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Abstract: Using the binary operation “�” on a GE-algebra X given by � (x, y) = (y∗ x)∗ x and the GE-
endomorphism Ω : X → X, the notion of Ω(l,r)-endomorphic (resp., Ω(r,l)-endomorphic) GE-derivation
is introduced, and several properties are investigated. Also, examples that illustrate these are provided.
Conditions under which Ω(l,r)-endomorphic GE-derivations or Ω(l,r)-endomorphic GE-derivations to
satisfy certain equalities and inequalities are studied. We explored the conditions under which f
becomes order preserving when f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic
GE-derivation on X. The f -kernel and Ω-kernel of f formed by the Ω(r,l)-endomorphic GE-derivation
or Ω(l,r)-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the Ω-kernel
of f is a GE-filter of X. The condition under which the f -kernel of f formed by the Ω(r,l)-endomorphic
GE-derivation or Ω(l,r)-endomorphic GE-derivation becomes a GE-filter is explored.
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1. Introduction

In the 1950s, Hilbert algebras were introduced by L. Henkin and T. Skolem as a means to investigate
non-classical logics, particularly intuitionistic logic. As demonstrated by A. Diego, these algebras
belong to the category of locally finite varieties, a fact highlighted in [5]. Over time, a community
of scholars developed the theory of Hilbert algebras, as evidenced by works such as [3, 4, 6]. Within
the realm of mathematics, the study of derivations holds a significant place in the theory of algebraic
structures. This branch evolved from the principles of Galois theory and the theory of invariants. K.
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H. Kim et al. extended the concept of derivations to BE-algebras, delving into properties in [10]. C.
Jana et al. [7] introduced the notion of left-right (respectively, right-left) derivation, f-derivation, and
generalized derivation of KUS-algebras, and their properties are established. In the broader scope of
algebraic structures, the process of generalization is of utmost importance. The introduction of GE-
algebras, proposed by R. K. Bandaru et al. as an extension of Hilbert algebras, marked a significant
step in this direction. This advancement led to the examination of various properties, as explored
in [1]. The evolution of GE-algebras was greatly influenced by filter theory. In light of this, R. K.
Bandaru et al. introduced the concept of belligerent GE-filters in GE-algebras, closely investigating
its attributes as documented in [2]. Rezaei et al. [11] introduced the concept of prominent GE-filters
in GE-algebras. Building upon the foundation laid by Y. B. Jun et al., the concepts of ξ-inside GE-
derivation and ξ-outside GE-derivation are introduced and their properties are studied. The authors
established prerequisites for a self-map on a GE-algebra to qualify as both a ξ-inside and ξ-outside
GE-derivation. The conditions for an order-preserving ξ-inside GE-derivation and a ξ-outside GE-
derivation were thoroughly explored, as detailed in [8].

In this paper, we introduce the notion of Ω(l,r)-endomorphic (resp., Ω(r,l)-endomorphic)
GE-derivation using the binary operation “�” on a GE-algebra X given by � (x, y) = (y ∗ x) ∗ x and the
GE-endomorphism Ω : X → X and investigate several properties. We study the conditions under
which Ω(l,r)-endomorphic GE-derivations or Ω(l,r)-endomorphic GE-derivations to satisfy certain
equalities and inequalities. We explore the conditions under which f becomes order preserving when
f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on X. We observe
that the f -kernel of f and the Ω-kernel of f formed by the Ω(r,l)-endomorphic GE-derivation or
Ω(l,r)-endomorphic GE-derivation are GE-subalgebras. Also, we observe that the Ω-kernel of f is a
GE-filter of X, but the f -kernel of f is not a GE-filter of X. Finally, we explore the condition under
which the f -kernel of f formed by the Ω(r,l)-endomorphic GE-derivation or Ω(l,r)-endomorphic
GE-derivation becomes a GE-filter.

2. Preliminaries

Definition 2.1 ( [1]). A GE-algebra is a non-empty set X with a constant “1” and a binary operation
“∗” satisfying the following axioms:

(GE1) u ∗ u = 1,
(GE2) 1 ∗ u = u,
(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w))

for all u, v,w ∈ X.

In a GE-algebra X, a binary relation “≤” is defined by

(∀u, v ∈ X) (u ≤ v ⇔ u ∗ v = 1) . (2.1)

Definition 2.2 ( [1, 2]). A GE-algebra X is said to be

• Transitive if it satisfies:

(∀u, v,w ∈ X) (u ∗ v ≤ (w ∗ u) ∗ (w ∗ v)) . (2.2)
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• Commutative if it satisfies:

(∀u, v ∈ X) ((u ∗ v) ∗ v = (v ∗ u) ∗ u) . (2.3)

Proposition 2.3 ( [1]). Every GE-algebra X satisfies the following items:

(∀u ∈ X) (u ∗ 1 = 1) . (2.4)
(∀u, v ∈ X) (u ∗ (u ∗ v) = u ∗ v) . (2.5)
(∀u, v ∈ X) (u ≤ v ∗ u) . (2.6)
(∀u, v,w ∈ X) (u ∗ (v ∗ w) ≤ v ∗ (u ∗ w)) . (2.7)
(∀u ∈ X) (1 ≤ u ⇒ u = 1) . (2.8)
(∀u, v ∈ X) (u ≤ (v ∗ u) ∗ u) . (2.9)
(∀u, v ∈ X) (u ≤ (u ∗ v) ∗ v) . (2.10)
(∀u, v,w ∈ X) (u ≤ v ∗ w ⇔ v ≤ u ∗ w) . (2.11)

If X is transitive, then

(∀u, v,w ∈ X) (u ≤ v ⇒ w ∗ u ≤ w ∗ v, v ∗ w ≤ u ∗ w) . (2.12)
(∀u, v,w ∈ X) (u ∗ v ≤ (v ∗ w) ∗ (u ∗ w)) . (2.13)
(∀u, v,w ∈ X) (u ≤ v, v ≤ w ⇒ u ≤ w) . (2.14)

Definition 2.4 ( [1]). A non-empty subset S of X is called a GE-subalgebra of X if it satisfies:

(∀x, y ∈ X)(x, y ∈ S ⇒ x ∗ y ∈ S ). (2.15)

Definition 2.5 ( [1]). A subset F of a GE-algebra X is called a GE-filter of X if it satisfies:

1 ∈ F, (2.16)
(∀x, y ∈ X)(x ∗ y ∈ F, x ∈ F ⇒ y ∈ F). (2.17)

3. Endomorphic GE-derivations

In what follows, given a self-mapping f on a GE-algebra X, the image of x ∈ X under f is denoted
by fx for the convenience, and let X denote a GE-algebra unless otherwise specified.

