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Abstract: A specific field of data extraction termed “logic mining” is important for retrieving
insightful information from intricate datasets by generating logical representations. These logical
frameworks are explainable and significant for knowledge-driven technologies in computational
optimization. However, existing logic mining models suffer from key limitations, including inadequate
attribute selection, rigid logical rule structures, inefficient training processes, and storage constraints
that often lead to overfitting. To address these challenges, this study proposed an explainable
logic mining framework that integrated four key components: At first, a log-linear based attribute
selection method to identify significant features; second, a non-systematic higher-order logic structure
using random k satisfiability (for £ < 3) to enhance flexibility; after that, a multi-objective hybrid
election algorithm for efficient and adaptive training; and, finally, an expanded retrieval phase
employing a permutation operator to optimize the synaptic weight space in the discrete Hopfield
neural network. The proposed framework was validated through comparative analyses against eight
baseline models using real-world multidisciplinary datasets. Performance was rigorously evaluated
across four evaluation metrics, where the experimental results demonstrated that the proposed model
achieved a maximum accuracy of 97.73%, a precision of 100%, a specificity of 99.17%, and a matthews
correlation coefficient (MCC) of 0.95 across 20 real-world datasets. Moreover, the proposed model’s
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efficiency was also statistically validated through Nemenyi’s post-hoc test and Cohen’s d effect sizes,
confirming its superior classification capability, stability, and reliability in logic-based knowledge.

Keywords: random satisfiability; non-systematic logic; hybrid election algorithm; logic mining;
discrete Hopfield neural network
Mathematics Subject Classification: 68N17, 68R07, 68T27

1. Introduction

In the ever-evolving landscape of computational design, data analysis and knowledge extraction,
the integration of cutting-edge techniques from various fields has become increasingly crucial. Many
researchers nowadays use data mining, which involves various mathematical and computational
techniques to identify patterns, relationships, and insights from large datasets. The goal is to extract
significant information in a structured format for further analysis across fields like telecommunication,
business, and healthcare [1-3]. Prediction and classification using data mining techniques [4—6] have
attracted significant research attention due to their effectiveness in organizing data into distinct groups
or classes. Nowadays, various Al models, such as random forest [7], support vector machine [8],
and artificial neural network (ANN), along with metaheuristics [9, 10], are proposed for forecasting,
prediction, and classification. Despite their accuracy and reliability, many classification decisions
remain opaque, making it difficult to understand their underlying rationale. To address this challenge,
data representation can shift toward logical structures instead of relying solely on black-box models.
Therefore, it is crucial to explore how these logical structures can effectively represent data within
ANN:gs, given their widespread use and versatility in handling complex patterns.

Discrete Hopfield neural network (DHNN), a form of an ANN introduced by [11], is widely
used in data mining for its ability to learn complex patterns and solve optimization problems such
as the traveling salesman and linear programming. DHNN features consist of content associative
memory (CAM), which stores problem patterns and consists of interconnected neurons without hidden
layers, making it suitable for optimization problems and complex dynamic tasks [12, 13]. Due to its
capabilities, DHNN has been widely utilized in various applications. DHNN is often criticized as a
“black box” due to interpretability issues. To address this, integrating satisfiability (SAT) concepts
into DHNN enhances the ability to understand the complexity of neuron management during training
and testing phases. The article [14] first time composed SAT as a logical framework into DHNN for
user-interpretable outputs. SAT can be systematic, limiting clauses to k variables, or non-systematic,
allowing varying variables.

Another new concept of SAT studies is random k satisfiability (RANASAT) in DHNN, using flexible
clause structures for optimized neuron states. RANAKSAT can include first, second, and third-order
logic for broader rule satisfaction. This RANASAT concept was utilized and explored by [15], where it
proposed major 2 satisfiability with majority second-order logic for better DHNN interpretability. After
that, the article [16] further explored major random first and third order logic, balancing negated literals
and neuron representation. These findings show non-systematic SAT supports diverse neuron solutions.
Later, the work [17] investigated third and second-order clauses, revealing improved performance and
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broader solution exploration in non-systematic logic. This work used the Wan Abdullah (WA) method,
which successfully enumerated various magnitudes of synaptic weights, resulting in the generation
of different final neuron states. This is evident from the DHNN’s performance in achieving a high
diversity of neuron variations. However, prior studies using single-objective DHNN models revealed
significant shortcomings in minimizing the cost function, primarily due to the absence of training
algorithms and limited exploration of the search space. These issues highlight the need for more robust
training strategies. Notably, the training phase of the DHNN-SAT model can benefit substantially from
optimized training algorithms [18].

Incorporating multi-objective functions alongside effective algorithms can address these limitations
and expand the solution space, thereby enhancing dataset interpretation [19]. In this context, it needs
to investigate how the multi-objective concept can be incorporated into the DHNN. Meanwhile, the
work by [20] proposed a multi-objective function with a hybrid exhaustive search (HES) algorithm
to increase the DHNN’s storage capacity, while [21] introduced methods to improve local field
searches. Despite these advancements, both studies faced limitations related to search space, algorithm
effectiveness, and logical rule structure. Thus, refining logical representation and employing efficient
training methods remain essential for real-life problem-solving and data analysis for knowledge
extraction.

Identically, extraction of knowledge from the datasets through the ‘Logic mining’ framework will
be a significant approach. In this mechanism, the logical relationship is considered as induced logic,
which has the capacity to analyze classifications. By utilizing the generated induced logic from a
dataset, the extracted knowledge not only focuses on the final outcomes of the dataset but also identifies
significant features within the dataset and uncovers potential logical trends. Moreover, logic mining
in the DHNN-SAT model involves constructing logical rules to describe associations between input
features and output variables in classification tasks [12]. From the logic mining perspective, where
knowledge extraction is the key focus, the feedback network DHNN is ideal since it has an associative
memory concept along with an energy minimization process that ensures robust and noise-resistant
pattern extraction. Moreover, the symbolic and explainable architecture of DHNN makes it preferable
to other networks for structured knowledge extraction. Meanwhile, the most crucial part of logic
mining is the data preprocessing phase, particularly attribute selection methods. These methods are
categorized into unsupervised and supervised approaches. Unsupervised learning plays a key role in
enhancing classification performance by randomly identifying the most relevant attributes. Studies
have focused on unsupervised methods like the reverse analysis (RA) method [22], which integrates
neural logic to extract rules describing the behavior of a dataset.

Building on the previous logical extraction concept, [23] proposed the 2 satisfiability reverse
analysis (2SATRA) method to classify credit assessments across different financial sectors. This
work captured systematic second order logical structures where it only limited pairwise constraints.
These approaches face limitations due to random attribute selection, resulting in low accuracy values.
Despite advancements, challenges persist in effectively arranging attributes within 2SAT rules, thereby
limiting accuracy and interpretability. The systematic SAT concept, further updated by the work [24],
subsequently introduced permutation based 2SATRA (P2SATRA), integrating a logical permutation
operator to refine attribute arrangement and enhance the accuracy of DHNN retrieval phases. The
findings underscored that P2SATRA surpassed all current logic mining methods across diverse
performance metrics. Lamentably, none of these logic mining models had incorporated a feature
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selection method prior to embedding data entries as neurons in DHNN, resulting in the training of
insignificant attributes and thereby increasing redundancy and decreasing relevance in classification.

Therefore, one of the creative works by [25] introduced a supervised approach (S2SATRA) to
address interpretability issues in logic mining. Instead of random attribute selection, correlation
analysis is conducted in the preprocessing phase to choose attributes representing the 2SAT logical rule.
S2SATRA demonstrated superior classification performance compared to other logic mining methods.
This supervised approach selects significant attributes, reducing the need for permutation operators
to obtain optimal induced logic. In another study, [26] proposed a log-linear analysis to address
issues with randomized attribute selection in 2SAT logic representation (A2SATRA). Attributes with
significance levels less than the threshold value are selected as optimal attributes.

From the above literature, the existing logic mining models, though capable of producing optimal
induced logic, still face two major limitations. First, their reliance on systematic logic structures often
leads to overfitting, reducing generalization across diverse datasets. Second, the training mechanism
of DHNN remains a critical bottleneck—most models do not adequately address how to efficiently
optimize the training phase to ensure stability and scalability. Moreover, the concept of higher-order
non-systematic logic, which could identify a more suitable subset of induced logic to better represent
dataset behavior, has not been sufficiently explored. However, the optimal attribute selection method
with higher-order logical rules and multi-objective training algorithms in DHNN models remains an
unexplored area of research.

To bridge these gaps, this article introduces a novel logic mining framework that departs from purely
systematic structures by incorporating higher-order non-systematic logic, enabling more accurate and
flexible representation of dataset behavior. Here, the proposed approach further enhances the training
phase of DHNN through a multi-objective dynamic hybrid election algorithm (HEA), ensuring efficient
convergence and reducing the risk of overfitting. Additionally, the framework integrates an optimal
feature selection strategy and a constructive computation of best logic, along with an effective retrieval
mechanism to diversify induced logic outcomes. This combination represents a unique advancement
in logic mining, offering a more robust, adaptive, and generalizable solution compared to prior
approaches. Hence, the contributions of this paper are listed as follows:

(1) To formulate and implement a multi-objective function for higher-order non-systematic logic with
a metaheuristic named hybrid election algorithm to optimize the training phase of the discrete
Hopfield neural network. This efficient network trains the logic concerning fitness and diversity,
which corresponds to increasing the storage capacity of the network. Meanwhile, this network
utilizes five (05) best logical structures so that optimal induced logic can be produced during the
retrieval phase.

(2) To propose a dynamic and explainable logic mining model that is highly capable of predictions
and classifications of real-life datasets. The proposed model inputs the ‘log-linear’ method in the
preprocessing phase and embeds the ‘permutation operator’ in the retrieval phase of the network.
Notably, the filtering mechanism of the log-linear method ensures optimal attributes in the logical
structure. At the same time, the permutation operator expands the search space to find the optimal
logic that represents the behavior of the datasets.

(3) To ensure a comprehensive and practically meaningful evaluation, the proposed logic-mining
model is validated on diverse real-world datasets and assessed using multiple established
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performance metrics.  Its results are benchmarked against state-of-the-art logic-mining
approaches to highlight improvements. Furthermore, statistical significance is verified through
the Nemenyi post-hoc test, and effect sizes are also reported to rigorously confirm the robustness
and reliability of the proposed model.

This paper is structured as follows: Section 2 reviews the theoretical underpinnings of multi-
objective functional RANASAT logic within discrete Hopfield neural networks and introduces the
hybrid election algorithm. Section 3 details the proposed logic-mining model, while Section 4
describes the experimental design. In Section 5, the empirical results are presented and critically
analyzed, and Section 6 offers concluding remarks and outlines directions for future research.

2. Background study

This section presents the theoretical framework underlying all components of the proposed logic
mining. The initial subsection addresses the general formulation of higher-order non-systematic
logic, specifically RANASAT (where k < 3 ). Following this, the second subsection elucidates the
fundamental principles of the neuro-symbolic model of RANASAT logic, referred to as DHNN-
RANKSAT.

