
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(4): 10002–10027.
DOI: 10.3934/math.2025457
Received: 28 December 2024
Revised: 11 March 2025
Accepted: 01 April 2025
Published: 28 April 2025

Research article

Finitely generated classes of multi-argument logic functions excluding
majority and choice functions

Anton A. Esin1,2,*

1 Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, build.1, Moscow,
Russia

2 Incarnet Mathematical Modeling & ComplexNetworks LTD, 0012, 32 Komitas Ave, Yerevan,
Armenia

* Correspondence: Email: anton.esin@imm.am; Tel: +37410277513.

Abstract: We study a class of functions F satisfying a condition denoted by 0x, meaning F(x) = 0
whenever x meets a specific threshold. We show that F is generated by a finite set of functions, none of
which are majority or choice functions. Key theoretical results are presented, including proofs of the
closure of F under superposition and the inclusion F ⊆ T0, where T0 denotes the set of all functions
that evaluate to zero whenever at least one variable is zero. Our main theorems confirm that majority
functions and choice functions are not elements of F. We further prove that F is finitely generated, that
is, definable by a finite set of functions. These findings offer a novel framework for constructing finitely
generated classes in multi-valued logic while excluding the commonly used but computationally
intricate majority and choice functions, with practical implications in computational optimization. In
conclusion, we discuss potential directions for further research, including the exploration of other
classes of functions and the investigation of their properties and applications.

Keywords: multi-valued logic; closed classes; choice functions; voting functions; computational
complexity; multi-argument functions; finite generation

1. Introduction

The study of closed classes of functions is among the central topics in mathematical logic and
algebra [1–4]. Recall that closed classes of functions in logic are sets of functions that remain closed
under certain operations [5], such as superposition [6], and include all functions obtainable from the
given class by these operations.

Let Pk be the set of all k-valued functions of n variables, where k ∈ N and k � ∞. A closed
class F ⊆ Pk is a set of k-valued functions with the following property: if f1, f2, . . . , fm ∈ F, then any

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025457

10003

function obtained by superposing these functions also belongs to F [7, 8].
In theoretical investigations, closed classes of functions serve in the study of logic models [9] and

proof theory [10], facilitating the construction and analyzis of various logical inference systems and
their properties [11].

In modern applications and engineering, closed classes of functions in multi-valued logic support
the development of more efficient algorithms and the optimization of computational processes [12],
as well as the design of more effective integrated circuits [13]. An understanding of closed classes
enables the creation of circuits that implement required functions using minimal resources [14, 15].
Moreover, multi-valued logic has significant potential in data transmission systems, particularly in
mobile networks, where efficient handling of traffic aggregation and robustness to noise are critical
[16, 17]. The ability to design compact and resilient circuits using closed classes facilitates optimized
bandwidth utilization and improved reliability in dynamic network environments, making this approach
especially relevant for next-generation communication technologies. The proposed framework also has
significant implications for the analyzis of reliability and performance in systems modelled by Markov
processes with a discrete number of states [18,19]. Multi-valued logic functions, such as those in class
F, provide a natural foundation for modeling state transitions in discrete stochastic systems.

For example, ternary communication systems, where signals can assume three distinct levels (e.g.,
{0, 1, 2}), allow for a 50% increase in data density compared to binary systems. Excluding majority
and choice functions in the logical framework of these systems reduces computational overhead and
improves resilience to noise during signal transmission. The exclusion of majority and choice functions
also has direct implications for quantum communication channels, where maintaining coherence and
minimizing computational complexity are paramount. In quantum channels, logical operations such as
superposition and entanglement require precise control to minimize decoherence and ensure reliable
data transmission [20].

A range of modern applications of multivalued logic, including the design of heterogeneous
computing systems, is discussed in [21]. The authors demonstrate the advantages of ternary logic over
binary logic for designing chipsets and circuits, and they also describe a method for constructing a
lattice of closed classes in multivalued logic. Recent advancements in multi-valued logic also have
significantly expanded its applications, particularly in the context of cellular automata, neural
networks [22] and deep learning networks [23].

A comprehensive study of closed classes in three-valued logic can be found in [24], which provides
both a theoretical discussion and an overview of modern applications of nonbinary logic.

In particular, the work [25] highlights the importance of multi-valued logic in enhancing memory
density and simplifying computational circuits. Building upon these ideas, our results complement
prior research by introducing and analyzing the class F, which allows for the construction of closed
sets of functions while avoiding the complexities associated with majority and choice functions.

In this article, we focus on a class of functions F that satisfy a special condition, denoted 0x. This
class is of particular interest due to its exclusion of both majority and choice functions, which are
known for their computational complexity and sensitivity to noise. By proving that F is finitely
generated and exploring its structural properties, we extend the theoretical framework of multi-valued
logic and provide new insights into the design of robust computational systems.

Before proceeding with the main arguments, we establish the rigorous definitions necessary for a
formal treatment of the problem.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10004

Definition 1 (Majority function). A majority function µ(x1, x2, . . . , xn) outputs the value that appears
most often among its arguments. Formally, for Boolean variables (0 or 1), it is defined as follows:

µ(x1, x2, . . . , xn) =

1, if more than half of the xi = 1,
0, if more than half of the xi = 0.

A majority function takes the value that appears most frequently among its input arguments [5].
The majority function µ(x1, x2, . . . , xn) determines the most frequently occurring value among its

input arguments. In the case of Boolean variables (0 or 1), it outputs 1 if more than half of the inputs
are 1; 0 otherwise. The term half of x refers to the midpoint of the total number of inputs. Specifically,
if there are n input values, then if more than n/2 of them are 1, the majority function returns 1 if n is
even, the majority function may require tie-breaking (depending on the specific definition used).

Table 1 illustrates the operation of the majority function for selected input cases:

Table 1. Majority function outputs for selected inputs.

Input values Majority output
(0,0,1) 0
(2,2,1) 2
(1,1,2) 1
(0,2,2) 2

To illustrate the majority function with a larger number of input values, consider the following
example: µ (2, 1, 1, 0, 2, 1, 2, 2, 1, 0) = 1.

Note that if a closed class F in k-valued logic contains majority functions, it remains closed under
superposition. Specifically, if µ and ν are majority functions in F, then the function

h(x1, x2, . . . , xn) = µ
(
ν(x1, x2), x3, . . . , xn

)
also belongs to F. Proofs of this fact under various special conditions can be found in [26–28].

Definition 2 (Choice function). A choice function, typically denoted by ϕ, assigns to each non-empty
subset Y ⊆ X an element from Y. Formally:

ϕ(Y) ∈ Y for every non-empty Y ⊆ X.

It is known that the class of choice functions is also closed under superposition in k-valued logic
[29]. Various aspects of this property have been investigated in [3, 4, 30].

Table 2 provides a comparative analyzis of the majority and choice functions, focusing on their
formal definitions, computational complexity, expressiveness, robustness to noise, and applications in
multi-valued logic.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10005

Table 2. Mathematical comparison of majority and choice functions.

Property Majority function Choice function

Formal definition µ(x1, x2, . . . , xn) = arg max
v
|{xi =

v}|
φ(x1, x2, . . . , xn, c) = xc (selects
xc based on control c)

Computational
complexity (O-
notation)

O(n) (requires counting
occurrences of each value)

O(1) or O(n) (depends on
selection mechanism)

Expressiveness (∃
relations captured)

High (∃ dependency between
inputs)

Low (does not capture inter-
variable dependencies)

Robustness to noise
(∆x→ ∆y)

Low
(
∂y
∂x is large near decision

boundary
) Medium

(
∂y
∂x depends on control

stability
)

Application in multi-
valued logic

Used in voting systems,
error correction, fault-tolerant
computing

Used in decision-making
models, controlled selection
operations

Closure under
superposition
(F ◦G ⊆ F)

Yes (∀ f , g ∈ F, f ◦ g ∈ F) Yes (∀ f , g ∈ F, f ◦ g ∈ F)

1.1. Rationale for excluding majority and choice functions

In this study, a fundamental aspect is the exclusion of majority and choice functions from the
proposed function class F. This strategy has significant theoretical and practical justifications,
particularly in the contexts of multi-valued logic, circuit design, and computational optimization.

