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Abstract: We introduce the notion of empirical coordination for quantum correlations. Quantum
mechanics enables the calculation of probabilities for experimental outcomes, emphasizing statistical
averages rather than detailed descriptions of individual events. Empirical coordination is thus a natural
framework for quantum systems. Focusing on the cascade network, the optimal coordination rates are
established, indicating the minimal resources required to simulate, on average, a quantum state. As
we consider a network with classical communication links, superposition cannot be maintained, hence
the quantum correlations are separable (i.e., a convex combination of product states). This precludes
entanglement. Providing the users with shared randomness, before communication begins, does not
affect the optimal rates for empirical coordination. We begin with a rate characterization for a basic
two-node network, and then generalize to a cascade network. The special case of a network with an
isolated node is considered as well. The results can be further generalized to other networks as our
analysis includes a generic achievability scheme. The optimal rate formula involves optimization over
a collection of state extensions. This is a unique feature of the quantum setting, as the classical parallel
does not include optimization. As demonstrated through examples, the performance depends heavily
on the choice of decomposition. We further discuss the consequences of our results for quantum
cooperative games.
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1. Introduction

Shannon theory for point-to-point networks has had a profound influence on communication in the
digital age [1-3]. However, the simplistic model of a single source-destination pair does not capture
many critical aspects of real-world networks [4]. In practice, networked systems often involve multiple
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sources and destinations, requiring the network to compute functions or make decisions rather than
merely transmit data. The Internet of Things (IoT) introduces additional challenges due to its reliance
on a shared medium [5]. Furthermore, networks entail intricate tradeoffs between competition for
resources [6, 7], cooperation for collective gain [8], and security [9]. Network information theory
seeks to address fundamental questions of information flow and processing while incorporating these
essential characteristics of real-world networks [10—13]. Recent advances in IoT have drawn attention
to the role of coordination in networks with diverse topologies [14].

Coordination is a fundamental framework in network information theory [15]. Cuff et al. [16]
introduced a general information-theoretic model for network coordination where, as opposed
to traditional coding tasks, the objective is not to exchange messages between network nodes
but rather generate correlation [17]. Two types of coordination tasks were introduced in the
classical framework [16]. In strong coordination, the users produce actions in order to simulate
a product distribution. That is, the joint distribution resembles that of a particular memoryless
source [18]. Empirical coordination imposes a weaker and less stringent condition compared
to strong coordination. It requires the type, i.e., the frequency of actions, to converge into a
desired distribution [19]. There are many information-theoretic tasks that are closely related to
coordination, such as channel/source simulation [20-24], randomness extraction [25,26], entanglement
distribution [27], state transformation [28,29], state merging [30, 31], entanglement dilution [32-34],
and compression [35-40].

Empirical coordination and its variations are widely studied in the classical information theory
literature. Le Treust [17] considered joint source-channel empirical coordination. Le Treust and
Bloch [41] further used empirical coordination as a unified perspective for masking, amplification,
and parameter estimation at the receiver. Cuff and Zhao [42] studied empirical coordination using
implicit communication, with information embedding applications, such as digital watermarking,
steganography, cooperative communication, and strategic play in team games. Cervia et al. [43]
devised a polar coding scheme for empirical coordination. Related models can also be found in [44,45].

Quantum mechanics enables the calculation of probabilities for experimental outcomes,
emphasizing statistical averages rather than detailed descriptions of individual events. For instance,
the Heisenberg uncertainty principle states that the standard deviations of position and momentum
cannot be minimized simultaneously [46]. Some scholars, such as Fuchs and Peres [47], contend that
quantum theory does not describe physical reality at all but is instead confined to represent statistical
correlations [48]. Empirical coordination is thus a natural framework for quantum systems.

Empirical coordination also plays a role in quantum data compression [49]. Barnum et al. [50]
addressed a source of commuting density operators, and Kramer and Savari [36] developed a rate-
distortion theory that unifies the visible and blind approaches (cf. [51,52]). Khanian and Winter have
recently solved the general problem of a quantum source of mixed states (see also [52-58]).

Coordination of separable correlations with classical links is described as follows. Consider
a network of K nodes, where Node k performs an encoding operation & on a system A;, for
k € {1,...,K}. Some of the nodes are connected by one-way classical links. We denote the rate
limit for the link from Node k to Node / by R;,;. Before the coordination protocol begins, the nodes
may also share common randomness (CR). Furthermore, some of the nodes can have access to side
information. The objective in the coordination problem is to establish a specific correlation, i.e., to
simulate a desired quantum state wg4, .. Since the links are classical, the correlation is separable.
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The optimal performance is defined by the communication rates that are necessary and sufficient for
simulating the desired correlation on average.

In analogy to the classical framework, we distinguish between two types of coordination tasks:
strong coordination and empirical coordination. In strong coordination, the users encode in order
to simulate an n-fold product state, wfj’m 4.~ That is, the joint state resembles that of a memoryless
quantum source. In our previous work, we have considered strong coordination [59—61]. In particular,
we addressed strong coordination for entanglement generation using quantum links [59] and for
classical-quantum (c-q) correlations with classical links [60]. Strong coordination can be viewed as
a unified framework for various models. We list a few examples of related protocols:

1) Channel resolvability: Resolvability aims to approximate the output of a c-q channel using a
uniformly distributed codebook [62]. This is equivalent to c-q state simulation [62]. Resolvability
is also referred to as c-q soft covering [63]. Quantum soft covering is further studied in [64].

2) Entanglement dilution and distillation: In the dilution task, Alice and Bob use a maximally
entangled state as well as local operations and classical communication (LOCC) in order to prepare
a joint state [32,33]. In the other direction, maximal entanglement can be distilled from a bipartite
state w,p using classical communication at a rate R, > H(A|B),, (see [65]). A similar rate also
appears in the distillation of a secret key [65, Remark 2]. Further work can be found in [65-74].

3) State merging and splitting: In state merging, Alice and Bob share w4, and Alice would like to
send her part to Bob [31,75]. The mother protocol generalizes this task [76,77]. Whereas, state
splitting is the reverse task, where Alice holds AB, and would like to send B to Bob [78—80].

4) Channel simulation: A classical channel of capacity C can be simulated at a rate of R, , if and only
if R, > C, given sufficient common randomness [81, 82]. The quantum analog is not necessarily
true [67]. The entanglement cost with LOCC is related to the entanglement of formation [20].

Multi-user versions of the protocols above have been studied extensively in recent years. The
mother protocol can generate distributed compression protocols for correlated quantum sources [76,
83—88]. Simulation of broadcast and multiple-access channels is considered in [89, 90] and [91],
respectively. George and Cheng [92] have recently studied multipartite state splitting. Multi-user
distillation and manipulation were considered in [93-99]. Streltsov et al. [100] studied multipartite
state merging. A more detailed overview is given in [61].

