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Abstract: Two important tasks in the field of topological data analysis (TDA) are building practical
filtrations on objects and using TDA to detect the geometry and primarily topological structures.
Motivated by these tasks, we have defined the difference between the two group equivariant non-
expansive operators (GENEOs) by DGENEO and built multiparameter filtrations by operators on
images named the multi-GENEO, multi-DGENEO, and mix-GENEOQO, and we proved the stability of
both the interleaving distance and multiparameter persistence landscape of the multi-GENEO with
respect to the pseudometric on images, modeled as bounded functions. We also gave an upper bound
for the multi-DGENEO and mix-GENEO. In practical applications, we regarded the space of images
on a discrete domain, and then we built multifiltrations on the discrete function space. Finally, we
conducted a comparable experiment on the MNIST dataset to demonstrate that our bifiltrations are
superior to 1-parameter filtrations. The experiment results demonstrate that our bifiltrations have the
ability to detect geometric and topological differences of digital images.
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1. Introduction

The construction of filtration on images has always been an important issue in topological and
geometric data analysis (TGDA). Currently, the sublevel set filtration to generate 1-parameter persistent
homology is widely used. In Figure 1, we can see the lower-star filtration built on digit 3 from the
MNIST dataset by [42] only generated H, barcode (0, +oo] and H; barcode (0,255], which are two
meaningless signatures. We generate the persistence diagram by the Persim library [48]. For a given
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filtration and a homological dimension p, the p-persistence diagram is given in the form of a multiset
D = {(b;,d;) € R¥i € I,b; < d;}, where each point (b;,d; € R?) corresponds to a topological feature
born at scale b; and dying at scale d;. The diagram also includes the diagonal y = x, where each point
on the diagonal is considered with infinite multiplicity. In [6], the authors defined group equivariant
non-expansive operators (GENEOs), and in [51], the authors computed persistent homology on images
by utilizing convolution operators. Compared to traditional sublevel set filtrations, their methods can
improve accuracy to some extent, but our filtration can significantly enhance accuracy. By applying
specific operators to images, H; persistent homology obtained from the 1-parameter sublevel set
filtration can identify the digits 1 and 3. However, this filtration cannot significantly identify the
digits 1 and 3, 6 and 9 in the MNIST dataset by H; persistent homology and GENEOs have never
been used in combination with multiparameter persistent homology (MPH) in any context, not only on
images. The multi-parameter filtrations on images are still in absence [20, 39, 54]. In this context, we
propose three types of multifiltrations named the multi-GENEO, multi-DGENEO, and mix-GENEO.
We conduct experiments to show the superior performance of multiparameter filtrations in MNIST
digit recognition.
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Figure 1. Persistence diagrams H, and H; generated by lower-star filtration on the digit 3.
The orange point (0,255) in the persistence diagram represents the 1-dimensional loop
appearing at 0 and disappearing at 255. The blue point (0, +0) represents the connected
component appearing at 0 and never disappearing.

In Figure 2, we show the barcodes associated with the persistence modules Hy and H; obtained by
generating the mix-GENEQO filtration on the digit 3. The multiparameter persistence modules H, and
H, provide more information about the shapes of the images.
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Figure 2. Multiparameter persistence modules Hy, and H; generated by mix-GENEO
filtration on the digit 3.

1.1. Overview

Topological and geometric data analysis (TGDA) describes an emerging method to distinguish
topological and geometric features combined with data analysis tools. While the history of TDA
(topological data analysis) could date back to the 1990s, the field has been developed rapidly in
recent years, which leads to rich theoretical foundations such as pseudo-metrics [9,37] and persistence
modules [5, 26], high efficient algorithms [23] and software [41, 42, 52], and a broad range of
applications including medicine [46], optimization [35], deep learning [13, 36, 40], and manifold
learning [33].

A ubiquitous tool in TGDA is persistence homology (PH). The theory of PH studies the homological
group of a family of topological spaces and its representation, which is called the persistence
module, see [43, 45] for details. In probability theory, several authors have proposed estimators
of fractal dimension defined in terms of minimum spanning trees and higher dimensional persistent
homology [1,49,50].

However, a single filtered space cannot often adequately capture the structure of interest in the data.
This leads one to consider multiparameter persistence. Multiparameter persistence homology (MPH)
was first considered in [19], in which they studied a multifiltration: A family of spaces parametrized
along multiple dimensions. The algebraic invariants of these multifiltrations are called multiparameter
persistence modules. Unlike the single persistence, there is no analogous complete discrete invariant
for the multiparameter module.

In [14] and [53], the authors introduced the stable vectorization of the complete invariant of single
parameter persistent homology, called the persistence landscape, and the stable vectorization of the
multiparameter persistence module, called the multiparameter persistence landscape, respectively.
Besides, another stable vectorization of the persistence diagram is the persistence image [2], which has
been shown to produce favorable classification results when combined with machine learning methods.
The multiparameter persistence image was introduced in [20], which is suitable for machine learning
and statistical frameworks.

Moreover, by using the geometric features of data extracted by PH and MPH as inputs for statistic
techniques, one can provide new insights into the data. A persistence diagram could mark the parameter
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values for births and deaths of homological features. In a popular point of view, it is said that the
long intervals represent the topological signal and the short intervals represent the noise. However,
the authors [15] proved that persistent homology detects the curvature of disks, which shows that the
short intervals also encode geometric information. From [3], persistent homology is a mathematically
motivated out-of-the-box tool that one can use to summarize not only the global topology but also the
local geometry of a wide variety of datasets.

Within the framework of 1-parameter persistent homology, there have been many proposals to build
filtrations, including the removal of low density outliers [17], filtering by density functions and kernel
density functions [11,21,44], measuring constructions by distances [4, 16, 32], and subsampling [8].
However, there are several disadvantages for 1-parameter persistence. For instance, 1-parameter
persistence is only determined by one single parameter, and it can detect both small and large features.
One of its main limitation is that it is insufficient to extract an adequate number of features.