A self mapping Ω : X → X is called a GE-endomorphism if Ωx∗y = Ωx ∗Ωy for all x, y ∈ X.
It is clear that if Ω is a GE-endomorphism, then Ω1 = 1.
We define a binary operation “�” on X as follows:

� : X × X → X, (x, y) 7→ (y ∗ x) ∗ x. (3.1)

Lemma 3.1. The binary operations “�” on a GE-algebra X satisfies:

(∀u ∈ X)(x � 1 = 1 = 1 � x), (3.2)
(∀u ∈ X)(x � x = x). (3.3)
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Proof. Straightforward. �

Using the binary operation “�” and the GE-endomorphism Ω : X → X, we will define endomorphic
GE-derivations on X and study its properties.

Definition 3.2. A mapping f : X → X is called an Ω(l,r)-endomorphic GE-derivation on X if there
exists a GE-endomorphism Ω : X → X satisfying the following condition:

(∀x, y ∈ X)( fx∗y = (Ωx ∗ fy) � ( fx ∗Ωy)). (3.4)

Definition 3.3. A mapping f : X → X is called an Ω(r,l)-endomorphic GE-derivation on X if there
exists a GE-endomorphism Ω : X → X satisfying the following condition:

(∀x, y ∈ X)( fx∗y = ( fx ∗Ωy) � (Ωx ∗ fy)). (3.5)

Remark 3.4. It is clear that if X is a commutative GE-algebra, then the two concepts of
Ω(l,r)-endomorphic GE-derivation and Ω(r,l)-endomorphic GE-derivation are consistent.

Example 3.5. (i) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “∗” given in the following
table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 ᵀ2 ᵀ4 ᵀ4

ᵀ2 1 1 1 ᵀ3 ᵀ3

ᵀ3 1 ᵀ1 ᵀ2 1 1
ᵀ4 1 1 ᵀ2 1 1

Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→
{

1 if x ∈ {1,ᵀ1,ᵀ3,ᵀ4},

ᵀ2 if x = ᵀ2.

and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ1},

ᵀ2 if x = ᵀ2,

ᵀ3 if x ∈ {ᵀ3,ᵀ4}.

Then, f is an Ω(l,r)-endomorphic GE-derivation on X.
(ii) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “∗” given in the following table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 ᵀ2 ᵀ3 1
ᵀ2 1 ᵀ4 1 1 ᵀ4

ᵀ3 1 ᵀ1 1 1 ᵀ1

ᵀ4 1 1 ᵀ2 ᵀ3 1
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Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→
{

1 if x ∈ {1,ᵀ1,ᵀ3,ᵀ4},

ᵀ2 if x = ᵀ2.

and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ1,ᵀ4},

ᵀ2 if x = ᵀ2,

ᵀ3 if x = ᵀ3.

Then, f is an Ω(r,l)-endomorphic GE-derivation on X.
(iii) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “∗” given in the following table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 ᵀ2 ᵀ3 ᵀ3

ᵀ2 1 1 1 ᵀ4 ᵀ4

ᵀ3 1 ᵀ1 1 1 1
ᵀ4 1 ᵀ1 1 1 1

Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ1},

ᵀ1 if x = ᵀ2,

ᵀ4 if x ∈ {ᵀ3,ᵀ4}.

and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ1},

ᵀ2 if x = ᵀ2,

ᵀ4 if x ∈ {ᵀ3,ᵀ4}.

Then, f is an Ω(l,r)-endomorphic GE-derivation on X. But, it is not an Ω(r,l)-endomorphic GE-
derivation on X since

( fᵀ1 ∗Ωᵀ2) � (Ωᵀ1 ∗ fᵀ2) = ((Ωᵀ1 ∗ fᵀ2) ∗ ( fᵀ1 ∗Ωᵀ2)) ∗ ( fᵀ1 ∗Ωᵀ2)
= ((1 ∗ ᵀ1) ∗ (1 ∗ ᵀ2)) ∗ (1 ∗ ᵀ2)
= (ᵀ1 ∗ ᵀ2) ∗ ᵀ2 = ᵀ2 ∗ ᵀ2 = 1
, ᵀ1 = fᵀ2 = fᵀ1∗ᵀ2 .

(iv) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4,ᵀ5} be a set with a binary operation “∗” given in the following table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

ᵀ1 1 1 ᵀ2 ᵀ5 ᵀ4 ᵀ5

ᵀ2 1 ᵀ1 1 ᵀ3 ᵀ3 ᵀ3

ᵀ3 1 ᵀ1 ᵀ2 1 ᵀ2 1
ᵀ4 1 ᵀ1 1 1 1 1
ᵀ5 1 ᵀ1 ᵀ2 1 ᵀ2 1
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Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ3,ᵀ5},

ᵀ1 if x = ᵀ1,

ᵀ3 if x ∈ {ᵀ2,ᵀ4}.

and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ3,ᵀ5},

ᵀ1 if x = ᵀ1,

ᵀ4 if x ∈ {ᵀ2,ᵀ4}.

Then, f is an Ω(r,l)-endomorphic GE-derivation on X. But, it is not an Ω(l,r)-endomorphic GE-
derivation on X:

fᵀ1∗ᵀ2 = fᵀ2 = ᵀ3 , ᵀ5 = 1 ∗ ᵀ5 = (ᵀ4 ∗ ᵀ5) ∗ ᵀ5

= (ᵀ1 ∗ ᵀ4) ∗ (ᵀ1 ∗ ᵀ3)) ∗ (ᵀ1 ∗ ᵀ3)
= (( fᵀ1 ∗Ωᵀ2) ∗ (Ωᵀ1 ∗ fᵀ2)) ∗ (Ωᵀ1 ∗ fᵀ2)
= (Ωᵀ1 ∗ fᵀ2) � ( fᵀ1 ∗Ωᵀ2).