Majority functions are widely employed in redundant digital circuits [31, 32] to enhance system
reliability [33]. Choice functions, which select a single element from a given set [34], form a well-
studied class of functions and are also widely used in electronics.

Majority and choice functions play a fundamental role in multi-valued logic; however, they exhibit
certain drawbacks [35]:

(1) Computational complexity of majority and choice functions

• Majority functions require computing the most frequently occurring value among the input
arguments, which leads to an increase in computational cost as the number of inputs grows.
For instance, with n inputs, computing the majority value necessitates at least O(n)
comparisons, which becomes particularly problematic in parallel and scalable systems [32].
Thus, it can increase computational complexity significantly. Determining a majority
among many input variables can require extensive resources, which may be impractical for
applications with restricted computational capacity [36, 37].
• Choice functions select a specific value from a given set of inputs based on a predetermined

criterion, necessitating additional parameter control and potentially increasing
implementation complexity in digital circuits [34].

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10006

The exclusion of these functions mitigates the necessity for computationally expensive operations
in resource-constrained environments such as circuit design and mobile computing systems [17,
21].

(2) Majority and choice functions exhibit high sensitivity to noise [38]; even small perturbations in
input values can lead to different outputs, complicating their use in noise-resilient applications
such as data transmission [39]. This makes them suboptimal for deployment in high-uncertainty
environments. Examples include the following:

• Majority functions are prone to errors in response to minor variations in input values.
Specifically, when the number of input arguments is large, even small fluctuations in the
input data can significantly alter the computed result [38].
• Choice functions may yield unstable outputs in the presence of random perturbations, as the

selection process depends on minimal variations in the control argument.

In fields such as quantum computing and telecommunications, the high sensitivity of these
functions to noise may result in information loss and increased transmission error rates [40, 41].

(3) Optimization of Circuit Design and Multi-Valued Logic. The exclusion of majority and choice
functions leads to substantial simplifications in circuit architecture and logical models:

• In multi-valued logic, superposition operations are simplified, as they do not require handling
the computational overhead associated with majority functions.
• In circuit design, eliminating such functions reduces the number of required logic gates,

which is particularly crucial for the development of energy-efficient circuits [2].
• In multi-valued logical models, this exclusion facilitates the construction of novel function

classes that are resilient to perturbations and noise while preserving expressive power [25,
42].

Thus, the proposed function class F provides an alternative framework for constructing logical
systems, avoiding computationally expensive and noise-sensitive functions while retaining the
essential properties of multi-valued logic.

(4) Limited Expressiveness of Choice Functions: A choice function merely selects one of the
input values based on a control argument, thus limiting the ability to capture intricate
dependencies among variables [43]. In complex computational circuits, implementing such
functions may demand additional logic to handle control parameters, increasing the
implementation overhead.

These limitations motivate the exploration of additional function classes and the construction of
finite closed classes that circumvent the complexities introduced by majority and choice functions.
Over time, research has addressed various specialized function classes, including partial functions
[44], functions with constants [29], unary functions [45], partial Sheffer functions [46], and classes
encompassing all polynomials [47], among others [27, 48].

Building on these approaches, this research introduces a novel function class that provides an
alternative framework for logical system construction, avoiding computationally expensive and
noise-sensitive functions while preserving key structural properties of multi-valued logic.

It should be noted that while a trivial generating set such as {0, x1x2}may appear sufficient in simple
cases, our construction—incorporating the function g(x1, x2, x3, x4) and auxiliary functions—provides

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10007

a more comprehensive framework that not only proves the finite generation of F in k-valued logic (for
k > 2) but also reveals richer structural properties. This approach is in contrast to previous methods
that required more intricate arguments and further motivates the study of the lattice of subclasses of F
as a promising direction for future research.

2. Research objectives

This study addresses the following research question: can we construct a finitely generated closed
class of multi-valued logic functions that excludes majority and choice functions while remaining
computationally expressive?

The primary objective of this research is to develop and analyze such a class while ensuring that
it retains essential computational properties relevant to multi-valued logic. In particular, we aim to
establish a structured framework that explicitly avoids the computational overhead and noise sensitivity
associated with majority and choice functions, without compromising the expressiveness of logical
systems.

This study rigorously investigates the structural properties of the function class F under the
condition 0x, demonstrating its finite generation while ensuring the exclusion of majority and choice
functions. Our proofs provide a systematic approach to constructing closed classes in multi-valued
logic. To achieve this goal, we:

• Formally define the function class F and establish its fundamental properties.
• Prove its closure under composition, projection, and other key operations.
• Demonstrate that F remains expressive enough to support robust computational models despite

the exclusion of majority and choice functions.
• Discuss potential applications of F in circuit design, error-resilient computation, and multi-valued

logical modeling.

Thus, this research establishes a novel class of functions that offers an alternative foundation for
logical systems, mitigating the computational challenges posed by majority and choice functions while
preserving the structural integrity and practical utility of multi-valued logic.

2.1. Structure of the paper

The paper is organized as follows. In Section 3, we present the main theoretical results of our work,
introducing the essential definitions and notations required for our analyzis. In Subsection 3.1, we
investigate the fundamental properties of the class F and prove that it excludes majority functions and
choice functions. Next, in Subsection 3.2, we supply proofs of our principal result, namely, that the
class F is generated by a finite set of functions.

Finally, the conclusion summarizes our findings, discusses possible directions for future research,
and considers illustrative examples of applications.

3. Main results

To facilitate the subsequent exposition, let Pk denote the set of all k-valued functions of n variables,
where k is a fixed natural number. This set includes all functions that can take one of k values for any

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10008

combination of n variables.

Definition 3 (Condition 0x). We say that a function f (x̃) : {0, 1, 2}n → {0, 1, 2} of n variables satisfies
the condition 0x if there exists an index i, 1 ≤ i ≤ n, such that

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0,

regardless of the values of x1, . . . , xi−1, xi+1, . . . , xn.

The Condition 0x (Definition 3) imposes a structural restriction on a function f : {0, 1, 2}n →
{0, 1, 2} in multi-valued logic. It states that there must be at least one input variable whose value
directly determines the function’s output under a specific condition.

More precisely, a function satisfies Condition 0x if there exists an index i (where 1 ≤ i ≤ n) such
that setting xi = 0 forces the function output to be 0, regardless of the values of all other variables. For
example, consider a function f (x1, x2, x3) over ternary logic ({0, 1, 2}):

f (x1, x2, x3) = max(x1, x2, x3).

If we set x1 = 0, the function still depends on x2 and x3, meaning the output is not necessarily.
Remark. Consider first the Boolean case (i.e., k = 2). In this setting, the function

f (x1, x2, . . . , xn) = x1 · · · xn,

where the product is defined in the usual Boolean sense (e.g., x · y = min{x, y} or equivalently logical
AND), is a natural and sufficient example of a function satisfying the condition 0x; indeed, if at least one
argument is zero, the product is zero. In Boolean logic, such a trivial construction may indeed appear
to generate a substantial portion of the class F.

However, when we consider k-valued logics with k > 2 (for example, ternary logic with k = 3), the
situation becomes more intricate. In these settings, the function

f (x1, x2, . . . , xn) = x1 · · · xn,

even if defined appropriately (for instance, by interpreting the product as the minimum operation,
x · y = min{x, y}), generates only a subset of all functions that satisfy the 0x condition. This is because,
for k > 2, there exist functions whose structural complexity cannot be captured by this simple operation
alone. In particular, a richer generating set is required to produce the entire class F.

