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Abstract: This paper presents a detailed procedure for deriving a Binet’s type formula for the
Tribonacci sequence {Tn}. We examine the limiting distribution of a Markov chain that encapsulates
the entire sequence {Tn}, offering insights into its asymptotic behavior. An approximation of Tn is
provided using two distinct probabilistic approaches. Furthermore, we study random sequences of the
form {Z0,Z1,Z2,Zn = Zn−3 + Zn−2 + Zn−1, n = 3, . . .}, referred to as the Tribonacci sequence of Random
Variables. These sequences, fully defined by their initial random variables, are analyzed in terms of
their distributional and limiting properties.
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1. Introduction and main results

One of the most famous series of numbers in number theory is the Fibonacci sequence {Fn}. This
sequence, comprised of integer values, was first introduced by Leonardo Fibonacci and defined by a
recurrence procedure as

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn, (1.1)

for all n ≥ 0. Moreover, through countless examples, this sequence illustrates the connection between
mathematics and nature. To this end, researchers have studied many generalizations of this sequence
through either:

(1) By preserving the original recurrence relation while modifying the initial terms: for example
F0 = F1 = 2 [1] or F0 = 2 and F1 = 1 [2].

(2) By maintaining the initial terms while introducing slight modification to the recursive relation:
One can cite the k-Fibonacci numbers defined by Falcon and Plaza [3, 4]. For any positive real
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number k, the k-Fibonacci sequence is defined recurrently by

Fk,0 = 0, Fk,1 = 1 and Fk,n+2 = kFk,n+1 + Fk,n,

which was intensively studied (see, for instance, [5–7]). One can also consult [8–10] when Fn+2 =

Fn+1 + 2Fn.
(3) By changing the initial terms and introducing a modification to the recursive relation. For

example, one can consider the relation.
Fn+2 = aFn+1 − bFn, for any initial terms [11] or the k-bonacci sequence when each therm is the
sum of k previous terms [12] (see also [13, 14]).

The enduring fascination with the Fibonacci sequence {Fn} has prompted continuous scholarly
investigation into its inherent properties and practical applications. Furthermore, Makover in [15]
stands out for shedding light on the exponential growth of {Fn}n≥0 with respect to the golden ratio
ϕ = (1 +

√
5)/2 = 1.61803398 . . . . The pivotal property of the Fibonacci-like sequence is encapsulated

by Binet’s formula: calculating the general terms of the sequence

Fn =
ϕn − σn

ϕ − σ
, (1.2)

where σ and ϕ are roots of the characteristic equation x2 = x + 1 associated with the recurrence
relation (1.1).

In the present work, we focus on one of the most important generalizations of the Fibonacci
sequence, the Tribonacci sequence denoted by {Tn}n≥0 and defined asTn+2 = Tn+1 + Tn + Tn−1, f or n ≥ 1,

T0 = T1 = 1; T2 = 2.
(1.3)

This sequence was originally studied by Feinberg in 1963 as [17], [16]. Since then, numerous authors
have explored its properties, highlighting various interesting aspects such as generating functions,
Binet’s type formulas, and summation formulas. For further details, see, for example, [18–20], as
well as [21–23] for studies specifically on the Tribonacci functions. For different initial values, we
construct different Tribonacci sequences. In particular, the standard one is considered when T0 = 0
and T1 = T2 = 1, whereas the Tribonacci−Lucas sequence is given for T0 = 3, T1 = 1, and T2 = 3 [24].
Hence, the initial numbers of the Tribonacci sequence are intrinsic to establishing some properties, such
as Binet’s type formulas. In [25], with arbitrary initial values, the author gives a complete discussion,
on Binet’s formula, where he showed that

Tn =
aφn−1

θ
+

aα cos[(n − 1)γπ + π + ω3]

θ
√
φn−1

+
(c − b)φn

θ
+

(c − b)α cos[nγπ + π + ω3]
θ
√
φn

+
bφn+1

θ
+

bα cos[(n + 1)γπ + π + ω3]

θ
√
φn+1

,
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where (T0,T1,T2) = (a, b, c), φ = 1.839286 is the real solution of the equation x3 − x2 − x − 1 = 0,
γπ = arccos

(
(1−φ)

√
φ

2

)
= 24.688997 . . ., θ = 5.470354 . . ., α = 3.857689 . . . and ω3 is the phase shift

introduced in order to verify initial conditions. Moreover, one can use a probabilistic approach to
study this recursive sequence [26] (see also [27] in the case of the Fibonacci sequence), to prove the
asymptotic behavior of {ξn := Tn+1

Tn
}n. We consider a Markov chain {Xi}i≥1 defined as X1 = X2 = X3 =

0 and Xi ∈ {0, 1, 2} (see transition graph of probabilities in Figure 1). We compute how rapid the
convergence to the limiting distribution is, by establishing an exact formula for P(Xn+1 = i) for all
i = 0, 1, 2, which allows us to deduce a Binet’s type formula. Let

x1 = −(p + q)/2 − i

√
4q − (p + q)2

2
and x2 = x1,

the conjugate of x1, where p is the unique solution of x+
√

x(x+1)−1 = 0 and q = p
√

p. In Section 2,
we will prove that x1 and x2 are the roots of the characteristic polynomial PA of an appropriately chosen
matrix A, which is essential for proving Binet’s type formula. We set

δ0 =
1 − x2

(x2 − x1)(1 + p + 2q)
, δ1 = (px1 + q)δ0 and δ2 = qδ0. (1.4)

Our first main result is the following, which will be proved in Section 2.