2.1. Random k satisfiability representation

One of the notable advancements in the study of SAT is RANASAT, which is highly favored by ANN
researchers due to its independent clause arrangements [17]. This structure consists of random literals,
each being a combination of positive and negative literals within a single part. RANASAT represents a
type of non-systematic logical formulation in which every logical clause comprises exactly k variables
connected by the OR(V) operator, with each variable negated with a probability of % The key features
of RANASAT can be summarized as follows:

a) The RANKSAT model is constructed using a set of x variables where Ay, A,, A3, ...A, with a set of
y clauses denoted as Z(k), Zék) , ng), ...Z;k).

b) A set of definite clauses C;,C,,Cs,...Cy relate to logical AND(A) operator, and the clauses
themselves are linked by the logical OR(V) operator.

c) Each clause contains ‘x’ different literals selected at random, with the probability ratio of positive
to negative literals being 1:m where 1,m € [1, 2] for (for k < 3).

d) The logical formulation must consist of non-redundant variables, meaning no single variable is
repeated within the entire logical structure.

Each variable can only be assigned a bipolar value of 1 or -1, representing whether the variable
is TRUE or FALSE, respectively. The general form of RANASAT is defined by Egs (2.1) to (2.3),

13 . . . p23 . . .
where Py .« 4 comprises first and third-order logic, Py, ¢ 4 cOnsists of second and third-order logic,

and lee’j}?/ks 47 includes first, second, and third-order logic, respectively. The RANKSAT logical rules

articulated in Eqgs (2.1) to (2.4) are integrated into DHNN.

P1,3

_au 7D w (3)
ranisar = N Nio 27 (2.1)
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23 — ) (3)

PRANkSAT - /\}}ZIZi A;‘;l Zi ’ (22)

1,2,3 _ 1) (2) 3
Penisar = NietZy  Niet 27 N4 2 (2.3)

Ai, k=1;

where,Z® ={ (B;:vC), k=2 (2.4)

(DiVE;VF), k=3,
where by u, v and w is the total number of first, second, and third-order logic in each clause in Pﬁ‘e AN3S AT
respectively. Note that u > 0,v > 0,w > 0, and it consists of clauses with various orders of Pfe ANISAT-

From Eq (2.4), the literals show whether it is positive or negative. Conjointly, the selection Zl.(k) is set
at random as it investigates the behavior of P%, vasar- Following Eq (2.4), the literals either positive or
negative is set at random where A; € {A;, ~A;}, B; € {B;,~B;},C; € {C;,~C;}, and D; € {D;,—D;} , E; €
{E;,~E;} F € {F;,~F;}. Meanwhile, DHNN outputs are represented as either +1 or -1. Each neuron’s
inputs are multiplied by synaptic weights, which are stored in the CAM for determining the final neuron
states. This study employs the asynchronous updating rule to prevent neuron oscillation. Theorem 2.1
demonstrates the asynchronous operation of DHNN and the updating rule for DHNN with the i-th

activation.

Theorem 2.1. Starting from an initial state in the search space, all networks represented by Eq (2.5)
in randomized asynchronous mode will fall into a network gap with a probability of one [27].

1, if SWOS,S . > Uy
2 W

S, = (2.5)

—1, otherwise.

From Eq (2.5), W is the synaptic weight from unit a to ¢ . S, is the current state of the unit b, and
U, is the predefined threshold. Several studies defined U, = 0 to verify that the DHNN always lead to
a decrease in energy monotonically [17].

2.2. RANKSAT in discrete Hopfield neural network

This section illustrates the general overview of RANASAT logic as represented within DHNN,
referred to as DHNN-RANkSAT. The embedding of RANASAT in DHNN is divided into two phases:
the learning or training phase, and the retrieval or testing phase. In this context, logic satisfiability
notations are derived from propositional logic formulas integrated with DHNN-RANKSAT. The
primary objective of the DHNN-RANKASAT training phase is to determine the appropriate synaptic
weights for the RANKSAT clauses. According to the [14] technique, any logic governed by a set
of instructions must achieve a consistent interpretation that produces P* true. Meanwhile,

RAN3SAT
computing the cost function C Ph o in DHNN is crucial for reducing the logical inconsistencies

.k
in Ppayssar

forms of logic combinations P

(C Pk = 0). The formulation Cp« of Egs (2.6) and (2.7), which accommodate all
RAN3SAT RAN3SAT

k

Ran3sar- 18 as follows:

1 v 2 1 u 1
7 (HLU]+§. (HL) (2.6)
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L1 =S ifai
Lij:{z(l S, if =i

%(1 + 8 ), otherwise. (2.7)

Here, S ; represents the neuron state where i € {1, —1}. DHNN-RANKSAT effectively minimizes the
cost function Cpr o facilitating the determination of appropriate synaptic weights and generating
a favorable energy profile. Given that Pﬁ‘e Anasar Nas a zero-cost function, it ensures a satisfied

interpretation in which all clauses yield a truth value. The local field of the proposed model is
formulated in Eqgs (2.8) and (2.9) as follows:

n n n

— (3) ) (1)
by @ 3 3 Wsis e 3 wEs, o
c=1,c#b b=1,b#c b=1,b#a
¢ ¢ 3) c @ (1)

1, Z Z Wach pS o+ Z Wab Sp,+ W, >0;
Where, S ; (t) — Czl,nC¢b C:L}f:ﬁh h:l,'lzqta ) 1 (2.9)

-1, YooY WOSS,+ Y woPs,+w’<o0.

c=1,c#b c=1,c#b b=1,b#£a

Equation (2.8) provides the overall formulation of the local field for P, .. ., while Eq (2.9) presents

a piecewise function representing the neuron’s final state according to Theorem 2.1. During the testing
phase, DHNN employs the hyperbolic tangent activation function (HTAF) to ensure the convergence of
final neuron states and to prevent neuron oscillation. Additionally, the [14] method is used to compare
Eq (2.6) with Eq (2.10), which is referred to as the energy function H

k .
RAN3SAT

1 n n n

lHP];?AN3SAT - § Z Z Z W‘S)CS oS bS8 ¢

a=1,a#b#c b=1,a#b#c c=1,a#b+#c

| ; ; (2.10)
-5 D wPs.s, - > wihs,
a=1,a# b=1,a#b a=1

Subsequently, the value H p« reaches the absolute final energy, and the minimum energy H ™"
RAN3S AT P R aN3SAT

is derived from P%, . ..., , which decreases monotonically. Thus, H"™" is computed using
Eq (2.1 1), RAN3SAT
< a(wi)+2(b (7)) +4(c(v)))
H" = - , (2.11)
PRAN3SAT 8

where, ¥ }, f, wf e J Ek), and c, b, a represent the number of 1-literal, 2-literal, and 3-literal clauses in
P% vasar- Equation (2.12) can ultimately assess the quality of the final neuron state by differentiating
between global and local minimum solutions. Specifically, if Eq (2.12) is satisfied, the final neuron
states achieve a global minimum solution; otherwise, it is trapped in a local minimum solution.
HP];QAN3SAT - HPfeANz»SAT =7 (2.12)
where, 7 = 0.001 is a predefined value known as the tolerance value [21].
Furthermore, RANKSAT, as an innovative structure in SAT research, introduces a significant new
dimension to the study of DHNN. By integrating multiple objectives, RANASAT can enhance the
motivation for exploring multi-objective concepts. This article explores the multi-objective nature of
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RANKSAT, demonstrating its ability to not only maximize fitness values but also to enhance diversity
in logical rules while increasing the storage capacity of DHNN which greatly impacts on logic mining
perspective. The multi-objective framework effectively integrates all objectives within the RANASAT
paradigm, highlighting its potential and versatility in advancing DHNN research.

2.3. Multi-objective functions for RANKSAT in DHNN

Since RANKSAT is one of the creative structures in SAT study, it opens another significant
dimension in the exploration of DHNN. Multiple combination forms of RANASAT can include the
probability of more than one objective. This higher-order RANASAT can increase the motivation on
exercising multi-objective concepts. Several researchers [28—-30] explored the multi-objective nature
of neural network study and found significant development and scopes for future researchers. In this
article, the multi-objective concept integrates three major components, which ensures optimal fitness
and diversity that represents an innovative exploration of higher-order RANASAT representations.
Meanwhile, the three objectives are: (i) maximum fitness (F.y), (i) diversity ratio (), and (iii) k ideal
solution strings (S W ). Overall, these multi- objective functions are formally expressed mathematically
in Eqs (2.13) and (2.14):

F(Funaxs ¥ S ) (2.13)

subject to
Finx = z V43 C?+ z .
i=0

y = Z C(%) + Z c®, (2.14)

i=0 i=0

1
St = [Sfnas oS o]

where, CIQ),CIQ),C;U are the third-order, second-order, and first-order clauses of RANKSAT,
respectively.

2.4. HEA for RANKSAT in DHNN

This research introduced a modified socio-inspired algorithm named HEA for the higher order SAT
study in DHNN and disclosed the key prospects of this algorithm. The HEA in DHNN-RANkSAT
involves five key steps, from initialization to the final election day. The following steps and flow
diagram of HEA are presented below:

(1) Initialization: A population of individuals (voters and candidates) is randomly generated. Each
individual’s state is noted as 1 (TRUE) or -1 (FALSE), aligning with the search space.

(2) Eligibility assessment: Random instances are subjected to a fitness function assessment to reward
instances that correctly satisfy a RANAKSAT clause. The fitness value is utilized to ascertain
eligibility, which can be determined using Eqs (2.15) and (2.16),

NC

fi, =) CP k=123, (2.15)
i=1
where, (0 = { 0. Fatse; 2.16)
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(3) Forming initial parties: The solution space is divided into several parties. Each party’s candidate
is the individual with the highest fitness value, and the rest become voters. The correlation
distance between candidates and voters is calculated.

(4) Advertisement campaign: In this hybrid algorithm, the key part lies in the advertisement campaign
phase which is divided into four domains. The domains are discussed in brief below:

(a) Positive advertisement: In this stage, the voters focus their internal possible candidates
among themselves. After that the candidates reveal plans to sway voters, influencing their
states and potentially replacing candidates with higher fitness voters.

(b) Negative advertisement: After completing the positive advertisement stage, the technical
stage is introduced which is named the negative advertisement. In this stage, the candidates
attract voters from other parties by presenting their mission with vision, and expanding the
search space.

(c) Coalition: In this stage, more than one parties combine to explore additional search areas,
selecting new candidates if voters have higher fitness values. After this traditional stage, the
next stage, the Caretaker Party, is introduced to ensure diversity along with fitness.

(d) Caretaker Party: The voters who have the highest fitness values are stored in an ‘Elite pool’
to maintain diversity and improve the model. The selection process for choosing the highest
fitness can be calculated by Eq (2.17),

Cr' = ufy,. (2.17)

Here, u = [0.1,0.4] is the ratio of the achieved maximum fitness value. Meanwhile, the
mutation insertion concept is also utilized in this caretaker party to further improve diversity,
thereby introducing a novel aspect to the proposed HEA model. It is noteworthy that the
caretaker party emphasizes exploitation. Therefore, the choice of mutation insertion needs to
prioritize methods that allow for random selection with a more localized search approach. In
this context, the ‘Shift Mutation’ concept is utilized for shifting a randomly chosen frontier
between two adjacent clauses by one/single step, either to the right or to the left, or vice
versa [31]. Notably, shift mutation not only focuses on non-satisfied clauses but also focuses
on the inclusion of positive-negative state combinations in each clause. Hence, the condition
of Eq (2.17) is fulfilled, then the fittest voters are moved to the next stage for participating in
the final round- Election Day.

(5) The election day: 1f the termination criteria for the ‘Advertisement Campaign’ exist, then the
election is conducted to evaluate the final eligibility of all the candidates. The best solution for
each party is tested. If it achieves maximum fitness with diversity, then it is declared the optimal
solution. Otherwise, iterations continue until all conditions are met.