Proposition 3.6. If f : X → X is a GE-endomorphism, then it is both an f(r,l)-endomorphic GE-
derivation and an f(l,r)-endomorphic GE-derivation X.

Proof. If f : X → X is a GE-endomorphism, then

fx∗y = fx ∗ fy = ( fx ∗ fy) � ( fx ∗ fy)

for all x, y ∈ X. This completes the proof. �

Proposition 3.7. If f : X → X is an Ω(r,l)-endomorphic GE-derivation or an Ω(l,r)-endomorphic GE-
derivation on X, then f1 = 1.

Proof. Assume that f : X → X is an Ω(r,l)-endomorphic GE-derivation on X. Then,

f1 = fx∗1 = ( fx ∗Ω1) � (Ωx ∗ f1) = ( fx ∗ 1) � (Ωx ∗ f1) = 1 � (Ωx ∗ f1) = 1

by (2.4) and Lemma 3.1. If f : X → X is an Ω(l,r)-endomorphic GE-derivation on X, then

f1 = fx∗1 = (Ωx ∗ f1) � ( fx ∗Ω1) = (Ωx ∗ f1) � ( fx ∗ 1) = (Ωx ∗ f1) � 1 = 1

by (2.4) and Lemma 3.1. �

Proposition 3.8. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then f1�x = 1 = fx�1 for all x ∈ X.

Proof. If f is an Ω(l,r)-endomorphic GE-derivation, then

f1�x = f(x∗1)∗1 = (Ωx∗1 ∗ f1) � ( fx∗1 ∗Ω1)
= (Ω1 ∗ f1) � ( f1 ∗ 1) = (1 ∗ f1) � 1 = 1
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for all x ∈ X by (2.4) and Lemma 3.1. Suppose that f is an Ω(r,l)-endomorphic GE-derivation. Then,

f1�x = f(x∗1)∗1 = ( fx∗1 ∗Ω1) � (Ωx∗1 ∗ f1)
= ( f1 ∗Ω1) � (Ω1 ∗ f1) = ( f1 ∗ 1) � (1 ∗ f1)
= 1 � f1 = 1

for all x ∈ X by (GE2), (2.4), and Lemma 3.1. Similarly, we can show that 1 = fx�1 for all x ∈ X. �

Lemma 3.9. Every Ω(r,l)-endomorphic GE-derivation f on X satisfies:

(∀x ∈ X) ( fx = Ωx � fx)). (3.6)

Proof. If f is an Ω(r,l)-endomorphic GE-derivation on X, then

fx = f1∗x = ( f1 ∗Ωx) � (Ω1 ∗ fx) = (1 ∗Ωx) � (1 ∗ fx) = Ωx � fx

for all x ∈ X by (GE2) and Proposition 3.7. �

The Eq (3.6) is not valid if f is an Ω(l,r)-endomorphic GE-derivation on X. In fact, the Ω(l,r)-
endomorphic GE-derivation f in Example 3.5(iii) does not satisfy (3.6) since

fᵀ2 = ᵀ1 , 1 = ᵀ2 ∗ ᵀ2 = (ᵀ1 ∗ ᵀ2) ∗ ᵀ2 = ( fᵀ2 ∗Ωᵀ2) ∗Ωᵀ2 = Ωᵀ2 � fᵀ2 .

Proposition 3.10. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then

(∀x ∈ X)( fx = fx � Ωx). (3.7)

Proof. Assume that f is an Ω(l,r)-endomorphic GE-derivation on X. Using (GE2) and Proposition 3.7
induces

fx = f1∗x = (Ω1 ∗ fx) � ( f1 ∗Ωx) = (1 ∗ fx) � (1 ∗Ωx) = fx � Ωx

for all x ∈ X. If f is an Ω(r,l)-endomorphic GE-derivation on X, then

Ωx ∗ fx
(3.6)
= Ωx ∗ (Ωx � fx)

(3.1)
= Ωx ∗ (( fx ∗Ωx) ∗Ωx)

(GE3)
= Ωx ∗ (( fx ∗Ωx) ∗ (Ωx ∗Ωx))

(GE1)
= Ωx ∗ (( fx ∗Ωx) ∗ 1)

(2.4)
= Ωx ∗ 1

(2.4)
= 1.

It follows from (GE2) that fx = 1 ∗ fx = (Ωx ∗ fx) ∗ fx = fx � Ωx for all x ∈ X. �

Proposition 3.11. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
f on X, then the following equation is valid:

(∀x ∈ X)( fΩx∗ fx = 1). (3.8)
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Proof. Let f be an Ω(r,l)-endomorphic GE-derivation on X. Then,

fΩx∗ fx

(3.6)
= fΩx∗(Ωx� fx)

(3.1)
= fΩx∗(( fx∗Ωx)∗Ωx)

(GE3)
= fΩx∗(( fx∗Ωx)∗(Ωx∗Ωx))

(GE1)
= fΩx∗(( fx∗Ωx)∗1)

(2.4)
= fΩx∗1

(2.4)
= f1 = 1

for all x ∈ X. If f is an Ω(l,r)-endomorphic GE-derivation on X, then

fΩx∗ fx

(3.7)
= fΩx∗( fx�Ωx)

(3.1)
= fΩx∗((Ωx∗ fx)∗ fx)

(GE3)
= fΩx∗((Ωx∗ fx)∗(Ωx∗ fx))

(GE1)
= fΩx∗1

(2.4)
= f1 = 1

for all x ∈ X. �

Proposition 3.12. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then the following assertion is valid:

(∀x ∈ X)(Ωx ≤ fx). (3.9)

Proof. Let f be an Ω(l,r)-endomorphic GE-derivation on X. For every x ∈ X, we have

Ωx ∗ fx
(3.7)
= Ωx ∗ ( fx � Ωx)

(3.1)
= Ωx ∗ ((Ωx ∗ fx) ∗ fx)

(GE3)
= Ωx ∗ ((Ωx ∗ fx) ∗ (Ωx ∗ fx))

(GE1)
= Ωx ∗ 1

(2.4)
= 1,

and so (3.9) is valid. Assume that f is an Ω(r,l)-endomorphic GE-derivation on X. Then,

Ωx ∗ fx
(3.6)
= Ωx ∗ (Ωx � fx)

(3.1)
= Ωx ∗ (( fx ∗Ωx) ∗Ωx)

(GE3)
= Ωx ∗ (( fx ∗Ωx) ∗ (Ωx ∗Ωx))

(GE1)
= Ωx ∗ (( fx ∗Ωx) ∗ 1)

(2.4)
= Ωx ∗ 1

(2.4)
= 1

for all x, y ∈ X. Thus, (3.9) is valid. �

Proposition 3.13. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on a transitive GE-algebra X, then the following assertion is valid:

(∀x, y ∈ X)( fx ∗Ωy ≤ Ωx ∗ fy). (3.10)

AIMS Mathematics Volume 10, Issue 1, 1792–1813.