0start

2

1

1-p-q p

q

1

1

Figure 1. Transition graph of probabilities.

Theorem 1. Let {Tn} be the Tribonacci sequence defined by (1.3). Then, for all n ≥ 0,

Tn =
1

1 + p + 2q

( 1
√

p

)n
+ ∆1

( x1
√

p

)n
+ ∆1

( x1
√

p

)n

,

where ∆1 =
(√

pδ0 x1 + δ1 x2
q

)
.

Let φ, β and β̄ defined as

φ = 1.839286 and β = −0.419643 + i0.606290, (1.5)

the roots of the equation x3 − x2 − x − 1 = 0, where β and β̄ are conjugate. One can get a simplified
version of Binet’s type formula from Theorem 1.
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Corollary 1. For n ≥ 0,

Tn =
ββ − (β + β) + 2

(φ − β)(φ − β)
φn +

φβ − (φ + β) + 2

(β − φ)(β − β)
βn +

φβ − (φ + β) + 2

(β − φ)(β − β)
β

n
.

One of the most well-known properties of the Fibonacci sequence is the identity
∑n

k=0 Fk = Fn+2−1.
In [28], the authors extended this concept to prove that

n∑
k=0

Tk =
Tn + Tn+2 − 1

2
,

where T0 = 0 and T1 = T2 = 1. A similar result will be explored in Section 4 to analyze the Tribonacci
sequence of random variables (TSRV). Let (Ω,A,P) be a probability space, and let E be the expectation
with respect to P. We define Z0,Z1, and Z2 be absolutely continuous random variables, with joint
probability density function (pdf) f(Z0,Z1,Z2). For n ≥ 3, we define

Zn = Zn−1 + Zn−2 + Zn−3. (1.6)

Denote by fZ0 , fZ1 , and fZ2 the marginal pdf’s of Z0, Z1, and Z2 respectively; we will give the pdf of
Zn in general setting (Theorem 4). A special and non trivial example, when Zi, i = 0, 1, 2 be mutually
independent and identically distributed (i.i.d.) random variables having exponential distribution with
parameter λ = 1 ( Zi ∼ E(1) ) is given in Example 1.

In Section 3, we will delve into the concept of the color model and its application in obtaining an
approximation of Tn for large values of n. An application of Binet’s type formula proved in Section 2,
we obtain

Tn ∼ α0
√

p−n. (1.7)

Our main result in Section 3 is the following.

Theorem 2. Let {Tn} be the Tribonacci sequence such that T0 = 1, T1 = 1 and T2 = 2. For all n ≥ 3,
one has

Tn = −Tn−1(p +
√

p) − Tn−2
√

p +
√

p−n. (1.8)

In particular, (1.7) holds.

Our study explores how the inherent properties of the model can be leveraged to simplify complex
computations and gain insights into its asymptotic behavior. Our approach is rooted in probabilistic
methods, which offer a robust framework and derive an approximation that accurately reflects the
behavior of Tn as n grows large. This probabilistic perspective not only provides a pathway to
approximate Tn but also facilitates a deeper understanding of the interplay between randomness and
structure within the color model. Moreover, it gives an interesting relation, such as (1.8) and (3.2)
below. First, combining Proposition 1 and (2.3), one has

Tn =
P(An+2)
√

pn+1 =
1 − p − q

(2q + p + 1)
√

pn+1 ∼ α0
1 − p − q
√

pn+1 = α0
√

p−n,

where α0 is defined in (2.1). This implies, in particular, that (1.7) holds.

AIMS Mathematics Volume 10, Issue 5, 11957–11975.



11961

When studying sequences of random variables, it is common to encounter asymptotic (or limit)
theorems. These theorems are often used to approximate the distribution of large-sample statistics
with a limiting distribution, which is typically much simpler to analyze. One of the most well-known
theorems in the field of asymptotic probability theory is the central limit theorem (CLT). It states
that, under certain conditions (independence and same distribution), the distribution of a properly
normalized sample mean converges to a standard normal distribution, even if the original variables are
not normally distributed. In fact, there are various ways in which the CLT can fail, depending on which
hypotheses are violated. In Section 4, we study the asymptotic distribution of the random variables {Zn}.
A crucial observation is that these random variables are neither independent nor identically distributed
(i.i.d.), which introduces additional complexity into their analysis. However, we will establish specific
limit results that shed light on the long-run behavior of {Zn}. These results, presented in Theorem 5,
highlight the asymptotic characteristics of {Zn} Specifically, define

S n =

n∑
k=0

Zn,

and assume that the random variables Z0, Z1, and Z2 are i.i.d. Then, the sequence of random variables

Sn =
S n − E(S n)
√
V(S n)

converges pointwise to S :=
L − E(L)
√
V(L)

,

where L = Z0 + φZ1 + φ2Z2. In particular, when Z0, Z1, and Z2 are normally distributed, then the
sequence {Zn} satisfies the CLT.