Here, we introduce the notion of empirical coordination for separable correlations, imposing a
weaker and less stringent condition compared to strong coordination. We require the empirical
average state to converge into the desired state wy,_4,. Specifically, let A(1),...,A(n) denote the
output sequence from all network nodes, where A(i) = (A(i),...,Ax(7)) is the output, at time i, for
i € {l,...,n}. Then, we would like the nodes to produce an empirical average state ﬁ 2t PaG) that is
arbitrarily close to wy, where A = (A, ...,Ak). That is, we require that the distance,

1 n
- ZPA(;’) — WA
3

converges to zero as the block length n tends to infinity. In this work, we focus on the quantum
empirical coordination of separable correlations. Our networks consist of nodes possessing quantum
systems, and are connected with classical links of limited communication rates.

(1.1)

1
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After introducing the definition of empirical coordination for quantum states, we discuss the
justification for our definition and its physical interpretation. We focus on the 3-node cascade network
and determine the optimal coordination rates, which represent the minimal resources for the empirical
simulation of a separable state among multiple parties. The cascade network with K = 3 users can be
viewed as a building block for larger multiuser systems [101, 102]. The cascade setting is depicted in
Figure 1. Alice, Bob, and Charlie wish to simulate a separable state wapc. They are provided with
rate-limited communication links, R;_,, from Alice to Bob, and R,_,; from Bob to Charlie.

Ri_ Ry,

A n Bﬂ Cl‘l

Figure 1. Cascade network.

Our results are summarized below. We show that CR between the network users does not affect the
optimal rates for empirical coordination. We begin with the rate characterization for the basic two-node
network, and then generalize to a cascade network. The special case of a network with an isolated node
is considered as well. The results can be further generalized to other networks as our analysis includes
a generic achievability scheme. The characterization involves optimization over a collection of state
extensions. This is a unique feature of the quantum setting, as the classical parallel does not include
optimization [16]. As will be seen in the examples, the performance depends heavily on the choice of
decomposition. We further discuss the consequences of our results for cooperative games.

In Section 2, we set our notation conventions. In Section 3, we present the definitions for our model
and their physical interpretation. Section 4 is dedicated to the results, including the statement about
CR and the capacity theorems for the two-node, cascade, and isolated node networks. Section 5 and
Section 6 provide the achievability and converse analysis, respectively. Section 7 concludes with a
discussion about the comparison between strong coordination and empirical coordination, as well as
the implications of our results on quantum cooperative games.

2. Notation

We use standard notation in quantum information theory, as in [103], X, ¥, Z, . . . are discrete random
variables on finite alphabets X, Y, Z, ..., respectively, The distribution of X is specified by a probability
mass function (PMF) px(x) on X. The set of all PMFs over X is denoted by $(X). The normalized
total variation distance between two PMFs in P(X) is defined as

1 1
§||PX —gxll; = 5 QZE); Ipx(a) — gx(a)| (2.1)

for every py, gx € P(X).

The classical Shannon entropy is then defined as H(px) = X esupp(py) Px(X) log(pxl(x)), with
logarithm to base 2. We often use the short notation H(X) = H(py) for X ~ px. Similarly, given
a joint PMF pyxy € P(X x V), we write H(XY) = H(pxy). The mutual information between X

and Y is I(X;Y) = H(X) + H(Y) — H(XY). A classical channel is defined by a probability kernel
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{prx(lx) : x € X,y € Y}. The conditional entropy with respect to px X pyx is defined as
HY|X) = X cesupppy) PX(OHY|X = x), where H(Y|X = x) = H(pyxx(-|x)). According to the entropy
chain rule, H(Y|X) = H(XY) — H(X).

We use x" = (x; : i € [n]) for a sequence of letters from X, where [n] = {1,...,n}. We define the
type of a sequence x" as the empirical distribution, P.(a) = %N (alx™), where N(a|x") is the number of
occurrences of the letter a in the sequence x", for a € X. The d-typical set for a PMF py is defined here
as the set of sequences whose type is d-close to py in total variation distance. Formally,

1) 4
T (px) = {x" eX": §||Pxn - px|, < 5} : (2.2)

A quantum system is associated with a Hilbert space, H. The dimensions are assumed to be finite
throughout. Denote the set of all linear operators F' : H — H by L(H). The Hermitian conjugate
of F is denoted by F'. The extension of a real-valued function to Hermitian operators is defined in
the usual manner. Analogously to the total variation distance between classical PMFs, the normalized
trace distance between two Hermitian operators satisfies

1 1
SIP =0l = 5 Tr|1P - 0 (2.3)

for every Hermitian P, Q € L(H).

Let System A be associated with H,. The quantum state of A is described by a density operator
pa € L(Hy,), i.e., a unit-trace positive semidefinite operator. Let A(H,) denote the set of all such
operators. The probability distribution of a measurement outcome is derived from a positive operator-
valued measure (POVM). In finite dimensions, this reduces to a finite set of positive semidefinite
operators {D; : j € [N]} that satisfy Z?’:l D; = 1, where 1 denotes the identity operator. By the Born
rule, the probability of a measurement outcome j is given by p;(j) = Tr(D;p,), for j € [N].

The von Neumann entropy of a quantum state p, € A(H,) is defined as H(ps) = —Tr[pa log(pa)].
We often denote the quantum entropy by H(A), = H(p,). Similarly, given a joint state psp € A(H, ®
Hp), we write H(AB), = H(pag). A pure state has zero entropy, in which case, there exists |y) € H,
such that p = |y X[, where (| = (J¢))". The conditional quantum entropy is defined by H(A|B), =
H(AB),—H(B),. The conditional mutual information is defined accordingly, as I(A; B|C), = H(A|C),+
H(BIC), — H(A, B|C), for pagc € A(Hs @ Hp ® H).

A bipartite state p,p is said to be separable if a set of product states {p, ® o} in A(H, ® Hp) can
be found such that

pan =), px(Vp.® 0, (2.4)
xeX

for some alphabet X and PMF pyx on X. Otherwise, psp is called entangled. If the state is entangled,
then the conditional entropy H(A|B), can be negative. The definition can also be extended to a
multipartite system. A state p4, 4, in A(Hy, ® - - ® Hy, ) is said to be separable if

PA..Ax = Z px()pV @ ®p% (2.5)
xeX

for some ensemble {py, p&l) - ®p§K) , x € X}.
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A quantum channel is defined by a completely positive trace-preserving map, Na_p : L(H,) —
L(Hp). In general, the channel maps a state p € A(H,) into a state Ny _,z(p) € A(Hp). A classical-
quantum (c-q) channel Ny_p is specified by a collection of quantum states {pg) : x € X} in A(Hp),
where pg) = Nx_p(x) for x € X.

3. Model definition and physical interpretation

3.1. Coding definitions

In this subsection, we introduce the basic definitions for empirical coordination. Consider the
cascade network shown in Figure 2, which involves three users, Alice, Bob, and Charlie. Let
{px(x), w)yz-, x € X} be a given ensemble, with an average

wanc = ) | px(Wipe (3.1)
xeX

Suppose that Alice receives a random sequence X", drawn from a memoryless (i.i.d) source ~ px. This
can be viewed as side information that Alice obtains from a local measurement on her environment.
Alice sends a classical message m;_, to Bob via a noiseless link of limited rate R;_,, and Bob sends
m;_,3 to Charlie at a limited rate R, 3. Next, Alice, Bob, and Charlie encode their respective quantum
outputs A", B", and C". The objective of the empirical coordination protocol is for the average state to
be arbitrarily close to a particular state wapc.