1800

Proof. Suppose that X is a transitive GE-algebra, and let f be an Ω(l,r)-endomorphic GE-derivation
or an Ω(r,l)-endomorphic GE-derivation on X. Then, the combination of (2.12) and (3.9) leads to the
following assertion:

fx ∗Ωy ≤ Ωx ∗Ωy ≤ Ωx ∗ fy

and thus fx ∗Ωy ≤ Ωx ∗ fy for all x, y ∈ X by (2.14). �

The following example shows that (3.10) is not valid in Proposition 3.13 if the condition “X is
transitive” is omitted.

Example 3.14. Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “ ∗ ” given in the following
table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 1 ᵀ3 1
ᵀ2 1 ᵀ1 1 1 ᵀ1

ᵀ3 1 ᵀ4 ᵀ2 1 ᵀ4

ᵀ4 1 1 1 1 1

Then, X is a GE-algebra which is not transitive. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ3},

ᵀ1 if x ∈ {ᵀ1,ᵀ4},

ᵀ3 if x = ᵀ2.

and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ3},

ᵀ1 if x ∈ {ᵀ1,ᵀ4},

ᵀ2 if x = ᵀ2.

Then, f is an Ω(l,r)-endomorphic GE-derivation on X. But, f does not satisfy (3.10) since ( fᵀ1 ∗

Ωᵀ2) ∗ (Ωᵀ1 ∗ fᵀ2) = (ᵀ1 ∗ ᵀ2) ∗ (ᵀ1 ∗ ᵀ3) = 1 ∗ ᵀ3 = ᵀ3 , 1, that is, fᵀ1 ∗Ωᵀ2 � Ωᵀ1 ∗ fᵀ2 .

Example 3.15. Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4,ᵀ5} be a set with a binary operation “∗” given in the following
table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

ᵀ1 1 1 ᵀ5 1 1 ᵀ5

ᵀ2 1 1 1 1 1 1
ᵀ3 1 ᵀ4 1 1 ᵀ4 1
ᵀ4 1 ᵀ3 1 ᵀ3 1 1
ᵀ5 1 1 1 1 1 1
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Then, X is a GE-algebra which is not transitive. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ4,ᵀ5},

ᵀ3 if x ∈ {ᵀ1,ᵀ3},

ᵀ2 if x = ᵀ2.

and

Ω : X → X, x 7→



1 if x = 1,
ᵀ1 if x = ᵀ1,

ᵀ2 if x = ᵀ2,

ᵀ3 if x = ᵀ3,

ᵀ4 if x = ᵀ4,

ᵀ5 if x = ᵀ5.

Then, f is an Ω(r,l)-endomorphic GE-derivation on X. But, f does not satisfy (3.10) since ( fᵀ1 ∗

Ωᵀ2) ∗ (Ωᵀ1 ∗ fᵀ2) = (ᵀ3 ∗ ᵀ2) ∗ (ᵀ1 ∗ ᵀ2) = 1 ∗ ᵀ5 = ᵀ5 , 1, that is, fᵀ1 ∗Ωᵀ2 � Ωᵀ1 ∗ fᵀ2 .

Let f and Ω be self-maps on X, and consider the following equality:

(∀x, y ∈ X)( fx∗y = Ωx ∗ fy). (3.11)

Question 3.16. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on
X, then does Eq (3.11) work?

The answer to Question 3.16 is negative and confirmed in the following examples.

Example 3.17. (i) In Example 3.14, we can observe that X is a GE-algebra which is not commutative.
Also, the Ω(l,r)-endomorphic GE-derivation f does not satisfy (3.11) since fᵀ1∗ᵀ2 = f1 = 1 , ᵀ3 =

ᵀ1 ∗ ᵀ3 = Ωᵀ1 ∗ fᵀ2 .

(ii) In Example 3.15, we can observe that X is a GE-algebra which is not commutative. Also, Ω(r,l)-
endomorphic GE-derivation f does not satisfy (3.11) since fᵀ1∗ᵀ2 = fᵀ5 = 1 , ᵀ5 = ᵀ1 ∗ᵀ2 = Ωᵀ1 ∗ fᵀ2 .

We explore conditions under which the answer to Question 3.16 will be positive.

Theorem 3.18. If X is a commutative GE-algebra, then every Ω(r,l)-endomorphic GE-derivation f on
X satisfies Eq (3.11).

Proof. Let f be an Ω(r,l)-endomorphic GE-derivation on a commutative GE-algebra X. Since X is
commutative, it is also transitive (see [9]). Hence,

fx∗y
(3.5)
= ( fx ∗Ωy) � (Ωx ∗ fy)

(3.1)
= ((Ωx ∗ fy) ∗ ( fx ∗Ωy)) ∗ ( fx ∗Ωy)

(2.3)
= (( fx ∗Ωy) ∗ (Ωx ∗ fy)) ∗ (Ωx ∗ fy)

(3.10)
= 1 ∗ (Ωx ∗ fy)

(GE2)
= Ωx ∗ fy

for all x, y ∈ X. �

Based on Remark 3.4, the following is the corollary of Theorem 3.18.
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Corollary 3.19. If X is a commutative GE-algebra, then every Ω(l,r)-endomorphic GE-derivation f on
X satisfies equality (3.11).

Question 3.20. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on
X, then are the two self-maps f and Ω consistent?

The answer to Question 3.20 is negative and confirmed in the following example.

Example 3.21. (i) If we take the Ω(l,r)-endomorphic GE-derivation f in Example 3.5(i), then fᵀ3 = 1 ,
ᵀ3 = Ωᵀ3 .