2. A probabilistic approach to obtain Binet’s type formula

2.1. Markov chain and preliminaries results

We consider Γ = (X0, X1, . . .), a family of random variables. Then, Γ is called a Markov chain if
the variables (X0, X1, . . . , Xk−1) and (Xk+1, . . . , ) are independent of each other for any given k. Thus,
describing the distribution of Xn−1 for each n allows us to describe the entire Markov chain. We define
the random variables {Xn} by

(1) X1 = X2 = X3 = 0.
(2) P

(
Xi+1 = 0|Xi = 0

)
= 1 − p − q, P

(
Xi+1 = 1|Xi = 0

)
= p, and P

(
Xi+1 = 2|Xi = 0

)
= q.

(3) P
(
Xi+1 = 0|Xi = 1

)
= 1.

(4) P
(
Xi+1 = 1|Xi = 2

)
= 1.

Since the Markov chain {Xn} is aperiodic, meaning that there exists a state with a positive probability
of returning to itself, and irreducible, meaning that it is possible to transition from any state to any other
state with positive probability, it follows that limn→∞ P(Xn = i) exists for i = 0, 1, 2.

Lemma 1. Let, for i = 0, 1, 2, αi = lim
n→∞
P(Xn = i) and p, q ∈ (0, 1) such that 1 − p − q > 0. Then

α0 = 1
2q+1+p

α1 = 1 − α0(q + 1) =
p+q

2q+p+1 .

α2 = 1 − α0 − α1 = α0q =
q

2q+1+p .

(2.1)
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In addition limn→∞ P(An) = (1 − p − q)/(2q + p + 1), where An =
{
Xn+1 = Xn+2 = 0

}
.

Proof. Observe that

P(Xn+1 = 1) = pP(Xn = 0) + P(Xn = 2) = pP(Xn = 0) + 1 − P(Xn = 0) − P(Xn = 1).

Therefore, we have P(Xn+1 = 1) = 1 − (1 − p)P(Xn = 0) − P(Xn = 1)
P(Xn+1 = 0) =

√
qP(Xn = 0) + P(Xn = 1).

(2.2)

Letting n tend to infinity to obtainα1 = 1 − (1 − p)α0 − α1

α0 =
√

qα0 + α1
and then

α0 = 1
2q+1+p

α1 = 1 − α0(q + 1).

Let us consider An =
{
Xn+1 = Xn+2 = 0

}
. It follows that

P(An) = P(Xn+2 = 0|Xn+1 = 0)P(Xn+1 = 0)

=
√

q
(√

qP(Xn = 0) + P(Xn = 1)
)

=
√

q2P(Xn = 0) +
√

qP(Xn = 1).

Then, limn→∞ P(An) exists and depends on p and q. It follows that

lim
n→∞
P(An) =

√
q2α0 +

√
qα1

=

√
q2

2q + p + 1
+
√

q −
√

q(q + 1)
2q + p + 1

=

√
q

2q + p + 1
. (2.3)

�

Lemma 2. Let, An =
{
Xn+1 = Xn+2 = 0

}
. Then,

P(An+3) =
√

pP(An+2) + pP(An+1) + p
√

pP(An), n ≥ 3.

Proof. Notice, for k = 0, 1, . . ., that

P(An+k) = P(Xn+k+2 = 0
∣∣∣Xn+k+1 = 0)P(Xn+k+1 = 0) =

√
p P(Xn+k+1 = 0). (2.4)

Then

P(An+3) =
√

pP(Xn+4 = 0) =
√

p
(√

pP(Xn+3 = 0) + P(Xn+3 = 1)
)

=(2.4) √
p
(
P(An+2) + P(Xn+3 = 1)

)
=

√
p P(An+2) +

√
p
(
pP(Xn+2 = 0) + P(Xn+2 = 2)

)
=(2.4) √

p P(An+2) + pP(An+1) +
√

p p
√

pP(Xn+1 = 0)
=(2.4) √

p P(An+2) + pP(An+1) + p
√

pP(An).

�
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Remark 1. Lemma 2 shows, in particular, that the event An is adequate to study the sequences {Tn}n.
Indeed, for any sequence {Υn}n defined as Υn = α P(An)

√
pn−1 Tribonacci sequence, where α is a positive

integer. Indeed,

Υn+3 = α
P(An+2)
√

pn+1 + α
P(An+1)
√

pn + α
P(An)
√

pn−1 = Υn+2 + Υn+1 + Υn, n ≥ 3

which implies that {Υn}n is Tribonacci sequence.

As a consequence of Lemma 2, one can prove Binet’s type formula. More precisely, we have the
following result:

Proposition 1. Let {Tn} be the Tribonacci sequence defined by (1.3). Then, for all n ≥ 0,

Tn =
P(An+2)
√

pn+1 ,

where p is the unique solution of x +
√

x(x + 1) − 1 = 0 and q = p
√

p.