Random bits

¥
Ry Ry

A n Bn Cn

Figure 2. Cascade network with common randomness.

Remark 1. Achieving empirical coordination allows the network users to perform local measurements
such that the outcome statistics follow a desired behavior.

In other words, the users utilize a coding scheme that simulates, on average, a desired state wpc.
We are interested in the lowest communication rates (R;_,, R,_3) that are required in order to achieve
this goal.

In the beginning, we assume that Alice, Bob, and Charlie share unlimited common randomness
(CR). That is, a random element S is drawn a priori and distributed to Alice, Bob, and Charlie before
the protocol begins. Later, we will show that CR does not affect the achievable rates.

Definition 1. A (2"%1-2,2"-3 n) empirical coordination code for the cascade network shown in
Figure 2 consists of:

e a CR source ps over a randomization set S,,
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e a pair of classical encoding channels, py,_,ix»s and pu,_,m,_,s, over the index sets [2"%-2] and
[2"R2-3], respectively, and
e c-q encoding channels,

8XS—>A X X Gn — A(?‘{A) , (32)

Frty ooty ss—pr - [275172] X [273] x S, — A(HE", (3.3)
and

Dty ssocn t [273]x S, = AH®), (3.4)

for Alice, Bob, and Charlie, respectively, where S, is an unbounded set of realizations for the CR
resource that is shared between the users a priori.

The protocol works as follows: Before communication begins, Alice, Bob, and Charlie share a CR
element s, drawn from the source pg. Alice receives a sequence x", generated from a memoryless
source py. That is, the random sequence is distributed according to p%(x") = []i, px(x;). She selects
an index

mi-o ~ pM|_,2|X”S('|xna S) (35)

at random, and sends it through a noiseless classical link at rate R;_,. She then applies the encoding

channel &Y _ ,, to prepare the state of her system A", hence

Pl = (X) Exs i s). (3.6)
i=1

As Bob receives the message m;_, and the CR element s, he selects a random index

M3 ~ PMs_3|Mi_»S (lmi=2, 8) (3.7)

and sends it through a noiseless classical link at rate R,_3 to Charlie. Bob and Charlie encode their
systems, B" and C", by

(m1-2,m253,5) _
an] 2 - TM1_>2M2_,3S%B"(m1—>27m2—>37 S)7 (3'8)

and

(m3-3,5)

Pen = Dum,_ys-cn(ma3, ) (3.9)

respectively.
Given a value s, i.e., a realization of the random element, consider the average state p,z-(s) €
A(Hy @ Hp @ H) that is induced by the code:

ey 1 - n n n
Papc(s) = - Z Z Z Z Px(X) P, _oixes (Mo X, )P, sy os (Ma3lmy o, 8)

=1 X€X" my_ye[2R1-2] my 3€[2"R2-3]

. pXii’S) ®pg:ll—>2,m2—>3,s) ®p(g:2~3,5) . (3.10)

We now define achievable rates as rates that are sufficient to encode p, z(s) that converges to wapc.
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Definition 2. A rate pair (Ri_,,R>_3) is achievable for the empirical coordination of a desired
separable state wapc, if for every a,e,6 > 0 and a sufficiently large n, there exists a
(2”(’?‘*2*“), 2n(Ra-3+a) n) coordination code that achieves

1
Pr(§||,5ABC(S) — wapcl|, > &) <6, (3.11)

where the probability is computed with respect to the CR element S ~ ps.
Equivalently, there exists a sequence of empirical coordination codes such that the error converges
to zero in probability, i.e.,

1PAsc(S) = wasc||, — O in probability. (3.12)

Remark 2. Since the communication links are classical, entanglement cannot be generated. Therefore,
we only consider separable states wpc-.

3.2. Quantum measurements

In this subsection, we discuss the justification and the physical interpretation of our coordination
criterion. As mentioned in the Introduction, quantum mechanics enables the calculation of probabilities
for experimental outcomes, emphasizing statistical averages rather than detailed descriptions of
individual events. For instance, the Heisenberg uncertainty principle states that the standard deviations
of position and momentum cannot be minimized simultaneously [46]. Some scholars, such as Fuchs
and Peres [47], contend that quantum theory does not describe physical reality at all but is instead
confined to represent statistical correlations [48]. Empirical coordination is thus a natural framework
for quantum systems. Further justification is provided below.

Consider an observable represented by an Hermitian operator O on H, ® Hz ® Hc. In practice,
statistics are collected by performing measurements on n systems (A;, B;, C; : i € [n]). The expected
value of the observable in the ith measurement is thus,

()i =Tr [0 pac| (3.13)
for i € [n]. Therefore, the empirical average is

% Z<O>i =Tr|O- [% 2%,-3;@)]

:Tr[é- ABC

|
[Se—

. (3.14)
Similarly, consider a POVM {D, : ¢ € [L]} on H,y ® Hp ® Hc. The probability that we obtain
the measurement outcome ¢ in the ith measurement is p;(€) = Tr(D; - pa,.c,). Thereby, the average

distribution is given by

p(€) = Tr(Dy¢ - Pype) - (3.15)
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4. Main results

4.1. Common randomness does not help

Theorem 1. Any desired state wapc that can be simulated at rate (Ri_,,R,_3) through empirical
coordination in the cascade network with CR assistance can also be simulated with no CR, i.e., with
1S, = L

We will discuss the interpretation of this result in Subsection 7.4. The proof is provided below.
Proof. Let (R;_,,R,_3) be an achievable rate pair for empirical coordination. Consider the setting in

Section 3. Let the CR element S and the classical side information X" be drawn according to ps and
pYy, respectively. Then, Alice, Bob, and Charlie encode by

n
n
mi_o ~ Py _oixns CIX75 ), P = ®8xs—>A(xi, s), 4.1)
i=1
my_3 ~ pMz%lMHzS('Imlaz» s), p;snzlﬁz’m%&” = 7:MH2Mza35—>B” (M2, my-3, 5), 4.2)
Per Y = Dy, soenlmass, 5). (4.3)

Denote the normalized trace distance by

1
d(s) = 5 |Panc(s) = wanc, (4.4)

for s € G,.