(ii) If we take the Ω(r,l)-endomorphic GE-derivation f in Example 3.5(ii), then fᵀ3 = 1 , ᵀ3 = Ωᵀ3 .

Given two self-maps f and Ω on X, consider the following equation:

(∀x, y ∈ X)( fx∗y = fx ∗Ωy). (3.12)

If f is an Ω(r,l)-endomorphic GE-derivation or Ω(r,l)-endomorphic GE-derivation on a commutative
GE-algebra X, then f may not satisfy (3.12).

Example 3.22. Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “ ∗ ” given in the following
table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 ᵀ2 ᵀ3 ᵀ4

ᵀ2 1 ᵀ1 1 ᵀ3 ᵀ4

ᵀ3 1 ᵀ1 ᵀ2 1 ᵀ4

ᵀ4 1 ᵀ1 ᵀ2 ᵀ3 1

Then, X is a commutative GE-algebra. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ1,ᵀ2},

ᵀ2 if x = ᵀ3,

ᵀ4 if x = ᵀ4.

and

Ω : X → X, x 7→



1 if x = 1,
ᵀ1 if x = ᵀ1,

ᵀ3 if x = ᵀ2,

ᵀ2 if x = ᵀ3,

ᵀ4 if x = ᵀ4.

Then, f is both an Ω(l,r)-endomorphic GE-derivation and an Ω(r,l)-endomorphic GE-derivation on X.
But, f does not satisfy (3.12) since fᵀ1∗ᵀ1 = f1 = 1 , ᵀ1 = 1 ∗ ᵀ1 = fᵀ1 ∗Ωᵀ1 .

The following example shows that there is an Ω(l,r)-endomorphic GE-derivation f or
Ω(r,l)-endomorphic GE-derivation f on X that would not normally establish Eq (3.12).
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Example 3.23. (i) The Ω(l,r)-endomorphic GE-derivation f in Example 3.5(i) does not satisfy the
Eq (3.12) since

fᵀ1∗ᵀ3 = fᵀ4 = 1 , ᵀ3 = 1 ∗ ᵀ3 = fᵀ1 ∗Ωᵀ3 .

(ii) The Ω(r,l)-endomorphic GE-derivation f in Example 3.5(ii) does not satisfy the Eq (3.12) since

fᵀ1∗ᵀ3 = fᵀ3 = 1 , ᵀ3 = 1 ∗ ᵀ3 = fᵀ1 ∗Ωᵀ3 .

We investigate the conditions under which two self-maps f and Ω match in X.

Theorem 3.24. If an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation f on
X satisfies Eq (3.12), then f matches Ω.

Proof. Assume that f satisfies Eq (3.12). Then,

fx
(GE2)
= f1∗x

(3.12)
= f1 ∗Ωx

Proposition 3.7
= 1 ∗Ωx

(GE2)
= Ωx

for all x ∈ X. Hence, f matches Ω. �

If an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation f on X satisfies the
Eq (3.11), then f may not match Ω.

Example 3.25. Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “ ∗ ” given in the following
table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 1 ᵀ3 ᵀ3

ᵀ2 1 1 1 ᵀ4 ᵀ4

ᵀ3 1 ᵀ1 ᵀ2 1 1
ᵀ4 1 ᵀ1 ᵀ2 1 1

Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→
{

1 if x ∈ {1,ᵀ1,ᵀ3,ᵀ4},

ᵀ1 if x = ᵀ2.

and

Ω : X → X, x 7→
{

1 if x ∈ {1,ᵀ3,ᵀ4},

ᵀ1 if x ∈ {ᵀ1,ᵀ2}.

Then, f is both an Ω(l,r)-endomorphic GE-derivation and an Ω(r,l)-endomorphic GE-derivation on X
satisfying (3.11). But, f does not match with Ω since fᵀ1 = 1 , ᵀ1 = Ωᵀ1 .

Question 3.26. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on
X, then does the following equation work?

(∀x, y ∈ X)(Ωx ∗ fy = fx ∗Ωy). (3.13)
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The answer to Question 3.26 is negative and confirmed in the following examples.

Example 3.27. (i) The Ω(l,r)-endomorphic GE-derivation f in Example 3.5(i) does not satisfy Eq (3.13)
since

Ωᵀ2 ∗ fᵀ3 = ᵀ2 ∗ 1 = 1 , ᵀ3 = ᵀ2 ∗ ᵀ3 = fᵀ2 ∗Ωᵀ3 .

(ii) The Ω(r,l)-endomorphic GE-derivation f in Example 3.5(ii) does not satisfy Eq (3.13) since

Ωᵀ4 ∗ fᵀ3 = 1 ∗ 1 = 1 , ᵀ3 = 1 ∗ ᵀ3 = fᵀ4 ∗Ωᵀ3 .

Lemma 3.28. Let f be an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X. If it satisfies (3.13), then Eq (3.12) is valid.

Proof. If f is an Ω(l,r)-endomorphic GE-derivation on X satisfying (3.13), then

fx∗y
(3.4)
= (Ωx ∗ fy) � ( fx ∗Ωy)

(3.1)
= (( fx ∗Ωy) ∗ (Ωx ∗ fy)) ∗ (Ωx ∗ fy)

(3.13)
= (( fx ∗Ωy) ∗ ( fx ∗Ωy)) ∗ ( fx ∗Ωy)

(GE1)
= 1 ∗ ( fx ∗Ωy)

(GE2)
= fx ∗Ωy

for all x, y ∈ X. Let f be an Ω(r,l)-endomorphic GE-derivation on X satisfying (3.13). Then,

fx∗y
(3.5)
= ( fx ∗Ωy) � (Ωx ∗ fy)

(3.1)
= ((Ωx ∗ fy) ∗ ( fx ∗Ωy)) ∗ ( fx ∗Ωy)

(3.13)
= (( fx ∗Ωy) ∗ ( fx ∗Ωy)) ∗ ( fx ∗Ωy)

(GE1)
= 1 ∗ ( fx ∗Ωy)

(GE2)
= fx ∗Ωy

for all x, y ∈ X. �

Corollary 3.29. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then f matches Ω if and only if Eq (3.13) holds.

