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Abstract: We introduce the notion of empirical coordination for quantum correlations. Quantum
mechanics enables the calculation of probabilities for experimental outcomes, emphasizing statistical
averages rather than detailed descriptions of individual events. Empirical coordination is thus a natural
framework for quantum systems. Focusing on the cascade network, the optimal coordination rates are
established, indicating the minimal resources required to simulate, on average, a quantum state. As
we consider a network with classical communication links, superposition cannot be maintained, hence
the quantum correlations are separable (i.e., a convex combination of product states). This precludes
entanglement. Providing the users with shared randomness, before communication begins, does not
affect the optimal rates for empirical coordination. We begin with a rate characterization for a basic
two-node network, and then generalize to a cascade network. The special case of a network with an
isolated node is considered as well. The results can be further generalized to other networks as our
analysis includes a generic achievability scheme. The optimal rate formula involves optimization over
a collection of state extensions. This is a unique feature of the quantum setting, as the classical parallel
does not include optimization. As demonstrated through examples, the performance depends heavily
on the choice of decomposition. We further discuss the consequences of our results for quantum
cooperative games.
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1. Introduction

Shannon theory for point-to-point networks has had a profound influence on communication in the
digital age [1–3]. However, the simplistic model of a single source-destination pair does not capture
many critical aspects of real-world networks [4]. In practice, networked systems often involve multiple
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sources and destinations, requiring the network to compute functions or make decisions rather than
merely transmit data. The Internet of Things (IoT) introduces additional challenges due to its reliance
on a shared medium [5]. Furthermore, networks entail intricate tradeoffs between competition for
resources [6, 7], cooperation for collective gain [8], and security [9]. Network information theory
seeks to address fundamental questions of information flow and processing while incorporating these
essential characteristics of real-world networks [10–13]. Recent advances in IoT have drawn attention
to the role of coordination in networks with diverse topologies [14].

Coordination is a fundamental framework in network information theory [15]. Cuff et al. [16]
introduced a general information-theoretic model for network coordination where, as opposed
to traditional coding tasks, the objective is not to exchange messages between network nodes
but rather generate correlation [17]. Two types of coordination tasks were introduced in the
classical framework [16]. In strong coordination, the users produce actions in order to simulate
a product distribution. That is, the joint distribution resembles that of a particular memoryless
source [18]. Empirical coordination imposes a weaker and less stringent condition compared
to strong coordination. It requires the type, i.e., the frequency of actions, to converge into a
desired distribution [19]. There are many information-theoretic tasks that are closely related to
coordination, such as channel/source simulation [20–24], randomness extraction [25,26], entanglement
distribution [27], state transformation [28, 29], state merging [30, 31], entanglement dilution [32–34],
and compression [35–40].

Empirical coordination and its variations are widely studied in the classical information theory
literature. Le Treust [17] considered joint source-channel empirical coordination. Le Treust and
Bloch [41] further used empirical coordination as a unified perspective for masking, amplification,
and parameter estimation at the receiver. Cuff and Zhao [42] studied empirical coordination using
implicit communication, with information embedding applications, such as digital watermarking,
steganography, cooperative communication, and strategic play in team games. Cervia et al. [43]
devised a polar coding scheme for empirical coordination. Related models can also be found in [44,45].

Quantum mechanics enables the calculation of probabilities for experimental outcomes,
emphasizing statistical averages rather than detailed descriptions of individual events. For instance,
the Heisenberg uncertainty principle states that the standard deviations of position and momentum
cannot be minimized simultaneously [46]. Some scholars, such as Fuchs and Peres [47], contend that
quantum theory does not describe physical reality at all but is instead confined to represent statistical
correlations [48]. Empirical coordination is thus a natural framework for quantum systems.

Empirical coordination also plays a role in quantum data compression [49]. Barnum et al. [50]
addressed a source of commuting density operators, and Kramer and Savari [36] developed a rate-
distortion theory that unifies the visible and blind approaches (cf. [51, 52]). Khanian and Winter have
recently solved the general problem of a quantum source of mixed states (see also [52–58]).

Coordination of separable correlations with classical links is described as follows. Consider
a network of K nodes, where Node k performs an encoding operation Ek on a system Ak, for
k ∈ {1, . . . ,K}. Some of the nodes are connected by one-way classical links. We denote the rate
limit for the link from Node k to Node l by Rk,l. Before the coordination protocol begins, the nodes
may also share common randomness (CR). Furthermore, some of the nodes can have access to side
information. The objective in the coordination problem is to establish a specific correlation, i.e., to
simulate a desired quantum state ωA1...AK . Since the links are classical, the correlation is separable.
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The optimal performance is defined by the communication rates that are necessary and sufficient for
simulating the desired correlation on average.

In analogy to the classical framework, we distinguish between two types of coordination tasks:
strong coordination and empirical coordination. In strong coordination, the users encode in order
to simulate an n-fold product state, ω⊗n

A1...AK
. That is, the joint state resembles that of a memoryless

quantum source. In our previous work, we have considered strong coordination [59–61]. In particular,
we addressed strong coordination for entanglement generation using quantum links [59] and for
classical-quantum (c-q) correlations with classical links [60]. Strong coordination can be viewed as
a unified framework for various models. We list a few examples of related protocols:

1) Channel resolvability: Resolvability aims to approximate the output of a c-q channel using a
uniformly distributed codebook [62]. This is equivalent to c-q state simulation [62]. Resolvability
is also referred to as c-q soft covering [63]. Quantum soft covering is further studied in [64].

2) Entanglement dilution and distillation: In the dilution task, Alice and Bob use a maximally
entangled state as well as local operations and classical communication (LOCC) in order to prepare
a joint state [32, 33]. In the other direction, maximal entanglement can be distilled from a bipartite
state ωAB using classical communication at a rate R1,2 ≥ H(A|B)ω (see [65]). A similar rate also
appears in the distillation of a secret key [65, Remark 2]. Further work can be found in [65–74].

3) State merging and splitting: In state merging, Alice and Bob share ωAB, and Alice would like to
send her part to Bob [31, 75]. The mother protocol generalizes this task [76, 77]. Whereas, state
splitting is the reverse task, where Alice holds AB, and would like to send B to Bob [78–80].

4) Channel simulation: A classical channel of capacity C can be simulated at a rate of R1,2 if and only
if R1,2 ≥ C, given sufficient common randomness [81, 82]. The quantum analog is not necessarily
true [67]. The entanglement cost with LOCC is related to the entanglement of formation [20].

Multi-user versions of the protocols above have been studied extensively in recent years. The
mother protocol can generate distributed compression protocols for correlated quantum sources [76,
83–88]. Simulation of broadcast and multiple-access channels is considered in [89, 90] and [91],
respectively. George and Cheng [92] have recently studied multipartite state splitting. Multi-user
distillation and manipulation were considered in [93–99]. Streltsov et al. [100] studied multipartite
state merging. A more detailed overview is given in [61].

Here, we introduce the notion of empirical coordination for separable correlations, imposing a
weaker and less stringent condition compared to strong coordination. We require the empirical
average state to converge into the desired state ωA1...AK . Specifically, let A(1), . . . ,A(n) denote the
output sequence from all network nodes, where A(i) ≡ (A1(i), . . . , AK(i)) is the output, at time i, for
i ∈ {1, . . . , n}. Then, we would like the nodes to produce an empirical average state 1

n

∑n
i=1 ρA(i) that is

arbitrarily close to ωA, where A ≡ (A1, . . . , AK). That is, we require that the distance,∥∥∥∥∥∥∥1
n

n∑
i=1

ρA(i) − ωA

∥∥∥∥∥∥∥
1

(1.1)

converges to zero as the block length n tends to infinity. In this work, we focus on the quantum
empirical coordination of separable correlations. Our networks consist of nodes possessing quantum
systems, and are connected with classical links of limited communication rates.
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After introducing the definition of empirical coordination for quantum states, we discuss the
justification for our definition and its physical interpretation. We focus on the 3-node cascade network
and determine the optimal coordination rates, which represent the minimal resources for the empirical
simulation of a separable state among multiple parties. The cascade network with K = 3 users can be
viewed as a building block for larger multiuser systems [101, 102]. The cascade setting is depicted in
Figure 1. Alice, Bob, and Charlie wish to simulate a separable state ωABC. They are provided with
rate-limited communication links, R1�2 from Alice to Bob, and R2�3 from Bob to Charlie.