According to Definition 2, if a rate pair (R;_,, R,_.3) is achievable, then for every a,&,6 > 0 and
sufficiently large n, there exists a sequence of (2"(R 1-2+@) Jn(Ry-3+a) n) empirical coordination codes, for
which the following holds:

Pr (d(S) > g) <5 (4.5)
Averaging over the CR element yields the following average state

ﬁA"B"C" -E [pxgbz,S) ®pgzpz,5) ®p(cmn2a3,5)]

= > ps)pl =Y @ pip = @ pl . (4.6)

SES,
By the total expectation formula,
E & & E
BLd(S)] = Pr(d($) > £) - Blas)|acs) > 5|+ Pr(acs) < £) - B acs)lacs) < £
&
<do-1 1-—
hS + )

<eg, 4.7)
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where the second line follows from (4.5), and the last inequality holds by choosing 6 < %. Therefore,
there exists s* € S, for which d(s*) < &. We can thus satisfy the coordination requirement with the
following encoding maps,

n
X"
M1~ Pty (1 87, P = (X) Exs a8, (4.8)
i=1
M3 ~ Py siMy o8 (1Mo, 57) pg'n’“z”"“) = FMyoMyss—p (M52, M3, 87), 4.9)
P = Dygy_smen(ima—s, s, (4.10)
which no longer require CR. O

Next, we characterize the achievable rates for empirical coordination. We begin with a basic two-
node network, and then generalize to a cascade network. Based on Theorem 1 above, introducing CR
does not affect the achievable rates. Therefore, we will focus our definitions on empirical coordination
without CR.

4.2. Two-node network

Consider the two-node network. See Figure 3. Alice and Bob would like to simulate a separable
state wyp on average using the following coding scheme. Alice receives classical side information from
a memoryless source px. She encodes A", and then sends an index m,_.,, i.e., a classical message to
Bob, at a rate R;_,.

Xl‘l
Ri-
Alice 12 Bob
Al’l Bn

Figure 3. Two-node network.

Formally, a (Z”RHZ, n) empirical coordination code for a separable state w,p consists of an input
distribution pjy, ,x» over an index set [2"R1-2], and two c-q encoding channels Ex_,4, and Ftyr—pr-
The protocol works as follows. Alice receives x", drawn according to p%. She selects a random index

mi.op ~ le_,2|X”('|-xn) s (4.11)

and sends it through a noiseless link. Furthermore, she encodes A” by
P’ = ) Exaln). (4.12)
i=1

As Bob receives the message m_,,, he prepares the state

P = Dy ey a) . (4.13)
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Hence, the resulting average (joint) state is
1 + . .
_ - .Xn " N xl’l (x") (my=2) ) 414
Pas n Z Z Z px( )leqzlx (my 2| )pAl_ ®pB[_ ( )
i=1 x"eX" I’I1]_>2€[2HR1"2]

Definition 3. A rate R, > 0 is achievable for the empirical coordination of wap if for every g,a > 0
and sufficiently large n, there exists a (2"(R‘*2+"), n) code that achieves

[Pas — was|, < &. (4.15)

Definition 4. The empirical coordination capacity for the simulation of a separable state wapg over the
two-node network is defined as the infimum of achievable rates. We denote the capacity by C_,pq.(W).

The optimal rate for empirical coordination is established below. Consider the extended c-q state,

wxap = ) px() XXy ® Wy (4.16)
xeX

Here, X plays the role of a classical register. Furthermore, let .%5_,,4c(w) be the set of all c-q extensions

Txas= ), pxr(xy) Xx @ Xl 8o @ o (4.17a)
(x,y)eEXxY

such that
OXAB = WXAB - (4.17b)

Notice that given a classical pair (X, Y) = (x,y), there is no correlation between A and B. We also
note that if w,p is entangled, then .75 ;,4.(w) is an empty set.

Theorem 2. Let wyp be a bipartite state in A(Hy ® Hp). If the set 75 00.(w) is nonempty, then the
empirical coordination capacity for the two-node network in Figure 3 is given by

CZ-node(w) = inf I(X’ Y)O' . (418)

TE€S2 node(W)
Otherwise, if %5.n0ae(w) = 0, then coordination is impossible.
The achievability proof for Theorem 2 is given in Subsection 5.2, and the converse in Subsection 6.1.

Remark 3. The set .75 00.(w) is empty if and only if wup is entangled. As mentioned in Remark 2,
classical links cannot generate entanglement, hence, coordination is impossible in this case.

Remark 4. The characterization involves optimization over a collection of separable states,
S node(w). This is a unique feature of the quantum setting. In the classical setting, there is no
optimization. As will be seen in Examples 1 and 2, the performance depends heavily on the chosen
decomposition.
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Remark 5. In the special case of orthonormal sets, {|0'f\>} and {|0‘1y9>}, the coordination capacity
satisfies Cy.poqe(w) = I(A; B),,. This case is essentially classical.

Remark 6. One may always find a decomposition of a separable state into a combination of pure
states. In particular, consider

wis= ), prr(n))Ti 8. (4.19)
(x,y)eEXXY

By inserting spectral decompositions,

s = ) pe W KR o= Y pealy) |65 K 57 (4.20)
vieVy VaeVs
we obtain
Wap = Z Pwiw, (Wi, wa) |l//;f‘><lﬂ;”| ® |¢;52>(¢gz , (4.21)

wi,w2

where Wi = (X, V1) and W, = (Y, V,). If one uses this pure-state decomposition, then the coordination
rate would be R, > I(Wy; W>),. Nevertheless, the theorem shows that this can be suboptimal, since
I(XV;YV2)e 2 I(X5 Y ),

Remark 7. Based on our previous result [60], strong coordination can be achieved at the same rate
if Alice and Bob share sufficient CR before communication begins. Here, however, we assume that CR
is not available to Alice and Bob. Yet, they can perform the coordination task at this rate, since the
requirement of empirical coordination is less strict.

Example 1. Let A and B be a qubit pair, i.e., dim(H,) = dim(Hp) = 2. Consider the state
1 1 1
Wap =5 |0X0[ ® [0X0] + 1 [1X1] ® [0X0] + 1 IIX1 @ [+X+], (4.22)

where {|0),|1)} and {|+),|-)} are the computational basis and conjugate basis, respectively. Such
decomposition can be associated with a joint distribution pxy, where Y = X with probability 1, an

alphabet of size |X| = 3, and
111
Px = (E’ 7 4_1) . (4.23)

Based on Theorem 2, we can achieve the rate R\_, = I(X;Y), = 1.5. The coordination rate can be
significantly improved by using the decomposition below instead.

1 1
wap = 5 10X01 @ 0X0] + 3 [1X1| @7, (4.24)
where 1 is the BB84 state,
-1 |0XOl + : I+ X+] (4.25)
T=3 2 ' '
This yields the improved rate of R, = I(X;Y), = 0.3112.
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Example 2. Consider the following qubit state,

1 1
an = 5 10X01® [(1 = p) X+ + pI=X=1] + 3 [1X1I @ [p X+ + (1 = p) |=X-] (4.26)

where the second qubit can be viewed as the output of a phase-flip channel, p € (0, 1). In this case, we
obtain

I(X;Y), =1—-h(p) (4.27)

where h(x) = —(1 — x)log(1 — x) — xlog(x) is the binary entropy function on (0, 1). For p = % we have
a product state wap = % ® %. Hence, communication is not necessary and the coordination capacity is
CZ-node(w) =0.

4.3. Cascade network

Consider the cascade network (see Figure 4).

R Ry

A" B" cr

Figure 4. Cascade network without common randomness.