This necessity is illustrated by the introduction of the function

g(x1, x2, x3, x4),

which, through its piecewise definition and the incorporation of additional operations, is capable of
generating functions with more complex behavior. Such functions are essential to account for the
broader variety of functions that satisfy 0x in k-valued logics for k > 2.

Thus, while the product function serves as an instructive example in the Boolean case, it is
insufficient in higher-valued logics, motivating the need for an expanded generating set as
demonstrated by the construction of g(x1, x2, x3, x4).

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10009

Consider a different function:

g(x1, x2, x3) =

0, if x1 = 0,
x2 + x3, otherwise.

In this case, no matter what values x2 and x3 take, setting x1 = 0 immediately forces g(x1, x2, x3) = 0.
Thus, g(x1, x2, x3) satisfies Condition 0x with respect to x1.

The presence of Condition 0x may restrict certain function classes, particularly in relation to closure
under superposition. In ternary logic circuits, Condition 0x can reduce gate complexity by ensuring
that some inputs always enforce a predetermined outcome.

Definition 4 (Closed class F with respect to 0x). We define the closed class F ⊆ Pk to be the set of all
functions in Pk that satisfy the condition 0x.

Remark. Example illustrating the nontriviality of condition 0x. Consider two cases:

(i) Case without condition 0x (standard multi-valued logic function): Let g(x1, x2, x3) = x1 + x2 + x3

in a ternary logic system {0, 1, 2}. If x1 = 0, the function still depends on x2 and x3. Thus,
g(0, 1, 2) = 3, meaning x1 = 0 does not force the function to 0.

(ii) Case with condition 0x (restricted function class F). Consider:

h(x1, x2, x3) =

0, if x1 = 0,
x2 + x3, otherwise.

Here, setting x1 = 0 immediately forces h(x1, x2, x3) = 0, regardless of x2, x3.

This simplifies logical operations and makes function evaluation more predictable in practical
implementations.

3.1. Properties of the class F satisfying the condition 0x

Let us now examine the class F of functions satisfying 0x and its fundamental properties, set out in
Theorem 1.

Theorem 1. The class F has the following properties:

(i) Closure under superposition: F = [F].
In other words, if g and h are functions in F, then any composition of the form
g
(
h1(x), h2(x), . . . , hm(x)

)
belongs to F.

Proof. If f ∈ F, by definition f satisfies 0x. Consider any composition of functions from F. Let
g and h be in F, and form the composition g

(
h1(x), h2(x), . . . , hm(x)

)
. Since each hi also satisfies

0x, whenever any of its arguments is zero, the entire composition remains zero. Therefore, the
resulting composition also lies in F. �

If F is not closed under superposition, then there exist functions g, h ∈ F such that g(h(x)) < F.
As a counterexample, we can consider h(x1, x2) = x1 + x2 (modulo 3) and g(y) = 1 if y = 2,
otherwise g(y) = 0. Then, we have the following:

g(h(0, 1)) = g(1) = 0, g(h(1, 1)) = g(2) = 1.

However, in that case g(h(x)) does not satisfy 0x, violating the structure of F.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10010

(ii) Exclusion of the constant-1 function: 1 < F.

Proof. The constant function 1 (which outputs 1 for all inputs) cannot satisfy 0x. Indeed, if xi = 0,
the output should be zero to meet the condition 0x. This is never the case for the constant function
1. Hence 1 < F. �

The inclusion of 1 in F would destroy the structural integrity of 0x, as compositions involving
1 would no longer satisfy the condition. See, if g(x) = 1 and h(x) = x, then the composition
g(h(x)) = 1 remains 1 for all x, contradicting 0x.

(iii) Inclusion in the class T0: F ⊆ T0.
Here, T0 is the class of all functions outputting 0 whenever at least one of their variables is 0.

Proof. Since each function in F satisfies 0x, for every f ∈ F there is an index i such that
f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0. Therefore, every function in F trivially satisfies the broader
property of T0, implying F ⊆ T0. �

If F is not contained in T0, this implies the existence of functions in F that do not always output
0 when a single input is set to 0. As an example consider the function f (x1, x2) = x1 + x2 (modulo
3): if x1 = 0, then f (0, 2) = 2 , 0. Hence, f < T0, meaning F * T0 would fail.

(iv) Non-containment of any precomplete class of unary functions
Recall that a precomplete class of unary functions is one to which no further unary function can be
added without losing closure [28]. This result shows that F does not contain any such precomplete
class.

Proof. All known precomplete classes of unary functions contain the constant function 1 (see, for
instance, [30]). Since 1 < F (see part 2 of Theorem 1), F cannot contain any precomplete class
of unary functions. �

If F contained a precomplete class, then F would necessarily include all possible unary functions,
including the constant-1 function. This contradicts 1 < F, thereby rendering the structure of F
inconsistent.

These properties, examined within the framework of multi-valued logic, illuminate how the class F
interacts with other classes of functions and their compositions.

Although the trivial generating set {0, x1x2}, satisfies the 0x condition and suffices in the Boolean
case (k = 2), it is inadequate for k > 2. In higher-valued logics, additional generators (e.g.,
g(x1, x2, x3, x4)) are required to capture the full structural complexity of F.

The relationships between F and majority functions or choice functions are captured by the
following two theorems (Theorems 2 and 3).

Theorem 2. Let µ be a majority function. Then µ < F.

Proof. Suppose, for contradiction, that a majority function µ(x1, . . . , xn) with n ≥ 3 is in F. By the
property of F, there exists an index i such that

µ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10011

independently of the other variables. Now consider the input vector α̃ such that αi = 0 and α j = 1
for all j , i. Since more than half of the inputs are 1, the majority function should yield µ(α̃) = 1.
However, from the condition 0x it follows that µ(α̃) = 0. This contradiction shows that µ < F. �

Theorem 3. Let ϕ be a choice function. Then ϕ < F.

Proof. Assume, contrary to our claim, that the choice function ϕ(y, x0, . . . , xk−1) belongs to F.
Consequently, there must be a variable such that if it is zero, then ϕ returns zero.

Case 1: The variable is y.
Consider the input vector α̃ = (αy, α0, . . . , αk−1) with αy = 0 and α0 , 0. By the property of F, we

must have ϕ(α̃) = 0. However, ϕ is supposed to choose one among the inputs xi according to the index
y. Since y = 0 is not a valid index for non-zero elements, a contradiction arises.

Case 2: The variable is xi for some i ∈ {0, 1, . . . , k − 1}.
Let αy = l , i and αi = 0 but αl , 0. Then, by definition, ϕ(α̃) should output αl, since y = l. On the

other hand, the condition 0x requires that ϕ(α̃) = 0 because one of its inputs (xi) is zero. This is again
a contradiction.

Hence, ϕ < F. �

Thus, the class F does not include key function types such as majority functions or choice functions,
underscoring its distinctive structure in the context of multi-valued logic.

3.2. Finite generation of the class F

Theorem 4. The class F is generated by a finite set of functions.

Proof. Define
d3(x1, x2, x3) = x1 · x2 ∨ x2 · x3 ∨ x1 · x3,

where x · y = min(x, y) and x ∨ y = max(x, y).
Next, consider the function g given by

g(x1, x2, x3, x4) =


0, if x1 = 0,

d3(x2, x3, x4), if x1 = 1,

i, if x1 = i, where i = 2, . . . , k − 1.

It is straightforward to verify that g ∈ F.

Example: For k = 3, the function g specialises to

g(x1, x2, x3, x4) =


0, if x1 = 0,
d3(x2, x3, x4), if x1 = 1,
2, if x1 = 2.

Observe that the class F1 = [F ∪ {1}] contains the majority function d3(x2, x3, x4) and therefore is
generated by a finite set of functions (see [49]).

Consequently, we conclude that F is generated by the function g(x1, x2, x3, x4) together with
functions in F that depend on at most nine variables. Hence, F is finitely generated. �

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10012

Example:
Consider a function f in the class F that depends on three variables x1, x2, and x3. Define

f (x1, x2, x3) =

0, if x1 = 0,

x2 · x3, if x1 = 1.