Alice Bob Charlie
R1�2 R2�3

An Bn Cn

Figure 1. Cascade network.

Our results are summarized below. We show that CR between the network users does not affect the
optimal rates for empirical coordination. We begin with the rate characterization for the basic two-node
network, and then generalize to a cascade network. The special case of a network with an isolated node
is considered as well. The results can be further generalized to other networks as our analysis includes
a generic achievability scheme. The characterization involves optimization over a collection of state
extensions. This is a unique feature of the quantum setting, as the classical parallel does not include
optimization [16]. As will be seen in the examples, the performance depends heavily on the choice of
decomposition. We further discuss the consequences of our results for cooperative games.

In Section 2, we set our notation conventions. In Section 3, we present the definitions for our model
and their physical interpretation. Section 4 is dedicated to the results, including the statement about
CR and the capacity theorems for the two-node, cascade, and isolated node networks. Section 5 and
Section 6 provide the achievability and converse analysis, respectively. Section 7 concludes with a
discussion about the comparison between strong coordination and empirical coordination, as well as
the implications of our results on quantum cooperative games.

2. Notation

We use standard notation in quantum information theory, as in [103], X,Y,Z, . . . are discrete random
variables on finite alphabetsX,Y,Z, ..., respectively, The distribution of X is specified by a probability
mass function (PMF) pX(x) on X. The set of all PMFs over X is denoted by P(X). The normalized
total variation distance between two PMFs in P(X) is defined as

1
2
‖pX − qX‖1 =

1
2

∑
a∈X

|pX(a) − qX(a)| (2.1)

for every pX, qX ∈ P(X).
The classical Shannon entropy is then defined as H(pX) =

∑
x∈supp(pX) pX(x) log

(
1

pX(x)

)
, with

logarithm to base 2. We often use the short notation H(X) ≡ H(pX) for X ∼ pX. Similarly, given
a joint PMF pXY ∈ P(X × Y), we write H(XY) ≡ H(pXY). The mutual information between X
and Y is I(X; Y) = H(X) + H(Y) − H(XY). A classical channel is defined by a probability kernel
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{pY |X(y|x) : x ∈ X, y ∈ Y}. The conditional entropy with respect to pX × pY |X is defined as
H(Y |X) =

∑
x∈supp(pX) pX(x)H(Y |X = x), where H(Y |X = x) ≡ H(pY |X(·|x)). According to the entropy

chain rule, H(Y |X) = H(XY) − H(X).
We use xn = (xi : i ∈ [n]) for a sequence of letters from X, where [n] ≡ {1, . . . , n}. We define the

type of a sequence xn as the empirical distribution, P̂xn(a) = 1
n N(a|xn), where N(a|xn) is the number of

occurrences of the letter a in the sequence xn, for a ∈ X. The δ-typical set for a PMF pX is defined here
as the set of sequences whose type is δ-close to pX in total variation distance. Formally,

T (n)
δ (pX) ≡

{
xn ∈ Xn :

1
2

∥∥∥P̂xn − pX

∥∥∥
1
< δ

}
. (2.2)

A quantum system is associated with a Hilbert space, H . The dimensions are assumed to be finite
throughout. Denote the set of all linear operators F : H → H by L(H). The Hermitian conjugate
of F is denoted by F†. The extension of a real-valued function to Hermitian operators is defined in
the usual manner. Analogously to the total variation distance between classical PMFs, the normalized
trace distance between two Hermitian operators satisfies

1
2
‖P − Q‖1 =

1
2

Tr
[
|P − Q|

]
(2.3)

for every Hermitian P, Q ∈ L(H).
Let System A be associated with HA. The quantum state of A is described by a density operator

ρA ∈ L(HA), i.e., a unit-trace positive semidefinite operator. Let ∆(HA) denote the set of all such
operators. The probability distribution of a measurement outcome is derived from a positive operator-
valued measure (POVM). In finite dimensions, this reduces to a finite set of positive semidefinite
operators {D j : j ∈ [N]} that satisfy

∑N
j=1 D j = 1, where 1 denotes the identity operator. By the Born

rule, the probability of a measurement outcome j is given by pJ( j) = Tr(D jρA), for j ∈ [N].
The von Neumann entropy of a quantum state ρA ∈ ∆(HA) is defined as H(ρA) ≡ −Tr[ρA log(ρA)].

We often denote the quantum entropy by H(A)ρ ≡ H(ρA). Similarly, given a joint state ρAB ∈ ∆(HA ⊗

HB), we write H(AB)ρ ≡ H(ρAB). A pure state has zero entropy, in which case, there exists |ψ〉 ∈ HA

such that ρ = |ψ〉〈ψ|, where 〈ψ| ≡ (|ψ〉)†. The conditional quantum entropy is defined by H(A|B)ρ =

H(AB)ρ−H(B)ρ. The conditional mutual information is defined accordingly, as I(A; B|C)ρ ≡ H(A|C)ρ+
H(B|C)ρ − H(A, B|C)ρ for ρABC ∈ ∆(HA ⊗HB ⊗HC).

A bipartite state ρAB is said to be separable if a set of product states {ρx ⊗ σx} in ∆(HA ⊗ HB) can
be found such that

ρAB =
∑
x∈X

pX(x)ρx ⊗ σx (2.4)

for some alphabet X and PMF pX on X. Otherwise, ρAB is called entangled. If the state is entangled,
then the conditional entropy H(A|B)ρ can be negative. The definition can also be extended to a
multipartite system. A state ρA1...AK in ∆(HA1 ⊗ · · · ⊗ HAK ) is said to be separable if

ρA1...AK =
∑
x∈X

pX(x)ρ(1)
x ⊗ · · · ⊗ ρ

(K)
x (2.5)

for some ensemble {pX , ρ
(1)
x ⊗ · · · ⊗ ρ

(K)
x , x ∈ X}.
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A quantum channel is defined by a completely positive trace-preserving map, NA→B : L(HA) →
L(HB). In general, the channel maps a state ρ ∈ ∆(HA) into a state NA→B(ρ) ∈ ∆(HB). A classical-
quantum (c-q) channel NX→B is specified by a collection of quantum states {ρ(x)

B : x ∈ X} in ∆(HB),
where ρ(x)

B ≡ NX→B(x) for x ∈ X.

3. Model definition and physical interpretation

3.1. Coding definitions

In this subsection, we introduce the basic definitions for empirical coordination. Consider the
cascade network shown in Figure 2, which involves three users, Alice, Bob, and Charlie. Let
{pX(x) , ωx

ABC , x ∈ X} be a given ensemble, with an average

ωABC =
∑
x∈X

pX(x)ωx
ABC . (3.1)

Suppose that Alice receives a random sequence Xn, drawn from a memoryless (i.i.d) source ∼ pX. This
can be viewed as side information that Alice obtains from a local measurement on her environment.
Alice sends a classical message m1�2 to Bob via a noiseless link of limited rate R1�2, and Bob sends
m2�3 to Charlie at a limited rate R2�3. Next, Alice, Bob, and Charlie encode their respective quantum
outputs An, Bn, and Cn. The objective of the empirical coordination protocol is for the average state to
be arbitrarily close to a particular state ωABC.

Alice Bob Charlie

S

R1�2 R2�3

Xn

An Bn Cn

Random bits

Figure 2. Cascade network with common randomness.

Remark 1. Achieving empirical coordination allows the network users to perform local measurements
such that the outcome statistics follow a desired behavior.

In other words, the users utilize a coding scheme that simulates, on average, a desired state ωABC.
We are interested in the lowest communication rates (R1�2,R2�3) that are required in order to achieve
this goal.

In the beginning, we assume that Alice, Bob, and Charlie share unlimited common randomness
(CR). That is, a random element S is drawn a priori and distributed to Alice, Bob, and Charlie before
the protocol begins. Later, we will show that CR does not affect the achievable rates.