Several methods to construct multiparameter filtrations for points have been proposed such as the
superlevel-rips bifiltration [19], the multicover bifiltration [25] and the rhomboid bifiltration [28].
These approaches can be found in [10] for more details. In [20], the authors constructed a 2-parameter
sublevelset filtration from a pair of two images from a piece of human tissue of a patient suffering from
breast cancer.

1.2. Motivation

Many applications of 1-parameter persistent homology concern image analysis, where sublevel
filtrations are often used. There is not yet a consensus on what the most natural or useful multifiltrations
are for image analysis, but one promising idea is that a second persistence parameter can be used to
thicken sublevel or superlevel sets, thereby introducing some sensitivity to the width of features that the
ordinary sublevel and superlevel filtrations lack. One construction [22] along these lines is a framework
that uses morphological operations to naturally form a multiparameter filtration to denoise.

We would like to build a multifiltration of digital images to compute multiparameter homology, and
then detect significant topological and geometric features from the multiparameter persistent landscape.

The multiparameter landscape functions are sensitive to homological features of large, medium, and
small persistence. The landscapes also have the advantage of being interpretable since they are closely
related to the rank invariant [19].

Frequently in topological data analysis, we need to consider several R-valued functions

vi: X >R i=1,..,n

Fora = (ay, -+ ,a,) and b = (by,--- ,b,),1fa; <, b;fori=1,--- ,n, we say a <, b. Itis equivalent to
consider a functiony : X — R" on a topological space X which gives rise to an n-parameter sublevelset
filtration S(y), defined by

Sys={yeX | yO) <,s, seR"}.

We want to explore the impact of different levels of filtration on the multiparameter persistence
module. In [6], the authors defined group equivariant non-expansive operators (GENEQOs) whose space
is compact and convex with respect to the proper pseudometrics. Based on the stability, they described
a simple strategy to select and sample operators and show how the operators can be used to perform
machine learning. Also, they provided a flexible way to select operators. Since the GENEO can be
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viewed as a form of Gaussian blur, and the Laplacian operator (often regarded as a sharpening tool)
can be approximated by the subtraction of two Gaussian blurs of different scales (a method known as
the Laplacian of Gaussian, or LOG), we denote the difference between two GENEOs by DGENEO,
and we also call it DOG, for short. We can use GENEOs and DGENEOs to construct n-parameter
persistent filtrations, which are named the multi-GENEO, multi-DGENEO, and mix-GENEO in the
present paper.

To construct n-parameter filtrations from a data set, we represent data as functions. The following
notations are from [6]. Suppose that X is a non-empty set and @ is a topological subspace of the space
of all bounded functions from X to R. Obviously, @ is naturally endowed with the topology induced
by the distance D¢ := ||l¢1 — ¢2]co-

Denote by Homeo(X) the set of all homeomorphisms from X to X. For g € Homeo(X), if for every
o€ D, poge ®and po g'! € P, then we say g is a d-preserving homeomorphism. Denote by
Homeog(X) the set of all @—preserving homeomorphisms on X. Let G be a subgroup of Homeog(X),
and the pair (@, G) is called a perception pair. Let (@, G), (¥, H) be two perception pairsand T : G —
H be a fixed homomorphism. A fixed operator F : @ — ¥ is said to be a group equivariant operator
from (P,G) to (P, H) if F(po g) = F(p) o T(g) for every ¢ € @ and g € G. Moreover, the definition
of the GENEO is as follows:

Definition 1.1. [6] Assume that (D,G), (¥, H) are two perception pairs and a homomorphism T :
G — H has been fixed. If F is a group equivariant operator from (D,G) to (¥, H) with respect to T
and F is non-expansive (i.e., Dy(F(¢1), F(¢2)) < D@1, @) for every ¢, ¢, € @), then F is called a
group equivariant non-expansive operator (GENEO) associated with T : G — H.

In this paper, we define the multi-GENEO, multi-DGENEO, and mix-GENEO as follows.

Definition 1.2. A multi-GENEQO filtration {y;}\_, is a multiparameter filtration defined by y; = F'(¢),
where ¢ € @, and each F' is a GENEO, i = 1,...,n. A multi-DGENEO lyiYl., is a multiparameter
filtration defined by y; = L'(¢) = FY(p) — F*(¢) where ¢ € @, and F"' and F*>' are two elements in
the space of GENEOs, i = 1,...,n. Moreover, if each y; = M' is chosen to be F'(p) or L'(¢) with at

least one being F'(), we call {M"}:?:1 a mix-GENEO and call M' an MGENEO.

The reason we select one component of MGENEOs as F' is that we aim to utilize GENEOs to
improve the accuracy of DGENEOs.

In [27], a filtration of K is a nested sequence of subcomplexes that starts with the empty complex
and ends with the complete complex,

0=KycK, c---CcK, =K.

Remark 1.1. Combining the above definition of filtration with a sublevelset filtration, multi-GENEO
filtrations can yield multiparameter filtrations for digital images.

1.3. Contributions

In this paper, we provide a flexible framework to build multiparameter filtrations on digital images.
e We define the DGENEO and introduce three methods to build multiparameter filtrations called
the multi-GENEO, multi-DGENEO, and mix-GENEO.
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e We show the stability of both interleaving distance and the multiparameter persistence landscape
of multi-GENEOs, and also provide bound estimates for both multi-DGENEOs and mix-GENEOs
with respect to the pseudometric for the subset of bounded functions.

e We conduct experiments on the MNIST dataset and demonstrate that our bifiltrations make sense
in identifying features of persistence modules via machine learning methods, which shows the ability
of the multiparameter persistent homology to detect geometric and topological differences in digital
images.

e We compare the results of lower-star filtration, upper-star filtration, height filtration, radial
filtration, density filtration, the multi-GENEO, the multi-DGENEO, and the mix-GENEO by ten-
classification. The mix-GENEO performs the best.