Proof. We will prove this result by induction. To do this, we calculate the first values of P(An) in
Table 1.

Table 1. Calculation of P(An).

n P(Xn = 0) P(Xn = 1) P(An)

1 1 0 1
2 1 0

√
p

3 1 0 p
4

√
p p 2

√
pp

5 2p 2p
√

p 4p2

Hence, T0 = P(A2)/
√

p = 1 and similarly, T1 = 1, T2 = 2 and T3 = 4. Then, the result follows using
Remark 1. �

2.2. Asymptotic distribution of Xn

In order to compute the general term of the sequence {Tn}n, using Proposition 1 and since

P(An+2) = pP(Xn+2 = 0) +
√

pP(Xn+2 = 1),

it will be useful to introduce the following matrices:

πn =


P(Xn = 0)
P(Xn = 1)
P(Xn = 2)

 and A =


(1 − p − q) 1 0

p 0 1
q 0 0

 ,
where n ≥ 4. Hence, using (2.2), πn+1 = Aπn.

Proposition 2. The only invariant probability measure π of the Markov chain {Xn} defined above is

π = (α0, α1, α2)t,

where vt is the transpose of the vector v.

AIMS Mathematics Volume 10, Issue 5, 11957–11975.
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Proof. To get the invariant probability measure π of the chain, we solve the equation π = Aπ,. However,
for π = (α0, α1, α2)t we obtain 

α0 = (1 − p − q)α0 + α1,

α1 = pα0 + α2,

α2 = qα0,

where, we have used (2.2) and (2.1). Then, we deduce

π =
( 1
2q + 1 + p

,
p + q

2q + 1 + p
,

q
2q + 1 + p

)t

the only invariant measure. �

Let PA (or simply P when no confusion arises) denote the characteristic polynomial of the matrix
A then

PA(x) = det(A − xI) = −(x − 1)
(
x2 + (p + q)x + q

)
= −x3 + (1 − p − q)x2 + px + q.

Let x1 and x2 be the roots of PA distinct from 1, that is:

PA(x) = −(x − 1)(x − x1)(x − x2).

Lemma 3. (1) x1x2 = x1x1 = q.
(2) x2 − x1 = i

√
4q − (p + q)2.

(3) x2
1 = −q + (p + q)i

√
4q − (p + q)2.

(4) x2
2 = −q − (p + q)i

√
4q − (p + q)2.

In this paragraph, we will prove the following result.

Theorem 3. For n ≥ 0, 
P(Xn = 0) = 1

1+p+2q + δ0 xn−1
1 + δ0 xn−1

1 ,

P(Xn = 1) =
p+q

1+p+2q + δ1 xn−3
1 + δ1 xn−3

1 ,

P(Xn = 2) =
q

1+p+2q + δ2 xn−2
1 + δ2 xn−2

1 ,

where δ0, δ1, and δ2 are defined in (1.4).

Proof. A simple calculation proves that the eigenvectors associated with the eigenvalues 1, x1, and x2

respectively are (1, p + q, q)t, (1, px1+q
x2

1
, q

x1
)t and (1, px2+q

x2
2
, q

x2
)t. It follows that

A = P


1 0 0
0 x1 0
0 0 x2

︸           ︷︷           ︸
D

P−1 and An = P


1 0 0
0 x1 0
0 0 x2


n

P−1,

where

P =


1 1 1

(p + q) px1+q
x2

1

px2+q
x2

2

q q
x1

q
x2


AIMS Mathematics Volume 10, Issue 5, 11957–11975.
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and

P−1 =
1

(x2 − x1)(1 + p + 2q)


x2 − x1 x2 − x1 x2 − x1

x2
1(1 − x2) x1(1 − x2) 1 − x2

x2
2(x1 − 1) x2(x1 − 1) x1 − 1


.

Notice, using Lemma 3, that

det(P) =
[ pqx1 + q2

x2
1x2

−
qpx2 + q2

x1x2
2

]
−

[ pq + q2

x2
−

qpx2 + q2

x2
2

]
+

[ pq + q2

x1
−

qpx1 + q2

x2
1

]
= q2 x2 − x1

x2
1x2

2

− q2 x2 − 1
x2

2

+ q2 x1 − 1
x2

1

= x2 − x1 − qx1 + x2
1 + qx2 − x2

2

= i
√

4q − (p + q)2(1 + p + 2q
)
.

Since X1 = X2 = X3 = 0, then πn = An−4π4, for all n ≥ 4, which implies that

πn =
[
PDn−4P−1

]
π4.

It follows that 
P(Xn = 0) = 1

1+p+2q + 1−x2
(x2−x1)(1+p+2q) xn−1

1 + x1−1
(x2−x1)(1+p+2q) xn−1

2 ,

P(Xn = 1) =
p+q

1+p+2q +
(1−x2)(px1+q)

(x2−x1)(1+p+2q) xn−3
1 +

(x1−1)(px2+q)
(x2−x1)(1+p+2q) xn−3

2 ,

P(Xn = 2) =
q

1+p+2q +
q(1−x2)

(x2−x1)(1+p+2q) xn−2
1 +

q(x1−1)
(x2−x1)(1+p+2q) xn−2

2 ,

as required in Theorem 3. �

As a consequence, since |x1| = |x2| =
√

q, we obtain the following result.