Definition 1. A (2nR1�2 , 2nR2�3 , n) empirical coordination code for the cascade network shown in
Figure 2 consists of:

• a CR source pS over a randomization set Sn,
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• a pair of classical encoding channels, pM1�2 |XnS and pM2�3 |M1�2S , over the index sets
[
2nR1�2

]
and[

2nR2�3
]
, respectively, and

• c-q encoding channels,

EXS→A : X ×Sn → ∆(HA) , (3.2)
FM1�2 M2�3S→Bn : [2nR1�2] × [2nR2�3] ×Sn → ∆(H⊗n

B ) , (3.3)

and

DM2�3S→Cn : [2nR2�3] ×Sn → ∆(HC
⊗n) , (3.4)

for Alice, Bob, and Charlie, respectively, where Sn is an unbounded set of realizations for the CR
resource that is shared between the users a priori.

The protocol works as follows: Before communication begins, Alice, Bob, and Charlie share a CR
element s, drawn from the source pS . Alice receives a sequence xn, generated from a memoryless
source pX. That is, the random sequence is distributed according to pn

X(xn) ≡
∏n

i=1 pX(xi). She selects
an index

m1�2 ∼ pM1�2 |XnS (·|xn, s) (3.5)

at random, and sends it through a noiseless classical link at rate R1�2. She then applies the encoding
channel E⊗n

XS→A, to prepare the state of her system An, hence

ρ(xn,s)
An =

n⊗
i=1

EXS→A(xi, s) . (3.6)

As Bob receives the message m1�2 and the CR element s, he selects a random index

m2�3 ∼ pM2�3 |M1�2S (·|m1�2, s) (3.7)

and sends it through a noiseless classical link at rate R2�3 to Charlie. Bob and Charlie encode their
systems, Bn and Cn, by

ρ(m1�2,m2�3,s)
Bn = FM1�2 M2�3S→Bn(m1�2,m2�3, s) , (3.8)

and

ρ(m2�3,s)
Cn = DM2�3S→Cn(m2�3, s) (3.9)

respectively.
Given a value s, i.e., a realization of the random element, consider the average state ρABC(s) ∈

∆(HA ⊗HB ⊗HC) that is induced by the code:

ρABC(s) ≡
1
n

n∑
i=1

∑
xn∈Xn

∑
m1�2∈[2nR1�2 ]

∑
m2�3∈[2nR2�3 ]

pn
X(xn)pM1�2 |XnS (m1�2|xn, s)pM2�3 |M1�2S (m2�3|m1�2, s)

· ρ(xi,s)
Ai
⊗ ρ(m1�2,m2�3,s)

Bi
⊗ ρ(m2�3,s)

Ci
. (3.10)

We now define achievable rates as rates that are sufficient to encode ρABC(s) that converges to ωABC.
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Definition 2. A rate pair (R1�2,R2�3) is achievable for the empirical coordination of a desired
separable state ωABC, if for every α, ε, δ > 0 and a sufficiently large n, there exists a(
2n(R1�2+α), 2n(R2�3+α), n

)
coordination code that achieves

Pr
(
1
2

∥∥∥ρABC(S ) − ωABC

∥∥∥
1
> ε

)
≤ δ , (3.11)

where the probability is computed with respect to the CR element S ∼ pS .
Equivalently, there exists a sequence of empirical coordination codes such that the error converges

to zero in probability, i.e., ∥∥∥ρABC(S ) − ωABC

∥∥∥
1
−→ 0 in probability. (3.12)

Remark 2. Since the communication links are classical, entanglement cannot be generated. Therefore,
we only consider separable states ωABC.

3.2. Quantum measurements

In this subsection, we discuss the justification and the physical interpretation of our coordination
criterion. As mentioned in the Introduction, quantum mechanics enables the calculation of probabilities
for experimental outcomes, emphasizing statistical averages rather than detailed descriptions of
individual events. For instance, the Heisenberg uncertainty principle states that the standard deviations
of position and momentum cannot be minimized simultaneously [46]. Some scholars, such as Fuchs
and Peres [47], contend that quantum theory does not describe physical reality at all but is instead
confined to represent statistical correlations [48]. Empirical coordination is thus a natural framework
for quantum systems. Further justification is provided below.

Consider an observable represented by an Hermitian operator Ô on HA ⊗ HB ⊗ HC. In practice,
statistics are collected by performing measurements on n systems (Ai, Bi,Ci : i ∈ [n]). The expected
value of the observable in the ith measurement is thus,

〈Ô〉i = Tr
[
Ô · ρAiBiCi

]
(3.13)

for i ∈ [n]. Therefore, the empirical average is

1
n

n∑
i=1

〈Ô〉i = Tr

Ô · 1
n

n∑
i=1

ρAiBiCi


= Tr

[
Ô · ρABC

]
. (3.14)

Similarly, consider a POVM {D` : ` ∈ [L]} on HA ⊗ HB ⊗ HC. The probability that we obtain
the measurement outcome ` in the ith measurement is pi(`) = Tr(D` · ρAiBiCi). Thereby, the average
distribution is given by

p̄(`) = Tr(D` · ρABC) . (3.15)
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4. Main results

4.1. Common randomness does not help

Theorem 1. Any desired state ωABC that can be simulated at rate (R1�2,R2�3) through empirical
coordination in the cascade network with CR assistance can also be simulated with no CR, i.e., with
|Sn| = 1.

We will discuss the interpretation of this result in Subsection 7.4. The proof is provided below.

Proof. Let (R1�2,R2�3) be an achievable rate pair for empirical coordination. Consider the setting in
Section 3. Let the CR element S and the classical side information Xn be drawn according to pS and
pn

X, respectively. Then, Alice, Bob, and Charlie encode by

m1�2 ∼ pM1�2 |XnS (·|xn, s) , ρ(xn,s)
An =

n⊗
i=1

EXS→A(xi, s) , (4.1)

m2�3 ∼ pM2�3 |M1�2S (·|m1�2, s) , ρ(m1�2,m2�3,s)
Bn = FM1�2 M2�3S→Bn(m1�2,m2�3, s) , (4.2)

ρ(m2�3,s)
Cn = DM2�3S→Cn(m2�3, s) . (4.3)

Denote the normalized trace distance by

d(s) =
1
2

∥∥∥ρABC(s) − ωABC

∥∥∥
1

(4.4)

for s ∈ Sn.
According to Definition 2, if a rate pair (R1�2,R2�3) is achievable, then for every α, ε, δ > 0 and

sufficiently large n, there exists a sequence of
(
2n(R1�2+α), 2n(R2�3+α), n

)
empirical coordination codes, for

which the following holds:

Pr
(
d(S ) >

ε

2

)
≤ δ . (4.5)

Averaging over the CR element yields the following average state

ρ̂AnBnCn = E
[
ρ(m1�2,S )

An ⊗ ρ(m1�2,S )
Bn ⊗ ρ(m2�3,S )

Cn

]
=

∑
s∈Sn

pS (s)ρ(m1�2,s)
An ⊗ ρ(m1�2,s)

Bn ⊗ ρ(m2�3,s)
Cn . (4.6)

By the total expectation formula,

E [d(S )] = Pr
(
d(S ) >

ε

2

)
· E

[
d(S )

∣∣∣d(S ) >
ε

2

]
+ Pr

(
d(S ) ≤

ε

2

)
· E

[
d(S )

∣∣∣d(S ) ≤
ε

2

]
≤ δ · 1 + 1 ·

ε

2
< ε , (4.7)
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where the second line follows from (4.5), and the last inequality holds by choosing δ < ε
2 . Therefore,

there exists s∗ ∈ Sn for which d(s∗) ≤ ε. We can thus satisfy the coordination requirement with the
following encoding maps,

m1�2 ∼ pM1�2 |XnS (·|xn, s∗) , ρ(xn)
An =

n⊗
i=1

EXS→A(xi, s∗) , (4.8)

m2�3 ∼ pM2�3 |M1�2S (·|m1�2, s∗) , ρ
(m1�2,m2�3)
Bn = FM1�2 M2�3S→Bn(m1�2,m2�3, s∗) , (4.9)

ρ(m2�3)
Cn = DM2�3S→Cn(m2�3, s∗) , (4.10)

which no longer require CR. �

Next, we characterize the achievable rates for empirical coordination. We begin with a basic two-
node network, and then generalize to a cascade network. Based on Theorem 1 above, introducing CR
does not affect the achievable rates. Therefore, we will focus our definitions on empirical coordination
without CR.