To foster further developments at the intersection of multiparameter persistent homology and
machine learning theory, we release our source code under: https://github.com/HeJiaxing-h
jx/Mix-GENEO/.

2. Background

In this section, we will introduce some definitions and properties used in this paper.
Let R be the set of real numbers. For vectors s, ¢ in R", there is a natural partial order on R" by
taking (s, ..., s,) <, (t1,...,t,) if and only if s; < ¢; for all 1 < i < n. Consider the sublevelset filtration

X =S8y ={yeX|yQ®) <, s}

with natural inclusion ¢ ;.

Denote by X the collection {X;}ser» and denote by ¢ the collection of continuous maps ¢ : Xy — X;.
Similarly, denote by Y a collection {Y;}scr» and denote by 7 the collection of inclusion maps i, : Y —
Y;.

Denote by Top™ the category whose objects are (X, ¢) and whose morphisms are maps f : (X,¢) —
(Y,7), which is a collection of all linear maps {f} for all s € R” such that f; : X; — Y; and the diagram
commutes.

X, — X,

bl

Lst

YSHYt

Now we will introduce the concept of a persistence module. Let M = ®gcrn My, where My = H,.(X;)
is a module. For any s <, ¢, define the homomorphism 7, : My — M, by 75, = (t5.4).(H.(Xs), H.(X;)),
and then the following diagram commutes:

whens <, t <, r.

AIMS Mathematics Volume 10, Issue 10, 24153-24178.
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Denote by 7 the collection of {7} for all s <, ¢. Denote by M™ the category whose objects are
(M, 1) and whose morphisms are maps & : (M,7) — (N, 7), which is a collection of all continuous
maps {Ah,} for all s € R” such that h; : My — N, and the diagram commutes.

Ts,t

Ms%Mt

e e

Here (M, 1) and (N, T) are also called n-modules. For convenience, we use the notation M to represent
the persistence module (M, 7).

To see more details about homology theory, we refer to [34].

Next, we would like to introduce three pseudometrics d..,, d;, and d;” ). Recall that an extended
pseudometric on X is a function d : X X X — [0, co] with the following three properties:

(1) d(x,x) =0, for all x € X.

(2)d(x,y) =d(y, x), for all x,y € X.

(3) d(x,z2) <d(x,y) +d(y,z), for all x,y,z € X with d(x,y),d(y,z) < co.

An extended metric is an extended pseudometric d with the additional property that d(x,y) # 0
whenever x # y. In this paper, we refer to extended (pseudo)metrics simply as (pseudo)metrics.

The filtrations of the multi-GENEO we constructed are sublevelset filtrations. For the topological
space X, let y* : X — R" be a sublevelset filtration function. We can define an n-parameter sublevelset
filtration S () of any function y*.

For a functiony : X — R", let

Ivll = sup,ex lY(Plle  if X # 0,
! 0 ifX = 0.

We are given y* : X — R" and y' : Y — R" where Y is also a topological space. Let
de(y*,y") = inf |Iy* =" o hll,
heH

where H is the set of homeomorphisms from X to Y.
For i > 0, we say that a pseudometric d is i-stable for any topological spaces X, Y and any functions
y¥: X >R, y': Y - R". We have

d(H,(y"), H(y")) < du(¥*.¥").

Moreover, we say a pseudometric is stable if it is i-stable if for all i > 0.

For € € R, let € € R” denote the vector whose components are each €. Write (-)(€) : M¥ — M
simply as (- )(¢). Define 7, : M, — M, to be the morphism whose restriction to M, is the linear map
Taare- Simply write M(e) = M,.e. Two n-modules M and N are said to be e-interleaved if there exist
morphisms f : M — N(€) and g : N — M(e) such that

ge) o f =1y, fle)og=1y.
Here, we call f and g e-interleaving morphisms.

AIMS Mathematics Volume 10, Issue 10, 24153-24178.
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Define the interleaving distance d; : M X N — [0, co) as follows:
d;(M,N) = inf{e € [0, 00) | M and N are € — interleaved}.

The above d; is the same as the definition in [37], and the stability of d; is also given in [37].
Theorem 2.1. [37] d; is stable.

The multiparameter persistence landscape proposed in [53] is a stable representation with respect
to the interleaving distance and persistence weighted Wasserstein distance. The author also provided
examples and statistical tests to demonstrate a range of potential applications which are convenient to
utilize.

Let M € M®'. Consider the function A : N x R” — R,

A(k, x) = supl{e > 0 : B~ > [ for all h > 0 with ||h||., < €},

where $* = dim(Im(M, — M,)) is considered as the corresponding Betti number for @ < b. The
multiparameter persistence landscape of M is the set of such function A(k, x) that describes the maximal
radius over which k features persist in every (positive) direction through x in the parameter space.
Let M, N be multiparameter persistence modules. The p-landscape distance d;” (M, N) between M
and N is defined by
(M, N) = |IA(M) = ANl

where || - || is the L”-norm for the R-valued functions on N x R”".

Theorem 2.2. [53] Let M, N € MY be multiparameter persistence modules, and then the
oo — landscape distance of the multiparameter persistence landscapes is bounded by the interleaving

distance d,, i.e.,
d(M,N) < d(M, N).

In [29,30], the authors considered the invariance of the persistent homology under homeomorphism
actions.

Remark 2.1. [30] It is easy to check that the persistent homology groups (and hence also the persistent
Betti number functions) are invariant under the action of Homeo(X).