Alice, Bob, and Charlie wish to simulate a separable state w4pc using the following scheme. Alice
receives classical side information from a memoryless source py. She encodes A", and she sends an
index m;_,, i.e., a classical message to Bob, at a rate R, .,. Then Bob uses the message m;_., to encode
his systems B", and sends a message m,_,3 to Charlie who uses it to encode his systems C".

Formally, a (2”R1%2,2"R2*3,n) empirical coordination code for the simulation of a separable state
wapc 1n the cascade network consists of two input distributions pys, ,ix» and pa, x»m,_., Over index sets
[2"R1-2] and [2"%2-3], and three c-q encoding channels Ex_4, Fas,_, 5> and Dy, . cn. The protocol
works as follows:

Alice selects a random index,

mi-2 ~ Pm,_, (428)

and sends it through a noiseless link. Furthermore, she encodes A” by
P = Q) Exon(x). (4.29)
i=1

As Bob receives the message m_,», he generates m;_,3 according to pyy, x»m,_,(-|X", mi_2), sends mjy_,3
to Charlie, and prepares the state

(m1-2)

Ppgn = Fuyr-pr(M152) . (4.30)
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Having received the classical message m,_3, Charlie applies his c-q encoding map and prepares

(ma-3)

pcn = DM2H3—>C"(m2%3) . (431)
Hence, the resulting average (joint) state is
Pasc = Z Px(x") Z Z Pty oxn (M2l X)) Pty yivay oy xn (M3 lmy o, X7)
AneXn m1—2€[2"R1-2] my_,3€[27R2-3]

I (o Y
. ; Zpg‘l ) ®pg:11~2) ®p(Ci12—>3) . (4.32)
i=1

Definition S. A rate pair (R, R,_3) is achievable for the empirical coordination of wapc if for every
g,0 > 0 and a sufficiently large n, there exists a (2”(R1*2+5), 2(R2-3+9) n) code that achieves

Pasc — wasc||, < &. (4.33)

Definition 6. The empirical coordination capacity region for the simulation of a separable state wapc
over the cascade network is defined as the closure of all the achievable rate pairs (R 2, R, 3).
We denote the capacity region by Ccuscade(W).

The main result for the cascade network is established below. Consider the extended c-q state,

wxanc = ) | px(0 XXy ® Wl (4.34)
xeX

Furthermore, let .%cascade () be the set of all c-q extensions

Txvzapc = ), P69 1Xd @ VXl @ leXel & o) @ oy @ o (4.352)
(x,,2)EXXYXZ

such that
O XABC = WXABC - (4.35b)

As before, coordination with classical links is limited to separable states (see Remarks 2 and 3).

Theorem 3. Let wapc be a tripartite state in A(H, @ Hy @ He). If the set S cascade(w) is nonempty,
then the empirical coordination capacity region for the cascade network in Figure 4 is

(R152, Ro-3) € Feuscade(w) : Risa 2 1(X;YZ),, }

Cascade(w) = (4.36)

e Cascade (w)

Rys 21X;2),

Otherwise, if S cascade(w) = 0, then coordination is impossible.

The achievability proof for Theorem 3 is provided in Subsection 5.3, and the converse part is
provided in Subsection 6.2. We note that based on the Caratheodory’s [104], we may limit the
union to auxiliary variables of cardinality |Y| < |X| + |X[*dim(%H,)*dim(Hp)*dim(Hc)> — 1 and
1ZI < X + |X*dim(H,)*dim(H)>dim(H)? (see also [105, App. B)).

Remark 8. The cascade model has a Markov structure in the sense that given the message m,_,3 from
Bob, Charlie’s state p’é’ﬁ"*‘ has no correlation with Alice. Nevertheless, the correlation that Alice, Bob,
and Charlie simulate does not satisfy a Markov chain property. In particular, the auxiliary random
variables X, Y, and Z may follow a general Bayesian rule, and do not necessarily form a Markov

chain.
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4.3.1. Isolated node

Consider the isolated node network in Figure 5. This is a special case of a cascade network with
R, = 0. The coordination capacity Cisaeq(w) is defined similarly as in Definition 4, and can be
established as a consequence of Theorem 3. Consider the extended c-q state,

wxasc = ) | px(0 XXy ® Wlpe (4.37)
xeX

Let solaed(w) be the set of all c-q extensions oyyzapc of the form

OXYZABC = Z Pxyz(x,9,2) |XXx| ® [yXy| ® [z2Xz| ® 0 ® 0 ® 7% (4.382)
(%, 2)eXXYXZ
such that
O XABC = WXABC (4.38b)
and
TAac=04,Q0¢C. (4.38¢)

Corollary 4. Let wapc be as in Theorem 3. If the set ispiuea(W) is nonempty, then the empirical
coordination capacity for the isolated node network in Figure 5 is given by

Clsolated(w) = inf I(X, Y|Z)O' (439)

O-€=%mlated(w
Otherwise, if S soiaea(w) = 0, then coordination is impossible.

In this case, coordination is only possible for a separable state wspc such that wac = wa ® we.

Xl'l
R —
Alice 12 Bob
An B
Cn

Figure 5. Isolated node network.

Remark 9. Notice that B and C can still be correlated, see Example 3. Given unlimited CR, it is
clear that we may generate such a correlation. Even in the extreme case of no communication, we can
generate Y" from a memoryless source, treat Y" as the CR element, and let Z"" = Y" (see discussion
in [16, Sec. IlI-B]). We have seen that CR does not affect the coordination capacity, and thus, the same
rates can be achieved without CR. Further intuition is given in the discussion in Subsection 7.4.
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In the following example, we consider empirical coordination in the isolated node network with a
tripartite state wapc, in which B and C are correlated.

Example 3. Consider the following qubit state,

wapc = (1 = @) [0XOI® [(1 = p) [+X+| @ [+X+] + p|-X-| ® |-X~I]
+a|IX1 @ [(1 = p) +X+ ®-X-|+ p|-X—-® [+X+I] (4.40)

with a, p € (0, 1). In this case, [(X;Y|Z), = H(X) = h(a).
5. Achievability

To show the direct part of our coordination capacity theorems, we will use the generic lemma
below. Consider the generic two-node network in Figure 6, where Alice receives x” and y" as input to
her encoder and encodes a quantum system A”. Whereas, Bob receives y" and z" as input and encodes
a quantum system B". In this case, Alice has encoding maps of the form py, ,xny»s and Exnyng_4», and
Bob encodes by ¥, ,ynzns . The resulting average state is

n

— 1 n\n o MM
P Y2 = =D D paas(mialspl Y @ g, (5.1)

i=1 my_,e[2"R1-2]

h (x"y"s) _ & non d (m152.y"2",8) _ F, non
where p,, = Exnyngan(x",y", 5) and pp, = Fumiryizns—pr (Mmoo, Y', 2%, 5).
xn yn n Zﬂ
Ry
Alice Bob
A" B"

Figure 6. Generic two-node network.