4.2. Two-node network

Consider the two-node network. See Figure 3. Alice and Bob would like to simulate a separable
state ωAB on average using the following coding scheme. Alice receives classical side information from
a memoryless source pX. She encodes An, and then sends an index m1�2, i.e., a classical message to
Bob, at a rate R1�2.

Alice Bob
R1�2

Xn

An Bn

Figure 3. Two-node network.

Formally, a
(
2nR1�2 , n

)
empirical coordination code for a separable state ωAB consists of an input

distribution pM1�2 |Xn over an index set
[
2nR1�2

]
, and two c-q encoding channels EX→A, and FM1�2→Bn .

The protocol works as follows. Alice receives xn, drawn according to pn
X. She selects a random index

m1�2 ∼ pM1�2 |Xn(·|xn) , (4.11)

and sends it through a noiseless link. Furthermore, she encodes An by

ρ(xn)
An =

n⊗
i=1

EX→A(xi) . (4.12)

As Bob receives the message m1�2, he prepares the state

ρ(m1�2)
Bn = DM1�2→Bn(m1�2) . (4.13)
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Hence, the resulting average (joint) state is

ρAB =
1
n

n∑
i=1

∑
xn∈Xn

∑
m1�2∈[2nR1�2 ]

pn
X(xn)pM1�2 |Xn(m1�2|xn)ρ(xn)

Ai
⊗ ρ(m1�2)

Bi
. (4.14)

Definition 3. A rate R1�2 ≥ 0 is achievable for the empirical coordination of ωAB if for every ε, α > 0
and sufficiently large n, there exists a

(
2n(R1�2+α), n

)
code that achieves∥∥∥ρAB − ωAB

∥∥∥
1
≤ ε . (4.15)

Definition 4. The empirical coordination capacity for the simulation of a separable state ωAB over the
two-node network is defined as the infimum of achievable rates. We denote the capacity by C2-node(ω).

The optimal rate for empirical coordination is established below. Consider the extended c-q state,

ωXAB =
∑
x∈X

pX(x) |x〉〈x|X ⊗ ω
x
AB . (4.16)

Here, X plays the role of a classical register. Furthermore, let S2-node(ω) be the set of all c-q extensions

σXYAB =
∑

(x,y)∈X×Y

pXY(x, y) |x〉〈x| ⊗ |y〉〈y| ⊗ σx
A ⊗ σ

y
B (4.17a)

such that

σXAB = ωXAB . (4.17b)

Notice that given a classical pair (X,Y) = (x, y), there is no correlation between A and B. We also
note that if ωAB is entangled, then S2-node(ω) is an empty set.

Theorem 2. Let ωAB be a bipartite state in ∆(HA ⊗ HB). If the set S2-node(ω) is nonempty, then the
empirical coordination capacity for the two-node network in Figure 3 is given by

C2-node(ω) = inf
σ∈S2-node(ω)

I(X; Y)σ . (4.18)

Otherwise, if S2-node(ω) = ∅, then coordination is impossible.

The achievability proof for Theorem 2 is given in Subsection 5.2, and the converse in Subsection 6.1.

Remark 3. The set S2-node(ω) is empty if and only if ωAB is entangled. As mentioned in Remark 2,
classical links cannot generate entanglement, hence, coordination is impossible in this case.

Remark 4. The characterization involves optimization over a collection of separable states,
S2-node(ω). This is a unique feature of the quantum setting. In the classical setting, there is no
optimization. As will be seen in Examples 1 and 2, the performance depends heavily on the chosen
decomposition.
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Remark 5. In the special case of orthonormal sets, {
∣∣∣σx

A

〉
} and {

∣∣∣σy
B

〉
}, the coordination capacity

satisfies C2-node(ω) = I(A; B)ω. This case is essentially classical.

Remark 6. One may always find a decomposition of a separable state into a combination of pure
states. In particular, consider

ωAB =
∑

(x,y)∈X×Y

pXY(x, y)σx
A ⊗ σ

y
B . (4.19)

By inserting spectral decompositions,

σx
A =

∑
v1∈V1

pV1 |X(v1|x)
∣∣∣ψx,v1

A

〉〈
ψx,v1

A

∣∣∣ , σy
B =

∑
v2∈V2

pV2 |Y(v2|y)
∣∣∣φy,v2

B

〉〈
φ

y,v2
B

∣∣∣ , (4.20)

we obtain

ωAB =
∑
w1,w2

pW1W2(w1,w2)
∣∣∣ψw1

A

〉〈
ψw1

A

∣∣∣ ⊗ ∣∣∣φw2
B

〉〈
φw2

B

∣∣∣ , (4.21)

where W1 ≡ (X,V1) and W2 ≡ (Y,V2). If one uses this pure-state decomposition, then the coordination
rate would be R1�2 > I(W1; W2)σ. Nevertheless, the theorem shows that this can be suboptimal, since
I(XV1; YV2)σ ≥ I(X; Y)σ.

Remark 7. Based on our previous result [60], strong coordination can be achieved at the same rate
if Alice and Bob share sufficient CR before communication begins. Here, however, we assume that CR
is not available to Alice and Bob. Yet, they can perform the coordination task at this rate, since the
requirement of empirical coordination is less strict.

Example 1. Let A and B be a qubit pair, i.e., dim(HA) = dim(HB) = 2. Consider the state

ωAB =
1
2
|0〉〈0| ⊗ |0〉〈0| +

1
4
|1〉〈1| ⊗ |0〉〈0| +

1
4
|1〉〈1| ⊗ |+〉〈+| , (4.22)

where {|0〉 , |1〉} and {|+〉 , |−〉} are the computational basis and conjugate basis, respectively. Such
decomposition can be associated with a joint distribution pXY , where Y = X with probability 1, an
alphabet of size |X| = 3, and

pX =

(
1
2
,

1
4
,

1
4

)
. (4.23)

Based on Theorem 2, we can achieve the rate R1�2 = I(X; Y)σ = 1.5. The coordination rate can be
significantly improved by using the decomposition below instead.

ωAB =
1
2
|0〉〈0| ⊗ |0〉〈0| +

1
2
|1〉〈1| ⊗ η , (4.24)

where η is the BB84 state,

η =
1
2
|0〉〈0| +

1
2
|+〉〈+| . (4.25)

This yields the improved rate of R1�2 = I(X; Y)σ = 0.3112.
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Example 2. Consider the following qubit state,

ωAB =
1
2
|0〉〈0| ⊗

[
(1 − p) |+〉〈+| + p |−〉〈−|

]
+

1
2
|1〉〈1| ⊗

[
p |+〉〈+| + (1 − p) |−〉〈−|

]
(4.26)

where the second qubit can be viewed as the output of a phase-flip channel, p ∈ (0, 1). In this case, we
obtain

I(X; Y)σ = 1 − h(p) (4.27)

where h(x) = −(1− x) log(1 − x)− x log(x) is the binary entropy function on (0, 1). For p = 1
2 , we have

a product state ωAB = 1

2 ⊗
1

2 . Hence, communication is not necessary and the coordination capacity is
C2-node(ω) = 0.

4.3. Cascade network

Consider the cascade network (see Figure 4).

Alice Bob Charlie
R1�2 R2�3

Xn

An Bn Cn

Figure 4. Cascade network without common randomness.

Alice, Bob, and Charlie wish to simulate a separable state ωABC using the following scheme. Alice
receives classical side information from a memoryless source pX. She encodes An, and she sends an
index m1�2, i.e., a classical message to Bob, at a rate R1�2. Then Bob uses the message m1�2 to encode
his systems Bn, and sends a message m2�3 to Charlie who uses it to encode his systems Cn.