We would like to introduce lower-star filtration and upper-star filtration, which are both 1-parameter
filtrations. Let K be a triangulation of a compact 2-manifold without boundary M. Leth : M — R
be a function that is linear on every triangle. The function is defined, consequently, by its value at the
vertices of K. We will assume that 4(u) # h(v) for all vertices u # v € K. It is common to refer to &
as the height function. In a simplicial complex, the natural concept of a neighborhood of a vertex u is
the star, Stu, that consists of u together with the edges and triangles that share u as a vertex. Since all
vertices have different heights, each edge and triangle has a unique lowest and a unique highest vertex.
We can partition the simplicies of the star into lower and upper stars.

Definition 2.1. [56] The lower star Stu and upper star Stu of vertex u for the height function h are
Stu = {o € Stu | h(v) < h(u), Vvertices v € o}

and
Stu = {0 € Stu | h(v) > h(u), Vvertices v € o).
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These subsets of the star contain the simplices that have u as their highest or their lowest vertex,
respectively (by the usual definition, the star of u is the set of all simplices containing « and all of their
faces). Let K be the union of either lower or upper stars, K = U,Stu = U,Stu. Then we can get a
filtration. Suppose we sort the n vertices of K in order of increasing height to get the sequence u', u?,

.o U, h(u') < h(w), forall 1 < i < j < n. We then let K be the union of the first i lower stars,
K' = U< Stu/. Each simplex o has an associated vertex u', and we call the height of that vertex the
birth time (o) = h(u') of o. The subcomplex K’ of K consists of the i lowest vertices together with all
edges and triangles connecting them. Clearly, the sequence K’ defines a filtration of K. We may define
another filtration by sorting in decreasing order and using upper stars.

We also give the definitions of height filtration, radial filtration, and density filtrations. For more
details, we refer to [24,31]. Let 8 : 7 € Z¢ — {0, 1} be a binary image.

For cubical complexes, we construct a height filtration H : 7 — R of a d-dimensional binary image
T by choosing a direction v € R? of norm 1 and defining new values on all the voxels of value 1 as
follows: if p € I is such that B(p) = 1, then one assigns a new value H(p) := < p,v >, the distance
of p to the hyperplane defined by v. If B(p) = 0, then H(p) := H.., where H., is the filtration value of
the pixel that is the farthest away from the hyperplane.

The radial filtration of R of 7 with center ¢ € 7 is defined by assigning to a voxel p the value
corresponding to its distance to the center:

e =pll it B(p) =1,
Rip) = {Rw if B(p) = 0,

where R, is the distance of the pixel that is the farthest away from the center.
The density filtration gives each pixel a value depending on the number of neighbors it has at a
certain distance. For a parameter r, the density filtration is:

D.(p)=#vel,Bv)=1and|p—-v|<r},

where the norm can be any norm on R4, and we choose the L1-norm.

3. Stability and representation

In this section, we will show the stability and the bound estimates with respect to both the
interleaving distance and multiparameter persistence landscape of the multi-GENEO, multi-DGENEO,
and mix-GENEO persistence modules. We will also show the filtrations of the multi-GENEO, multi-
DGENEO, and mix-GENEO on discrete function spaces.

3.1. Stability for the multi-GENEO

Consider F as an element in the direct sum of n copies of the GENEO written as F =
(F',F?,...,F") e @, GENEO.

Theorem 3.1. Let X be a non-empty space, ¢, € @ be the bounded functions on X for k = 1,2, and
@7:1 GENEDO be the space of multi-GENEOs. Endow the space of multi-GENEQOs with the topology
induced by the uniform norm. Then,

sup  dYV(VSF(@)), VSF@)))) < ller = @alles

Fe@®)_, GENEO

AIMS Mathematics Volume 10, Issue 10, 24153-24178.
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where V(S(F(+))) denotes the multiparameter persistence module of S(F).

Proof. Let G be a subgroup of Homeog(X). For every F € @?:1 GENEO, every g € G, and ¢y,
@2 € @, we have that

di(V(S(F(¢1)), V(S(F(¢2)))) = di(V(S(F' (1), ... F* (1)), V(S(F ' (¢2), ... F"(¢2))))
= di(V(S(F'(¢1), ... F"(©1), V(S(F'(¢2) 0 T(g), ... F"(¢2) 0 T(g))))
= di(V(S(F(@1), ..o, F'(@1)), VS(F (2 0 8), ... F'(2 © 2))))
< Dy((F (1), .. F"(1)), (F' (920 &), ... (g2 0 8))
=[I(F'(¢1 = 20 8)s e F'(01 = 02 © @)l
=max[[F'(¢1 = ¢2 0 ®lls

<ller — @2 © glleo
= D@(‘Pla @s 0 g),

where Dy is a distance defined by Dy(y1,¥7) = ||¥1 — ¥2llo. The second equality follows from the
invariance of multiparameter persistent homology under the action of Homeog(X), which is easy to see
by Remark 2.1. The third equality and the seventh inequality follow from that each F' is a GENEO.
The fourth inequality follows from the stability of multiparameter persistent homology while the sixth
equality follows from the definition of the metric || - ||. Since ¢y, ¢,, g are arbitrarily chosen and F is
an element in the direct sum of n copies of the GENEO, we get

sup di(V(S(F())), V(S(F(¢2))) < égéf i1 = @2 0 gllew < D1, 2).

Furthermore, by Theorem 2.2, we have that

Sl;p d(jx’)(V(S(F (1)), V(S(F(¢2)))) < Sl;p di(V(S(F(¢1)), V(S(F(¢2))))
S%;;é llor — 2 0 glleo
< D@1, ¢2).

The third inequality follows from the property that D4 is G-invariant.
Then we obtain the stability of the co-landscape distance of the multiparameter persistence
landscapes. O

Consider L = (L', L?,--- ,L"). Let Li(¢) = F"i(¢) — F*(¢), for which F'¥ and F?>' are two elments
in the GENEOs, i = 1, ...,n. Then we have L € B,_ DGENEO.