Proof. Let f be an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on X.
Suppose f matches Ω and x, y ∈ X. Then, fx = Ωx for all x ∈ X, and hence fx∗Ωy = Ωx∗ fy. Conversely,
assume that Eq (3.13) holds. Let x ∈ X. Then, fx = 1 ∗ fx = Ω1 ∗ fx = f1 ∗Ωx = 1 ∗Ωx = Ωx, which is
true for all x ∈ X. Hence, f matches Ω. �

Question 3.30. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on
X, then is f order preserving?

The answer to Question 3.30 is negative and confirmed in the following examples.

Example 3.31. (i) From Example 3.5(iii), the map f is an Ω(l,r)-endomorphic GE-derivation on X. We
can observe that ᵀ4 ≤ ᵀ2 and fᵀ4 ∗ fᵀ2 = ᵀ4 ∗ ᵀ1 = ᵀ1 , 1, i.e., fᵀ4 � fᵀ2 . Hence, f is not order
preserving.
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(ii) From Example 3.5(ii), the map f is an Ω(r,l)-endomorphic GE-derivation on X. We can observe
that ᵀ3 ≤ ᵀ2 and fᵀ3 ∗ fᵀ2 = 1 ∗ ᵀ2 = ᵀ2 , 1, that is, fᵀ3 � fᵀ2 . Hence, f is not order preserving.

(iii) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4} be a set with a binary operation “∗” given in the following table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4

ᵀ1 1 1 1 ᵀ4 ᵀ4

ᵀ2 1 1 1 ᵀ3 ᵀ3

ᵀ3 1 1 1 1 1
ᵀ4 1 ᵀ1 1 1 1

Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ1},

ᵀ1 if x = ᵀ2,

ᵀ3 if x = ᵀ3,

ᵀ4 if x = ᵀ4.

and

Ω : X → X, x 7→



1 if x = 1,
ᵀ1 if x = ᵀ1,

ᵀ2 if x = ᵀ2,

ᵀ3 if x = ᵀ3,

ᵀ4 if x = ᵀ4.

Then, f is an Ω(l,r)-endomorphic GE-derivation on X. We can observe that ᵀ1 ≤ ᵀ2 and fᵀ1 ∗ fᵀ2 =

1 ∗ ᵀ1 = ᵀ1 , 1, i.e., fᵀ1 � fᵀ2 . Hence, f is not order preserving.

Now we explore the conditions under which f becomes order preserving when f is an
Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on X.

Theorem 3.32. Let f be an Ω(r,l)-endomorphic GE-derivation or an Ω(l,r)-endomorphic GE-derivation
on X. If X is transitive and f satisfies:

(∀x, y ∈ X)( fx � fy ≤ fx� y), (3.14)

then f is order preserving.

Proof. Let X be a transitive GE-algebra and let x, y ∈ X be such that x ≤ y. Then, y � x = (x ∗ y) ∗ y =

1 ∗ y = y. Assume that f is an Ω(r,l)-endomorphic GE-derivation on X satisfying (3.14). Then,

fx
(2.10)
≤ ( fx ∗ fy) ∗ fy = fy � fx

(3.14)
≤ fy� x = fy

Hence, f is order preserving. Similarly, if f is an Ω(l,r)-endomorphic GE-derivation on X satisfying
(3.14), then f is order preserving. �

Corollary 3.33. Let f be an Ω(r,l)-endomorphic GE-derivation or an Ω(l,r)-endomorphic GE-derivation
on X. If X is commutative and f satisfies (3.14), then f is order preserving.
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In general, an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation f on X does
not satisfy (3.14) as seen in the following example.

Example 3.34. (i) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4,ᵀ5} be a set with a binary operation “∗” given in the
following table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

ᵀ1 1 1 ᵀ2 ᵀ3 1 ᵀ3

ᵀ2 1 1 1 ᵀ5 1 ᵀ5

ᵀ3 1 ᵀ1 ᵀ2 1 1 1
ᵀ4 1 ᵀ1 ᵀ2 1 1 1
ᵀ5 1 ᵀ1 ᵀ2 1 1 1

Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ3,ᵀ4,ᵀ5},

ᵀ3 if x = ᵀ1,

ᵀ1 if x = ᵀ2.

and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ3,ᵀ4,ᵀ5},

ᵀ4 if x = ᵀ1,

ᵀ2 if x = ᵀ2.

Then, f is an Ω(l,r)-endomorphic GE-derivation on X. The Ω(l,r)-endomorphic GE-derivation f does
not satisfy (3.14), since

(( fᵀ2 ∗ fᵀ1) ∗ fᵀ1) ∗ f(ᵀ2∗ᵀ1)∗ᵀ1 = ((ᵀ1 ∗ ᵀ3) ∗ ᵀ3) ∗ f1∗ᵀ1

= (ᵀ3 ∗ ᵀ3) ∗ fᵀ1 = 1 ∗ ᵀ1 = ᵀ1 , 1,

that is, fᵀ1 � fᵀ2 � fᵀ1�ᵀ2 .
(ii) Let X = {1,ᵀ1,ᵀ2,ᵀ3,ᵀ4,ᵀ5} be a set with a binary operation “∗” given in the following table:

∗ 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

1 1 ᵀ1 ᵀ2 ᵀ3 ᵀ4 ᵀ5

ᵀ1 1 1 ᵀ2 ᵀ5 ᵀ4 ᵀ5

ᵀ2 1 1 1 ᵀ3 ᵀ3 ᵀ3

ᵀ3 1 ᵀ1 ᵀ2 1 ᵀ2 1
ᵀ4 1 1 1 1 1 1
ᵀ5 1 ᵀ1 ᵀ2 1 ᵀ2 1

Then, X is a GE-algebra. Define the self-maps:

f : X → X, x 7→


1 if x ∈ {1,ᵀ3,ᵀ5},

ᵀ1 if x = ᵀ1,

ᵀ3 if x ∈ {ᵀ2,ᵀ4}.
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and

Ω : X → X, x 7→


1 if x ∈ {1,ᵀ3,ᵀ5},

ᵀ1 if x = ᵀ1,

ᵀ4 if x ∈ {ᵀ2,ᵀ4}.