Formally, a
(
2nR1�2 , 2nR2�3 , n

)
empirical coordination code for the simulation of a separable state

ωABC in the cascade network consists of two input distributions pM1�2 |Xn and pM2�3 |Xn M1�2 over index sets[
2nR1�2

]
and

[
2nR2�3

]
, and three c-q encoding channels EX→A, FM1�2→Bn , and DM2�3→Cn . The protocol

works as follows:
Alice selects a random index,

m1�2 ∼ pM1�2 (4.28)

and sends it through a noiseless link. Furthermore, she encodes An by

ρ(xn)
An =

n⊗
i=1

EX→A(xi) . (4.29)

As Bob receives the message m1�2, he generates m2�3 according to pM2�3 |Xn M1�2(·|x
n,m1�2), sends m2�3

to Charlie, and prepares the state

ρ(m1�2)
Bn = FM1�2→Bn(m1�2) . (4.30)
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Having received the classical message m2�3, Charlie applies his c-q encoding map and prepares

ρ(m2�3)
Cn = DM2�3→Cn(m2�3) . (4.31)

Hence, the resulting average (joint) state is

ρABC =
∑

xn∈Xn

pn
X(xn)

∑
m1�2∈[2nR1�2 ]

∑
m2�3∈[2nR2�3 ]

pM1�2 |Xn(m1�2|xn)pM2�3 |M1�2Xn(m2�3|m1�2, xn)

·
1
n

n∑
i=1

ρ(xn)
Ai
⊗ ρ(m1�2)

Bi
⊗ ρ(m2�3)

Ci
. (4.32)

Definition 5. A rate pair (R1�2,R2�3) is achievable for the empirical coordination of ωABC if for every
ε, δ > 0 and a sufficiently large n, there exists a

(
2n(R1�2+δ), 2n(R2�3+δ), n

)
code that achieves∥∥∥ρABC − ωABC

∥∥∥
1
≤ ε . (4.33)

Definition 6. The empirical coordination capacity region for the simulation of a separable state ωABC

over the cascade network is defined as the closure of all the achievable rate pairs (R1,2,R2,3).
We denote the capacity region by CCascade(ω).

The main result for the cascade network is established below. Consider the extended c-q state,

ωXABC =
∑
x∈X

pX(x) |x〉〈x|X ⊗ ω
x
ABC . (4.34)

Furthermore, let SCascade(ω) be the set of all c-q extensions

σXYZABC =
∑

(x,y,z)∈X×Y×Z

pXYZ(x, y, z) |x〉〈x| ⊗ |y〉〈y| ⊗ |z〉〈z| ⊗ σx
A ⊗ σ

y
B ⊗ σ

z
C (4.35a)

such that

σXABC = ωXABC . (4.35b)

As before, coordination with classical links is limited to separable states (see Remarks 2 and 3).

Theorem 3. Let ωABC be a tripartite state in ∆(HA ⊗ HB ⊗ HC). If the set SCascade(ω) is nonempty,
then the empirical coordination capacity region for the cascade network in Figure 4 is

CCascade(ω) =
⋃

SCascade(ω)

{
(R1�2,R2�3) ∈ SCascade(ω) : R1�2 ≥ I(X; YZ)σ ,

R2�3 ≥ I(X; Z)σ

}
. (4.36)

Otherwise, if SCascade(ω) = ∅, then coordination is impossible.

The achievability proof for Theorem 3 is provided in Subsection 5.3, and the converse part is
provided in Subsection 6.2. We note that based on the Caratheodory’s [104], we may limit the
union to auxiliary variables of cardinality |Y| ≤ |X| + |X|2dim(HA)2dim(HB)2dim(HC)2 − 1 and
|Z| ≤ |X| + |X|2dim(HA)2dim(HB)2dim(HC)2 (see also [105, App. B]).

Remark 8. The cascade model has a Markov structure in the sense that given the message m2→3 from
Bob, Charlie’s state ρm2→3

Cn has no correlation with Alice. Nevertheless, the correlation that Alice, Bob,
and Charlie simulate does not satisfy a Markov chain property. In particular, the auxiliary random
variables X, Y, and Z may follow a general Bayesian rule, and do not necessarily form a Markov
chain.
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4.3.1. Isolated node

Consider the isolated node network in Figure 5. This is a special case of a cascade network with
R2�3 = 0. The coordination capacity CIsolated(ω) is defined similarly as in Definition 4, and can be
established as a consequence of Theorem 3. Consider the extended c-q state,

ωXABC =
∑
x∈X

pX(x) |x〉〈x|X ⊗ ω
x
ABC . (4.37)

Let SIsolated(ω) be the set of all c-q extensions σXYZABC of the form

σXYZABC =
∑

(x,y,z)∈X×Y×Z

pXYZ(x, y, z) |x〉〈x| ⊗ |y〉〈y| ⊗ |z〉〈z| ⊗ σx
A ⊗ σ

y
B ⊗ σ

z
C (4.38a)

such that

σXABC = ωXABC (4.38b)

and

σAC = σA ⊗ σC . (4.38c)

Corollary 4. Let ωABC be as in Theorem 3. If the set SIsolated(ω) is nonempty, then the empirical
coordination capacity for the isolated node network in Figure 5 is given by

CIsolated(ω) = inf
σ∈SIsolated(ω)

I(X; Y |Z)σ. (4.39)

Otherwise, if SIsolated(ω) = ∅, then coordination is impossible.

In this case, coordination is only possible for a separable state ωABC such that ωAC = ωA ⊗ ωC.

Alice Bob

Charlie

R1�2

Xn

An Bn

Cn

Figure 5. Isolated node network.

Remark 9. Notice that B and C can still be correlated, see Example 3. Given unlimited CR, it is
clear that we may generate such a correlation. Even in the extreme case of no communication, we can
generate Yn from a memoryless source, treat Yn as the CR element, and let Zn = Yn (see discussion
in [16, Sec. III-B]). We have seen that CR does not affect the coordination capacity, and thus, the same
rates can be achieved without CR. Further intuition is given in the discussion in Subsection 7.4.
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In the following example, we consider empirical coordination in the isolated node network with a
tripartite state ωABC, in which B and C are correlated.

Example 3. Consider the following qubit state,

ωABC = (1 − α) |0〉〈0| ⊗
[
(1 − p) |+〉〈+| ⊗ |+〉〈+| + p |−〉〈−| ⊗ |−〉〈−|

]
+ α |1〉〈1| ⊗

[
(1 − p) |+〉〈+| ⊗ |−〉〈−| + p |−〉〈−| ⊗ |+〉〈+|

]
(4.40)

with α, p ∈ (0, 1). In this case, I(X; Y |Z)σ = H(X) = h(α).

5. Achievability

To show the direct part of our coordination capacity theorems, we will use the generic lemma
below. Consider the generic two-node network in Figure 6, where Alice receives xn and yn as input to
her encoder and encodes a quantum system An. Whereas, Bob receives yn and zn as input and encodes
a quantum system Bn. In this case, Alice has encoding maps of the form pM1�2 |XnYnS and EXnYnS→An , and
Bob encodes by FM1�2YnZnS→Bn . The resulting average state is

ρAB(xn, yn, zn, s) =
1
n

n∑
i=1

∑
m1�2∈[2nR1�2 ]

pM1�2 |S (m1�2|s)ρ(m1�2,xn,yn,s)
Ai

⊗ ρ
(m1�2,yn,zn,s)
Bi

, (5.1)

where ρ(xn,yn,s)
An = EXnYnS→An(xn, yn, s) and ρ(m1�2,yn,zn,s)

Bn = FM1�2YnZnS→Bn(m1�2, yn, zn, s).

Alice Bob
R1�2

xn yn

An

yn zn

Bn

Figure 6. Generic two-node network.

Lemma 5. Consider a state ensemble, {pXYZ pU |XY , σ
x,y
A ⊗ σ

y,z,u
B }. Let

η
x,y,z
B =

∑
u∈U

pU |XY(u|x, y)σy,z,u
B . (5.2)

For every δ > 0, if

R1�2 > I(X; U |YZ)σ , (5.3)

then there exists a sequence of randomized (2nR1�2 , n) empirical coordination codes such that

lim
n→∞

Pr


∥∥∥∥∥∥∥ρAB(xn, yn, zn, S ) −

1
n

n∑
i=1

σ
xi,yi
A ⊗ η

xi,yi,zi
B

∥∥∥∥∥∥∥
1

> γ(δ)

 = 0 , (5.4)

uniformly for all (xn, yn, zn) ∈ T (n)
δ (pXYZ), where the probability is computed with respect to the CR

element S , and γ(δ) tends to zero as δ→ 0.
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5.1. Generic scheme: Proof of Lemma 5

The proof for Lemma 5 is provided below. Consider the extended c-q state,

σXYZUAB =
∑

(x,y,z,u)∈X×Y×Z×U

pXYZ(x, y, z)pU |XY(u|x, y) |x, y, z, u〉〈x, y, z, u| ⊗ σx,y
A ⊗ σ

y,z,u
B (5.5)

where X, Y , Z, and U are classical registers. We note that Z (X,Y) U forms a Markov chain.
By Theorem 1, we may assume that Alice and Bob share unlimited CR. Therefore, they can generate

the codebook jointly using their random element.