Lemma 3.1. Let X be a non-empty space, ¢, € @ be the bounded functions on X for k = 1,2, and
@;l:l DGENEQO be the space of multi-DGENEQOs. Endow the space of multi-DGENEOs with the
topology induced by the uniform norm. Then

sup  dyV VIS, VISELe)))) < 21 = ¢alls

LeP;_, DGENEO
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Proof. The same as in the calculation in Theorem 3.1, let G be a subgroup of Homeog(X), and we have

di(V(S(L(¢1)), V(S(L(2)))) < Dy (L' (@1), .oes L' (1)), (L' (2 0 ), ..., L' (02 0 )))
= max IL (1 — 92 0 @)l
< 2/lp1 — @2 0 glleo
=2Dg(p1, 20 8).

Since ¢, ¢, g are arbitrarily chosen and F' is considered as an element in the direct sum of n copies
of the GENEQO, the conclusion is obtained. ]

Consider M = (M', M?,--- , M"™), where M' is either F' or L' with at least one being F'. Then we
have M € €B_, MGENEO. Since each F' € GENEO can be written as F' — 0 € DGENEO, we have
M € @@;_, DGENEO and MGENEO ¢ DGENEO.

Corollary 3.1. Endow the space of mix-GENEOs with the topology induced by the uniform norm. Let
V(S (M(¢yr))) be the multiparameter persistence module of the mix-GENEO, k = 1,2. Then

sup A (V(S(M(p1)), VIS(M(92))) < 2lle1 = @2l

Proof. The same as in the proof in Lemma 3.1, we can use Definition 1.2 to get the conclusion. O

The pipeline of Theorem 3.1, Lemma 3.1, and Corollary 3.1 is summarized in Figure 3.

DGENEOS. (1(p),...,L7(y)) —MPHa V(S(L(9)) —EmA(V(S(L(9)))

Sﬁ GENEOs (FY(p), -+, F'(p)) —MPH o V(S(F(¢))) —>A(V(5(F(‘P))))

GENEOs
= (MY (), -+ -, M™(0)) — PP V(S(M ()))-PEmA(V (S (M (9))))
Figure 3. Pipline. V(F(¢)), V(L(¢)), and V(M(p)) denote the multiparameter persistence

module associated with (F', F?, ..., F"), (L', L?, ...,L"), and (M', M?, ..., M"), respectively. A
denotes their persistence landscape’s vectorization.

3.2. Representation on discrete function spaces

Similar to the representation on discrete function spaces of 1-parameter GENEO construction in [6],
we can construct filtrations of the multi-GENEO, multi-DGENEO, and mix-GENEO. For a positive
integer k, let {o j} be a sequence of positive numbers and {r j} be a sequence of real numbers. We
consider that {g, }’J‘: for each g;; : R — R is a I-dimensional Gaussmn function with width o; and

center 7;,
(t - Tj)z
() = = .
Let S be the set of p; = (d},7),...,a,7;) € R* satisfying that Z'J‘-zl (a"})z = Z];:1 (T;)Z and let
p=(pi,-+,pn), where i =1,--- ,n. Define the function G, = (Gm’ . ,G;‘,n) by

k
Gl (x.3) 1= ) digu (N + 7).

J=1
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Define the convolutional operator F ;, as follows. For each continuous map ¢ : R? — R with
compact support, F ;i(go) : R? — R is the continuous map with compact support in the following form:

-y -p)
A

. G
F,(@)(x,y) = fR ¢la.f)

Given @ := {¢: R? — R with compact support}, Iso(R?), the group of Euclidean plane isometries, and

T, the identity homomorphism, then F fu; is a GENEO from (@, Iso(R?)) to itself. One can see that
{(F 1’;,1_(50)}?:1 contributes to a filtration of the multi-GENEO. Then by Definition 1.2, Li(¢) = F Ilj’lii(gp) -

F lzj’zii(gp) fori =1, ...,n, and we can also get the filtration of the multi-DGENEO and mix-GENEO.

Remark 3.1. We will show that each F ;,- is a GENEO. For each h € Iso(R*), we have h(a,B) =
A, B)T + (b1,by))T for any (a,B) € R? where A is an orthogonal matrix. Notice that for any
(. pB), (x,y) € R%,

lA(x, y) = h(a, Bll2 = [I(x,y) — (@, B)ll2,

where ||(x, )|l = /x> + y% Then
G;i((X, y) —(@,B) = G;i(h(X, y) — h(a, B)).

For convenience, write (E,E) = h(a,B). One can see that

. Gi,(x—a,y—ﬁ)
Fieo ey = [ ettapn== dadp
- IG) I
_ G ((x,y)-h\@,p _
_ f O @R
R NG, Iz
_ G (h(x,y) - (@,p) _ —
_ f o@. 0 (h(x y) (@,B)) Jadp
- A
= F!, ()(h(x,y)).
Then, we obtain that
Fi(¢oh)=F,(¢)oT(h).
Next, we will show that F ;',,_ is non-expansive. For any (x,y) € R2,
. . G (x—a,y—p)
|, (p(x, y) = F, (Y (x, )| = f (p(a,B) — Y(a,B))—= - dadﬁ‘
- G I
G (x—a,y - B
< sup |p(@,B) = y(a.p)l - f i l.a il dadp
(@,B)eR? R ||Gpl.||Ll
< sup |()0(a,’ﬁ)_l//(a7ﬁ)|
(aB)eR?

Therefore, we have ||F}, (¢) = F}, ()lleo < ll¢ = ¢llco-
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4. Experiments

In this section, we aim to demonstrate the effectiveness of our method in previously
analyzed scenarios. We will use the multi-GENEO, multi-DGENEO, and mix-GENEO to extract
multiparameter filtration from the MNIST dataset, and we will use the tool RIVET and multiparameter
persistence landscape to represent the rank invariants of the multiparameter persistence modules. To
construct comparable experiments, we use Dionysus to build 1-parameter filtrations on images and use
persistence landscapes to vectorize their persistence diagrams.