Corollary 2. For all n ≥ 4, one has

∣∣∣P(Xn = 0) − α0

∣∣∣ =
2
√
α0√

4q − (p + q)2

√
qn−1,

where α0 is defined by (2.1).

The previous corollary explains the convergence of the Markov chain P(Xn = 0) to α0. Moreover,
the extra term 2

√
α0√

4q−(p+q)2

√
qn−1 tells us exactly how far away the Markov chain is from converging.

2.3. Binet’s type formula related to Tribonacci sequence

Here, we will prove our main result (Theorem 1). Recall the event An introduced in Lemma 2.1; our
result is essentially based on the following relation proved in Proposition 1:

Tn =
P(An+2)
√

pn+1 , (2.5)
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when p is the unique solution of x +
√

x(x + 1) − 1 = 0 and q = p
√

p. Notice that

P(An+2) = pP(Xn+2 = 0) +
√

pP(Xn+2 = 1)

= p
( 1
1 + p + 2q

+ δ0 xn+1
1 + δ0xn+1

1

)
+
√

p
( p + q
1 + p + 2q

+ δ1 xn−1
1 + δ1xn−1

1

)
=

√
p

1 + p + 2q
+

(
pδ0 x1 +

δ1x2

p
)
xn

1 +
(
pδ0 x1 +

δ1x2

p
)
xn

1.

Thus, using (2.5), we have

Tn =
P(An+2)
√

pn+1 =
1

1 + p + 2q

( 1
√

p

)n
+ ∆1

( x1
√

p

)n
+ ∆1

( x1
√

p

)n

,

where
∆1 =

(√
pδ0 x1 +

δ1x2

q
)
.

2.4. Alternative formula: proof of Corollary 1

Recall φ, β and β̄, the roots of the equation x3 − x2 − x − 1 = 0 defined in (1.5). Before giving the
proof of Corollary 1, we start by proving the following lemma.

Lemma 4. Let φ, β and β̄ defined in (1.5). Then

(1) ββ̄ = 1
φ

= φ − 2 and β + β̄ = 1 − φ,
(2) φ = 1/

√
p,

(3) β = x1/
√

p and β̄ = x2/
√

p.

Proof. (1) Since
x3 − x2 − x − 1 = (x − φ)(x2 + (φ − 1)x + φ − 2).

Then β and β̄ are the solutions of x2 + (φ − 1)x + φ − 2 = 0.
(2) Observe that,

φ−2 + φ−1
(
φ−2 + 1

)
=
φ2 + φ + 1

φ3 =
φ3

φ3 = 1.

It follows that φ−2 ∈ (0, 1) is a solution of f (x) = x +
√

x(x + 1) − 1 = 0, which implies that
p = φ−2 = 0.295597 . . . and then q = 0.160713 . . . .

(3) Define t = x1√
p and then t

√
p = x1. Since P(x1) = 0, then we have

P(x1) = −(x1)3 + (1 − p − q)(x1)2 + px1 + q

= −(t
√

p)3 +
√

p(t
√

p)2 + pt
√

p + q

= p
√

p
(
− t3 + t2 + t + 1

)
= 0.

It follows that t is the solution of −x3 + x2 + x + 1 = 0 and t = β. Similarly, if we consider t = x2√
p

then

P(x2) = p
√

p
(
− t3 + t2 + t + 1

)
= 0.

Thus, we deduce that t = β̄.
�
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It follows [25] that the Tribonacci sequence {Tn} can be written as

Tn = aφn + bβn + cβ
n
.

Since we choose T0 = T1 = 1 and T2 = 2, one has
1 = a + b + c,
1 = aφ + bβ + cβ,

2 = aφ2 + bβ2 + cβ
2
.

By inverting the Vandermonde matrix, we obtain the desired result, that is,

Tn =
ββ − (β + β) + 2

(φ − β)(φ − β)
φn +

φβ − (φ + β) + 2

(β − φ)(β − β)
βn +

φβ − (φ + β) + 2

(β − φ)(β − β)
β

n
.

3. Approximation of Tn: color model

In this section, we investigate how the intrinsic properties of the model can be utilized to streamline
complex computations and reveal insights into its asymptotic behavior. Grounded in probabilistic
methods, we will prove Theorem 2, which may give an approximation of Tn as n becomes large.
Let {sn}n≥1 denotes the number of sequences of 1’s, 2’s, and 3’s that sum to n. It is easy to see that
s1 = 1 = T1, s2 = 2 = T2, and s3 = 4 = T3. Additionally, since

sn = sn−3 + sn−2 + sn−1,

we conclude that sn = Tn. Therefore, for n ≥ 4, Tn can be combinatorially interpreted as the number
of ways to tile a board of length n − 1 using tiles of size 1, 2, and 3 cells. To illustrate this, consider
an infinite board with cells labeled 1, 2, 3, . . ., where each cell is independently colored black, white,
or gray with probability 1/3, as shown in Figure 2. Moreover, any coloring of the first n cells has a
probability of (1/3)n.