Classical codebook construction Select 2nR0 sequences un(`), ` ∈
[
2nR0

]
, independently at random,

each i.i.d. according to pU , where

pU(u) =
∑
x,y,z

pXYZ(x, y, z)pU |XY(u|x, y) . (5.6)

Assign each sequence with a bin index b (un(`)), where b : Un →
[
2nR1�2

]
, independently at random.

We thus identify the CR element S as the random codebook {un(·), b(·)}.

Encoding First, consider the classical encoding functionM1�2 : Xn × Yn →
[
2nR1�2

]
. Given a pair

(xn, yn) ∈ Xn × Yn, find an index ` ∈
[
2nR0

]
such that (xn, yn, un(`)) ∈ T (n)

2δ (pXYU). If there is none,
set ` = 1. If there is more than one, choose the smallest. Send the corresponding bin index, i.e.,
m1�2(xn, yn) = b (un(`)).

Then, prepare

ρ
xn,yn

An ≡

n⊗
i=1

σ
xi,yi
A . (5.7)

Decoding Given (yn, zn) and m1�2, find an index ˆ̀ ∈
[
2nR0

]
such that

(yn, zn, un( ˆ̀)) ∈ T (n)
8δ (pYZU) and b

(
un( ˆ̀)

)
= m1�2 . (5.8)

If there is none, set ˆ̀ = 1. If there is more than one, choose the smallest. Prepare the state

ρ
yn,zn,un( ˆ̀)
Bn ≡

n⊗
i=1

σ
yi,zi,ui( ˆ̀)
B . (5.9)

This results in an average state,

ρAB(un, xn, yn, zn) =
1
n

n∑
i=1

ρ
xn,yn

Ai
⊗ ρ

yn,zn,un

Bi

=
1
n

n∑
i=1

σ
xi,yi
A ⊗ σ

yi,zi,ui
Bn , (5.10)

with un ≡ un( ˆ̀).
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Error analysis Given Un( ˆ̀) = un, we have

ρAB(un, xn, yn, zn) =
1
n

∑
(a,b,c,d)∈X×Y×Z×U

∑
i:(xi,yi,zi,ui)=(a,b,c,d)

σ
xi,yi
A ⊗ σ

yi,zi,ui
B

=
1
n

∑
(a,b,c,d)∈X×Y×Z×U

∑
i:(xi,yi,zi,ui)=(a,b,c,d)

σa,b
A ⊗ σ

b,c,d
B

=
∑

(a,b,c,d)∈X×Y×Z×U

P̂xn,yn,zn,un(a, b, c, d)σa,b
A ⊗ σ

b,c,d
B

=
∑

(a,b,c)∈X×Y×Z

P̂xn,yn,zn(a, b, c)
∑
d∈U

P̂un |xn,yn,zn(d|a, b, c)σa,b
A ⊗ σ

b,c,d
B . (5.11)

For every un such that (xn, yn, zn, un) ∈ T (n)
γ(δ)(pXYZU),∥∥∥ρAB(un, xn, yn, zn) − τAB

∥∥∥
1
≤ γ(δ) (5.12)

where

τAB =
∑

(a,b,c)∈X×Y×Z

P̂xn,yn,zn(a, b, c)
∑
d∈U

pU |XYZ(d|a, b, c)σa,b
A ⊗ σ

b,c,d
B

=
∑

(a,b,c)∈X×Y×Z

P̂xn,yn,zn(a, b, c)σa,b
A ⊗

∑
d∈U

pU |XY(d|a, b)σb,c,d
B

=
∑

(a,b,c)∈X×Y×Z

P̂xn,yn,zn(a, b, c)σa,b
A ⊗ η

a,b,c
B

=
1
n

∑
(a,b,c)∈X×Y×Z

N(a, b, c|xn, yn, zn)σa,b
A ⊗ η

a,b,c
B

=
1
n

∑
(a,b,c)∈X×Y×Z

∑
i:(xi,yi,zi)=(a,b,c)

σa,b
A ⊗ η

a,b,c
B

=
1
n

∑
(a,b,c)∈X×Y×Z

∑
i:(xi,yi,zi)=(a,b,c)

σ
xi,yi
A ⊗ η

xi,yi,zi
B

=
1
n

n∑
i=1

σ
xi,yi
A ⊗ η

xi,yi,zi
B . (5.13)

Consider the event

A1 ≡
{
(xn, yn, zn,Un( ĵ)) ∈ T (n)

γ(δ)(pXYZU)
}
. (5.14)

Based on the classical result due to Cuff et al. [16],

Pr(A1) ≥ 1 − αn (5.15)

for all (xn, yn, zn) ∈ T (n)
δ (pXYZ), where γ ≡ γ(δ) tends to zero as δ → 0, and αn tends to zero as n → ∞,

provided that

R > I(X; U |YZ) + γ(δ) . (5.16)
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Therefore,

Pr
(∥∥∥ρAB(Un( ˆ̀), xn, yn, zn) − τAB

∥∥∥
1
> γ(δ)

)
≤ αn . (5.17)

This completes the proof of Lemma 5.
We are now in a position to give the achievability proofs for the two-node and cascade networks.

5.2. Two-node network: Achievability proof for Theorem 2

The proof essentially follows from Lemma 5, with the following addition. If Alice receives a
random sequence Xn that is not δ-typical, then she sends an arbitrary transmission. Otherwise, she
encodes using the encoder in Lemma 5. Since Pr

(
Xn ∈ T (n)

δ (pX)
)

tends to 1 as n → ∞, achievability
for the two-node network follows.

5.3. Cascade network: Achievability proof for Theorem 3

We use rate splitting, where Alice’s message consists of two components m′1�2 and m′′1�2, at rates
R′1�2 and R′′1�2, respectively, where R1�2 = R′1�2 + R′′1�2.

Classical codebook construction Select 2 · 2nR0 sequences yn(`′), zn(`′′), `′, `′′ ∈
[
2nR0

]
,

independently at random, each i.i.d. according to pY and pZ, where

pYZ(y, z) =
∑

x

pX(x)pYZ|X(y, z|x) . (5.18)

Assign each sequence with a bin index b (yn(`′)) and c (zn(`′′)), where b : Yn → [2nR′1�2] and c : Zn →

[2nR′′1�2], independently at random.

Alice’s encoder As before, if Alice receives xn < T (n)
δ (pX), she sends an arbitrary transmission.

Otherwise, consider the classical encoding function M1�2 : Xn → [2nR′1�2] × [2nR′′1�2] below. Given
xn ∈ T (n)

δ (pX), find an index pair (`′, `′′) ∈
[
2nR0

]
×

[
2nR0

]
such that (xn, yn(`′), zn(`′′)) ∈ T (n)

2δ (pXYZ). If
there is none, set (`′, `′′) = (1, 1). If there is more than one, choose the first. Send the corresponding
bin indices, i.e., m′1�2(xn) = b (yn(`′)) and m′′1�2(xn) = c (zn(`′′)).

Then, prepare

ρxn

An ≡

n⊗
i=1

σxi
A . (5.19)

Bob’s encoder Bob receives m1�2 = (m′1�2,m
′′
1�2), and encodes in three stages:

(i) Given m′′1�2, find an index ˆ̀′′ ∈
[
2nR0

]
such that

zn( ˆ̀′′) ∈ T (n)
8δ (pZ) and c

(
zn( ˆ̀′′)

)
= m′′1�2 . (5.20)

If there is none, set ˆ̀′′ = 1. If there is more than one, choose the smallest. Send m2�3 = m′′1�2 to
Charlie.
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(ii) Now given m′1�2 and ˆ̀′′, find an index ˆ̀′ ∈
[
2nR0

]
such that

(yn( ˆ̀′), zn( ˆ̀′′)) ∈ T (n)
8δ (pYZ) and b

(
yn( ˆ̀′)

)
= m′1�2 . (5.21)

If there is none, set ˆ̀′ = 1. If there is more than one, choose the smallest.

