals due to weaker memory effects. This
behavior aligns with real-life scenarios, where immunity develops swiftly and past exposure has a
limited impact on the present dynamics. Conversely, lower fractional orders reflect stronger memory
effects, which is consistent with populations where immunity either builds up or wanes more gradually.
The dynamics of the vaccinated group (sub-figure 4b) exhibit an initial increase, followed by a decline
as individuals either transition to the booster class or become infected. As the fractional order increases,
this transition occurs more rapidly, thus demonstrating the sensitivity of vaccination dynamics to
memory effects. The infected class (sub-figure 4c) shows a moderate peak and subsequent decline,
which reflects effective disease control through vaccination. Higher fractional orders are associated
with quicker containment, which could represent efficient immunization campaigns. Similarly, the
recovered class (sub-figure 4d) steadily rises, and its growth rate improves with an increasing fractional
order, thus highlighting more effective recovery dynamics. In sub-figure 4e, the booster-immunized
population increases due to transitions from the vaccinated class. However, the growth rate slows
down over time due to reinfection risks, which are particularly governed by the booster infection
factor. These dynamics suggest that the fractional order can model immune memory and the timing of
immunity waning or reactivation. Figure 5 focuses on the impact of varying the fractal dimension while
keeping the fractional order constant. This isolates the effect of population heterogeneity and spatial
complexity on the disease spread. The results show that different values of the fractal dimension lead
to distinct dynamics in all compartments, even with identical vaccination strategies. This suggests that
local differences in contact patterns, healthcare accessibility, and booster coverage can significantly
influence the disease outcomes. Such findings reflect real-world observations where rural and urban
populations respond differently to the same immunization policy due to structural disparities. The
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results underscore the importance of incorporating booster vaccination strategies and region-specific
planning in public health programs. Additionally, they highlight the limitations of conventional models
that ignore these complexities. By using a fractal-fractional approach, our model offers a more
nuanced view of disease evolution and can serve as a useful tool to design and optimize vaccination
interventions.

Susceptible class (S)
Vaccinated class (V)

200
40
100 100

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0
Time in days Time in days 0 50 100 150 200 250 300
Time in days

(a) Effect of « on class S. (b) Effect of x on class V. (¢) Effect of k on class I.
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@

300 14
200

100

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time in days Time in days

(d) Effect of x on class R. (e) Effect of x on class B.

Figure 4. Impact of fractional order derivative on the dynamical behavior of rotavirus-
SVIRB model.
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Figure 5. Impact of fractal dimension on the dynamical behavior of rotavirus-SVIRB model.

9. Conclusions

In this work, we developed and analyzed a fractal-fractional mathematical model for rotavirus
transmission that incorporates both primary and booster vaccination strategies. By employing the
Caputo-Fabrizio derivative, the model successfully captured the memory-dependent and non-local
nature of disease dynamics. The analysis of equilibrium points, supported by the computation of
the basic reproduction number, provided critical insights into the conditions under which the disease
can be eradicated or persist.

The simulation results demonstrate that variations in the fractional order and fractal dimension
notably affect the timing, peak intensity, and transient dynamics of rotavirus spread. Although
the overall number of infections remains comparable, these subtle yet impactful differences can be
critical from a public health standpoint. Specifically, shifts in the outbreak timing can be influential
when healthcare systems experience a peak load, and when preventive measures such as vaccination
campaigns, awareness drives, or lockdowns should be implemented. The inclusion of fractional
derivatives introduces memory effects, thereby accounting for the influence of past states on the present
dynamics, which is a feature absent in classical models.

In the present study, the model parameters were selected to observe the qualitative behavior of
the system under various fractal-fractional orders. No data fitting was performed. As a direction for
future work, the model can be calibrated against real epidemiological data using parameter estimation
techniques. This would allow for an improved accuracy in forecasting an disease dynamics, evaluating
intervention strategies (e.g., booster dose effectiveness), and enhancing the model’s applicability to
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real-world public health planning.
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