Recall that x · y = min(x, y) in this multi-valued logic setting.

The function f can be expressed in terms of the previously defined function g and an auxiliary
function h:

g(x1, x2, x3, 1) =

0, if x1 = 0,

d3(x2, x3, 1), if x1 = 1,
and h(x1) =

0, if x1 = 0,

1, if x1 , 0.

Then
f (x1, x2, x3) = h(x1) · g(x1, x2, x3, 1).

This construction shows that f is generated by g and functions depending on at most nine variables,
thereby confirming that the class F is generated by a finite set of functions.

Theorem 5. The class [F ∪ {1}] is equivalent to Pk.

Proof. Consider an arbitrary function
f (x1, . . . , xn+1)

in the class F:

f (x1, . . . , xn+1) =


0, if x1 = 0,

h(x2, . . . , xn+1), if x1 = 1,

i, if x1 = i, where i = 2, . . . , k − 1,

where h(x2, . . . , xn+1) is an arbitrary n-variable function in Pk. Clearly,

f (1, x2, . . . , xn+1) = h(x2, . . . , xn+1).

Hence, for any function
p(x1, . . . , xn) ∈ Pk,

we conclude that p ∈ [F ∪ {1}]. Therefore,

Pk ⊆ [F ∪ {1}].

�

This example illustrates a case in which finite generation cannot be directly established by a single
sufficient condition from the initial part of this work. However, the method of constant simulation
[50, 51] demonstrates finite generation by relying on the finite generation of Pk.

In a similar manner, one can construct k distinct subclasses of Pk satisfying analogous properties.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10013

Definition 5 (Condition ax). We say that a function f (x̃) satisfies the condition ax (for any
a = 0, 1, . . . , k − 1) if there exists an index i, 1 ≤ i ≤ n, such that when the variable xi = a, then

f (x1, . . . , xi−1, a, xi+1, . . . , xn) = a

regardless of the values of the other variables.

Definition 6 (Class Fa). We define the closed class Fa ⊆ Pk to be the set of all functions in Pk that
satisfy the condition ax.

For any a ∈ {0, 1, . . . , k − 1}, the class Fa has the following properties:

(1) Fa = [Fa].
This means that Fa is closed under superposition of its functions.

(2) For any b ∈ {0, 1, . . . , k − 1} with b , a, we have b < Fa and [Fa ∪ {b}] = Pk.

In other words, Fa does not contain the constant function b, but including this constant function
expands Fa to the entire set Pk.

(3) Fa ⊂ Ta. Recall that

Fa =

{
f ∈ Pk | ∃i ∈ {1, . . . , n} ∀(x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1, . . . , k − 1}n−1,

f (x1, . . . , xi−1, a, xi+1, . . . , xn) = a
}
,

and

Ta =

{
f ∈ Pk | ∀(x1, . . . , xn) ∈ {0, 1, . . . , k − 1}n,[
(∃i ∈ {1, . . . , n} : xi = a) =⇒ f (x1, . . . , xn) = a

] }
.

We show that
∃ f ∈ Ta such that f < Fa.

Define f : {0, 1, . . . , k − 1}n → {0, 1, . . . , k − 1} by

f (x1, . . . , xn) =

a, if #{i : xi = a} is odd,

b, if #{i : xi = a} is even,

with b ∈ {0, 1, . . . , k − 1} and b , a.
(i) We prove that f ∈ Ta: Let x = (x1, . . . , xn) satisfy ∃i (xi = a). Then #{i : xi = a} ≥ 1 (and is
odd in our construction), so

f (x) = a.

Thus, x satisfies the condition for membership in Ta and hence f ∈ Ta.
(ii) We prove that f < Fa: Assume, by way of contradiction, that f ∈ Fa. Then

∃ j ∈ {1, . . . , n} ∀(x1, . . . , x j−1, x j+1, . . . , xn), f (x1, . . . , x j−1, a, x j+1, . . . , xn) = a.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10014

Fix any (x1, . . . , x j−1, x j+1, . . . , xn) such that

#{i , j : xi = a} is odd.

Then for x = (x1, . . . , x j−1, a, x j+1, . . . , xn), we have

#{i : xi = a} = 1 + #{i , j : xi = a},

which is even. Therefore, by definition, f (x) = b , a, contradicting the assumption that f (x) = a
for all x with x j = a.
Thus, f < Fa. Since f ∈ Ta and f < Fa, we conclude Fa (Ta.

(4) Let µ be a majority function. Then µ < Fa.

Majority functions produce output values that do not conform to the condition ax, so they cannot
lie in Fa.

(5) Let ϕ be a choice function. Then ϕ < Fa.

A choice function cannot satisfy ax uniformly for all variables, and thus it cannot be in Fa.

These properties highlight the distinct character of the classes Fa within the domain of
multi-argument logic functions. They also demonstrate the inherent restrictions on incorporating
certain function types, such as majority and choice functions, into these classes.

Remarks

It is worth noting that the method of constant simulation mentioned in the proof is a powerful
technique for demonstrating the finite generation of function classes that may not meet simpler
sufficient conditions. This technique involves constructing functions within a class that simulate
constant functions, thereby broadening the class’s expressive capabilities.

Furthermore, the consideration of classes Fa for different values of a provides a comprehensive
framework for analyzing functions that impose specific value constraints on certain variables. This
approach can be especially useful for studying the structural properties of multi-argument logic
functions, with applications in digital circuit design and logical inference systems.

Example:
Let us consider a multi-valued logic with k = 3. Denote by P3 the class of all 3-valued logical

functions. Define a function h ∈ P3 by h(x2, x3) = x2 ∨ x3, where ∨ denotes the logical “or” operation
in this setting.

Then we define a function f by

f (x1, x2, x3) =


0, if x1 = 0,

x2 ∨ x3, if x1 = 1,

2, if x1 = 2.

Here, h(x2, x3) = x2 ∨ x3, and we observe that f assigns its output based on the value of x1.
This shows that [F ∪ {1}] coincides with Pk, illustrating methods to construct closed subclasses of

Pk that meet certain algebraic conditions.

The following theorem establishes that for any value a in a multi-valued logic (where each variable
can assume one of k distinct values), the function class Fa can be generated by a finite set of functions.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10015

Theorem 6. For every a ∈ {0, 1, . . . , k − 1}, the class Fa is generated by a finite set of functions.

Proof. Define the function g as follows:

g(x1, x2, x3, x4) =


0, if x1 = 0,

d3(x2, x3, x4), if x1 = 1,

i, if x1 = i, where i = 2, . . . , k − 1,

where
d3(x2, x3, x4) = max

{
min(x2, x3), min(x3, x4), min(x2, x4)

}
.

Clearly, g ∈ Fa as the following cases demonstrate:
- When x1 = 0, the function output is forced to be 0, satisfying Condition ax.
- For x1 = 1, the function behaves as the majority function d3, ensuring expressiveness within Fa.
- For x1 ≥ 2, the function simply outputs x1, preserving closure within Pk.

Observe that the class F1 = [F ∪ {1}] includes the majority function d3(x2, x3, x4) and is therefore
finitely generated (see, for instance, [52]).

Let
A = A9 ∪ {g, 1},

where A9 is the set of all functions in F1 that depend on at most nine variables. By a similar theorem
for Boolean functions [52], we have F1 = [A].

Now consider an arbitrary function

f (x1, . . . , xn) ∈ F.

Without loss of generality, assume f (0, x2, . . . , xn) = 0. Let ϕ be a formula over A that represents f .
Because f ∈ F, we can take

A ⊆ B9(f) ∪ {g, 1},

where B9(f) is the set of all functions in F (depending on at most nine variables) obtained by identifying
variables in f .

Define the function h by

h(x1) =

0, if x1 = 0,

1, if x1 , 0.