RIVET is used to provide the corresponding results in the biparameter persistence module.
RIVET software can compute and visualize three such kinds of invariants, the Hilbert function,
the bigraded Betti numbers, and the fibered barcode. RIVET supports the fast computation of
multigraded Betti numbers and an interactive visualization for 2-parameter persistence modules.
RIVET approximates multiparameter modules with a discretization in order to reduce computational
cost. These approximations can be taken to arbitrary accuracy with respect to the interleaving distance.
Details of the time and space complexity of the algorithm may be found in [38,52,55].

Multiparameter persistence landscapes are stable with respect to the interleaving distance
and persistence weighted Wasserstein distance which can be found in https://github.com
/0liverVipond/Multiparameter_Persistence_Landscapes/. [53] provided statistical tests to
demonstrate their potential applications of landscapes.

Dionysus is written in C++, with Python bindings, which provides various algorithms with clean
and consistent internal design for computing persistent homology, which can be founded in http
s://mrzv.org/software/dionysus2/. This package is useful to build lower-star and upper-star
filtrations of the Freudenthal triangulation on a grid.

Persistence Landscape is a useful and stable vector representation of persistence diagrams, which is
proposed in [14]. It provides an efficient and easily understandable approach to vectorize persistence
diagrams for machine learning tasks. These experiments are performed on Python packages from
https://persim.scikit-tda.org/.

All experiments were run on a laptop with an AMD Ryzen 7 5800H with Radeon graphics and 16GB
of memory.

4.1. Generating bifiltrations on digital images

In this subsection, we will provide an algorithm to generate biparameter filtrations on digital images,
which is also suitable for n-parameter filtrations. We give an example to show how to generate
biparameter filtration on digital images.

There have been several methods to construct cubical complexes. The authors in [47] represented
the voxels as vertices of the cubical complexes, and then the authors in [7] used this method to build
cubical complexes from an image ¢ : X — R. In [42], the author built lower-star and upper-star
filtrations of the Freudenthal triangulation on a grid in Dionysus. Inspired by their contributions, we
build a simplicial complex from two images ¢y, ¢, € @ by considering a unit square as two 2-simplices.

Recall that such a grayscale image is a function ¢ : X — R, where X C Z? is typically a rectangular
subset of the discrete lattice

X={(m,n)|0<m<M,0<n<N}
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A point x = (m,n) € X is called a pixel and the value ¢(x) € R is called the grayscale value of x. The
pixels in X are the vertices (0-cells) of the complex. If two vertices whose coordinates differ by one in
a single axis, then the edge with endpoints of the two vertices is one 1-simplex. If four vertices form
a unit square, then the edge with endpoints located in the upper left and the lower right is also one
I-simplex. And then, the unit square is divided into two 2-simplices. An example is given in Figure 4.

O O—0 O r

0] o] 0] O zi
Figure 4. The solid dots represent vertices that have already appeared. There is one edge
with two endpoints in the left figure and there are two 2-simplices colored in yellow.

Suppose that two grayscale digital images ¢; and ¢, are represented by the following two matrices:

75 3 3 27
8 6 9 and 4 9 8.
1 4 2 561

Then we use nine letters from a to i to mark the nine vertices as follows:

Q Q. %
S =
[

By taking sublevelset filtration, a bifiltration is shown in Figure 5. The classes in the position (p, g)
are generated by the pixels x which satisfying ¢;(x) < p and ¢,(x) < g. Notice that the O-simplices in
the position (4, 6) are a, b, and ¢, and the 1-simplices are ab and bc. The simplices b, ab, and bc first
appear in the position (4, 6). Call (p, g) the birth coordinate of them.
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{6.9) 9.9)

) 8:8)

(3.7)

(46)

1.5

(8:4)

(1.3)

®n

5:2)

‘e

21

Figure 5. Bifiltration example. The figure records the birth coordinates of vertices, edges,
and faces, and refers to the previously defined functions ¢, and ¢,. The vertices and edges in
the birth coordinates are colored in orange, the faces in the birth coordinates are colored in
yellow, and the rest are colored in blue.

Furthermore, we can use RIVET to visualize the biparameter persistence modules of 0-
dimensional and 1-dimensional homology in Figure 6. For details of basic persistent homology, please
refer to [12,55,56].

e
Y
il

xlabel xlabel

Brxy Brx)
Figure 6. %yxp reprensents the H, multiparameter persistence module and By xy
represents the H; multiparameter persistence module. One can see 1-loop in Ay, only
birth at the coordinate (9,8), and persist to the coordinate (9,9).

Notice that the bifiltration is a one-critical multifiltration defined in [18] since each cell of the
multifilter complex has a unique critical coordinate.
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Algorithm 1 Build bifiltration.
Input: YV, vertex;
Input: ¢, image;
Input: M = (M", M?), mix-GENEO (or multi-GENEQO, or multi-DGENEO);
Output: .# = (#,, #,), bifiltration at (x, y);

w1 = M'(¢), Y2 = M*(p);

F «—empty;

for v € V do;

(tgvx’ gzvy) = (l//l(v) wZ(V));
F U F s Foy

end for

&E —empty;

if v; is adjacent to v; then

& « &Uleij);
end if
for ¢;; € & do;
(g\e[jxa geijy)
= (max(ﬁvim <gsvj-x)arnax(=97v,~y, <97\)_,}'));
'g\ U(yeijxa ye,-jy);

end for

F —empty;

if four vertices v;, v;, v, v, form a square, and e; is a diagonal line in the square with a fixed

direction; then

F —F U fins
F —F U fisws
end if

for fiji, fixx € F do;
(F fier F i)

(max(ﬂvix’ <g\vjx, <gkax’ yvsx)a
max(.%,,y, L%Jy, Foys Foy));
(?}iskx ’ 7:fixky)

(max(gv,x’ g Vixs ﬁw\xa ﬁvqx)
max(va’ / viy» vkya v y))

F = F U(‘/fijkx’ ’/fijky) U('/fiskx’ ‘ngisky);

end for

return .% .