(iii) Prepare the state

ρ
yn( ˆ̀′)
BnZ̄n ≡

n⊗
i=1

σ
yi( ˆ̀′)
B ⊗

∣∣∣zi( ˆ̀′′)
〉〈

zi( ˆ̀′′)
∣∣∣
Z̄

(5.22)

where Z̄n is an auxiliary system for Bob.

Charlie’s encoder Given m2�3 = m′′1�2, find an index ˜̀′′ ∈
[
2nR0

]
such that

zn( ˜̀′′) ∈ T (n)
8δ (pZ) and c

(
zn( ˜̀′′)

)
= m′′1�2 . (5.23)

If there is none, set ˜̀′′ = 1. If there is more than one, choose the smallest.
Prepare the state

ρ
zn( ˜̀′′)
Cn ≡

n⊗
i=1

σ
zi( ˜̀′′)
C . (5.24)

This results in an average state,

ρABZ̄C(xn, yn, zn) =
1
n

n∑
i=1

ρxn

Ai
⊗ ρ

yn

Bi
⊗ |z̄n〉〈z̄n| ⊗ ρzn

Ci

=
1
n

n∑
i=1

σxi
A ⊗ σ

yi
B ⊗ |z̄i〉〈z̄i| ⊗ σ

zi
C , (5.25)

with yn ≡ yn( ˆ̀′), z̄n ≡ zn( ˆ̀′′), and zn ≡ zn( ˜̀′′). Based on the analysis in the proof of Lemma 5 (see
Section 5.1), Alice, Bob, and Charlie achieve empirical coordination of σABZC, provided that

R2�3 = R′′1�2 > I(X; Z) , (5.26)
R′1�2 > I(X; Y |Z) (5.27)

which requires R1�2 = R′1�2 + R′′1�2 > I(X; YZ). �

6. Converse part analysis

We now show the converse part of the coordination capacity theorems.
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6.1. Two-node network: Converse proof for Theorem 2

Consider the two-node network in Figure 3. Let R1�2 be an achievable rate for empirical
coordination with a desired state ωAB. Then, there exists a sequence of

(
2nR1�2 , n

)
empirical

coordination codes that achieves an error,∥∥∥ρXAB − ωXAB

∥∥∥
1
≤ εn , (6.1)

where εn tends to zero as n → ∞. Now, suppose that Bob performs a projective measurement in
a particular basis, say, {|y〉}. This yields a sequence Yn as the measurement outcome, with some
distribution pYn |Xn(yn|xn).

Then, consider the classical variables XJ and YJ, where J is a uniformly distributed random variable,
over the index set [n], drawn independently of Xn, Yn. Their joint distribution is

p̄XJYJ (x, y) =
1
n

n∑
i=1

pXiYi(x, y)

= (〈x| ⊗ 〈y|) ρXB (|x〉 ⊗ |y〉) , (6.2)

where pXiYi is the marginal distribution of pn
X × pYn |Xn . Based on (6.1), we have the following total

variation bound: ∥∥∥p̄XJYJ − πXY

∥∥∥
1
≤ εn , (6.3)

where πXY is defined as

πXY(x, y) = (〈x| ⊗ 〈y|)ωAB (|x〉 ⊗ |y〉) , (6.4)

for (x, y) ∈ X × Y.
Next, consider that

nR1�2 ≥ H(M1�2)
≥ I(Xn; M1�2)
≥ I(Xn; Yn)

=

n∑
i=1

I(Xi; Yn|Xi−1)

=

n∑
i=1

I(Xi; Xi−1Yn)

≥

n∑
i=1

I(Xi; Yi)

= nI(XJ; YJ |J) p̄ (6.5)

where the third inequality holds by the data processing inequality and the following equalities by the
chain rule. Since Xn is i.i.d., it follows that XJ and J are statistically independent, hence,

I(XJ; YJ |J) p̄ = I(XJ; YJ J) p̄

AIMS Mathematics Volume 10, Issue 4, 10028–10061.



10049

≥ I(XJ; YJ) p̄ . (6.6)

Based on entropy continuity [106],

I(XJ; YJ) p̄ ≥ I(X; Y)π − αn (6.7)

where αn = −3εn log(εn|X||Y|) [107, Lemm. 2.7], which tends to zero as n → ∞. This concludes the
converse proof for the two-node network.

6.2. Cascade network: Converse proof for Theorem 3

Consider the cascade network in Figure 4. If (R1�2,R2�3) is achievable, then there exists a sequence
of

(
2nR1�2 , 2nR2�3 , n

)
codes such ∥∥∥ρXABC − ωXABC

∥∥∥
1
≤ εn , (6.8)

where εn tends to zero as n → ∞. Suppose that Bob and Charlie perform projective measurements in
a particular basis, say, {|y〉} and {|z〉}, respectively. This yields a sequence (Yn,Zn) as the measurement
outcomes, with some distribution pYnZn |Xn(yn, zn|xn).

Then, consider the classical variables XJ, YJ, and ZJ, where J is uniform over [n], independent of
Xn, Yn, and Zn. Their joint distribution is

p̄XJYJZJ (x, y, z) =
1
n

n∑
i=1

pXiYiZi(x, y, z)

= (〈x| ⊗ 〈y| ⊗ 〈z|)ρXBC(|x〉 ⊗ |y〉 ⊗ |z〉) , (6.9)

where pXiYiZi is the marginal distribution of pn
X × pYnZn |Xn . By (6.8),∥∥∥p̄XJYJZJ − πXYZ

∥∥∥
1
≤ εn , (6.10)

where

πXYZ(x, y, z) = (〈x| ⊗ 〈y| ⊗ 〈z|)ωABC(|x〉 ⊗ |y〉 ⊗ |z〉) , (6.11)

for (x, y, z) ∈ X × Y ×Z.
Consider Alice’s communication rate, R1�2. Now, we may view the overall encoding operation of

Bob and Charlie as a “black box” with M1�2 as input and (Bn,Cn) as output, as shown in Figure 7.
Thus,

nR1�2 ≥ H(M1�2)
≥ I(Xn; M1�2)
≥ I(Xn; YnZn)

=

n∑
i=1

I(Xi; YnZn|Xi−1)

=

n∑
i=1

I(Xi; Xi−1YnZn)
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≥

n∑
i=1

I(Xi; YiZi)

= nI(XJ; YJZJ |J)p̄ (6.12)

based on the same arguments as in (6.5). Since XJ and J are statistically independent, we have

R1�2 ≥ I(XJ; YJZJ |J)p̄

= I(XJ; JYJZJ) p̄

≥ I(XJ; YJZJ)p̄. (6.13)

Following similar steps, we also have

R2�3 ≥ I(XJ; ZJ) p̄ . (6.14)

Based on entropy continuity [106],

I(XJ; YJZJ) ≥ I(X; YZ)π − αn , (6.15)
I(XJ; ZJ) ≥ I(X; Z)π − αn (6.16)

where αn = −3εn log(εn|X||Y||Z|) [107, Lemma 2.7], which tends to zero as n→ ∞. �

Alice Bob Charlie
R1�2

Xn

An Bn Cn

Figure 7. Encoding by Bob and Charlie.

7. Summary and discussion

7.1. Summary

We have introduced the notion of empirical coordination for quantum correlations. Quantum
mechanics enables the calculation of probabilities for experimental outcomes, emphasizing statistical
averages rather than detailed descriptions of individual events. Empirical coordination is thus a
natural framework for quantum systems. Focusing on the cascade network, we established the optimal
coordination rates, indicating the minimal resources for the empirical simulation of a quantum state. As
we consider a network with classical communication links, superposition cannot be maintained, hence
the quantum correlations are separable. This precludes entanglement. We have shown that providing
the users with shared randomness, before communication begins, does not affect the optimal rates for
empirical coordination (see Theorem 1). We began with the rate characterization for the basic two-
node network (Theorem 2), and then generalized to a cascade network (Theorem 3). The special case
of a network with an isolated node was addressed as well (see Corollary 4). The results generalize to
other networks as our analysis includes a generic achievability scheme (see Lemma 5). Nonetheless,
we do not claim to have solved all coordination scenarios or network topologies.