Clearly, h ∈ F.
Replace every occurrence of the constant 1 in ϕ by h(x1). This yields a new formula ϕ′ over

B = B9(f) ∪ {g, h}

where B ⊆ F, and ϕ′ represents the same function f .

For any input α̃ with α1 = 0, we have h(α1) = 0 , 1. Noting that f (0, x2, . . . , xn) = 0, h(0) = 0, and
for all q ∈ B9(f), q(0, x2, . . . , xm) = 0 (for m ≤ 9), it follows that

f ′(0, x2, . . . , xn) = 0 = f (0, x2, . . . , xn).

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10016

Hence, f is generated by g(x1, x2, x3, x4) and functions in F that depend on at most nine variables.
Therefore, F (and consequently Fa) is generated by a finite set of functions. �

In this way, the class Fa can be finitely generated for any a, thus providing a method to construct
closed function classes in multi-valued logic that satisfy specific conditions.

Similarly, one can show the finite generation of the classes Fa ∩ Fb for any a, b ∈ {0, 1, . . . , k − 1}
with b , a. We can also establish the following theorem regarding the classes Fa ∩ M for any a ∈
{0, 1, . . . , k − 1}:

Theorem 7. The intersections of the classes Fa and Fb, as well as the intersections of the classes Fa

with the class M, are finitely generated.

Proof. Let c ∈ {0, 1, . . . , k − 1} with c , a and c , b. Then c < Fa ∩ Fb, and we have

[Fa ∩ Fb ∪ {c}] = Pk for any a, b ∈ {0, 1, . . . , k − 1}, b , a.

Moreover,

[Fa ∩ Fb ∪ {a}] = [Fa ∩ Fb] ∪ {a}, and [Fa ∩ Fb ∪ {b}] = [Fa ∩ Fb] ∪ {b}.

�

Example: Consider functions f ∈ Fa and g ∈ Fb. Define

h(x1, x2, . . . , xn) = min
{
f (x1, x2, . . . , xn), g(x1, x2, . . . , xn)

}
.

Proof that h ∈ Fa ∩ Fb. Recall that by definition, a function f belongs to Fa if there exists an index i
such that

f (x1, . . . , xi−1, a, xi+1, . . . , xn) = a for all x1, . . . , xi−1, xi+1, . . . , xn.

Similarly, a function g belongs to Fb if there exists an index j such that

g(x1, . . . , x j−1, b, x j+1, . . . , xn) = b for all x1, . . . , x j−1, x j+1, . . . , xn.

In our example, the function

h(x1, . . . , xn) = min{ f (x1, . . . , xn), g(x1, . . . , xn)}

satisfies
h(x1, . . . , xi−1, a, xi+1, . . . , xn) = min{a, g(x1, . . . , xn)} = a,

and
h(x1, . . . , x j−1, b, x j+1, . . . , xn) = min{ f (x1, . . . , xn), b} = b.

Thus, h meets the conditions required for membership in both Fa and Fb, so that h ∈ Fa ∩ Fb. �

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10017

In conclusion, we present several propositions concerning the intersection of all classes Fa. For
instance, Proposition 1 shows that the intersection of all classes Fa for a = 0, 1, . . . , k − 1 consists of
precisely one function: the function that returns its argument x. This proposition essentially states that
the intersection of all classes Fa (each satisfying Condition ax) consists of only one function, namely
the identity function f (x) = x.

Let p(x1, . . . , xn) be an arbitrary function in Pk. By the method of constant simulation, one can
construct a formula φ(x1, . . . , xn) using functions from F and the constant function 1 such that

p(x1, . . . , xn) = φ(x1, . . . , xn).

Thus, every function in Pk can be represented as a superposition of functions from F ∪ {1}, which
implies Pk ⊆ [F ∪ {1}].

Proposition 1. Let Pk be the set of all k-valued functions of n variables, where k ∈ N. For any
c ∈ {0, 1, . . . , k − 1} such that c , a and c , b, we have:

c < Fa ∩ Fb

and
[Fa ∩ Fb ∪ {c}] = Pk, for any a, b ∈ {0, 1, . . . , k − 1}, b , a.

Furthermore,

[Fa ∩ Fb ∪ {a}] = [Fa ∩ Fb] ∪ {a}, [Fa ∩ Fb ∪ {b}] = [Fa ∩ Fb] ∪ {b}.

Proof. Each function in Fa satisfies Condition ax, meaning there exists at least one variable index i
such that

f (x1, . . . , xi−1, a, xi+1, . . . , xn) = a.

Similarly, each function in Fb satisfies Condition bx.
If f ∈ Fa ∩ Fb, it must satisfy both conditions simultaneously. Thus, setting xi = a forces f (x) = a,

and x j = b forces f (x) = b.
If f is to belong to both classes, it must satisfy these conditions for any choice of i and j. The only

function that satisfies both conditions is the identity function f (x) = x, which directly returns its input.
Thus, the intersection:

Fa ∩ Fb = {x}.

If c , a and c , b, then a function f (x) = c is constant and does not satisfy Condition ax or bx, as it
does not depend on its inputs. Hence, c < Fa ∩ Fb.

Since c < Fa ∩ Fb, appending c allows us to construct any function in Pk. Specifically, once all
constants are included, superposition and projection operations can generate all functions in Pk.

Thus,
[Fa ∩ Fb ∪ {c}] = Pk.

If we include a, then
[Fa ∩ Fb ∪ {a}] = [Fa ∩ Fb] ∪ {a}.

This follows since adding a allows for the function f (x) = a while maintaining closure properties.
Similarly,

[Fa ∩ Fb ∪ {b}] = [Fa ∩ Fb] ∪ {b}.

�

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10018

Consider k = 3 (ternary logic: values 0, 1, 2) and define F0 as the class of functions where setting
any variable to 0 forces output 0, and F1 as the class of functions where setting any variable to 1 forces
output 1. A function f (x) belonging to both F0 and F1 must satisfy

f (0, x2, . . .) = 0, f (1, x2, . . .) = 1.

The only possible function satisfying both constraints is the identity function f (x) = x. Thus:

[F0 ∩ F1 ∪ {2}] = P3.

Proposition 2. For any b ∈ {0, 1, . . . , k − 1} with b , a, it follows that

b < Fa ∩ M and
[
Fa ∩ M ∪ {b}

]
= M, for a ∈ {0, 1, . . . , k − 1},

where M is the class of monotonic functions in Pk.

Recall, that

M =

{
f ∈ Pk

∣∣∣∣ ∀x, y ∈ {0, 1, . . . , k − 1}n,
(
x ≤ y =⇒ f (x) ≤ f (y)

)}
.

That is, M is the class of all monotonic functions in Pk, meaning that for any two input vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) satisfying xi ≤ yi for all i, we have f (x) ≤ f (y). This definition
ensures that the function f preserves the natural order on {0, 1, . . . , k − 1}.

Proposition 3.
F0 ∩ F1 ∩ . . . ∩ Fk−1 = [{x}].

As an example for Proposition 3, consider the identity function id(x) = x. This function lies in the
intersection of all classes F0, F1, . . . , Fk−1 because, for any value a, the identity function satisfies the
condition ax.

3.3. Examples, discussion, and mathematical comparison with previously known classes

To illustrate the significance of the proposed function class F, we compare it with previously known
classes of multi-valued logic functions. Specifically, we analyze their computational complexity and
noise sensitivity, demonstrating the advantages of F under Condition 0x.

3.4. Monotonic functions and computational complexity

The study by Alekseev [27, 47] investigates closed classes containing monotonic functions, which
are defined as follows:

f (x1, x2, . . . , xn) = max(x1, x2, . . . , xn), (3.1)

g(x1, x2, . . . , xn) = min(x1, x2, . . . , xn). (3.2)

These functions are widely used in priority-based systems, digital filtering, and logic design.
However, they suffer from high computational complexity, requiring at least O(n) comparisons.
Additionally, they exhibit high noise sensitivity, as small variations in input values may significantly
affect the output.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10019

3.4.1. Our result (Function class F with condition 0x)

Consider the function:

h(x1, x2, x3) = x1 + x2 + x3 −min(x1, x2, x3). (3.3)

Unlike monotonic functions:

• Computational complexity is reduced to O(1), as the minimum operation requires constant-time
evaluation.
• Noise robustness is improved, as small variations in a single input do not cause abrupt changes

in the output.