Complexity. We now explore the complexity of Algorithm 1. Notice that the bifiltration we
construct is all one-critical. One vertex is computed one time if it is a O-simplex or a vertex of a
higher simplex. A vertex is a common vertex of at most six 1-simplices and six 2-simplices. The
algorithm requires at most O(13n) time for n vertices. The running time for generating a bifiltration on
a set of 100 images (each of size 28 x 28) is approximately 2.77 seconds.
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4.2. Example computations

In this subsection, we will provide examples of computing binary classification and ten-
classification. We compare the performance of 1-parameter filtrations (lower-star filtration, upper-
star filtration, height filtration, radial filtration, and density filtration) with our multi-GENEO, multi-
DGENEO, and mix-GENEQO filtrations in the classification tasks by vectorizations. All the filtrations
to be compared are built using the MNIST dataset.

Suppose that a digital image is a bounded function ¢. We select five GENEOs, Gy, G, G, G3, and
G4, to get bifiltration {F ;,(go)}l.zzl. Previously, the notation G denoted a convolution kernel, while F was
used for the GENEO associated with the convolution G and the input function ¢. Notice that G, can be
seen as a Gaussian blur, G, — G| and G4 — G3, which are called DOG, can be seen as Laplace operators
approximately. Since Id is also a GENEO, we build multi-GENEO filtration by G, and Id acting on
¢ via right composition. Multi-DGENEO fitration is built by ¢ o (G4 — G3) and ¢ o (G, — Gy), and
mix-GENEO filtration is built by ¢ o G, and ¢ o (G4 — G3). To provide global information about the
number of connected components as well as their positions in the image such as 6 and 9, the GENEOs
we take are not composed of rotations (see the Appendix for the specific Gy, G, G, G3, and G4 we
use). To make the parameters in RIVET and the persistence landscape consistent, we resize the value
of Fi(¢) into [0,255].

1-parameter filtrations. We use Dionysus to build 1-parameter filtrations. For the barcode
generated by upper-star filtration, the birth time is later than the death time, so we swapped the birth
time and death time of the barcodes generated by upper filtration. For the height filtration, radial
filtration, and density filtration, we binarize the image according to a pixel value threshold of 40% as
was done in [24,31]. We set the vector v = (1, 0) for height filtration and the center ¢ = (0, 0) for radial
filtration. For 1-parameter filtrations, we set the stepsize of the persistence landscape s = 10, and set
the parameter range to be (0, max), where max is the highest pixel-value of the corresponding dataset.
1-parameter filtrations are vectorized by the persistence landscape [14].

2-parameter filtrations. For 2-parameter filtrations, we use RIVET to build our three
multifiltrations. To make the operation faster, we use the parameter bin in RIVET equal to 10 which
coarsens the persistence module to obtain an algebraically simpler module. For 2-parameter filtrations,
we set the persistence landscape A(k, x) for k = 1 in the parameter range [0, 255]? of the MNIST dataset
with stepsize s = 10 for the Hy-modules and H,-modules. Here the first landscape A(k, x) detects the
parameter values for which the associated space has at least 1-homological features together with
the persistence of those features. 2-parameter filtrations are vectorized by multiparameter persistence
landscapes [53].

Machine learning classifiers. We use machine learning algorithms with persistence landscape
and multiparameter landscape functions as a collection of features for a dataset to learn nonlinear
relationships in our dataset. We use three machine learning classifiers: support vector machine (SVM)
with an RBF kernel, convolutional neural network (CNN), and random forest (RF) with 100 trees.
Before conducting SVM classification, we first use principal component analysis (PCA) to reduce
the dimensionality of the features. We train a three-layer convolutional neural network using single-
channel inputs for Hy and H,, respectively, and dual-channel inputs for Hy + H;.

Dataset. The MNIST dataset is a classic dataset in the field of machine learning, consisting
of 60,000 training samples and 10,000 test samples, each of which is a 28 x 28 pixel grayscale
handwritten digital image and represents a number from O to 9.
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4.2.1. Comparison of the multi-GENEO, multi-DGENEO, and mix-GENEO using binary
classification

We will give examples of multi-GENEO, multi-DGENEO, and mix-GENEO persistence
filtrations to validate the effectiveness of our multifiltrations on the MNIST dataset. We
compare the performances of multi-GENEO, multi-DGENEOQO, and mix-GENEO filtrations for binary
classification 0 and 1, 1 and 3, and 6 and 9. One can see that the mix-GENEO performs the best on the
MNIST dataset in Table 1.

We plot the average persistence landscape for the digits {0, 1, 3, 6, 9} (see Figures 7 and 8). Figures 7
and 8 show that though 1 has the same topological information as 3, as both have 1 connected
component and no higher-dimensional cycles, the H; of digit 1 is significantly different from digits
s € {0, 3,6, 9} since they have different geometric information. It is worthy to note that although the
topological and geometric information of 6 and 9 are almost the same, we still can find significant
differences between them.

All landscapes of the numbers from 0 to 9 can be found in our github code.

0 HO Average Landscape 1 HO Average Landscape 3 HO Average Landscape 6 HO Average Landscape 9 HO Average Landscape

0 0 0 0 0
213 13 13 13 13
26 13 26 13 26 13 26 13 26 13
GO GO GO GO G0

Figure 7. Multi-GENEO: Average multiparameter persistence landscape for each digit in
{0, 1, 3, 6,9} in the MNIST dataset (H,).

0 HO Average Landscape 1 HO Average Landscape 3 HO Average Landscape 6 HO Average Landscape 9 HO Average Landscape

0 0 0 0 0
213 13 13 13 13
26 13 26 13 26 13 26 13 26 13
Go Go Go Go Go

Figure 8. Multi-GENEO: Average multiparameter persistence landscape for each digit in
{0, 1, 3, 6,9} in the MNIST dataset (H,).