3. Proposed hybrid election algorithm for random k satisfiability based reverse analysis
(R-HEARA) method

This article introduces a novel and explainable hybrid method in RA called the hybrid election
algorithm for RANkASAT-based reverse analysis (R-HEARA) in order to overcome the shortcomings
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of previously published research. Notably, this R-HEARA model is composed of several significant
layers, which can be exposed as (i) the preprocessing phase, (ii) the training phase, and (iii) the
testing phase. The proposed R-HEARA cartels flexible non-systematic logical combinations with a
preprocessing phase and an ideal attribute selection approach to represent and map datasets flexibly and
straightforwardly. To expand the search space of the dataset, the permutation operator has also been
incorporated into the model. Henceforth, the characteristics in the dataset is translated into bipolar
form, and then the attributes are chosen using log-linear methods in order to identify the best attribute
for developing optimal logic. To get an optimized training mechanism a novel metaheuristics HEA 1is
employed with a multi-objective concept which makes a new dimension in the study of logic mining.
The link between the attributes of a data collection and the multi-objective HEA is represented by the
optimal logic retrieved from R-HEARA. The general formation of the proposed R-HEARA is shown
in Egs (3.1) and (3.2):

Ph_nizara = NeoCr) Ao CF Ny € G.1)

where

(E; VvV F; Vv G;),where k= 3;
Cc® ={ (A;V B),where k=2; (3.2)
D;,where k=1.

An example of different combinations is given as follows:

P e = (A1 V 242 V A) A (Ag V As) A (Ag V A7) A =Ag A =Ag A Ay, (3.3)
Py e = (AL V A2 VA A (Ag V As V Ag) A (A7 V =Ag) A (Ag V Aj), (3.4)
PR i = A1V A2 VA A (Ag V As V Ag) A A7 A =Ag A =Ag A Aj. (3.3)

As referred from Eqgs (3.3)-(3.5), P]ICi’—HE Ara 18 satisfiable when (A, Ay A3, Ay As, Ag A7, Ag Ag, Ajg)
=(1,-1,1,1,1,1,1,-1,-1,1) or (-1,1,-1,-1,-1,-1,-1,1,1,-1) meaning, that the outcome result of the dataset
shows Pfe—HE ara = 1 which is noted as true positive (TP), and Plz{e— neara = —1 which is addressed as
true negative (TN), respectively. It needs to be mentioned that all the Cgk) must be satisfied to obtain
the outcome of the dataset whether it is P%_, ..., = I;1 = lor — 1. Notably, the proposed P ...,
also strictly maintained non-redundant variables, which is another feature of the RANASAT structure.
Moreover, the article [24] pointed out another critical issue in developing the possible solution space
by introducing a permutation operator in the logical rule. Changing the arrangement of the variables
through permutation can create more possible directions in real-life problems. Hence, in this article,
the permutation operator is implied where the generalized rule of the P’IE_ neara 18 €xpressed through

Eq (3.6):

— AN (k)
Ph_pipara = N G .
v (A%, B)), k = 2; (3.6)
where,C® = { j=1 R By
’ VI et (AS, BY, C3), k = 3.

Here, a, b, ¢ are the arrangement of the attributes and a # b # c. Then, A‘j,B’V’, C¢ are the entries
corresponding with the attributes a, b, ¢, respectively. Meanwhile, the k-mean clustering method was
also introduced since this method is significant in ensuring that DHNN analyzes the appropriate values
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of the neurons [25]. Mathematically, the k-mean analysis for the R-HEARA model can be written as

below in Eq (3.7),
— 0 _
JPR_HEARA N Z Z (xi C‘]PR—HEARA )’ (37)

J=1 i=1

where, Jp, .4 18 an objective function, and is the number of observations and C, is the
centroid for the cluster j in R-HEARA. To set up k-mean clustering analysis in R HEARA it
needs to select an arbitrary number of clusters for the given dataset and then compute the distance
between each data point. Then update the number of clusters and their average. Repeat the process,
until there is no change in mean. In order to improve the quality of induced logic, R-HEARA
implements another statistical method named- ‘Log-linear’ to squash non-significant attributes from
the datasets. According to [26], this log-linear method can investigate the associations of the attributes
independently and also not consider the outcome of the dataset. The association of the attributes is
considered acceptable if the p-value is less than 0.05. To measure the K-way and higher order effects
of the attributes and calculate the partial association for the significant attributes corresponding with
the outcome with Chi-Square, y?, and it is reported through Eq (3.8).

= Z Fys,s,5,00 (fYs,5,5, = as,5,5,)° = Inas,s,5,)]

S,548,
2 (3.8)
Z s | (fYs,5,5. — as,s,5,)
= ys,s,s, 1N
S])Squ m (aSI’SqS’) ’

where, fys,s,s, represents the observed frequencies, as,s s, denotes the expected frequency, and
Eq (3.7) is applied to determine the adequacy of sample size for the proposed model based on statistical
conclusions. The partial association test assesses the significance of a parameter by comparing y?
values with and without that parameter in the model, considering the relevant degrees of freedom
(df). In other words, it can be examined using the null hypothesis of no correlation between two
or more variables in the RANASAT strategy. Rejecting the null hypothesis indicates a significant
correlation between two or more variables. Thus, the choice of positive/negative neurons are based on
the frequency of the specific Cgk) that appears in the dataset. Consequently, the RANASAT structures
of C; ®) that leads to Pr®" = I; I = lor — 1 which obtains the best logic that symbolizes as PZ”;IE ARA-

R-HEA
To calculate the P5s . ., concerning C fk) can be expressed in Eq (3.9):

Poest ra = Max[n(CY ], Po paes = 11 = lor — 1, (3.9)

where, n(C (k)) is the number of combination of third-second or third-first or third-second-first order
clauses that leads to PZ“‘,’{’E ara = 1 . The obtained Pﬁ’{’squ ara are trained in DHNN-RANASATHEA.
Then, in the testing phase, the final neuron state S p, is converted into an induced literal based on the

following form of Eq (3.10):

Sp,Sp =1;
Smduced DO D — L 3.10
{ S Sp = 1. G160
To enhance interpretability, the detailed procedural framework of the R-HEARA model is outlined
as below:
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The process begins with selecting a dataset, which is then partitioned into training and testing
subsets using a standard k-fold cross-validation approach. In the dataset, each variable is assigned
a corresponding logical representation. Prior to the clustering, a preprocessing phase is conducted
wherein the log-linear concept is applied to identify optimal attributes, thereby enabling the generation
of efficient induced logic. A confusion matrix (Table 1) is constructed to quantify the performance
metrics, including TP, TN, false positives (FP), and false negatives (FN) [32]. Meanwhile, a set of
optimal logic rules, denoted as P, .. .., is generated and selected. These rules aim to maximize TP
and TN, and are considered ideal representations of the original dataset. The associated cost function,

Cr-nEAra, 1s computed using Eq (2.6).

Table 1. Binary classification error matrix [32].

Predicted class True classification
Class 1 Class 2
Class 1 True Positive(TP) False Positive (FP)
Class 2 False Negative (FN) True Negative(TN)
Total Number of TP+FN= Total number of FP+TN= Total number of
Objects in the class  Objects of Class 1 Objects of Class 2

Subsequently, clause satisfaction is evaluated through the hybrid election algorithm. The synaptic
weights are computed using the Wan Abdullah method, followed by randomization of neuron states.
The optimal logic rules and corresponding synaptic weights are stored in the Hopfield CAM, with
each P . .. capable of generating multiple CAMs. Local fields are calculated via Eq (2.8), and
the HTAF is applied to stabilize neuron states. Final energy is computed using Eqrom neuron states.
These induced logics are then evaluated using Eq (3.6). Finally, training and testing performances are
assessed using standard metrics such as Accuracy, Precision, Specificity, and Matthews Correlation
Coeficient.

In the Figure 1, the implementation process of the proposed R-HEARA logic mining model is
shown, where the three different phases are shown in three different blocks; also, the pseudocode of
the proposed R-HEARA model is given through Algorithm 1.
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—_— —_— ‘_ _—
Pre-processing Phase

L

Segregate the dataset into training and testing data by using the
cross-validation method

N7

Convert the dataset into bipolar representation by using k-mean
clustering

Sz

Apply Log Linear Analysis to identify significant attributes

Iraining Phase

3

Generate logical combinations with respect to the RANASAT
logic

Sz

Calculate TP and TN for each logical combination based on the
training data

Sz

Generate the five best logical combination based on the highest
fitness of TP and TN

=z

Check clause satisfaction through Hybrid Election Algorithm

g

Calculate synaptic weight by using Wan Abdullah Method

<

Store the synaptic weights in Content Addressable Memory

Testing Phase

3

Compute local field

<z

Find the final state of the neurons

L

Permutate the attributes using the permutation operator

U

Compare all the induced logic with the testing data

Sz

Evaluate the performance of the induced logic based on the
selected metric

Figure 1. The implementation process of the proposed R-HEARA logic mining model.
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Algorithm 1: Proposed R-HEARA model.
Input: Set all attributes xy, x, X3, . . . , x, with respect to Pyuin, Rugara, PS, trial
Output: The best induced logic PX.

1 Begin

2 Initialize all the parameters;

3 Initialize all the parameters;

4 Define the attributes for xi, x,, x3, . . ., x,, with respect to Pﬁ_HE ARAS

5 Find the p-value for each attribute;

6 for All attributes where p < 0.05 do

7 if Equation (3.4) is satisfied then
8 Assign x; as S p;
9 while i < PS do
10 Find Pbl. ., using the attributes;
11 Check the clause satisfaction for Pﬁ’f]s{’E ARAS
12 Compute Hp% ¢ o using Eq (2.10);
13 Compute synaptic weight using WA method;
14 Generate five Pj’{i"{’E Ara and store in CAM;
15 Initialize the final neuron state;
16 for k < trial do
17 Convert S p; to logical form using Eq (3.10);
18 Combine S p; to generate induced logic Piduced
19 Compare Piduced  with PiESo o
20 End

4. Experimental design

This section provides a detailed discussion of the experimental workflow. Initially, the dataset
undergoes analysis using International Business Machines Corporation Statistical Package for the
Social Sciences (IBM SPSS) version 27, where it is structured in bipolar form. For the case of missing
values, the missing values are replaced with the random bipolar state (1 or -1). However, the mentioned
procedure can be applied with a minimal rate of missing values. Based on Dou et al. [33], if the dataset
has more than 10% missing value rate, data imputation needs to be used to handle the missing values.
As shown in Table 3, all 20 datasets used in this experiment have a lower rate of missing values.
Subsequently, the program execution takes place in Microsoft Visual Studio with C Sharp due to its
user-friendly interface and open-source nature. For efficient processing, the setup includes a device
equipped with Windows 11, a Core 17 processor, and 16GB of RAM. Table 2 outlines the relevant
parameters and corresponding values used in both proposed and existing models for experimentation
and simulation.
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Table 2. List of parameters of R-HEARA, including all baseline models that are used for
experimentation and simulation.