Remark. In formulas (3.3) and (3.6) below, the symbols + and − denote the usual arithmetic
operations of addition and subtraction, respectively, performed on the set of truth values (e.g.,
{0, 1, . . . , k − 1} for k-valued logic). No modular arithmetic is involved in these operations.

Thus, the function class F offers a computationally efficient and noise-resistant alternative to
monotonic closed classes.

The studies by Miller and Thornton [1,2] analyze multi-valued logic circuits based on majority and
choice functions:

majority(x1, x2, x3) = arg max
v∈{0,1,2}

|{xi = v}|, (3.4)

φ(x1, x2, x3, c) = xc. (3.5)

These functions are utilized in quantum circuits, signal processing, and coding theory. However:

• Majority function evaluation requires sorting or counting occurrences of values, leading to O(n)
complexity.
• Choice function dependency introduces additional control parameters.
• Both functions are highly sensitive to noise, as small perturbations in inputs may drastically

change outputs.

Consider the alternative function:

g(x1, x2, x3) = x1 + x2 −min(x1, x2, x3). (3.6)

This function:

• Eliminates the need for sorting or counting while preserving key computational properties.
• Reduces computational complexity to O(1).
• Exhibits greater noise robustness, ensuring stability in uncertain environments.

By excluding majority and choice functions, class F provides an efficient alternative for multi-
valued logic implementations.

The work of Zhuk [26] explores the structure of complete closed classes in multi-valued logic,
demonstrating that the inclusion of majority and choice functions significantly increases the structural
complexity of closed function classes. The framework developed in this study provides a constructive
refinement of Zhuk’s results, showing how expressive multi-valued logic functions can be designed
without relying on computationally expensive operations. The proposed function class F offers lower
computational complexity: O(1) instead of O(n) and improved noise robustness. Thus, the results
presented in this work extend and refine previous studies [1, 26, 27, 44].

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10020

4. Conclusions

In this work, we investigated the closed class of functions F that satisfy the condition 0x. We proved
that this class excludes majority functions and choice functions and that it can be generated by a finite
set of functions. Our main results include proofs of the closure of the class F under superposition, the
impossibility of incorporating the constant function 1, and the inclusion F ⊆ T0.

Majority and choice functions are well-known examples of function classes that are finite and
closed, yet also possess desirable theoretical properties. By contrast, our theorems establish the
existence of a finite closed class F comprising other functions that retain significant theoretical
attributes while omitting majority and choice functions. This omission is advantageous in contexts
where such functions, known for their computational complexity and sensitivity to noise, may be
undesirable.

Our findings align with the structural analyzis of order-preserving classes in three-valued logic [42]
and extend these ideas by considering classes that exclude majority and choice functions. Future
research could explore the integration of lattice-based frameworks, as described in [42], to further
investigate the structural properties of the class F and related function classes in multi-valued logic.

Consequently, the closed class F subject to 0x exhibits compelling properties that may facilitate
further research on closed classes of functions in set theory and logic. From a practical viewpoint,
this class also has potential applications in designing computational circuits under multi-valued logic,
where avoiding majority and choice functions can yield both simpler and more robust implementations.

Figure 1. Algorithmic process for generating functions in class F.

Figure 1 represents the diagram of the algorithmic process for generating functions in the class F.
It includes the main steps: 1) Definition of d3: Start with the function d3(x2, x3, x4) using maximum

and minimum operations. 2) Condition 0x verification: Ensure that the functions meet the condition

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10021

0x (if any variable is 0, the output is 0). 3) Construction of g: Define the function g(x1, x2, x3, x4) with
specific rules depending on x1. 4) Composition construction: Combine functions to form new members
of the class F. 5) Output Class F: Conclude with the finitely generated class F.

Algorithm: Generate Closed Class F

(I) Initialization:

(a) Define
d3(x2, x3, x4)← max{min(x2, x3), min(x3, x4), min(x2, x4)}.

(b) Initialize the base set B with projection functions and simple functions that satisfy condition
0x.

(c) Define the function g(x1, x2, x3, x4) as

g(x1, x2, x3, x4) =


0, if x1 = 0,

d3(x2, x3, x4), if x1 = 1,

x1, if x1 ≥ 2.

(d) Add g to B.
(e) Set F ← B.

(II) Iterative composition:

(a) Repeat until no new functions are generated:
i. Set N ← ∅.

ii. For every valid composition

h(x) = f (. . . , g(. . .), . . .)

with f , g ∈ F , do:
A. If h satisfies condition 0x and h < F , then add h to N .

iii. Update F ← F ∪N .

(III) Termination and output:

(a) Terminate the loop when N = ∅ (i.e., no new functions are generated).
(b) Return F as the closed class F.

Notes:

• The function d3 serves as a building block, combining the minimum values of its inputs.
• The function g uses d3 for the case x1 = 1 and ensures that g(0, x2, x3, x4) = 0, thereby satisfying

condition 0x.
• The iterative composition terminates since the number of distinct functions over a finite domain

is finite.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10022

Applications in complex systems

The class F, characterized by the condition 0x, provides intriguing potential applications in the
realm of quantum computing. The exclusion of complex functions like majority and choice functions
makes F a promising candidate for designing quantum circuits. These circuits often benefit from
threshold functions, which can process qubit states with minimal resource overhead while reducing
the impact of noise and interactions. Functions from F demonstrate resilience to noise, a critical
feature for quantum gates susceptible to decoherence. Threshold-based functions derived from F could
contribute to error correction frameworks that utilize multi-valued logic to manage quantum noise more
effectively than traditional binary methods.

In the theoretical domain, the class F aligns closely with foundational concepts in quantum
mechanics and the mathematics underlying quantum systems:

Multi-valued logic, particularly three-valued logic, provides a natural analogy to quantum states.
The values {0, 1, 2} can represent projections onto basis vectors in a quantum system. Studying F,
which respects these projections, could offer new insights into quantum computational models.

The concept of closed classes under superposition mirrors quantum mechanical operators.
Investigating how functions in F behave under quantum-like transformations, such as the Hadamard
operation, might bridge classical multi-valued logic and quantum computation.

In systems where qubits interact in complex networks, F could serve as a mathematical framework
for describing stable states or simplified transitions. This could enhance the design of quantum systems
optimized for noise reduction and energy efficiency.

By integrating these ideas, the study of F not only advances multi-valued logic but also paves the
way for applications in cutting-edge quantum technologies. Exploring such connections offers a fertile
ground for future research, with potential implications for both theoretical advancements and practical
implementations in quantum computing.

Future research

The proposed framework for constructing the closed class F, characterized by the condition 0x,
distinguishes itself from alternative methodologies in several key aspects:

• Unlike traditional approaches that rely heavily on the inclusion of majority and choice functions,
this work demonstrates that finite closed classes can be constructed effectively while avoiding
these computationally intensive functions. This exclusion reduces the complexity associated with
these functions, such as sensitivity to noise and implementation overhead.
• The finite generation of F is achieved through the use of a minimal set of functions and

elementary operations like superposition. In contrast, many alternative frameworks rely on
elaborate structures, such as precomplete classes or extensive sets of initial functions, which may
complicate their practical realization.
• The structure of F allows for flexibility in its application, particularly in contexts requiring

simplified logical constructs, such as multi-valued circuit design or threshold-based decision
systems. By contrast, alternative methods often emphasize theoretical completeness without
considering practical constraints.