Then, f is an Ω(r,l)-endomorphic GE-derivation on X. The Ω(r,l)-endomorphic GE-derivation f does
not satisfy (3.14), since

(( fᵀ2 ∗ fᵀ1) ∗ fᵀ1) ∗ f(ᵀ2∗ᵀ1)∗ᵀ1 = ((ᵀ3 ∗ ᵀ1) ∗ ᵀ1) ∗ f1∗ᵀ1

= (ᵀ1 ∗ ᵀ1) ∗ fᵀ1 = 1 ∗ ᵀ1 = ᵀ1 , 1,

that is, fᵀ1 � fᵀ2 � fᵀ1�ᵀ2 .

Let f be an Ω(r,l)-endomorphic GE-derivation or an Ω(l,r)-endomorphic GE-derivation on X. We
consider the following set:

Ω f (X) := {x ∈ X | fx = Ωx}. (3.15)

Theorem 3.35. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then the set Ω f (X) is a GE-subalgebra of X and 1 ∈ Ω f (X).

Proof. Let f be an Ω(l,r)-endomorphic GE-derivation on X. If x, y ∈ Ω f (X), then fx = Ωx and fy = Ωy.
Hence,

fx∗y
(3.4)
= (Ωx ∗ fy) � ( fx ∗Ωy)

(3.1)
= (( fx ∗Ωy) ∗ (Ωx ∗ fy)) ∗ (Ωx ∗ fy)

= ((Ωx ∗ fy) ∗ (Ωx ∗ fy)) ∗ (Ωx ∗ fy)
(GE1)
= 1 ∗ (Ωx ∗Ωy)

(GE2)
= Ωx ∗Ωy = Ωx∗y,

and so x ∗ y ∈ Ω f (X). Hence, Ω f (X) is a GE-subalgebra of X. Similarly, if f is an Ω(r,l)-endomorphic
GE-derivation on X, then Ω f (X) is a GE-subalgebra of X. It is clear that 1 ∈ Ω f (X). �

Proposition 3.36. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then the set Ω f (X) is closed under the operation “�”.

Proof. Let x, y ∈ Ω f (X). Then, fx = Ωx and fy = Ωy. Assume that f is an Ω(l,r)-endomorphic GE-
derivation on X. Then,

fx�y = f(y∗x)∗x
(3.4)
= (Ωy∗x ∗ fx) � ( fy∗x ∗Ωx)

(3.4)
= (Ωy∗x ∗ fx) � (((Ωy ∗ fx) � ( fy ∗Ωx)) ∗Ωx)

= (Ωy∗x ∗Ωx) � (((Ωy ∗Ωx) � (Ωy ∗Ωx)) ∗Ωx)
(3.3)
= (Ωy∗x ∗Ωx) � ((Ωy ∗Ωx) ∗Ωx)
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= (Ωy∗x ∗Ωx) � (Ωy∗x ∗Ωx)
(3.3)
= Ωy∗x ∗Ωx = Ω(y∗x)∗x = Ωx�y,

and so x � y ∈ Ω f (X). This shows that Ω f (X) is closed under the operation “�”. If f is an Ω(r,l)-
endomorphic GE-derivation on X, then

fx�y = f(y∗x)∗x
(3.5)
= ( fy∗x ∗Ωx) � (Ωy∗x ∗ fx)

(3.5)
= ((( fy ∗Ωx) � (Ωy ∗ fx)) ∗Ωx) � (Ωy∗x ∗ fx)

= (((Ωy ∗Ωx) � (Ωy ∗Ωx)) ∗Ωx) � (Ωy∗x ∗Ωx)
(3.3)
= ((Ωy ∗Ωx) ∗Ωx) � (Ωy∗x ∗Ωx)

= (Ωy∗x ∗Ωx) � (Ωy∗x ∗Ωx)
(3.3)
= Ωy∗x ∗Ωx = Ω(y∗x)∗x = Ωx�y,

and so x � y ∈ Ω f (X). This shows that Ω f (X) is closed under the operation “�”. �

Let f be an Ω(r,l)-endomorphic GE-derivation or an Ω(l,r)-endomorphic GE-derivation on X. We
consider the following sets:

kerX( f ) := {x ∈ X | fx = 1}, (3.16)
kerX(Ω) := {x ∈ X | Ωx = 1} (3.17)

which is called the f -kernel of f and the Ω-kernel of f , respectively, in X.

Theorem 3.37. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then its f -kernel and its Ω-kernel are GE-subalgebras of X and 1 ∈ kerX( f ) ∩ kerX(Ω).

Proof. Let x, y ∈ kerX( f ). Then, fx = 1 and fy = 1. Assume that f is an Ω(l,r)-endomorphic GE-
derivation on X. Then,

fx∗y
(3.4)
= (Ωx ∗ fy) � ( fx ∗Ωy) = (Ωx ∗ 1) � (1 ∗Ωy)

(2.4)&(GE2)
= 1 � Ωy

(3.2)
= 1,

and so x ∗ y ∈ kerX( f ). Hence, kerX( f ) is a GE-subalgebra of X. If f is an Ω(r,l)-endomorphic GE-
derivation on X, then

fx∗y
(3.5)
= ( fx ∗Ωy) � (Ωx ∗ fy) = (1 ∗Ωy) � (Ωx ∗ 1)

(2.4)&(GE2)
= Ωy � 1

(3.2)
= 1,

and so x ∗ y ∈ kerX( f ). Hence, kerX( f ) is a GE-subalgebra of X. If x, y ∈ kerX(Ω), then Ωx = 1 and
Ωy = 1. Since Ω is a GE-endomorphism, it follows that Ωx∗y = Ωx ∗ Ωy = 1 ∗ 1 = 1 and Ω1 = 1. Thus,
x ∗ y ∈ kerX(Ω) and 1 ∈ kerX(Ω). Hence, kerX(Ω) is a GE-subalgebra of X. It is clear that 1 ∈ kerX( f )
by Proposition 3.7. Therefore, 1 ∈ kerX( f ) ∩ kerX(Ω). �

The example below illustrates Theorem 3.37.
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Example 3.38. (i) In Example 3.5(i), we can observe that kerX( f ) = {1,ᵀ1,ᵀ3,ᵀ4} and kerX(Ω) =

{1,ᵀ1} are GE-subalgebras of X, and 1 ∈ kerX( f ) ∩ kerX(Ω).
(ii) In Example 3.5(ii), we can observe that kerX( f ) = {1,ᵀ1,ᵀ3,ᵀ4} and kerX(Ω) = {1,ᵀ1,ᵀ4} are

GE-subalgebras of X, and 1 ∈ kerX( f ) ∩ kerX(Ω).