Parameter R-HEARA S2SATRA L2SATRA P2SATRA E2SATRA 3SATRA A2SATRA 2SATRA RA
[25] [42] [24] [43] [44] [26] (23] [22]
Learning Iter. 100 100 100 100 100 100 100 100 100
Learning Method HEA ES ES ES ES ES ES ES ES
No. of Attributes 10 6 6 6 6 6 9 6 6
Attr. selection LL* LL* LL* LL* RN RN LL* RN RN
Clause Comb.  CO2D  ¢®  ¢@ @ @ & o0 cd ey
No. of Trials 100 100 100 100 100 100 100 100 100
Permutation Size 10 - - 100 100 - - - -
Neuron Comb. 100 100 100 100 100 100 100 100 100
Learning Diversity 40% - - - - - - - -
Max. Comb. 100 100 100 100 100 100 100 100 100
Selection rate 0.1 0.1 0.1 0.1 - 0.1 0.1 0.1 -
Activation HTAF HTAF HTAF HTAF HTAF HTAF  HTAF HTAF -
CPU Time 24H 24H 24H 24H 24H 24H 24H 24H 24H
P-value 0.05 0.05 0.05 0.05 - 0.05 0.05 - -
Energy Tol. 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 -

All the simulations employ the train-test splitting, which follows that 60% of the dataset is in the
P-train, and the remaining 40% is in the P-test. In the present work, the authors applied distinct
operations such as train-test splitting, clustering, or cross-validation following the practice of prior
ANN-based satisfiability studies [24-26]. Here, the k-fold cross-validation concept is addressed
to make the classification setup. In our implementation, log-linear attribute selection and k-means
analysis are performed inside each fold of the k-fold cross-validation, not globally across the entire
dataset. In the k-fold cross-validation, the dataset is partitioned into k-sized folds, where each partition
is split into training and testing sets. Moreover, the works by [34] and [35] successfully utilized 5-
fold cross-validation for their experiments and showed that it can safeguard against any leakage of
label information throughout the preprocessing phase. This ensured that no label information from the
test fold was used during feature selection or discretization. Additionally, partial association analysis is
conducted on the attributes, involving the calculation of p-values compared against a threshold obtained
from the Chi-square table to determine whether to reject the null hypothesis or not.

Metrics for performance evaluation serve as a baseline in the process of defining whether a model
is effective or not. The confusion matrix serves as a tool to assess the discriminatory performance of
the optimal solution during the training phase of binary classification tasks [36]. This evaluation can
be based on the results of the classification training. This proposed study examines the distinctions
between the proposed R-HEARA model and eight other existing baseline models. The comparison
utilizes various performance metrics such as Accuracy (Acc) [37], Precision (Prec) [38], Matthews
Correlation Coefficient (MCC) [39], and Specificity (Spec) [40,41]. These metrics are widely accepted
for evaluating the optimal network configuration.
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4.1. Baseline models

To validate the efficacy of the proposed model, R-HEARA is compared to several existing models.
Although there are numerous classification methodologies in the present years, none of the proposed
classification algorithms generate induced logical rules that can categorize and extract the dataset
pattern properly. Here, the key point of baseline methods is discussed below.

a) RA: The RA method was inspired by [14], which extracted the Horn satisfiability logic from
datasets. This work was the first attempt to induce logical rules from empirical data. The
number of induced logics generated by the datasets is the primary calibration from the preceding
RA. Induced logical rules are entrenched in datasets by using information about the connection
strength. This study also revealed that using the RA method can analyze large datasets on a
reasonable time scale and identify the hidden patterns of the datasets.

b) 2SATRA: The traditional logic mining model 2SATRA [23] employed P,s4r as a logical rule
in DHNN. The main aim of this study is to find a consistent interpretation that makes the
Pys a7 satisfied. In this method, the attribute was positioned randomly into second-order clauses,
which formulate Plz’gng, and the final neuron states were converted into final induced logic. The
experimental result showed that this 2SATRA model has decent potential to obtain optimal logic
from a trained dataset. Meanwhile, this work had no mechanism for selecting optimal attributes

and improving the search space of the model.

c) P2SATRA: P2SATRA [24] introduced the permutation operator, where the attributes were
arranged in a second-order clause. In this work, it is shown that logical permutation is a finite
arrangement of the attributes that become true. The permutation operator explored all the probable
search spaces that were only close to the selected attributes. The effect of logical permutation in
P2SATRA integrates successfully in DHNN and showed that it performed well. Though in this
work, the authors input different permutations that improve the result in terms of accuracy, there
is no effort in introducing more performance indicators. However, this work neither employs any
technique to improve the attribute selection nor improves the training mechanism.

d) E2SATRA: E2SATRA proposed by [43] is an energy-based logic mining technique that uses the
global minimum energy to determine induced logic. During the testing phase of E2SATRA, the
final neuron state that achieves global minimum energy is selected as the best induced logic.
E2SATRA may therefore guarantee that the final neuron state is always satisfiable. This work
made an alternative approach to extracting the relationships between the attributes that correspond
to only positive outcomes of the dataset. Though in this work, two types of representation were
introduced to show the efficiency of this model, there are no guidelines or involvement for non-
systematic SAT representation, and also no concept to improve the attribute selections.

e) L2SATRA: L2SATRA was inspired by the work of [42], where the log-linear concept is used to
do medical dataset analysis. This work introduced another new concept to improve the attribute
selection process since earlier studies have drawbacks in selecting optimal attributes. In this
work, the log-linear technique is employed to select the attribute and embed it into the traditional
reverse analysis concept. This method is preferred when all variables of a dataset are shown in
a qualitative measure and are discrete in nature. In this context, LZSATRA is dependent on the
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log-linear model to select the best attribute for getting ngf;T . However, in this study, there is
no discussion regarding the challenges of systematic and non-systematic SAT presentation and

effective training mechanisms, which can play a vital role in analyzing real-life datasets.

f) S2SATRA: S2SATRA, one of the creative attempts by [25], which made a new direction in the
study of logic mining. This work integrated supervised learning through association analysis
to identify the optimal arrangement with respect to the logical rule. The concept S2SATRA
attempted to discover the attribute formation and make a relation between the attribute and the
training mechanism. In the testing phase, the S2SATRA was able to generate the best induced
logic. Meanwhile, S2SATRA calculates the correlation to decide the actual attribute that is
effective only for Pg,s4r . Moreover, this work did not approach any point for higher-order
systematic and non-systematic SAT representation in the logic mining field, nor did it improve
the training mechanism of DHNN.

g) 3SATRA: The work by [44] introduced the first logic mining model that utilized P5547 as a logical

rule in DHNN, which is known as 3SATRA. In this method, the attribute is positioned randomly
into third-order clauses, which formulate Pg’g‘ZT. In this work, a metaheuristic was introduced
to enhance the capability of the training phase and focused on various performance metrics
to overcome the previous work’s drawbacks. The findings of this work revealed that effective
training mechanisms improve the quality of the final neuron states, which leads to qualitative
Pé’@’“;m . Though this study gave a breakthrough in the SAT study incorporating metaheuristics in
the training phase of DHNN, there was no mechanism for building optimal attribute selection, as
well as widening the search space, which made it highly possible to include sub-optimal attributes

and generate poor induced logic.

h) A2SATRA: Another significant work named A2SATRA by [26] introduced a new direction of
the study of logic mining. This work suggested adding another layer before the training phase,
which is named the preprocessing phase. In this phase, the log-linear method is adopted to select
optimal attributes as well as permutation operators to overcome the previous work’s drawbacks.
In this method, the attribute was positioned randomly into second-order clauses, which formulate
ngf;T, and the final neuron states were converted into final induced logic. The experiment result
showed that this A2SATRA model has decent potential to obtain optimal logic from a trained
dataset. Though this work can create attired induced logic, it only focuses on second-order clauses
and also focuses on systematic logic. Moreover, in the training phase, this method applied a
conventional ES algorithm, for which an optimal training phase could not be obtained throughout

the process.

4.2. Benchmark datasets

In this study, 20 different real-life datasets cover multiple categories such as business, social,
financial, medical, education, IT, health sector, etc., that are closely relevant to real life. These
datasets are collected from the University of California, Irvine (UCI) machine learning repository
(https://archive.ics.uci.edu/ml/datasets.php) and the Kaggle dataset (https://www.
kaggle.com/datasets?fileType=csv) project website. This multivariate data from different fields
is considered to analyze the performance of the R-HEARA model. The key task for the proposed
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R-HEARA is to extract the possible best logical rule from each of the datasets that represents the
dataset’s behavior perfectly. In this dataset exploration, the datasets that have more than 13 attributes
are considered for analysis. The proposed logical strategy is such that only 10 attributes are selected to
describe the behavior of each dataset. The detail of all the 20 datasets is shown in the Table 3.

Table 3. List of benchmark datasets.

SL dataset Attr.Inst. Missing valueRate of the missing valueField Outcome

D1 Absenteeism at work 21 740 No 0.00000 Business Absenteeism time (hours)
D2 Adult 15 32561 Yes 0.00935 Social ~ Income

D3 Airline 21 1004 No 0.00000 Business Satisfaction

D4 Audiology 24 200 No 0.00000 Life Audibility

D5 Australian 15 690 No 0.00000 Financial Class

D6 Bike sharing 17 17378No 0.00000 Social ~ Shared

D7 Body signalling 27 55692No 0.00000 Health  Smoking

D8 Bank marketing 21 4119 No 0.00000 Business Employed number
D9 Campus recruitment 14 215 No 0.00000 EducationPlacement status
D10Cervical cancer behaviour 20 72  No 0.00000 Health  Cancer prediction
D11Chemical composition dataset18 89  No 0.00000 Physical Part result
D12Credit approval 15 690 Yes 0.00015 Financial Approval
D13Dermatology 34 366 Yes 0.01745 Life Age

D14Divorce predictor 54 171 No 0.00000 Life Class

D15Dry bean 17 13611No 0.00000 Business Class
D16Facebook data 19 500 Yes 0.01107 IT Total interactions
D17Garment worker 16 1197 Yes 0.00063 Business Productivity
DI18Heart 14 270 No 0.00000 Life Disease prediction
D190besity 17 2111 No 0.00000 Medical Obesity level
D20Lower back pain 13 310 No 0.00000 Medical Class

In the context of statistical analysis, Table 4 presents the K-way and higher-order effects of model
attributes for K=1. The focus on K=1 aims to identify interactions among individual variables. DHNN
facilitates the observation of attribute interactions. While Table 4 indicates a significant impact of
first-order effects, it does not imply significance for all attributes. Therefore, a detailed analysis of
attributes through partial association is necessary. Prior to implementation in the proposed model,
attributes undergo analysis based on partial association results. This involves calculating p-values and
comparing them with a threshold value from the Chi-square table to determine whether to reject the null
hypothesis or not. Rejection occurs when the p-value is below the threshold. In this study, parameter
selection relies on p-values, specifically set at p — value < 0.05.

In neural-based models, computational complexity refers to the minimal neural resources required
to complete a given task within an acceptable level of accuracy. Generally, computational complexity
is defined as the analysis of how resource consumption scales with the size of the input dataset,
particularly running time [45]. The primary focus of this proposed work is to find the ability of the HEA
to optimize the multi-objective fitness function in DHNN. Hence, the trade-offs between computational
complexity and optimal solutions are not considered in this experiment. For clarity, the computational
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complexity of each logic mining model is shown in the Table 5. Notably, the computational complexity

of the HEA is O(N?) and traditional ES is O(2V).