Next, we discuss the consequences of our results for quantum cooperative games.
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7.2. Game-theoretic implications

In many cooperative games, the payoff is associated with the correlation between the players. In
the penny matching game, as introduced by Gossner et al. [108], Alice receives a classical sequence
xn from an i.i.d source; thereafter, Alice and Bob produce sequences an and bn that should be close to
one another and to xn as well. In other words, Alice and Bob try to guess the source sequence one bit
at a time. They gain a point for every bit they both guess correctly. Alice’s action an is referred to as
a guess, even though she knows the original source sequence xn. As it turns out, an optimal strategy
could let Alice guess wrong, i.e., ai , xi, for some of the time [108]. Cuff and Zhao [42] analyzed a
generalized version of the game through the classical two-node network. Here, we introduce a quantum
version of the game.

Suppose that Alice receives a classical sequence xn from an i.i.d source pX, as depicted in the two-
node network 3. The quantum encoding of each user is viewed as the actions [109]. The game is
specified by a payoff map

G : ∆(HA ⊗HB)→ [0,∞) . (7.1)

Given a joint strategy ωAB, the payoff to Alice and Bob is G(ωAB).
Suppose that Alice uses an empirical coordination code and sends nR1�2 bits to Bob. Furthermore,

let SEP(γ) be the set of all separable strategies ωAB for which Alice and Bob receive a payoff γ =

G(ωAB). Alice and Bob can then reach an average payoff γ ≥ 0 asymptotically, if and only if Alice can
send a message to Bob at rate R1�2 > C2-node(ω) for some ωAB ∈ SEP(γ). The optimal rate C2-node(ω) is
characterized by Theorem 2.

7.3. Strong coordination vs. empirical coordination

Analogously to the classical framework, we distinguish between two types of coordination tasks:
Strong coordination and empirical coordination.

7.3.1. Strong coordination

In the classical setting, strong coordination means that a statistician cannot reliably distinguish
between the constructed sequence of actions Xn

1 , . . . , X
n
K , and random samples from the desired

distribution [16]. This requires the joint distribution pXn
1 ...X

n
K

that the code induces to be arbitrarily close
to the desired source π ≡ πX1...XK in total variation distance. That is, strong coordination is achieved if
there exists a code sequence such that

lim
n→∞

∥∥∥pXn
1 ...X

n
K
− πn

∥∥∥
1

= 0 , (7.2)

where πn denotes the i.i.d. distribution corresponding to the desired source.
Consider a network of K quantum nodes, where the users have access to classical communication

links with limited rates Ri, j and may share common randomness (CR) at a limited rate R0. We say that
strong coordination is achieved if there exists a code sequence such that the joint state ρAn

1...A
n
K

that is
the code induces converges to the desired state, i.e.,

lim
n→∞

∥∥∥ρAn
1...A

n
K
− ω⊗n

∥∥∥
1

= 0 , (7.3)

where ω ≡ ωA1...AK is the desired state. In our previous work [60], we have considered strong
coordination for classical-quantum (c-q) correlations with classical links.
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7.3.2. Empirical coordination

In the classical description, empirical coordination uses network communication in order to
construct a sequence of actions that have an empirical joint distribution closely matching the desired
distribution [16]. In this case, the error criterion sets a weaker requirement, given in terms of the
joint type, i.e., the empirical distribution of the actions in the network. Formally, the requirement for
empirical coordination is that for every ε > 0,

lim
n→∞

Pr
(∥∥∥P̂Xn

1 ...X
n
K
− π

∥∥∥
1
≥ ε

)
= 0 , (7.4)

where Xn
1 , . . . , X

n
K are the encoded actions, and the probability is computed with respect to the CR

distribution.
We say that empirical coordination is achieved in a quantum coordination network if there exists

a sequence of coordination codes of length n, such that the time-average state 1
n

∑n
i=1 ρA1(i)...AK (i) that is

induced by the code converges in probability to the desired source ωA1...AK , i.e.,

lim
n→∞

Pr


∥∥∥∥∥∥∥1

n

n∑
i=1

ρA1(i)...AK (i) − ω

∥∥∥∥∥∥∥
1

≥ ε

 = 0 , (7.5)

where ω ≡ ωA1...AK is the desired state, and the probability is computed with respect to the CR
distribution. We note that the quantum definition differs in nature from the classical one (c.f. (7.4)
and (7.5)).

Remark 10. To see that strong coordination is indeed a stronger condition, note that by trace
monotonicity, strong coordination implies

∥∥∥ρA1(i)...AK (i) − ω
∥∥∥

1
→ 0 as n → ∞, for every i ∈ [n]. Hence,

by the triangle inequality, ∥∥∥∥∥∥∥1
n

n∑
i=1

ρA1(i)...AK (i) − ω

∥∥∥∥∥∥∥
1

≤
1
n

n∑
i=1

∥∥∥ρA1(i)...AK (i) − ω
∥∥∥

1
(7.6)

which also tends to zero as n→ ∞.

We have discussed the justification and the physical interpretation of our coordination criterion in
Subsection 3.2. Consider an observable represented by an Hermitian operator Ô onHA1 ⊗· · ·⊗HAK . In
practice, statistics are collected by performing measurements on n systems (A1(i), . . . , AK(i) : i ∈ [n]).
The expected value of the observable in the ith measurement is thus,

〈Ô〉i = Tr
[
Ô · ρA1,i...AK,i

]
(7.7)

for i ∈ [n]. Roughly speaking, our coordination criterion guarantees that the empirical average is close
to the expected value with respect to a desired state, i.e.,

1
n

n∑
i=1

〈Ô〉i = Tr

Ô · 1
n

n∑
i=1

ρA1,i...AK,i


≈ Tr

[
Ô · ωA1...AK

]
, (7.8)

with high probability.
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7.4. Common randomness does not help

We have shown that CR does not improve the coordination capacity. That is, if R`� j is achievable
with CR, it is also achievable without CR. We provide an intuitive explanation below. Suppose we use
a coding scheme where the CR element is a sequence Un, drawn from a memoryless source pU over
U, and each user encodes by a collection of maps {E(u)}, taking u = Ui at time i. Then, this CR-assisted
coding scheme can be replaced with a code based on a fixed agreed-upon sequence ũn of type P̂ũn ≈ pU .

Since our coding scheme uses binning and not an encoder of the form E(ui), the description above is
only a rough explanation to gain intuition.

7.5. Applications

Recent advances in machine-to-machine communication [19] and the Internet of Things (IoT) [14]
have raised interest in networks with various topologies [5]. These network topologies are relevant
for various applications, such as distributed computing [110], autonomous vehicles [111], embedded
sensors [112], players in a cooperative game [42], and quantum-enhanced IoT [113,114]. Coordination
with classical links is motivated by quantum-enhanced IoT networks in which the communication
links are classical [113–116]. The problem at hand is to find the optimal transmission rates required
in order to establish a desired correlation. Empirical coordination also plays a role in quantum data
compression [49, 50, 52]. The optimal compression rate for a quantum source of pure states was first
established by Schumacher [117] for a quantum source of pure states (see also [118, 119]). Empirical
coordination is thus a natural framework for quantum systems.

Empirical coordination also plays a role in quantum data compression [49]. Barnum et al. [50]
addressed a source of commuting density operators, and Kramer and Savari [36] developed a rate-
distortion theory that unifies the visible and blind approaches (cf. [51] and [52]). Khanian and Winter
have recently solved the general problem of a quantum source of mixed states (see also [52–58]). Rate
distortion can be viewed as a special case of empirical coordination.

7.6. Future directions

In another work by the authors [59], we have also considered strong coordination in a network
with quantum links. This allows for the generation of multipartite entanglement and is closely related
to tasks such as quantum channel/source simulation [20–24, 89, 120], state merging [30, 31], state
redistribution [77, 121], zero-communication state transformation [28, 29], entanglement dilution [32–
34, 98], randomness extraction [25, 26], source coding [35–40], and many others. An interesting
avenue for future research is to study empirical coordination in such networks. There are many
other coordination scenarios and network topologies that could be studied further, e.g., empirical
coordination with entanglement assistance. Other interesting directions include the one-shot setting
(n = 1) and coordination with two-way communication.
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