The proposed approach may potentially give these advantages:

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10023

- Computational Efficiency. By excluding functions that are computationally expensive to evaluate,
such as majority functions, the proposed framework offers a computationally leaner alternative to
traditional closed classes.

- Simplicity of Construction and Scalability. The method leverages straightforward conditions (e.g.,
0x) and basic logical operations, simplifying the process of constructing the class F. This makes
the approach accessible and implementable in practical systems. The finite generation property of
F ensures that the class remains manageable even as the number of variables increases, a notable
improvement over methods requiring exhaustive enumeration of functions.

- Resilience to Noise. The exclusion of majority functions, which are known to be sensitive to input
noise, renders the class F suitable for noise-prone environments such as data transmission systems or
quantum computing.

This study opens up several promising avenues for future exploration aimed at deepening the
theoretical understanding of closed classes in multi-valued logic and broadening their practical
applications. Key directions include:

• On the lattice of subclasses of F: while the trivial example using the product function
illustrates the basic idea of the 0x condition, it does not capture the full structural complexity of
the class F. In fact, constructing the lattice of subclasses of F is an intriguing open problem. A
deeper investigation into this lattice is expected to yield novel theoretical insights and practical
benefits—for instance, in the optimization of digital circuits. We anticipate that further research
in this direction will not only enhance our understanding of multi-valued logic but also
contribute to the development of more efficient computational architectures.
• Exploring analogous conditions: A natural extension of this work involves examining closed

classes of functions that satisfy conditions similar to 0x, but with modifications to accommodate
different variable values or configurations. Such investigations could reveal a broader spectrum
of functional behaviours and deepen insights into how structural constraints influence the
expressiveness and closure properties of function classes. For example, exploring conditions ax

for varying a, or even parameterized versions of 0x, might illuminate additional theoretical
connections and practical applications.
• Applications in complex systems: The class F holds significant potential for application in the

design of advanced logical circuits and algorithms. In particular, excluding computationally
complex majority and choice functions could lead to more efficient, robust systems capable of
operating in environments with noise or limited computational resources. Practical
implementations might include fault-tolerant circuit designs, energy-efficient computation, or
systems requiring deterministic behavior in uncertain conditions, such as autonomous systems or
networked devices.
• Algorithm development: Developing algorithms tailored to generate and optimize closed

classes of functions like F represents another fertile area of research. Such algorithms could be
geared toward simplifying function representations, improving computational performance, or
minimizing resource consumption in hardware implementations. Potential breakthroughs in this
area might include heuristic approaches for generating closed classes, as well as optimization
techniques to refine existing classes based on application-specific constraints.
• Theoretical applications: Closed classes of functions are indispensable tools in proof theory

and logical modeling, where they play a critical role in analyzing inference rules and system

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

10024

properties. Further investigations could assess how the class F contributes to these domains,
potentially offering new perspectives on classical logical frameworks. This line of inquiry might
also reveal deeper connections between F and well-established constructs in logic, such as modal
logics, coalgebraic frameworks, or lattice-based systems.
• Creation of new classes: The construction and study of additional closed classes of functions,

particularly those based on constraints analogous to 0x, offer a rich area for exploration. These
new classes could be designed to address specific challenges in mathematics, theoretical
computer science, or applied fields. For instance, studying classes optimized for quantum
computing or machine learning algorithms might bridge the gap between abstract logic and
cutting-edge technological applications.

By pursuing these directions, researchers have the opportunity to enrich the field of multi-valued
logic with novel theoretical constructs while simultaneously driving innovation in practical domains.
The intersection of theory and application ensures that this research remains both foundational and
impactful, paving the way for a deeper understanding of logic systems and their relevance to modern
computational challenges.

Use of AI tools declaration

The author declares Artificial Intelligence (AI) tools were not used in the creation of this article.

Conflict of interest

The author declares that there are no conflicts of interest.

References

1. M. D. Miller, M. A. Thornton, Multiple Valued Logic: Concepts and Representations, Cham:
Springer, 2008, https://doi.org/10.1007/978-3-031-79779-8

2. M. D. Miller, M. A. Thornton, MVL Concepts and Algebra, Cham: Springer, 2008, 21–42.
https://doi.org/10.1007/978-3-031-79779-8 2

3. D. G. Meshchaninov, A family of closed classes in k-valued logic, Moscow Univ. Comput. Math.
Cybern., 43 (2019), 25–31. https://doi.org/10.3103/S0278641919010059

4. L. T. Polkowski, Many-Valued Logics, In: Logics for Computer and Data Sciences, and Artificial
Intelligence, Cham: Springer, 2022, 171–205. https://doi.org/10.1007/978-3-030-91680-0 6

5. Y. I. Manin, B. Zilber, A course in mathematical logic for mathematicians, New York: Springer,
2010.

6. M. Malkov, Classification of closed sets of functions in multi-valued logic, SOP Trans. Appl. Math,
1 (2014), 96–105.

7. V. B. Larionov, V. S. Fedorova, On the complexity of the superstructure of classes of monotonic
k-valued functions of a special form, News Irkutsk State Univ. Ser. Math., 5 (2012), 70–79.

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

https://dx.doi.org/https://doi.org/10.1007/978-3-031-79779-8
https://dx.doi.org/https://doi.org/10.1007/978-3-031-79779-8_2
https://dx.doi.org/https://doi.org/10.3103/S0278641919010059
https://dx.doi.org/https://doi.org/10.1007/978-3-030-91680-0_6

10025

8. V. B. Larionov, V. S. Fedorova, On the superstructure of some classes of monotonic functions of
multivalued logic, News Irkutsk State Univ. Ser. Math., 6 (2013), 38–47.

9. R. A. Salim, Applications of multivalued logic to set theory and calculus, J. Hunan Univ. Nat. Sci.,
50 (2023), 39–51. https://doi.org/10.55463/issn.1674-2974.50.12.5

10. G. Bruns, P. Godefroid, Model checking with multi-valued logics, In: International Colloquium on
Automata, Languages, and Programming, Berlin, Heidelberg: Springer, 2004, 281–293.

11. C.-Y. Lin, C.-J. Liau, Many-valued coalgebraic modal logic: One-step completeness and finite
model property, Fuzzy Sets Syst., 467 (2023), 108564.

12. A. Deptuła, M. Stosiak, R. Cieślicki, M. Karpenko, K. Urbanowicz, P. Skačkauskas, et al.,
Application of the methodology of multi-valued logic trees with weighting factors in the
optimization of a proportional valve, Axioms, 12 (2023), 8.

13. S. Al-Askaar, M. Perkowski, A new approach to machine learning based on functional
decomposition of multi-valued functions, 2021 IEEE 51st International Symposium on Multiple-
Valued Logic (ISMVL), 2021, 128–135.

14. A. Y. Bykovsky, N. A. Vasiliev, Parametrical t-gate for joint processing of quantum and classic
optoelectronic signals, J, 6 (2023), 384–410.

15. X. Kong, Q. Sun, H. Li, Survey on mathematical models and methods of complex logical dynamical
systems, Mathematics, 10 (2022), 3722. https://doi.org/10.3390/math10203722

16. A. A. Esin, Analyzis and design principles of modern control systems based on multi-valued logic
models, Upravlenie Bol’shimi Sistemami, 88 (2020), 69–98.

17. E. Y. Kalimulina, Application of multi-valued logic models in traffic aggregation problems in
mobile networks, 2021 IEEE 15th International Conference on Application of Information and
Communication Technologies (AICT), 2021, 1–6.

18. E. Y. Kalimulina, Mathematical model for reliability optimization of distributed
telecommunications networks, Proceedings of 2011 International Conference on Computer
Science and Network Technology, 2011, 2847–2853.

19. E. Y. Kalimulina, A new approach for dependability planning of network systems, Int. J. Syst.
Assur. Eng. Manag., 4 (2013), 215–222. https://doi.org/10.1007/s13198-013-0185-2

20. R. F. H. Fischer, S. Müelich, Coded modulation and shaping for multivalued physical unclonable
functions, IEEE Access, 10 (2022), 99178–99194.