Table 4. 13 K-way and higher order effects components of the model (K=1).

dataset df Pearson y? p-Value
D1 2186 20133.681 <0.05
D2 2186 1528391 <0.05
D3 59048 519497.600 <0.05
D4 2186 62566.900 <0.05
D5 2186 3131284.574 <0.05
D6 6560 1996538 <0.05
D7 2186 463418 <0.05
D8 6560 274541.100 < 0.05
D9 6560 22031.371 <0.05
D10 2186 9304.137 <0.05
D11 728 3573.568 <0.05
D12 6560 83519.009 <0.05
D13 6560 62240.130 <0.05
D14 6560 382683.600 <0.05
D15 6560 13997802 <0.05
D16 6560 26029.880 <0.05
D17 2186 114586.100 <0.05
D18 6560 23495.400 <0.05
D19 6560 42738.630 <0.05
D20 6560 41095 <0.05

Table 5. The computational complexity of each logic mining model, where g denotes the

neuron combinations, N is the number of neurons, and N7 is the number of trials.

AIMS Mathematics

Logic mining models

Computational complexity

R-HEARA
A2SATRA
S2SATRA
P2SATRA
L2SATRA
E2SATRA
2SATRA
3SATRA
RA

O(g + N)
O(N")
O(N")
O(N")
O(N)

O(N + NT)

O(N)
O(N)
O(N)
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5. Results and discussions

The major objective of this experiment is to evaluate the performance of various logic mining
models. In this section, the performance of the proposed R-HEARA model is compared against eight
existing models. It is important to note that the bold entries in the tables for each metric indicate the
highest performance values. Moreover, in each table, the minimum (Min), Maximum (Max), Standard
deviation (STD), and very well-known rank analysis metric- Friedman test result are also depicted.
Additionally, (+/=/-) asserts that the proposed logic mining model is better/equal/worst performing
compared to the existing models.

5.1. Accuracy (Acc) analysis

From the Acc point of view, the proposed R-HEARA model achieved the highest Acc value in 15
out of 20 datasets. This demonstrates that R-HEARA produces a large number of positive outcomes
in the testing phase. According the author [46], the high number of 7P and TN in the training phase
helps to optimize the performance of a model. Point to note that before proceeding to the training
phase, the k-fold cross-validation and attribute filtering manuals ‘log-linear’ are also introduced in the
preprocessing phase which perfectly aligned with the proposed HEA in the training phase. Moreover, a
permutation operator is also initialized in the preprocessing phase which can enhance the search space
of the model.

Moreover, the non-systematic representation, such as RANAKSAT, where K has different
combinations, creates more options to get upper qualitative induced logic, which has the highest
TP and TN. It is worth noting that for the abovementioned datasets, existing S2SATRA, P2SATRA,
and A2SATRA also generate close Acc values but cannot exceed R-HEARA because of this non-
systematic RANASAT combination. Different order combinations of RANASAT clauses can keep
different accuracy values. Moreover, the combination of the third-order clause and the second-
order clause increases the rate of accuracy compared to other existing models. This is because of
k=(2,3) combinations of R-HEARA, which have a higher probability of getting satisfied interpretations
compared to other combinations.

According to the Table 6 and Figure 2, no value for R-HEARA achieved an accuracy value less
than 70%. Meanwhile, the Acc value is higher when the number of TP, TN are getting higher and
the number of FP, FN are in the vice versa. Hence, getting Acc 70% indicates that the induced logic
produced by R-HEARA is able to achieve higher 7P, TN in most of the datasets. One of the reasons
for the high TP and TN is the inclusion of the preprocessing phase, where the best attributes are
selected through the log-linear technique [26]. Based on the various attributes in the dataset, log-linear
successfully found ten attributes that were associated with the output decision. These ten attributes
give optimal p-value, and these can directly affect getting optimal final neuron states, and as a result,
the value of Acc is raised.
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Table 6. Accuracy (Acc) for all logic mining models.

The bracket indicates the ratio
of improvement (a negative ratio implies the method outperformed the proposed method).
Higher value and lower rank indicates better result.

List R-HEARA  A2SATRA  L2SATRA  S2SATRA  P2SATRA  2SATRA  E2SATRA  RA 3SATRA
D1 0.7861 0.6371 0.4682 0.5761 0.5891 0.2851 0.4389 03950  0.4529
*=2,3) (0.062) (0.231) (0.123) (0.110) (0.414) (0.261) (0305)  (0.247)
D2 0.7947 0.7544 0.5233 0.6626 0.7584 0.6842 0.4774 04681  0.5874
*=2,3) (0.041) (0.272) (0.132) (0.036) (0.111) (0.318) 0327)  (0.207)
D3 0.7014 0.66119 0.5865 0.7412 0.7441 0.5978 0.6107 0.5639  0.6200
*=2,3) (0.040) (0.114) (=0.039) (-0.042) (0.103) (0.090) (0.137)  (0.081)
D4 0.7875 0.8376 0.6414 0.7175 0.6825 0.5175 0.5000 0.5575  0.5550
*=2,3) (=0.050) (0.140) (0.071) (0.105) (0.270) (0.287) 0.230)  (0.232)
D5 0.7739 0.6600 0.5275 0.6333 0.6333 0.4760 0.4978 0.5376  0.5666
k=2,3) (0.113) (0.246) (0.140) (0.142) (0.297) (0.276) 0.236)  (0.207)
D6 0.7514 0.6907 0.5633 0.6135 0.6995 0.5707 0.5381 04895  0.6122
*=2,3) (0.040) (0.214) (0.124) (0.042) (0.166) (0.201) (0251)  (0.126)
D7 0.7500 0.6766 0.5643 0.6983 0.6791 0.5643 0.6976 0.5477  0.5182
*=2,3) (0.0734) (0.186) (0.051) (0.079) (0.181) (0.514) (0.201)  (0.231)
D8 0.7903 0.7191 0.5290 0.7922 0.7825 0.5612 0.5627 0.6065  0.5048
*=2,3) (0.073) (0.185) (0.048) (0.0185) (0.231) (0.234) (0.190)  (0.291)
D9 0.7697 0.7052 0.4201 0.6976 0.7052 0.4064 0.4476 0.5380  0.5604
*=2,3) (0.0645) (0.346) (0.072) (0.069) (0.363) (0.322) 0.231)  (0.209)
D10 0.8681 0.7869 0.7429 0.6137 0.7674 0.6381 0.6124 0.5807  0.6943
*=2,3) (0.081) (0.125) (0.254) (0.107) (0.234) (0.255) (0287)  (0.173)
DIl 0.7942 0.8666 0.3290 0.8114 1.0000 0.3447 0.6194 0.7445  0.8285
k=2,3) (=0.073) (0.471) (=0.029) (=0.205) (0.455) (0.181) (0.051)  (=0.034)
DI2 0.7992 0.6476 0.5533 0.8558 0.6512 0.5337 0.5700 0.5447  0.6471
k=2,3) (0.151) (0.245) (<0.056) (0.148) (0.265) (0.229) (0.254)  (0.152)
D13 0.7191 0.5814 0.5089 0.5863 0.5841 0.5089 0.5101 0.5307  0.5411
k=2,3) (0.137) (0.210) (0.132) (0.135) (0.219) (0.208) (0.188)  (0.178)
D14 0.9773 0.9617 0.6588 0.9705 0.9705 0.6588 0.9294 02117 09764
k=2,3) (0.015) (0.318) (0.006) (0.006) (0.318) (0.047) (0.760)  (0.0008)
DI5 0.7070 0.5886 0.3870 0.6991 0.6573 0.3856 0.6858 0.6454  0.5809
(k=2,3) (0.118) (0.321) (0.007) (0.049) (0.321) (0.021) 0.061)  (0.126)
D16 0.9150 0.6826 0.3313 0.7850 0.6456 0.3313 0.4945 0.6144 04760
(k=2,3) (0.212) (0.561) (0.110) (0.243) (0.560) (0.400) (0.280)  (0.419)
D17 0.7527 0.7463 0.4257 0.7085 0.7501 0.4324 0.4479 0.5148  0.6137
(k=2,3) (0.006) (0.326) (0.044) (0.002) (0.325) (0.304) 0237)  (0.138)
DI8 0.7722 0.7407 0.6092 0.6981 0.7481 0.6500 0.6190 0.6013  0.6055
(k=2,3) (0.031) (0.162) (0.074) (0.024) (0.125) (0.153) (0.170)  (0.166)
D19 0.8345 0.5691 0.4116 0.8344 0.6127 0.6481 0.7451 02798  0.5697
(0.265) (0.422) (0.0001) 0.221) (0.186) (0.089) (0.554)  (0.264)
D20 0.7048 0.5504 0.5342 0.7047 0.5762 0.6451 0.7019 04200  0.6146
(k=2,3) (0.155) 0.171) (0.0001) (0.128) (0.059) (0.002) 0.284)  (0.091)
(+/=-) - 18/0/2 20/0/0 15/2/3 18/0/2 20/0/0 20/0/0 20000  19/0/1
Ave. 0.7893 0.7032 0.5158 0.7200 0.7118 0.5220 0.5853 0.5196  0.6063
STD 0.0710 0.1042 0.1086 0.0991 0.1130 0.1222 0.1228 0.1214  0.1186
Min 0.7000 0.5504 0.3313 0.5761 0.5762 0.2851 0.4389 0.2798  0.4529
Max 0.9773 0.8376 0.6414 0.8558 1.0000 0.6842 0.9294 07445  0.9764
Rank (Avg) 1.5 3.53 727 3.63 2.98 6.98 5.95 7.38 5.85
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Figure 2. Accuracy for all logic mining models.

Additionally, STD is also calculated for all the logic mining models to understand how the value
is spread out in a given dataset. In STD, the lower value represents the better model. Here, it is also
seen that the lower STD value occurs for the proposed R-HEARA model, which is 0.07. Meanwhile,
the Friedman test is applied for all the datasets with y? and the degree of freedom df. The p-value for
Accis p < 0.05. Hence, the null hypothesis of equal performance for all the logic mining models was
rejected. R-HEARA achieves the lowest average rank compared to other existing models.

5.2. Precision (Prec) analysis

The ‘Precision’ performance metric measures how accurately the TP is predicted and how FP can
be lesser to achieve high TP in the model. In the work by [47], for large datasets classifications and
predictions: Precision metric is very impactful for performance analysis of a model. Here, in this
article, the Precision (Prec) value for R-HEARA and other logic mining models is shown in Table 7
and Figure 3. In this case, the suggested R-HEARA outperforms existing logic mining models in 17
of 20 datasets. This demonstrates that R-HEARA is extremely capable of acquiring a greater quantity
of TP. This happened due to the inclusion of the RANASAT logic in the model. The non-systematic
behavior of RANASAT strategy created the opportunity for achieving higher 7P. The Prec value got
higher when different combinations of RANASAT were employed in the model with different order of
clauses. The multiple SAT arrangements create the opportunity to reduce the number of FP, which
impact increasing the rate of the Precision.

It is worth noting that 14 datasets are very near to achieving Prec=1, indicating that R-HEARA
can correctly forecast 100% of positive instances, one of the possibilities for the inclusion of
dynamic metaheuristic in the training phase. Especially, the local search operators such as positive
advertisement and caretaker party operators did a dynamic role in this model. Positive advertisement
operator prior focus is on getting high 7P whereas the caretaker party stored the highest fitness value
candidate that lead to high TP. Importantly, the shift mutation mechanism of the caretaker party
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operator increases the possibility of 7P and decreases the number of FP.