Lemma 5. Consider a state ensemble, {pxyz puixy, 0y ® 0 "}. Let

S = > Popr (b oy (5.2)
uel
For every 6 > 0, if
Rlﬁ2 > I(Xa U|YZ)O' » (53)

then there exists a sequence of randomized (2"™81-2, n) empirical coordination codes such that

RS _
- no_n _ XisYi XiYisZi
oap(X", ", 2", 8) " ,-§=1 Oy, Qg

lim Pr[ > y(é)) =0, (5.4)

uniformly for all (x",y",7") € Tén)(pxyz), where the probability is computed with respect to the CR
element S, and y(9) tends to zero as 6 — 0.

1
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5.1. Generic scheme: Proof of Lemma 5

The proof for Lemma 5 is provided below. Consider the extended c-q state,

OXYZUAB = Z Pxyz(x,y, DpuxyWlx, y) X, y, z, uXx, y, z, ul ® o) @ 07" (5.5)
(x,y.2,u)EXXYXTXU

where X, Y, Z, and U are classical registers. We note that Z-e-(X, Y)-e-U forms a Markov chain.
By Theorem 1, we may assume that Alice and Bob share unlimited CR. Therefore, they can generate
the codebook jointly using their random element.

Classical codebook construction Select 2" sequences u*(¢), £ € [2"%0], independently at random,
each i.i.d. according to py, where

pu(u) = Z Pxyz(X, Y, Dpuixy(ulx,y). (5.6)

X,¥,2

Assign each sequence with a bin index b (u"(¢)), where b : U" — [2"®1-2], independently at random.
We thus identify the CR element S as the random codebook {u"(-), b(-)}.

Encoding First, consider the classical encoding function M,_, : X" x Y" — [2"F1-2]. Given a pair
(x",y") € X" x Y", find an index £ € [2"%] such that (x",y",u"({)) € T(")(pxyy) If there is none,
set { = 1. If there is more than one, choose the smallest. Send the corresponding bin index, i.e.,
myo(x", y") = b (u"(£)).

Then, prepare

o’ = ® (5.7)

Decoding Given (v, z") and m;_,, find an index £ € [2"0] such that
0" 2 u' (D) € T, (przo) and b (u' (D) = my_s. (5.8)

If there is none, set ¢ = 1. If there is more than one, choose the smallest. Prepare the state

z (@) _ @o‘y’ z,u(f) (5.9

This results in an average state,

Pan(t", ',y 2" = ~ Zp Py

Za’”' ® o (5.10)

with u" = u”(f).

AIMS Mathematics Volume 10, Issue 4, 10028—-10061.



10045

Error analysis Given U "(f) = u", we have

_ 1 . .
Pap”, x",y",2") = - Z Z oM@ oy
(a,b,c,d)eXXYXZTXU i:(xiyiziui)=(a,b,c,d)
1 a,b b,cd
= ; O'A ® O'B
(a,b,c,d)eXXYXZTXU i:(xiyi,ziui)=(a,b,c,d)
A b bed
= Py nn(a, b, c,d)oy’” @ op°
(a,b,c,d)eXXYXZTXU
= > Pupa(ab,0) ) Puyoidiabo)o’ @ oy (5.11)
(a,b,c)eXxYxZ delU
For every u" such that (x", y", 7", u") € T%)( DPxyzu)s
[Pasu”, ¥",3".2") = Tag||, < ¥(0) (5.12)
where
A b bed
Tig = Z Py (a,b,c) Z puxyz(dla, b, c)oy” ® o5°
(a,b,0)eXxYxZ deld
p b bed
= > Pupa(@b,ooy’® ) puxy(dia bl
(a,b,0)eXxYxZ deld
A b b,
= Z Pxn’yn’zn (a, b, C)O-Z ® 77(; ¢
(a,b,0)eXxYxZ
1 no_ny ab a,b,c
= — N(a,b,clx",y", 7)o" ®@ng”
n (a,b,0)eXxXYxZ
1 a,b a,b,c
o Oy Ol
(a,b,0)eXxYXZ i:(x.yi,zi)=(a,b,c)
1 . o
— i>Yi Xi5Yi»Zi
=L ), oen
(a,b,0)eXXYXZ i:(x;yi,zi)=(a,b,c)
1 n
— XisYi XisYisZi
—ZZO'A ® (5.13)
i=1
Consider the event
Ay = (3", 2, U"()) € T (pxvzw)} (5.14)
Based on the classical result due to Cuff et al. [16],
Pr(A) > 1 - a, (5.15)

for all (x*,y",7") € Tén)(pxyz), where y = y(0) tends to zero as 6 — 0, and @, tends to zero as n — oo,
provided that

R > I(X;UIYZ) + ¥(6). (5.16)
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Therefore,

Pr (|[p45(U" (D). x".Y".2") = Tag]|, > 7(6)) < . (5.17)

This completes the proof of Lemma 5.
We are now in a position to give the achievability proofs for the two-node and cascade networks.

5.2. Two-node network: Achievability proof for Theorem 2

The proof essentially follows from Lemma 5, with the following addition. If Alice receives a
random sequence X" that is not d-typical, then she sends an arbitrary transmission. Otherwise, she
encodes using the encoder in Lemma 5. Since Pr (X” € T(g")(px)) tends to 1 as n — oo, achievability
for the two-node network follows.

5.3. Cascade network: Achievability proof for Theorem 3

124

" ,, at rates

We use rate splitting, where Alice’s message consists of two components m|_, and m

’ 17 : _ D’ 17
R} ,and R} ,, respectively, where R, = R] , + R{ ,.

Classical codebook construction Select 2 - 2" gequences y'(¢'), z'(¢”’), €.’ € [2"%],
independently at random, each i.i.d. according to py and pz, where

prz(,9) = ) px(¥)pyzx(,2l). (5.18)

Assign each sequence with a bin index b (y"(¢')) and c (z"(£”)), where b : Y" — [2"Fi-2]and ¢ : Z" —
[2"Ri-2], independently at random.

Alice’s encoder As before, if Alice receives x" ¢ T(g")(px), she sends an arbitrary transmission.
Otherwise, consider the classical encoding function M,_, : X" — [2"Ri-2] x [2"Ri-2] below. Given
x" € T{"(px), find an index pair (¢, £”) € [2"%] x [2"%] such that (x", y"(£'), 2'(£")) € TS (pxyz). If
there is none, set (£’,¢”) = (1, 1). If there is more than one, choose the first. Send the corresponding
bin indices, i.e., m|_,(x") = b (y"({")) and m} _,(x") = ¢ (z"(£")).

Then, prepare

o= (o (5.19)
i=1

Bob’s encoder Bob receives m;_, = (m;_,,m{,), and encodes in three stages:

(i) Given m/_,, find an index #” € [2"®] such that

(@) e T (pz) and ¢ (2"(2")) = mf.,. (5.20)

If there is none, set £ = 1. If there is more than one, choose the smallest. Send my_3 = my , to
Charlie.
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(ii) Now given m_, and ¢, find an index £’ € [2"%] such that
O"(@).2"@") € Ty (pyz) and b(y'(Z)) = mi ;. (5.21)

If there is none, set ¢ = 1. If there is more than one, choose the smallest.