Figure 2. A random black-white-gray board.

An infinite tiling can be represented as alternating sequences of black, white, and gray cells of
varying lengths. For instance, the tiling shown in Figure 2 consists of a gray sequence of length 3,
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followed by a black sequence of length 2, then another gray sequence of length 3, a white sequence of
length 1, a black sequence of length 2, and so on.

Let the random variable X repre sent the position of the end of the first black string that is not a
multiple of two, or the first gray string that is not a multiple of three. We now ask: For n ≥ 1, what is
the probability that X = n? To answer this, note that X = n occurs if and only if:

(1) Cell n is covered by B (a black cell), and cell n + 1 is covered by B (a white or gray cell), or Cell
n is covered by G (a gray cell), and cell n + 1 is covered by G (a white or black cell), and

(2) cells 1 through n − 1 are covered using any combination of white cells, black double cells, and
gray triple cells.

It follow that

(i) If tile number n is black, we will have Tn−1 ways from 1 to n − 1.
(ii) If tile number n is gray and if the number of tiles has a remainder of 2 when divided by 3, we will

have Tn−2 ways from 1 to n − 2. However, if the number of last gray tiles admits a remainder of 1
when divided by 3, we will have Tn−1 ways from 1 to n − 1.

Proposition 3. Let {Tn} be a Tribonacci sequence defined by (1.3); then
+∞∑
n=1

4Tn−1 + 2Tn−2

3n+1 = 1, (3.1)

where {Tn}n≥0 is naturally extended forward by putting T−1 = 0.

Proof. Let X be the random variable introduced above. Then, for all n ≥ 1, one has

P(X = n) =
Tn−1

3n−1

1
3

2
3

+
Tn−2

3n−2

1
3

1
3

2
3

+
Tn−1

3n−1

1
3

2
3

=
4Tn−1 + 2Tn−2

3n+1 .

Since X is finite with probability 1, this gives a combinatorial explanation of the identity �

Corollary 3. Let {Tn} be a Tribonacci sequence defined by (1.3); then
+∞∑
n=0

14
27

Tn

3n = 1. (3.2)

Now, we tile an infinite board by independently placing cells, double cells, and triple cells with
probability

√
p, p and q = p

√
p. Conveniently, p +

√
p(p + 1) = 1. In this model, the probability that

a tiling begins with any particular length n of cells, double cells and triple cells is
√

pn. Let ςn be the
probability that a random tiling is breakable at cell n, i.e., that a cell or double cell, or triple cell begins
at cell n. The example in Figure 2 is breakable at cells

3, 5, 8, 9, 11, . . . .

Since there are Tn−1 different ways to tile the first n − 1 cells,

ςn = Tn−1
√

pn−1. (3.3)

For a tilling to be unbreakable at n, it must be
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(i) breakable at n − 1 followed by a double cell or triple cell,
(i) breakable at n − 2 followed by a triple cell.

Thus, for n ≥ 3, one has

1 − ςn = ςn−1 p + ςn−1 p
√

p + ςn−2 p
√

p, (3.4)

which implies in particular Theorem 2. Let ς = limn→+∞ ςn. Taking a limit in (3.4) gives

1 − ς = pς + p
√

pς + p
√

pς,

then ς = α0 = 1
1+p+2p

√
p and Tn ∼ α0

√
p−n.

4. Distribution of Tribonacci random variable

In this section we focus on the asymptotic distribution of the TSRV {Zn}, defined by (1.6). As
mentioned above, these random variables are neither independent nor identically distributed. In fact,
unlike classical scenarios where i.i.d. assumptions simplify the derivation of limiting behavior, here we
must account for potential dependencies and non-uniform distributional properties within the sequence.
Our main result will be presented in Theorem 5. We denote, for k = 0, 1, . . .,

µk = E(Zk) and σ2
k = V(Zk),

the expectation and the variance of Zk, respectively. First, observe that one can easily establish the
following two lemmas.

Lemma 5. There exists a Tribonacci sequence {tn}n≥0 with t0 = t1 = t2 = 1 such that

Zn = tn−2Z0 + tn−1Z1 + tnZ2.

In particular, we have µn = tn−2µ0 + tn−1µ1 + tnµ2, and if the random variables Z0, Z1, and Z2 are
independent, then

σ2
n = t2

n−2σ
2
0 + t2

n−1σ
2
1 + t2

nσ
2
2,

for all n ≥ 3.

Lemma 6. Let {tn} be a Tribonacci sequence such that t0 = t1 = t2 = 1, then

n∑
k=0

tk = (tn+2 + tn)/2. (4.1)

Proof. The result is trivial for n = 0, 1 and 2. In addition, assume that (4.1) holds, then

n+1∑
k=0

tk =
tn+2 + tn

2
+ tn+1 =

tn+3 + tn+1

2
.

Thus the result follows by induction. �
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Remark 2. Lemma 6, will be used in the proof of the convergence of the sequence {Sn} defined in
Theorem 5.

Recall that Z0,Z1, and Z2 are absolutely continuous random variables with joint pdf f(Z0,Z1,Z2). In the
following, we will give the pdf of the random variable Zn.