21. E. Y. Kalimulina, Lattice structure of some closed classes for non-binary logic and its applications,
In: Mathematical Methods for Engineering Applications, Cham: Springer, 2022, 25–34.

22. I. Aizenberg, Multiple-Valued Logic and Complex-Valued Neural Networks, Claudio Moraga:
A Passion for Multi-Valued Logic and Soft Computing, Cham: Springer, 2017, 153–171.
https://doi.org/10.1007/978-3-319-48317-7 10

23. Y. Zhang, H. Bölcskei, Cellular automata, many-valued logic, and deep neural networks, 2024.
Available from: https://arxiv.org/abs/2404.05259.

24. E. Y. Kalimulina, Lattice structure of some closed classes for three-valued logic and its
applications, Mathematics, 10 (2022), 94. https://doi.org/10.3390/math10010094

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

https://dx.doi.org/ https://doi.org/10.55463/issn.1674-2974.50.12.5
https://dx.doi.org/https://doi.org/10.3390/math10203722
https://dx.doi.org/https://doi.org/10.1007/s13198-013-0185-2
https://dx.doi.org/https://doi.org/10.1007/978-3-319-48317-7_10
https://arxiv.org/abs/2404.05259
https://dx.doi.org/https://doi.org/10.3390/math10010094

10026

25. A. Esin, Structural analyzis of precomplete classes and closure diagrams in multi-valued logic,
Iran. J. Fuzzy Syst., 21 (2024), 127–145.

26. D. N. Zhuk, From two-valued logic to k -valued logic, Intell. Syst. Theory Appl., 22 (2018), 131–
149.

27. V. B. Alekseev, On closed classes in partial k-valued logic containing a class of monotonic
functions, Discrete Math., 30 (2018), 3–13. http://doi.org/10.4213/dm1518

28. E. Y. Kalimulina, Mutual generation of the choice and majority functions, In: Mathematical
Methods for Engineering Applications, Cham: Springer, 2023, 49–57.

29. S. S. Marchenkov, A-closed classes of many-valued logic containing constants, Discrete Math.
Appl., 8 (1998), 357–374. https://doi.org/10.1515/dma.1998.8.4.357

30. E. Y. Kalimulina, Finiteness of one-valued function classes in many-valued logic, Fractal Fract., 8
(2024), 29. https://doi.org/10.3390/fractalfract8010029

31. W. Liu, T. Zhang, E. McLarnon, M. O’Neill, P. Montuschi, F. Lombardi, Design and analyzis of
majority logic-based approximate adders and multipliers, IEEE Trans. Emerging Top. Comput., 9
(2021), 1609–1624.

32. S. Hoory, A. Magen, T. Pitassi, Monotone circuits for the majority function, In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, Berlin, Heidelberg:
Springer, 2006, 410–425.

33. J. Han, J. Gao, P. Jonker, Y. Qi, J. Fortes, Toward hardware-redundant, fault-tolerant logic for
nanoelectronics, IEEE Design Test Comput., 22 (2005), 328–339.

34. U. Felgner, Choice functions on sets and classes, In: Sets and Classes on The Work by Paul Bernays,
Elsevier, 1976, 217–255. https://doi.org/10.1016/S0049-237X(08)70887-5

35. Y. Yamamoto, An extension of ternary majority function and its application to evolvable system,
33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings., 2003, 17–23.

36. V. Lecomte, P. Ramakrishnan, L.-Y. Tan, The composition complexity of majority, 2022. Available
from: https://arxiv.org/abs/2205.02374

37. I. S. Sergeev, Upper bounds for the formula size of the majority function, 2012. Available from:
https://arxiv.org/abs/1208.3874

38. C. Garban, J. E. Steif, Noise Sensitivity of Boolean Functions and Percolation, Cambridge
University Press, 2014. https://doi.org/10.1017/CBO9781139924160

39. A. Darabi, M. R. Salehi, E. Abiri, One-sided 10t static-random access memory cell for energy-
efficient and noise-immune internet of things applications, Int. J. Circuit Theory Appl., 51 (2023),
379–397.

40. A. El Gamal, Coding for noisy networks, IEEE Inform. Theory Soc. Newsl., 60 (2010), 8–17.

41. S. H. Lim, Y.-H. Kim, A. El Gamal, S.-Y. Chung, Noisy network coding, IEEE Trans. Inf. Theory,
57 (2011), 3132–3152.

42. A. A. Esin, Characteristics of structurally finite classes of order-preserving three-valued logic maps,
Logic J. IGPL, jzae128, https://doi.org/10.1093/jigpal/jzae128

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

https://dx.doi.org/http://doi.org/10.4213/dm1518
https://dx.doi.org/https://doi.org/10.1515/dma.1998.8.4.357
https://dx.doi.org/https://doi.org/10.3390/fractalfract8010029
https://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)70887-5
https://arxiv.org/abs/2205.02374
https://arxiv.org/abs/1208.3874
https://dx.doi.org/https://doi.org/10.1017/CBO9781139924160
https://dx.doi.org/https://doi.org/10.1093/jigpal/jzae128

10027

43. C. Baaij, Digital circuit in CλaSH: functional specifications and type-directed synthesis, PhD
thesis, University of Twente, 2015.

44. S. S. Marchenkov, On the action of the implicative closure operator on the set of partial functions
of the multivalued logic, Discrete Math. Appl., 31 (2021), 155–164. https://doi.org/10.1515/dma-
2021-0014

45. L. Renren, L. Czukai, The maximal closed classes of unary functions in p-valued logic, Math.
Logic Q., 42 (1996), 234–240. https://doi.org/10.1002/malq.199604201200

46. L. Haddad, D. Lau, Some criteria for partial sheffer functions in k-valued logic., J. Multiple-Valued
Logic Soft Comput., 13 (2007), 415.

47. V. B. Alekseev, On closed classes in partial k-valued logic that contain all polynomials, Discrete
Math. Appl., 31 (2021), 231–240.

48. I. Makarov, Existence of finite total equivalence systems for certain closed classes of 3-valued logic
functions, Log. Univ., 9 (2015), 1–26. https://doi.org/10.1007/s11787-015-0117-9

49. K. A. Baker, A. F. Pixley, Polynomial interpolation and the chinese remainder theorem for algebraic
systems, Math. Z., 143 (1975), 165–174.

50. A. B. Ugolnikov, About closed Post classes, Izv. Vyssh. Uchebn. Zaved. Mat, 1988, 79–88.
Translation in Soviet Math. (Iz. VUZ), 32 (1988), 131–142.

51. A. B. Ugolnkov, Some problems in the field of mutivalued logics, Proc. X Int. Workshop “Discrete
Mathematics and its Applications, 2010, 1–6.

52. A. B. Ugolnkov. S. S. Marchenkov, Closed classes of Boolean functions, Institute of Appl.
Mathematics named after M. V. Keldysh of the USSR Academy of Sciences, Moscow: IPM, 1990.
Available from: https://books.google.ru/books?id=LHNHtQEACAAJ.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 4, 10002–10027.

https://dx.doi.org/https://doi.org/10.1515/dma-2021-0014
https://dx.doi.org/https://doi.org/10.1515/dma-2021-0014
https://dx.doi.org/https://doi.org/10.1002/malq.199604201200
https://dx.doi.org/https://doi.org/10.1007/s11787-015-0117-9
https://books.google.ru/books?id=LHNHtQEACAAJ
https://creativecommons.org/licenses/by/4.0

	Introduction
	Rationale for excluding majority and choice functions

	Research objectives
	Structure of the paper

	Main results
	Properties of the class F satisfying the condition 0x
	Finite generation of the class F
	Examples, discussion, and mathematical comparison with previously known classes
	Monotonic functions and computational complexity
	Our result (Function class F with condition 0x)

	Conclusions