(iii) Prepare the state

n

Pz = Qo @ @)Yz, (5.22)
i=1
where Z" is an auxiliary system for Bob.
Charlie’s encoder Given m,_3; = m/_,, find an index " € [2"%] such that
@) e T (pz) and ¢ (2"(2")) = mf,. (5.23)
If there is none, set #” = 1. If there is more than one, choose the smallest.
Prepare the state
P = (R) i), (5.24)
i=1
This results in an average state,
— no.n _n _1 C X" V! =n\/=n "
Panzc( ') =~ ) ph @ py @ X ® 0],
i=1
1 < _
=— TR0 |ZXZ ® 0, 5.25
n;@ " ® Xz ® o (5.25)

with y" = y”(f’), 7' = ("), and 7' = Z*({”). Based on the analysis in the proof of Lemma 5 (see
Section 5.1), Alice, Bob, and Charlie achieve empirical coordination of o 4pz¢, provided that

Ros = Ry, > 1(X:2), (5.26)
R, >I1(X;Y|Z) (5.27)
which requires Ry, = R} , + R} , > I(X;YZ). |

6. Converse part analysis
We now show the converse part of the coordination capacity theorems.
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6.1. Two-node network: Converse proof for Theorem 2

Consider the two-node network in Figure 3. Let R;., be an achievable rate for empirical
coordination with a desired state wsp. Then, there exists a sequence of (2”R1*2,n) empirical
coordination codes that achieves an error,

[Pxa5 — @xasl|, < & (6.1)

where g, tends to zero as n — co. Now, suppose that Bob performs a projective measurement in
a particular basis, say, {[y)}. This yields a sequence Y” as the measurement outcome, with some
distribution pynxa(y"|x").

Then, consider the classical variables X; and Y, where J is a uniformly distributed random variable,
over the index set [n], drawn independently of X", Y". Their joint distribution is

_ 1 ¢
DPx,v,(x,y) = p le DPxv,(X,y)

= ((xl@Dpxs (0 @1y) , (6.2)

where pyy, is the marginal distribution of p% X py.x.. Based on (6.1), we have the following total
variation bound:

||}_7XJY, - 7Txy||l < &, (6.3)
where myy is defined as
Txy(x,y) = (xl @ (YD) wap (IX) ®1y)) , (6.4)

for (x,y) € X X V.
Next, consider that

nRi_, > HM,_,)
2 I(Xn’ M1H2)
> I(X"; ")

= Z (X3 Y"IX™)
i=1

= Z I(X; XY
i=1

> ) IX:Y)
i=1
=nl(X;; Y1), (6.5)

where the third inequality holds by the data processing inequality and the following equalities by the
chain rule. Since X" is i.i.d., it follows that X, and J are statistically independent, hence,

I(Xp; Y| Dp = 1(Xy, YD)
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>1(X;5Y));. (6.6)

Based on entropy continuity [106],
I(X55Y)p 21X Y ) —a, (6.7)
where @, = -3¢, log(e,|X||Y]) [107, Lemm. 2.7], which tends to zero as n — oo. This concludes the

converse proof for the two-node network.

6.2. Cascade network: Converse proof for Theorem 3

Consider the cascade network in Figure 4. If (R;_,, R,_3) is achievable, then there exists a sequence
of (Z”RHZ, 2R3 n) codes such

”ﬁxmc - (UXABCHI < é&n, (6.8)

where &, tends to zero as n — oco. Suppose that Bob and Charlie perform projective measurements in
a particular basis, say, {|y)} and {|z)}, respectively. This yields a sequence (Y", Z") as the measurement
outcomes, with some distribution pynznx»(y", z"|x").

Then, consider the classical variables X, Y, and Z,;, where J is uniform over [n], independent of
X", Y", and Z". Their joint distribution is

_ IS
PX]Y,Z,(X, ,2) = r_l le pX,-Y,»Z,-(X, Y,2)

= ((d @ Yl @ (eDpxpc(l) @[y ®12)) (6.9)

where py,y,z 18 the marginal distribution of p% X pyz:x.. By (6.8),

||I_7XJYJZJ - 7Txyz||1 < &, (6.10)

where

mxyz(X,,2) = (X[ ® (¥ @ (zDwasc(1X) @ [y) ® [2)) , (6.11)

for (x,y,2) e X x Y x Z.

Consider Alice’s communication rate, R;_,. Now, we may view the overall encoding operation of
Bob and Charlie as a “black box” with M;_, as input and (B", C") as output, as shown in Figure 7.
Thus,

I’lRlaz > H(M[HZ)
> I(X"; M)
> I(X",Y"'Z")

= Y IXi Y Z' X
i=1

= Z I(X;; Xy zh)

i=1
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2 Z 1(X;; YiZ;)
i=1
= I’lI(X], Y]Z]l.])p (612)
based on the same arguments as in (6.5). Since X; and J are statistically independent, we have

Ri_» 2 I(X;; Y, Z,|0);
=I1(X;; JY;Z))p

> 1(X;3Y1Z))p. (6.13)

Following similar steps, we also have
Ry 3 2 I(Xy3Z))p - (6.14)

Based on entropy continuity [106],
1(X;;Y;2) 2 1(X;YZ), —a,, (6.15)
1(X;;Z)) 2 1(X;2), — a, (6.16)
where a,, = -3¢, log(&,|X||Y||Z]) [107, Lemma 2.7], which tends to zero as n — oo. |

7777777777777777777777777777777

A" B" c"

Figure 7. Encoding by Bob and Charlie.

7. Summary and discussion

7.1. Summary

We have introduced the notion of empirical coordination for quantum correlations. Quantum
mechanics enables the calculation of probabilities for experimental outcomes, emphasizing statistical
averages rather than detailed descriptions of individual events. Empirical coordination is thus a
natural framework for quantum systems. Focusing on the cascade network, we established the optimal
coordination rates, indicating the minimal resources for the empirical simulation of a quantum state. As
we consider a network with classical communication links, superposition cannot be maintained, hence
the quantum correlations are separable. This precludes entanglement. We have shown that providing
the users with shared randomness, before communication begins, does not affect the optimal rates for
empirical coordination (see Theorem 1). We began with the rate characterization for the basic two-
node network (Theorem 2), and then generalized to a cascade network (Theorem 3). The special case
of a network with an isolated node was addressed as well (see Corollary 4). The results generalize to
other networks as our analysis includes a generic achievability scheme (see Lemma 5). Nonetheless,
we do not claim to have solved all coordination scenarios or network topologies.

Next, we discuss the consequences of our results for quantum cooperative games.
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7.2. Game-theoretic implications

In many cooperative games, the payoff is associated with the correlation between the players. In
the penny matching game, as introduced by Gossner et al. [108], Alice receives a classical sequence
x" from an 1.i.d source; thereafter, Alice and Bob produce sequences a” and b" that should be close to
one another and to x" as well. In other words, Alice and Bob try to guess the source sequence one bit
at a time. They gain a point for every bit they both guess correctly. Alice’s action a” is referred to as
a guess, even though she knows the original source sequence x". As it turns out, an optimal strategy
could let Alice guess wrong, i.e., a; # x;, for some of the time [108]. Cuff and Zhao [42] analyzed a
generalized version of the game through the classical two-node network. Here, we introduce a quantum
version of the game.