Theorem 4. Let {Zn} be a TSRV defined by (1.6),

(1) The pdf of Zn is given by

fZn(x) =
1

tntn−1tn−2

∫
R2

f(Z0,Z1,Z2)(
t

tn−2
,

u
tn−1

,
x − t − u

tn
)dtdu. (4.2)

Moreover, if Z0, Z1 and Z2 are mutually independent, then

fZn(x) =
1

tntn−1tn−2

∫
R2

fZ0(
t

tn−2
) fZ1(

u
tn−1

) fZ2(
x − t − u

tn
)dtdu, (4.3)

where fZ0 , fZ1 and fZ2 are the marginal pdf’s of Z0, Z1 and Z2 respectively.
(2) The joint pdf of Zn and Zn+k is given by

fZn,Zn+k(y0, y1) = J−1
n,k·∫

R

f(Z0,Z1,Z2)(
y0tn+k−1 − y1tn−1 + y2Jn+1,k

Jn,k
,
−y0tn+k−2 + y1tn−2 − y2(tn+ktn−2 − tntn+k−2)

Jn,k
, y2)dy2,

where
Jn,k := tn+k−1tn−2 − tn−1tn+k−2.

Proof. (1) Equations (4.2) and (4.3) are straightforward results of distributions of linear functions of
random variables (see, for instance, [29–31]).

(2) We can write

fZn,Zn+k(y0, y1) =

∫
R

f(Zn,Zn+k ,Z2)(y0, y1, y2)dy2,

and let 
y0 = tnx2 + tn−1x1 + tn−2x0,

y1 = tn+kx2 + tn+k−1x1 + tn+k−2x0,

y2 = x2.

Notice that, the Jacobian of this linear transformation is Jn,k, and the solution of the previous
system of equations is given by

x0 =
y0tn+k−1−y1tn−1+y2(tn+ktn−1−tntn+k−1)

Jn,k
,

x1 =
−y0tn+k−2+y1tn−2−y2(tn+ktn−2−tntn+k−2)

Jn,k
,

x2 = y2.

Therefore, the joint pdf of Zn and Zn+k is

fZn,Zn+k(y0, y1) =
1

Jn,k

∫
R

f(Z0,Z1,Z2)

( x0

Jn,k
,

x1

Jn,k
, y2

)
dy2.

�
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Remark 3. Notice, with respect to squared error loss, the best unbiased predictor of Zn+k, given Zn, is

E(Zn+k|Zn) = g(Zn),

where g(x) provides the conditional expectation of Zn+k given Zn = x; that is,

g(x) = E(Zn+k|Zn = x) =
1

fZn(x)

∫
R

y fZn,Zn+k(x, y)dy.

Hence, Theorem 4 offers a way to obtain a good approximation of Zn, as we can see in the following
example.

Example 1. In this example, we will consider the case when the random variables Z0, Z1, and Z2

are i.i.d. with exponential distribution with parameter 1 (E(1)). Under the above notation we have
fZ3(x) = x2

2 exp(−x)I{x≥0} and for all n ≥ 4,

fZn(x) =
( tn−2 exp(− x

tn−2
)

(tn−2 − tn)(tn−2 − tn−1)
+

tn−1 exp(− x
tn−1

)

(tn−1 − tn)(tn−1 − tn−2)
+

tn exp(− x
tn

)

(tn − tn−2)(tn − tn−1)

)
I{x≥0}.

Choose n = 3 and k = 4, so that t0 = t1 = t2 = 1, t3 = 3, t4 = 5, t5 = 9, t6 = 17, and tn+k = t7 = 31.
Using Theorem 4, since J3,4 = t6t1 − t2t5 = 8, we obtain

E(Z7|Z3 = x) =
1

8 fZ3(x)

∫
R

y
∫
R

fZ0(
17x − y − 20z

8
) fZ1(
−9x + y − 20z

8
) fZ2(z)dzdy

=
2ex

8x2 I{x>0}

∫
R

y
∫
R

exp(−
17x − y − 20z

8
)I{17x−y−20z>0}

· exp(−
−9x + y − 20z

8
)I{−9x+y−20z>0} exp(−z)I{z>0}dzdy

=
13
2x

exp(4x − 1)I{x>0}.

Then
E(Z7|Z3) =

13
2Z3

exp(4Z3 − 1)I{Z3>0}.

This gives, in particular, an estimation of Z3.

In the following, we will study some useful asymptotic properties of the TSRV. To this end, we
define the random variable L : Z0 + φZ1 + φ2Z2, and, for all n ≥ 3,

χn :=
Zn+1

Zn
, Yn =

Zn − µn

σn
and Sn =

S n − E(S n)
√
V(S n)

,

where φ is the real solution of the equation x3 − x2 − x − 1 = 0, and S n =
∑n

k=0 Zk. In particular, one
can expect that the sequence {χn} converges to φ. To this end, we define the event S = {ω ∈ Ω, such
that L(ω) , 0}.