Hence, the highest fitness candidates preserved by the caretaker party lead to diverse P> logic and
generates 100% accurate induced logic. From the dataset D8, the performance of R-HEARA ranges
from 37% to 90%, which visualizes the effectiveness of the proposed model. This has happened due
to the multi-level processing layers of R-HEARA. In the preprocessing phase, a log-linear method is
employed. The log-linear method unbiasedly traces the best attributes from the dataset. Since the D8
dataset has 21 attributes, it is difficult to choose 10 best attributes, and the log-linear method perfectly
scaled the best attributes which correctly aligned with the P2 .. . Along with robust HEA as
well as dynamic RANASAT logical structure, the Prec value range makes such a distance from other
logic mining models. The Friedman test results indicate that the average rank for R-HEARA is 1.42,
the lowest among the existing logic mining models. This statistically validates the superiority of R-

HEARA, demonstrating its strong ability to differentiate between positive and negative outcomes.

Table 7. Precision (Prec) for all logic mining models. Numbers in parentheses show
improvement ratios (negative means better than proposed method). Higher value and lower
rank indicates better result.

List R-HEARA A2SATRA L2SATRA  S2SATRA  P2SATRA  2SATRA E2SATRA RA f3SATRA
D1 0.799 0.242 (0.557) 0.489 (0.316) 0.430 (0.373) 0.473 (0.322) 0.345 (0.454) 0.445 (0.354) 0.523 (0.287) 0.592 (0.209)
D2 0.662 0.397 (0.263) 0.419 (0.244) 0.673 (-0.011) 0.383 (0.285) 0.196 (0.465) 0.424 (0.297) 0.533 (0.133) 0.815 (-0.155)
D3 0.796 0.769 (0.027) 0.614 (0.175) 0.744 (0.051) 0.753 (0.044) 0.632 (0.165) 0.684 (0.115) 0.621 (0.174) 0.847 (-0.049)
D4 0.977 0.646 (0.328) 0.596 (0.385) 0.750 (0.233) 0.729 (0.255) 0.352 (0.621) 0.411 (0.573) 0.573 (0.404) 0.665 (0.315)
D5 0.847 0.648 (0.196) 0.384 (0.461) 0.625 (0.222) 0.734 (0.113) 0.778 (0.069) 0.612 (0.235) 0.489 (0.359) 0.831 (0.016)
D6 1.000 0.579 (0.419) 0.386 (0.613) 0.537 (0.464) 0.529 (0.435) 0.639 (0.364) 0.545 (0.452) 0.484 (0.514) 0.710 (0.292)
D7 0.938 0.953 (0.015) 0.965 (0.024) 0.952 (0.017) 0.953 (0.012) 0.965 (0.024) 0.951 (0.016) 0.406 (0.533) 0.828 (0.113)
D8 1.000 0.108 (0.897) 0.530 (0.474) 0.101 (0.891) 0.129 (0.861) 0.479 (0.516) 0.475 (0.519) 0.296 (0.698) 0.628 (0.371)
D9 0.792 0.640 (0.155) 0.492 (0.292) 0.703 (0.089) 0.640 (0.154) 0.474 (0.316) 0.397 (0.389) 0.497 (0.291) 0.687 (0.115)
D10  0.975 0.819 (0.164) 0.778 (0.234) 0.840 (0.132) 0.761 (0.214) 0.560 (0.412) 0.695 (0.291) 0.500 (0.483) 0.800 (0.185)
D11  1.000 0.847 (0.152) 0.350 (0.653) 0.857 (0.143) 1.000 (0) 0.229 (0.773) 0.516 (0.481) 0.735 (0.272) 1.000 (0)
D12 0.928 0.514 (0.409) 0.437 (0.483) 0.917 (0.011) 0.480 (0.446) 0.531 (0.392) 0.352 (0.571) 0.432 (0.491) 0.833 (0.091)
D13 0.952 0.454 (0.497) 0.484 (0.447) 0.418 (0.539) 0.570 (0.378) 0.484 (0.441) 0.435 (0.511) 0.478 (0.477) 0.844 (0.111)
D14  1.000 0.967 (0.033) 0.479 (0.521) 0.969 (0.038) 0.977 (0.023) 0.479 (0.521) 0.946 (0.053) 0.299 (0.601) 0.962 (0.038)
D15  0.930 0.531 (0.391) 0.513 (0.413) 0.420 (0.503) 0.481 (0.434) 0.514 (0.412) 0.207 (0.723) 0.838 (0.091) 0.781 (0.152)
D16  0.960 0.880 (0.078) 0.832 (0.126) 0.587 (0.364) 0.285 (0.665) 0.832 (0.114) 0.506 (0.445) 0.196 (0.752) 0.607 (0.343)
D17  0.960 0.850 (0.110) 0.218 (0.732) 0.725 (0.234) 0.851 (0.109) 0.329 (0.623) 0.316 (0.634) 0.485 (0.476) 0.807 (0.149)
D18 0911 0.816 (0.098) 0.894 (0.021) 0.897 (0.011) 0.803 (0.113) 0.862 (0.041) 0.891 (0.021) 0.701 (0.199) 0.850 (0.061)
D19  0.936 0.749 (0.187) 0.880 (0.056) 0.911 (0.028) 0.863 (0.068) 0.590 (0.347) 0.791 (0.147) 0.154 (0.781) 0.747 (0.181)
D20 0.914 0.798 (0.124) 0.786 (0.126) 0.890 (0.021) 0.714 (0.198) 0.659 (0.247) 0.696 (0.218) 0.498 (0.417) 0.722 (0.182)
(+/=/-) 20/0/0 19/0/1 20/0/0 19/1/0 20/0/0 20/0/0 20/0/0 18/1/2

Avg. 0914 0.660 0.576 0.697 0.655 0.546 0.565 0.487 0.778

STD 0.090 0.232 0.200 0.227 0.235 0.206 0.212 0.168 0.108

Min  0.662 0.242 0.218 0.410 0.129 0.229 0.207 0.154 0.628

Max 1.000 0.967 0.965 0.969 1.000 0.965 0.951 0.838 1.000

Rank 1.42 4.85 5.71 4.55 5.12 6.15 6.71 7.12 3.45
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Figure 3. Precision results for all logic mining models.

5.3. MCC analysis

The MCC assesses the quality of a model by considering the combined performance of all
components in the confusion matrix. As a correlation coefficient between observed and predicted
binary classifications, MCC ranges from -1, indicating a perfect inverse prediction, to 1, indicating a
perfect prediction [48]. The MCC analysis for each logic mining models are presented in Figure 4 and
Table 8.

In this study, R-HEARA obtained the higher MCC value in 11 of 20 datasets. Since the value of
MCC for R-HEARA model is higher, it can be said that the proposed model is better than the random
classifier. Moreover, the proposed model illustrates that how RANKSAT is effective compared to
systematic kSAT. This is a result of the dynamic mechanism of HEA which has a powerful advertising
campaign operator that reflects in the training phase and accelerates five distinct P**' logics.

The multi-objective functions of HEA, especially the shift mutation of the caretaker party in the
advertisement campaign, govern the model to get 100% unique ideal solution strings. These ideal
solution strings connect to each P’ logic. At the conclusion of the simulation, each P”**' logic
generates several numbers of diverse induced logic. Moreover, the logical diversity of the multi-
objective HEA rightly classified the number of 7P and TN of R-HEARA and produced Pg*, . 0.
that can represent the perfect prediction.

Among the 20 datasets, two datasets (D9 and D16) approach the highest value MCC =~ 1. According
to [48,49], if the MCC value approaches 1, the prediction generated by the logic mining model is
estimated as ‘best’, while if the MCC value approaches to -1 then it predicts the model considered as
‘worst’. In this regard it can be said that the proposed R-HEARA is a better-quality model than the
random classifier and it is capable of producing near-perfect predictions in the P¢* ., .,. Moreover, the
RANKSAT combinations properly scale the number of 7P and TN for which the metric MCC has the
probability in getting a higher value. In this regard, analyzing the MCC value of the mentioned datasets
ensures the effectiveness of the confusion matrix classified by R-HEARA based on the induced logic.
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Several datasets, such as D1 dataset, achieved low MCC values. Even though the MCC value is
modest, it is also superior to other logic mining models. The multi combinations of the RANASAT
logical rule cause the scales of TP and TN to be higher, and the MCC value is likewise greater.
According to the tabulated results, R-HEARA is capable of producing MCC values for all 20 datasets,
whereas other models cannot create MCC values consistently. In this case, it can be stated that the
other models are considered to be as random classifier only.

In addition, R-HEARA maintains its place at the top by examining the average value and maximum
value for each dataset. The STD number is also the lowest among other models for logic mining.
Meanwhile, rank analysis through Friedman test rank is examined for all the datasets with @ = 0.05 and
the degree of freedom, df = 8. The p-value for MCC< 0.05(y* = 46.108). Here, the null hypothesis of
equal performance for all the logic mining models was rejected. The top rank position is also on behalf
of R-HEARA by acquiring the lowest value which is 2.00.

Table 8. MCC for all logic mining models. The bracket indicates the ratio of improvement
and a negative ratio implies the method outperforms the proposed method. Higher value and
lower rank indicates better result.

List R-HEARA A2SATRA L2SATRA S2SATRA P2SATRA 2SATRA E2SATRA RA 3SATRA
DI 02454  0.0661 (0.176) -0.071(0.312)  0.1498 (0.092) 0.1362 (0.114) -0.3927 (0.642) -0.1142 (0.352) -0.1463 (0.393) -0.0384 (0.283)
D2 03440  0.3727(-0.027) -0.0171(0.353) 0.4138 (-0.072) 0.4095 (-0.061) -0.0269 (0.363) 0.14299 (0.192) -0.0556 (0.392) 0.1654 (0.183)
D3 03985  0.369(0.036) -0.3713(0.765) 0.7654 (-0.367) 0.2768 (0.124) -0.3713 (0.772) -0.2095 (0.597) -0.0727 (0.471) 0.2321 (0.172)
D4 05803  04319(0.148) 0.0164 (0.557) 0.4648 (0.124) 039907 (0.181) -0.0328 (0.609) -0.0052 (0.587) 0.1316 (0.451) 0.1304 (0.452)
D5 05439  0.0791(0.459) 0.022(0.521)  0.1223(0.423) 0.2302(0.314) 0.022(0.521) 0.0811 (0.461) 0.1134 (0.431) 0.0462 (0.492)
D6 01017  -0.0767(0.281) 0.2081 (0.484) -0.0202 (0.342) -0.0111 (0.211) 0.0313 (0.451) 0.0306 (0.533) -0.041 (0.613) 0.0733 (0.352)
D7 05908 03079 (0.289) 0.1058 (0.487) 0.2508 (0.341) 0.3791(0.221)  0.1404 (0.425) 0.064 (0.614)  -0.0197 (0.743) 0.2383 (0.351)
D8 04984  04765(0.025) 0.339(0.164) 0502 (-0.003) 0.4795 (0.018) 0.339 (0.165)  0.5021 (-0.003) 0.0357 (0.455) 0.1775 (0.323)
D9 09125  0395(0.523) 0.888(0.032)  0.3876(0.533) 0395(0.522)  -0.1839(1.09) -0.099 (1.00)  0.0879 (0.833) 0.1301 (0.781)
DI0  0.6056 - 0.05314 (0.543) - - - - -