Suppose that Alice receives a classical sequence x” from an i.i.d source py, as depicted in the two-
node network 3. The quantum encoding of each user is viewed as the actions [109]. The game is
specified by a payoff map

G:AHy, @ Hp) — [0,00). (7.1)

Given a joint strategy wag, the payoff to Alice and Bob is G(wap).

Suppose that Alice uses an empirical coordination code and sends nR;_,, bits to Bob. Furthermore,
let SEP(y) be the set of all separable strategies w4 for which Alice and Bob receive a payoff y =
G(wap)- Alice and Bob can then reach an average payoft vy > 0 asymptotically, if and only if Alice can
send a message to Bob at rate Ry, > Cy_0de(w) for some wyp € SEP(y). The optimal rate C,_oqe(w) 1S
characterized by Theorem 2.

7.3. Strong coordination vs. empirical coordination

Analogously to the classical framework, we distinguish between two types of coordination tasks:
Strong coordination and empirical coordination.

7.3.1. Strong coordination

In the classical setting, strong coordination means that a statistician cannot reliably distinguish
between the constructed sequence of actions X7,...,X%, and random samples from the desired
distribution [16]. This requires the joint distribution Pxo.xn that the code induces to be arbitrarily close
to the desired source m = 7y, x, in total variation distance. That is, strong coordination is achieved if
there exists a code sequence such that

lim [[px;..x; =", = 0. 7.2)

where 7" denotes the 1.i.d. distribution corresponding to the desired source.

Consider a network of K quantum nodes, where the users have access to classical communication
links with limited rates R; ; and may share common randomness (CR) at a limited rate Ry. We say that
strong coordination is achieved if there exists a code sequence such that the joint state Par.ar that 1s
the code induces converges to the desired state, i.e.,

=0, (7.3)

lim ||pAn an — W
noed [1OAT...AY I

where w = wy, 4, 1s the desired state. In our previous work [60], we have considered strong
coordination for classical-quantum (c-q) correlations with classical links.

AIMS Mathematics Volume 10, Issue 4, 10028—-10061.



10052

7.3.2. Empirical coordination

In the classical description, empirical coordination uses network communication in order to
construct a sequence of actions that have an empirical joint distribution closely matching the desired
distribution [16]. In this case, the error criterion sets a weaker requirement, given in terms of the
joint type, i.e., the empirical distribution of the actions in the network. Formally, the requirement for
empirical coordination is that for every € > 0,

lim Pr ([|Py;.xy — 7|, 2 £) =0, (7.4)
where X7, ..., X} are the encoded actions, and the probability is computed with respect to the CR

distribution.

We say that empirical coordination is achieved in a quantum coordination network if there exists
a sequence of coordination codes of length n, such that the time-average state % 21 PAG).. A () that s
induced by the code converges in probability to the desired source wy,. 4, 1.€.,

1 n
= ZpAl(i).A.AK(i) —w
ni3

where w = wa, 4, 18 the desired state, and the probability is computed with respect to the CR
distribution. We note that the quantum definition differs in nature from the classical one (c.f. (7.4)
and (7.5)).

n—oo

lim Pr (

> 8) =0, (7.5)
1

Remark 10. To see that strong coordination is indeed a stronger condition, note that by trace
monotonicity, strong coordination implies ”PAl(i).‘.AK(i) - w”l — 0asn — oo, for every i € [n]. Hence,
by the triangle inequality,

1 n
Z ZpAl(i).‘.AK(i) -—w
=

which also tends to zero as n — .

1 n
< n Z ||pA1(i)---AK(i) - w”l (7.6)
1 i=1

We have discussed the justification and the physical interpretation of our coordination criterion in
Subsection 3.2. Consider an observable represented by an Hermitian operator O on Hy, ®- - -® Hy,.. In
practice, statistics are collected by performing measurements on n systems (A;(i), ..., Ax(i) : i € [n]).
The expected value of the observable in the ith measurement is thus,

(0)i =Tr|0pa,,..c (7.7)

for i € [n]. Roughly speaking, our coordination criterion guarantees that the empirical average is close
to the expected value with respect to a desired state, i.e.,

% Z(OA%‘ =Tr|O- [% ZPAL,-...AKJ)]

~ Tr [O . wAl...AK] . (78)

with high probability.
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7.4. Common randomness does not help

We have shown that CR does not improve the coordination capacity. That is, if R,_,; is achievable
with CR, it is also achievable without CR. We provide an intuitive explanation below. Suppose we use
a coding scheme where the CR element is a sequence U”, drawn from a memoryless source py over
U, and each user encodes by a collection of maps {E™}, taking u = U at time i. Then, this CR-assisted
coding scheme can be replaced with a code based on a fixed agreed-upon sequence ii" of type P ~ py.

Since our coding scheme uses binning and not an encoder of the form &, the description above is
only a rough explanation to gain intuition.

7.5. Applications

Recent advances in machine-to-machine communication [19] and the Internet of Things (IoT) [14]
have raised interest in networks with various topologies [5]. These network topologies are relevant
for various applications, such as distributed computing [110], autonomous vehicles [111], embedded
sensors [112], players in a cooperative game [42], and quantum-enhanced 0T [113,114]. Coordination
with classical links is motivated by quantum-enhanced IoT networks in which the communication
links are classical [113—-116]. The problem at hand is to find the optimal transmission rates required
in order to establish a desired correlation. Empirical coordination also plays a role in quantum data
compression [49, 50,52]. The optimal compression rate for a quantum source of pure states was first
established by Schumacher [117] for a quantum source of pure states (see also [118, 119]). Empirical
coordination is thus a natural framework for quantum systems.

Empirical coordination also plays a role in quantum data compression [49]. Barnum et al. [50]
addressed a source of commuting density operators, and Kramer and Savari [36] developed a rate-
distortion theory that unifies the visible and blind approaches (cf. [51] and [52]). Khanian and Winter
have recently solved the general problem of a quantum source of mixed states (see also [52-58]). Rate
distortion can be viewed as a special case of empirical coordination.

7.6. Future directions

In another work by the authors [59], we have also considered strong coordination in a network
with quantum links. This allows for the generation of multipartite entanglement and is closely related
to tasks such as quantum channel/source simulation [20-24, 89, 120], state merging [30, 31], state
redistribution [77,121], zero-communication state transformation [28,29], entanglement dilution [32-
34, 98], randomness extraction [25, 26], source coding [35—40], and many others. An interesting
avenue for future research is to study empirical coordination in such networks. There are many
other coordination scenarios and network topologies that could be studied further, e.g., empirical
coordination with entanglement assistance. Other interesting directions include the one-shot setting
(n = 1) and coordination with two-way communication.
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