Theorem 5. We consider the TSRV defined by (1.6). Then

(1) The sequence of random variables {χn} converges pointwise to φ on S.
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(2) Assume that (σ0, σ1, σ2) , (0, 0, 0), then Yn converges pointwise to

S :=
L − E(L)
√
V(L)

.

(3) Assume that Z0, Z2, and Z3 are i.i.d., then the sequence of random variables {Sn} converges
pointwise to S.

Proof. (1) Using Lemma 5, for all ω ∈ S, we have

χn(ω) =
tn−1Z0 + tnZ1 + tn+1Z2

tn−2Z0 + tn−1Z1 + tnZ2

=
(ξn−1)−1Z0 + Z1 + ξnZ2

(ξn−1ξn−2)−1Z0 + (ξn−1)−1Z1 + Z2
,

where ξn = tn+1
tn
. It follows, since limn→∞ ξn = φ, that

lim
n→∞

χn(ω) =
φ−1Z0 + Z1 + φZ2

φ−2Z0 + φ−1Z1 + Z2
= φ.

(2) Clearly, one has

Yn =
Z0 + ξn−2Z1 + ξn−2ξn−1Z2 − (µ0 + ξn−2µ1 + ξn−1ξn−2µ2)√

σ2
0 + ξ2

n−2σ
2
1 + ξ2

n−1ξ
2
n−2σ

2
2

−→
L − (µ0 + φµ1 + φ2µ2)√
σ2

0 + φ2σ2
1 + φ4σ2

2

=
L − E(L)
√
V(L)

= S.

(3) First, observe that

S n = Z0 + Z1 + Z2 + Z0

( n∑
k=3

tk−2

)
+ Z1

( n∑
k=3

tk−1

)
+ Z2

( n∑
k=3

tk

)
= Z0 + Z1 + Z2 + Z0

( n−2∑
k=1

tk

)
+ Z1

( n−1∑
k=1

ak − t1

)
+ Z2

( n∑
k=1

tk − a1 − a2

)
.

Using (4.1), we obtain that

S n = Z0 + Z1 + Z2 + Z0

( tn + tn−2

2
− 1

)
+ Z1

( tn+1 + tn−1

2
− 1 − t1

)
+ Z2

( tn+2 + tn

2
− 1 − t1 − t2

)
= Z0

( tn + tn−2

2

)
+ Z1

( tn+1 + tn−1

2
− t1

)
+ Z2

( tn+2 + tn

2
− t1 − t2

)
=

1
2

Zn +
1
2

Zn+2 − Z1 − 2Z2

=
( tn + tn−2

2

)
Z0 +

( tn+1 + tn−1

2
− 1

)
Z1 +

( tn+2 + tn

2
− 2

)
Z2.
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Using Lemma 5, then

E(Sn) =
( tn + tn−2

2

)
µ0 +

( tn+1 + tn−1

2
− 1

)
µ1 +

( tn+2 + tn

2
− 2

)
µ2,

V(Sn) =
( tn + tn−2

2

)2
σ2

0 +
( tn+1 + tn−1

2
− 1

)2
σ2

1 +
( tn+2 + tn

2
− 2

)2
σ2

2,

which implies that

Sn =

(
tn+tn−2

2

)(
Z0 − µ0

)
+

(
tn+1+tn−1

2 − 1
)(

Z1 − µ1

)
+

(
tn+2+tn

2 − 2
)(

Z2 − µ2

)
√(

tn+tn−2
2

)2
σ2

0 +
(

tn+1+tn−1
2 − 1

)2
σ2

1 +
(

tn+2+tn
2 − 2

)2
σ2

2

=

tn+tn−2
2

[
Z0 − µ0 + tn+1+tn−1−2

tn+tn−2

(
Z1 − µ1

)
+ tn+2+tn−4

tn+tn−2

(
Z2 − µ2

)]
tn+tn−2

2

√
σ2

0 +
(

tn+1+tn−1−2
tn+tn−2

)2σ2
1 +

(
tn+2+tn−4

tn+tn−2

)2
σ2

2

→
Z0 − µ0 + φφ

2+1
φ2+1 (Z1 − µ1) + φ2 φ2+1

φ2+1 (Z2 − µ2)√
σ2

0 +
(
φφ

2+1
φ2+1

)2
σ2

1 +
(
φ2 φ2+1

φ2+1

)2
σ2

2

=
L − E(L)
√
V(L)

= S.

�

Remark 4. Consider the special case when the random variable Z0, Z1, and Z3 are normally
distributed. Then, the CLT holds, that is Sn converges in law to L ∼ N(0, 1).

5. Conclusions

In this work, we investigated the Tribonacci sequence {Tn}. We examined an irreducible and
aperiodic Markov chain with a finite state space {Xn}. Conditioned on Xn+1 = Xn+2 = 0, the values of
(X1, . . . , Xn) are uniformly distributed. In Section 2, we derived Binet’s type formula for the Tribonacci
sequence. In Section 3 we explored the color model to approximate Tn. The probabilistic perspective
offers a valuable approach to achieve this approximation. Furthermore, in Section 4, we proved that
the TSRV is fully determined by the initial random values Z0, Z1, and Z2, and satisfies certain limiting
properties in comparison to the Central Limit Theorem (CLT).
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