DIl 06768  0.89138 (-0.216) 0.71076 (-0.034) 0.91144 (-0.234) 0.8913 (-0.213) -0.4134 (1.09) -0.0051 (0.683) 0.16894 (0.513) 0.38574 (0.294)
DI2 04286  0.17045(0.257) 0.1134(0.316) 0.6413 (-0.208) 0.1423 (0.272) -0.0135 (0.441) 0.0416 (0.394) -0.008 (0.434) 0.2809 (0.143)
DI3 03096  0.1509(0.148) 0.1171(0.187) 0.1632(0.147) 0.1685 (0.137) 0.0133 (0.2983) 0.003 (0.251)  0.0612 (0.242) 0.1442 (0.146)
D14 02220  0.8937 (-0.667) - 0.90626 (-0.681) 0.90718 (-0.685) 0.8689 (-0.642) 0.8441 (-0.623) -0.804 (1.02)  0.9399 (-0.713)
DI5 0.1718  0.0306 (0.141) - 0.0059 (0.172)  0.005 (0.172)  -0.0526 (0.224) 0.02906 (0.144) -0.0443 (0.213) 0.0572 (0.113)
DI6 09325  0.623(0312) - 00192 (1.03)  0.623 (0.313)  -0.305(1.06)  0.578 (0.354)  0.432(0.501)  0.34846 (0.491)
D17 042963 04642 (-0.031) - 0.3796 (0.05)  0.47313 (-0.046) -0.088 (0.513) -0.0394 (0.471) 0.0089 (0.423) 0.1237 (0.301)
DI8 05395  0.5016(0.032) - 0.4621 (0.073)  0.5098 (0.033) 03777 (0.164) - - 0.2926 (0.243)
DI9  0.2884  0.0864(0.202) 0.046(0.242) - 0.07645 (0.247) 0.077 (0.205) - - 0.0738 (0.215)
D20 03148  0.0856(0.221) 0.0713(0.242) 0.5641 (-0.243) 0.1 (0.214) - - - 0.069 (0.251)

(+/=/-) 15/0/5 19/0/1 14/0/6 19/0/1 18/0/2 20/0/0 19/0/1

Avg. 04277 03326 0.1556 0.3739 0.3469 -0.0006 0.1152 -0.0095 0.2037

Std 0.7 0.26 03 0.28 0.25 0.3 0.27 0.24 0.2

Min  0.222 -0.0767 -0.071 -0.0192 -0.011 -0.088 -0.0052 -0.0443 -0.0384

Max 09325  0.8937 0.7107 0.9114 0.9071 0.86899 0.8441 0.1689 0.93

Rank  2.00 3.82 577 3.00 3.64 7.59 6.82 7.09 527
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Figure 4. MCC results for all logic mining models.

5.4. Specificity (Spec) analysis

Figure 5 and Table 9 illustrate the Specificity results for all logic mining models. Specificity
measures the proportion of 7N relative to the total number of TN and FP. In terms of Specificity
(Spec), the proposed R-HEARA model outperforms other logic mining models in 16 out of 20 datasets,
demonstrating its ability to achieve a high number of 7N. This visualizes that with this performance
metric, the R-HEARA proved the best position compared to other existing models. Notably, 16
datasets were near to achieve the highest specificity value, that is, Spec=1. This validates that R-
HEARA undoubtedly produces all the correct TN during the testing phase of DHNN. This classy
result happened due to the multi-objective concept of HEA in the training mechanism. The proper
balance of the exploration and exploitation of the operators correctly identifies the 7P and TN.

D11

—— RHEARA —— S2SATRA E2SATRA
A2SATRA  —— P2SATRA RA
—— L2SATRA  —— 2SATRA 3SATRA

Figure 5. Specificity results for all logic mining models.
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Table 9. Specificity value for all logic mining models. The bracket indicates the ratio of
improvement and a negative ratio implies the method outperforms the proposed method.
Higher value and lower rank indicates better result.

List R-HEARA A2SATRA L2SATRA S2SATRA P2SATRA 2SATRA E2SATRA RA 3SATRA

DI 0.9817  0.6801 (0.301) 0.6113 (0.374) 0.6872 (0.292) 0.6854 (0.294) 0.4046 (0.577) 0.6058 (0.374) 0.5772 (0.404) 0.6031 (0.378)
D2 0.9508  0.8281(0.123) 0.7511(0.198) 0.8789 (0.068) 0.8195 (0.136) 0.7669 (0.178) 0.5321 (0.416) 0.5319 (0.418) 0.8959 (0.051)
D3 09714  0.744(0.232) 0.632(0.334)  0.7798 (0.192) 0.7796 (0.187) 0.6460 (0.327) 0.6847 (0.287) 0.6091 (0.353) 0.7772 (0.194)
D4 0.9898  0.8011(0.183) 0.5305 (0.459) 0.7949 (0.189) 0.7710(0.227) 0.5578 (0.432) 0.5461 (0.442) 0.6139 (0.383) 0.6327 (0.367)
D5 0.9686  0.6905(0.284) 0.5639 (0.396) 0.6911 (0.274) 0.7273 (0.244) 0.5712(0.395) 0.5574 (0.412) 0.5890 (0.379) 0.6136 (0.355)
D6 0.7910  0.8516 (-0.064) 0.7973 (-0.006) 0.8286 (-0.031) 0.7383 (0.051) 0.7172 (0.071) 0.6355 (0.155) 0.5755 (0.218) 0.6119 (0.185)
D7 0.8630  0.9500 (-0.083) 0.9342 (-0.071) 0.9511 (-0.088) 0.9502 (-0.087) 0.934 (0.071) 0.9511 (-0.081) 0.646 (0.221) 0.881 (-0.018)
D8 1.0000  0.8788 (0.121) 0.9013 (0.094) 0.885(0.118)  0.8898 (0.119) 0.8996 (0.111) 0.8986 (0.111) 0.8818 (0.114) 0.7667 (0.233)
DY 0.9630  0.7123(0.251) 0.4429 (0.521) 0.7228 (0.240) 0.7123 (0.250) 0.4267 (0.542) 0.4796 (0.483) 0.5764 (0.391) 1.0000 (-0.036)
D10 1.0000  0.7341 (0.261) 0.6981 (0.295) 0.7107 (0.278) 0.7401 (0.251) 0.6666 (0.333) 0.6809 (0.311) 0.5943 (0.391) 0.6680 (0.332)
D11 1.0000  0.8625(0.137) 0.4267 (0.571) 0.6817(0.321) 1.0000 (0) 0.4183 (0.581) 0.5535(0.442) 0.6162 (0.381) 0.5843 (0.411)
D12 09922  0.6178 (0.374) 0.5548 (0.444) 0.8991 (0.089) 0.5981 (0.386) 0.5478 (0.438) 0.5694 (0.401) 0.5477 (0.443) 0.5366 (0.451)
D13 09521  0.5968 (0.363) 0.5389 (0.413) 0.5899 (0.364) 0.6259 (0.327) 0.5389 (0.414) 0.5372 (0.412) 0.5666 (0.379) 0.6680 (0.282)
D14 09230  0.7818(0.141) 0.6848 (0.238) 0.7712(0.151) 0.7765 (0.149) 0.6848 (0.242) 0.7666 (0.155) 0.3312 (0.591) 0.7678 (0.147)
D15 0.9878  0.5666 (0.421) 0.1216 (0.867) 0.6269 (0.357) 0.6164 (0.371) 0.1210 (0.858) 0.6605 (0.332) 0.5425 (0.448) 0.5843 (0.401)
D16 0.9986  0.7368 (0.261) 0.6878 (0.312) 0.8423 (0.163) 0.7469 (0.251) 0.6878 (0.312) 0.7041 (0.291) 0.7147 (0.282) 0.6273 (0.372)
D17 09755  0.7266(0.241) 0.3784 (0.592) 0.7009 (0.271) 0.7324 (0.242) 0.3644 (0.613) 0.3905 (0.582) 0.4013 (0.571) 0.7368 (0.231)
D18 0.9862  0.8247(0.151) 0.8274 (0.151) 0.8737 (0.114) 0.8216 (0.165) 0.8428 (0.138) 0.881 (0.106) 0.8 (0.181)  0.7488 (0.243)
D19 0.9161 0.9861 (-0.070) 0.9858 (-0.065) 0.6879 (0.235) 0.4846 (0.436) 0.161(0.763) 0.2674 (0.652) 0.2222 (0.691) 0.4989 (0.421)
D20 0.9038  0.7946 (0.101) 0.7502 (0.152) 0.8158 (0.081) 0.5621 (0.337) 0.6808 (0.223) 0.7193 (0.178) 0.4631 (0.437) 0.7921 (0.118)
(+/=/-) 17/0/3 17/0/3 18/0/2 18/1/1 20/0/0 19/0/1 20/0/0 18/0/2

Avg. 09557  0.7682 0.6409 0.7711 0.7389 0.5819 0.6311 0.5721 0.6997

STD 0.051 0.107 0.200 0.091 0.121 0.210 0.161 0.141 0.122

Min 0.7910  0.5666 0.1216 0.5899 0.4846 0.121 0.2674 0.2222 0.4989

Max 1.0000  0.9861 0.9858 0.9511 1.0000 0.934 0.9511 0.881 1.0000

Avg. Rank 1.68 373 6.35 3.05 4.05 7.15 6.00 7.45 5.55

The diversity of the logical rule in HEA with the multi-objective concept, especially the caretaker
party of the advertisement campaign, keeps the best combination in fitness and diversity. With this
strategy, proposed R-HEARA enhances the negative states of the logical rule, which excelled the ratio
of TN. Correspondingly, the permutation operator also plays an important role in increasing the value
of TN, focuses less on FP, and helps the total mechanism in finding best quality induced logic [25].
This justifies the superiority of R-HEARA in partitioning 7P and TN cases, which are very crucial
in the field of logic mining. From the above discussions, it is observed that the R-HEARA model
continues to perform better in analyzing the performance with the ‘Specificity’ metrics.

From the datasets D15, D16, D17 point of view, the performance of the proposed R-HEARA
exceeds 20%—-87% compared to other logic mining models. This has happened due to the log-linear
concept in the preprocessing phase with k-cross validation as well as non-systematic RANASAT logical
structure. Meanwhile, the three combinations of RANASAT (k=1,2,3 /2,3/ 1,3) create more options for
getting the best logical structure, which exemplifies the best induced logic at the end. In this regard,
the proposed R-HEARA caters the weakness for the work of [25] by embedding optimal attributes in
the RANASAT and as well as a better training model of HEA.

Furthermore, the average value (Avg.) of specificity in R-HEARA for all datasets extremely
exceeds the other logic mining models. Even the STD value and the maximum (Max) value also keep
top position, which clearly justifies that R-HEARA outperforms the existing models by its effective
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mechanism. In addition to the analysis of the rank through the Friedman test, the top position is also
kept by R-HEARA with the rank 1.68. Overall, the proposed model R-HEARA clearly acknowledges
the work by the work of [50], which shows that scoring the number of TN can be very useful if the
objectives of the classification of a model are focused on obtaining excellent results.