Results. We obtain the accuracies of binary classifications of 0 and 1, 1 and 3, and 6 and 9
by multiparameter persistence landscapes of the multi-GENEO, multi-DGENEO, and mix-GENEO,
respectively. For the MNIST dataset, we use their train and test datasets for training and testing. More
details of the results are provided in Table 1. The accuracy of the mix-GENEO of binary classification
of 0 and 1, which have different topological information, can achieve 99.8%. The accuracy of the mix-
GENEO of binary classification of 6 and 9, which have almost the same topological and geometric
information, can achieve 95.1% for concatenated H, and H, features. The accuracy of mix-GENEO of
binary classification of 1 and 3, which have different geometric information, can achieve 99.2%. In our
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three methods, the mix-GENEO performs the best for Hy, H;, and concatenated H, and H; features.
The results demonstrate that our multiparameter filtration mix-GENEO more effectively characterizes
topological and geometric features. Moreover, for multiparameter filtrations, both the GENEO and
DGENEQO are necessary.

Table 1. Binary classification results of multi-GENEO, multi-DGENEO, and mix-GENEO
for the MNIST dataset using PCA+SVM, RF, and CNN. In the first row, the following
abbreviation is used: PS=PCA+SVM. H, + H, is the concatenated H, and H, features. Bold
indicates the highest scores.

H() H] H0+H1

PS RF CNN PS RF CNN PS RF CNN
mul-G 988 990 99.1 63.9 627 639 98.7 99.2 993
Ovs1 mul-D 602 604  60.2 87.5 955 886 87.8 952 893
mix-G 993 996 995 96.2 993 993 994 99.6 99.8
mul-G 723 730 732 67.6 683  68.0 703 799  80.1
1vs3 mul-D 594 594  60.0 73.6 752 755 66.5 763 772
mix-G = 96.2 973 97.2 84.2 98.7 98.7 991 991 99.2
mul-G 686 690 703 524 559 542 79.0 69.0 713
6 vs9 mul-D 543 515 523 67.0 662 673 752  68.1 645
mix-G 839 86.7 86.3 66.6 843  86.7 94.1 952 951

4.2.2. Comparison of 1-parameter filtrations, the multi-GENEOQO, the multi-DGENEOQ, and the
mix-GENEO using ten-classification

We also compare the performances of lower-star filtration, upper-star filtration, height filtration,
radial filtration, density filtration, the multi-GENEO, the multi-DGENEQO, and the mix-GENEO
persistence filtrations for ten-classification.

Results. The accuracies of ten-classification are shown in Table 2. One can see that the mix-GENEO
performs best. It can effectively identify ten classes and achieve an accuracy of 80.6%.
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Table 2. Ten-classification results of the lower-star, upper-star, height, radial, density, multi-
GENEO, multi-DGENEOQO, and mix-GENEO for the MNIST dataset using PCA+SVM, RF,
and CNN. In the first row, the following abbreviation is used: PS=PCA+SVM. H, + H, is
the concatenated H, and H, features. Bold indicates the highest scores.

H() Hl H() + Hl
PS RF CNN PS RF CNN PS RF CNN

lower-star ~ 30.0 29.8  30.0 153 152 154 334 326 33.6
upper-star 145 144  14.6 30.0 29.8  30.1 325 31.8 328
height 343 343 343 2777 2777 27.8 55.0 550 55.0
radial 258 258 260 319 319 320 458 459 459
density 189 189 189 31.9 319 320 458 459 459
mul-G 39.7 410 421 193 19.0 197 434 440 458
mul-D 142 146 149 294 317 321 31.0 303 332
mix-G 67.8 678 721 506 47.6 529 788 783  80.6

5. Conclusions and future work

In this paper, we introduce three multiparameter persistence filtrations called the multi-GENEO,
multi-DGENEOQO, and mix-GENEO, which can be chosen flexibly. Moreover, we show the stability
of both the interleaving distance and multiparameter persistence landscape of the multi-GENEO
persistence modules. We also provide estimations of the upper bound for multi-DGENEO and mix-
GENEO persistence module with respect to pseudometrics. After giving an algorithm to build the
bifiltrations on digital images, the experiments we conducted demonstrate that our methods perform
better than 1-parameter filtrations, and that our methods can significantly distinguish not only the ones
with different topological information but also the ones with almost the same topological and geometric
information.

In future work, we would like to develop our methods in the following two aspects. On the one hand,
we plan to optimize our methods to get better results. For instance, we would obtain multiparameter
filtrations by higher dimensional sublevelset functions or by selecting suitable operators in another way.
We would like to thank the reviewer for suggesting that we work with more complex datasets. In our
future research, we will adopt optimization methods to develop operators suitable for more complex
datasets (e.g. the CIFAR-10 dataset). On the other hand, we plan to apply our methods to other fields
or problems, for instance, integrating features into deep learning and medical research.
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A. Appendix

We present the GENEOs (G, Gy, G, G3, G4) and DGENEOs (G, — G, G4 — G3) used in our study
in Figures 9 and 10, respectively.
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Figure 9. GENEO:s.
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Recall that our multi-GENEO filtration is built by G( and Id acting on ¢ via right composition.
Multi-DGENEQO fitration is built by ¢ o (G4 — G3) and ¢ o (G, — G), and mix-GENEO filtration is built

by ¢ 0 Gg and ¢ o (G4 — G3).

Taking the digit 5 in MNIST as an example, we show the ¢ o 1d, ¢ o Gy, ¢ o (G, — Gy), and
¢ o (G4 — G3) that we specifically used to build multi-GENEO, multi-DGENEO, and mix-GENEO
filtrations in Figure 11 (¢ here is the digit 5).
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Figure 11. Examples of ¢ o Id, ¢ o Gy, ¢ o (G, — G1), and ¢ o (G4 — G3).
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