5.5. Statistical significance and ablation study

To evaluate whether the observed differences in performance metrics are statistically significant or
not, this article adds a Nemenyi post-hoc test and a critical difference diagram for R-HEARA with all
baseline models based on the accuracy results of this experiment, since the accuracy results indicate the
overall performance scenario of the models. The results of the Nemenyi post-hoc test (Table 10) further
reinforce the superiority of the proposed R-HEARA model. Specifically, R-HEARA demonstrates
statistically significant improvements, with average rank differences exceeding the critical difference
(CD) threshold. The threshold of CD is mathematically calculated by the performance of two models,
whose corresponding average ranks differ by at least the CD [51]. By Eq (5.1), the CD threshold can
be calculated,

X(X + 1)

CD = q,. o

5.1

Here, X is the number of algorithms, n is the number of datasets, and ¢, is the critical range
distribution value based on the classifiers (@ < 0.05). In this experiment, the CD threshold value
is 1.96. Additionally, the CD diagram shown in Figure 6 as: R-HEARA is statistically significant than
almost all other baseline models. Its rank is clearly separated from the others by more than the rank
CD threshold (RCD) and is 3.41, which is calculated as: RCD = Lowest Rank + CD = 1.45 + 1.96
= 3.41. Notably, the Nemenyi post-hoc test shows that S2SATRA and A2SATRA are not statistically
significant compared to R-HEARA within the RCD threshold, likely due to the incorporation of the
preprocessing phase in these base models. Together, the Nemenyi test table and the CD diagram
provide complementary perspectives: the table confirms precise pairwise comparisons, while the
diagram offers an intuitive visualization of algorithm performance across datasets. These additional
analyses confirm that the superior performance of R-HEARA is both statistically significant and
practically meaningful. In the CD diagram, the symbol J indicates the rank position of the individual
model, and the blue lines indicate the threshold line of the analysis.
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Table 10. Nemenyi post-hoc test result for accuracy when @ = 0.05, where v = significant
difference, ns = not significant.
Algorithms | vs. - R-HEARA P2SATRA S2SATRA A2SATRA 3SATRA E2SATRA 2SATRA L2SATRA RA

[25] [42] [24] [43] [44] [26] [23] [22]
R-HEARA - v ns ns Vv v Vv v Vv
P2SATRA v - ns ns ns ns ns ns ns
S2SATRA ns ns - ns ns ns ns ns ns
A2SATRA ns ns ns - ns ns ns ns ns
3SATRA v ns ns ns - ns ns ns ns
E2SATRA v ns ns ns ns - ns ns ns
2SATRA v ns ns ns ns ns - ns ns
L2SATRA v ns ns ns ns ns ns - ns
RA v ns ns ns ns ns ns ns -
T - - L
¢ ZiEl |2 2|5 |e|F].
3 allel |2 a2 |ellE]E
] < (| < 2|5 =l
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Figure 6. Critical difference diagram for the logic mining models. The symbol { indicates
the rank position of the model, and the blue lines indicate the threshold line of the analysis.

Figure 7 presents the ablation study of the R-HEARA, where the stacked contribution of the
individual phases is depicted. Starting from the base RA model (0.5196), the addition of log-linear
attribute selection improves the accuracy to 0.6063. The integration of the hybrid election algorithm
yields the highest average accuracy of 0.7118. Incorporating the permutation operator further raises
performance to 0.7300, while RANASAT ordering provides an additional boost to achieve the final
highest average accuracy. Hence, the full R-HEARA model with the highest average accuracy
of 0.7893. This progression highlights that while each component contributes incrementally, it is their
synergistic integration that enables R-HEARA to vanquish other models.
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Figure 7. Stacked contributions of components in R-HEARA.

In general, R-HEARA (0.7893) and A2SATRA (0.7032) show that log-linear selection contributes
significantly to performance improvement, but A2ZSATRA only focused on systematic structures, while
R-HEARA employs non-systematic structures (Non-systematic VS Systematic). Besides this, another
type of attribute selection method (Correlation analysis) input by S2SATRA performs reasonably well
on some datasets, but log-linear ensures more consistent generalization (log-linear vs correlation).
Additionally, utilizing permutation operator-P2SATRA achieves competitive accuracy (0.7118),
occasionally outperforming R-HEARA on datasets where pairwise literal interactions dominate.
However, R-HEARA surpasses it overall, showing that permutation alone is not sufficient without
hybrid integration. At the end, HEA brings substantial gains compared to baseline models A2SATRA,
P2SATRA, S2SATRA, etc., only employing ES (HEA vs ES). This confirms that global optimization
via HEA is critical to achieving state-of-the-art results. In a nutshell, it can be said that R-HEARA’s
improvements do not come from architecture alone, but from the coaction of all four contributions.

This article also reported the effect sizes in addition to significance testing. Exactly, a computation
using Cohen’s d [52] method for R-HEARA against baseline algorithms, as this method is well
accepted for analyzing effect sizes. These measures confirm that R-HEARA’s improvements are not
only statistically significant (as shown by the Friedman test, Nemenyi post-hoc, and CD diagram) but
also of substantial practical magnitude, with effect sizes ranging from medium to very large. According
to Cohen (2013) [53], the effect size standard is: Small: 0.2, Medium: 0.5, Large: 0.8, Very large:
> 1.3. Here, the calculation process of the effect size is represented by Eq (5.2),

_ (A —Ay)

d SD

(5.2)
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(m-Ds3+ny-1)s3

where, A| and A, are the mean accuracies for two algorithms across datasets and S D = 4/ e
Here, sy, s, are the STDs of the two algorithms, and n;, n, are the number of datasets. For example,
R-HEARA vs. L2SATRA yielded Cohen’s d = 2.98 (very large), indicating strong dominance.
By combining the CD diagram (significance) with the report of the effect size (magnitude), this
experimentation concluded a rigorous and comprehensive statistical validation of the performance

advantage of R-HEARA. Here, Table 11 represented Cohen’s d analysis of the baseline models.

Table 11. Comparison table of Cohen’s d analysis of all logic mining models.

Comparison (vs R-HEARA) Cohen’sd Effectsize level Interpretation

A2SATRA 0.95 Large Substantial improvement
L2SATRA 2.98 Very Large R-HEARA dominates strongly
E2SATRA 3.10 Very Large R-HEARA dominates strongly
S2SATRA 0.79 Medium-Large Consistent, meaningful gain
P2SATRA 0.81 Large Robust advantage

2SATRA 2.67 Very Large R-HEARA outperforms
3SATRA 2.22 Very Large R-HEARA outperforms

5.6. Overall discussions and impact analysis

From the above discussions, it is observed that all the existing models utilize the systematic
satisfiability combination, such as 2SAT or 3SAT. From each dataset experimentation, it is clearly
visible that a systematic and bounded logical structure cannot provide the desired outcome. In
satisfiability representation, the logical flexibility can purely enhance the performance of a logic mining
model. The different and unique combinations of this higher-order non-systematic RANASAT also
outperform systematic combinations for the simulated data. Hence, in the case of real datasets (D1—
D20), the RANASAT logic combination, that is, R-HEARA, performs better than the other logic mining
models.

Furthermore, the effectiveness of R-HEARA can be classified into three folds. In the beginning, the
proposed model selected proper attributes through a well-known statistical method. In the second step,
it gained multiple numbers of unique P2 .., which at the end generates a high-quality solution
(final neuron states). Finally, the robustness of the proposed model was examined with different
types of existing logic mining models by using several performance metrics. In this regard, the logic
mining model required to add of another layer or preprocessing phases, which proves very beneficial
in retrieving optimal P,

Notably, this preprocessing phase is set up before the training phase of DHNN. For this importance,
the proposed R-HEARA model successfully implied a statistical method named ‘log-linear’ in the
preprocessing phase. This log-linear model makes the association and interaction patterns among the
categorical data. It needs to be mentioned that this log-linear concept works in two major different
instincts. First, the K-way effect defines which attribute can be removed from the dataset. Second,
the partial association defines the significant effect of the attributes. With these characteristics, log-
linear achieved the best attributes which lead five (05) unique optimal P2¢*! before entering the

R-HEARA
training phase. It is noteworthy that the proposed R-HEARA leverages the permutation approach from
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the previous P2SATRA concept and the log-linear technique from the A2SATRA concept to achieve
optimal logical performance. This integration of the permutation operator and log-linear analysis
allows R-HEARA to achieve high-quality induced logic, as evidenced by its performance metrics.

More importantly, the proposed R-HEARA model can generate better-induced logic which reflects
in the performance of the training phase and successfully interprets the real-life datasets to detect
the factors that are more prominent than other existing models. Additionally, the reason for HEA
being able to fulfill such a factor is due to the optimization operators (advertisement campaign) in it.
These dynamic operators explore a larger search space and variations of solutions that contribute to an
effective training stage. The primary exploitative and exploratory operators of HEA in the hybrid RA
select meaningful and optimal attributes to achieve the highest classification accuracy. The results of
these analyses indicate that R-HEARA demonstrates a remarkable ability to identify significant and
optimal features.

While R-HEARA demonstrates overall superiority across most datasets and evaluation metrics,
it is noticeable that in a few cases, certain baselines such as P2SATRA and S2SATRA, we achieve
competitive or slightly better results. These outcomes likely stem from dataset-specific characteristics
that align with the design biases of the baseline models. For example, P2SATRA and S2SATRA
emphasize pairwise satisfiability rules, which are particularly effective at capturing local attribute
dependencies. In datasets where such local dependencies dominate, these models can occasionally
yield higher accuracy despite their limited generalizability. Furthermore, P2SATRA and S2SATRA
place stronger emphasis on the frequency of true positives for the most influential logic rules, which
may improve their advantage on datasets where attributes align closely in this regard. Another plausible
factor is that the attributes selected by R-HEARA'’s log-linear preprocessing may exhibit slightly
weaker correlation strength in these specific datasets. Finally, the larger number permutation used
in P2SATRA and S2SATRA can sometimes enhance their accuracy, albeit at the cost of efficiency.
Overall, these cases highlight situations where baseline models can exploit narrow structural patterns,
whereas R-HEARA maintains broader adaptability and superior performance across diverse datasets.

Beyond benchmark datasets, the design of R-HEARA makes it adaptable to a wide range of real-
world applications. Its logical rule integration and hybrid population-based optimization could, for
instance, be extended to support structured prediction in computer vision tasks such as semantic
segmentation, where spatial consistency is critical. Similarly, the systematic attribute selection and
rule-based modeling approach can be leveraged in financial decision-making systems, such as stock
selection, or adapted to dynamic optimization settings like time-varying quadratic programming, and
also for traffic forecasting with a self-supervised approach [45, 54,55]. While these directions are
beyond the scope of the present study, these works represent promising opportunities for future research
and highlight the broader potential of the proposed framework.

6. Conclusions and future direction

This study introduced an explainable hybrid R-HEARA logic mining model grounded in the reverse
analysis paradigm, designed to capture the underlying structure of datasets with greater precision. By
incorporating a dedicated preprocessing stage with log-linear attribute selection and contingency table
construction, the model is able to represent complex relationships more effectively. The integration of
the permutation operator and the HEA training mechanism further enhanced the solution search process
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and classification performance, leading to consistent gains across diverse datasets. Experimental
evaluation on twenty benchmark datasets confirmed that R-HEARA outperforms a range of established
models, achieving superior accuracy, specificity, MCC, and precision. Furthermore, the ablation study
of R-HEARA clearly demonstrates the individual contributions of each component, highlighting how
the proposed hybridization is not only beneficial but also essential for effective optimization and
knowledge extraction. Additionally, the combination of pairwise statistical significance testing and
effect size analysis using Cohen’s d provides strong evidence of the robustness and superiority of the
proposed explainable logic mining model.

At the same time, some limitations need to be acknowledged. The attribute selection step relied
solely on the log-linear method, leaving open the question of how alternative approaches, such as
correlation analysis or Jaccard similarity, might affect performance. Moreover, the present work
focused exclusively on non-systematic logic within DHNN, without extending the framework to other
neural architectures such as memristive inertial networks, radial basis function networks, or fuzzy logic
systems, which may require additional optimization layers.

Future research can address these limitations by exploring diverse attribute selection techniques
such as Jaccard analysis, incorporating systematic logic representations, and extending the model to
other neural paradigms [56-58]. Such directions would not only strengthen the theoretical foundation
of logic mining but also broaden the applicability of R-HEARA in complex real-world domains.
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