Proposition 3.39. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then its f -kernel satisfies:

(∀x, y ∈ X)(x ∈ kerX( f ) ⇒ y ∗ x ∈ kerX( f ), x � y ∈ kerX( f )). (3.18)

Proof. Let x, y ∈ X be such that x ∈ kerX( f ). Then, fx = 1. If f is an Ω(l,r)-endomorphic GE-derivation
on X, then

fy∗x
(3.4)
= (Ωy ∗ fx) � ( fy ∗Ωx) = (Ωy ∗ 1) � ( fy ∗Ωx)

(2.4)
= 1 � ( fy ∗Ωx)

(3.2)
= 1

and

fx�y
(3.1)
= f(y∗x)∗x

(3.4)
= (Ωy∗x ∗ fx) � ( fy∗x ∗Ωx)

(3.4)
= (Ωy∗x ∗ fx) � (((Ωy ∗ fx) � ( fy ∗Ωx)) ∗Ωx)

= (Ωy∗x ∗ 1) � (((Ωy ∗ 1) � ( fy ∗Ωx)) ∗Ωx)
(2.4)
= 1 � ((1 � ( fy ∗Ωx)) ∗Ωx)

(3.2)
= 1

If f is an Ω(r,l)-endomorphic GE-derivation on X, then

fy∗x
(3.5)
= ( fy ∗Ωx) � (Ωy ∗ fx) = ( fy ∗Ωx) � (Ωy ∗ 1)

(2.4)
= ( fy ∗Ωx) � 1

(3.2)
= 1

and

fx�y
(3.1)
= f(y∗x)∗x

(3.5)
= ( fy∗x ∗Ωx) � (Ωy∗x ∗ fx)

= ( fy∗x ∗Ωx) � (Ωy∗x ∗ 1)
(2.4)
= ( fy∗x ∗Ωx) � 1

(3.2)
= 1.

Hence, y ∗ x ∈ kerX( f ) and x � y ∈ kerX( f ). �

For any Ω(l,r)-endomorphic GE-derivation or Ω(r,l)-endomorphic GE-derivation f on X, its f -kernel
does not satisfy the following assertions:

(∀x, y ∈ X)(x ∈ kerX( f )⇒ x ∗ y ∈ kerX( f )), (3.19)
(∀x, y ∈ X)(x ∈ kerX( f )⇒ y � x ∈ kerX( f )). (3.20)

In fact, in Example 3.31(iii), we can observe that kerX( f ) = {1,ᵀ1}. But, it does not satisfy (3.19)
and (3.20) since ᵀ1 ∗ ᵀ3 = ᵀ4 < kerX( f ) and

ᵀ2 � ᵀ1 = (ᵀ1 ∗ ᵀ2) ∗ ᵀ2 = 1 ∗ ᵀ2 = ᵀ2 < kerX( f ).

Also, in Example 3.5(ii), we can observe that kerX( f ) = {1,ᵀ1,ᵀ3,ᵀ4}. But, it does not satisfy
(3.19) and (3.20) since ᵀ1 ∗ ᵀ2 = ᵀ2 < kerX( f ) and

ᵀ2 � ᵀ3 = (ᵀ3 ∗ ᵀ2) ∗ ᵀ2 = 1 ∗ ᵀ2 = ᵀ2 < kerX( f ).
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Proposition 3.40. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then its Ω-kernel satisfies:

(∀x, y ∈ X)
(

x ∈ kerX(Ω) ⇒
{

y ∗ x ∈ kerX(Ω)
x � y, y � x ∈ kerX(Ω)

)
. (3.21)

Proof. Let f be an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on X. For
every x, y ∈ X, if x ∈ kerX(Ω), then Ωx = 1. Hence,

Ωy∗x = Ωy ∗Ωx = Ωy ∗ 1 = 1,

Ωx�y = Ω(y∗x)∗x = Ωy∗x ∗Ωx = (Ωy ∗Ωx) ∗Ωx = (Ωy ∗ 1) ∗ 1 = 1 and

Ωy�x = Ω(x∗y)∗y = Ωx∗y ∗Ωy = (Ωx ∗Ωy) ∗Ωy = (1 ∗Ωy) ∗Ωy = Ωy ∗Ωy = 1.

Therefore, y ∗ x ∈ kerX(Ω) and x � y, y � x ∈ kerX(Ω). �

For any Ω(l,r)-endomorphic GE-derivation or Ω(r,l)-endomorphic GE-derivation f on X, its Ω-kernel
does not satisfy the following assertions:

(∀x, y ∈ X)(x ∈ kerX(Ω)⇒ x ∗ y ∈ kerX(Ω)), (3.22)

In fact, in Example 3.5(i), we can observe that kerX(Ω) = {1,ᵀ1}. But, it does not satisfy (3.22)
since ᵀ1 ∗ᵀ2 = ᵀ2 < kerX(Ω). Also, in Example 3.5(ii), we can observe that kerX(Ω) = {1,ᵀ1,ᵀ4}. But,
it does not satisfy (3.22) since

ᵀ1 ∗ ᵀ2 = ᵀ2 < kerX(Ω).

Proposition 3.41. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then it satisfies:

(∀x, y ∈ X)(x ≤ y, x ∈ kerX(Ω) ⇒ y ∈ kerX(Ω)). (3.23)

Proof. Let x, y ∈ X be such that x ≤ y and x ∈ kerX(Ω). Hence, Ωx∗y = 1 by Ωx = 1, so that Ωx∗Ωy = 1.
Hence, Ωy = 1 ∗Ωy = Ωx ∗Ωy = 1. Therefore, y ∈ kerX(Ω). �

Remark 3.42. In an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation f on X,
the following does not apply:

(∀x, y ∈ X)(x ≤ y, x ∈ kerX( f ) ⇒ y ∈ kerX( f )). (3.24)

In fact, in Example 3.31(iii), we can observe that kerX( f ) = {1,ᵀ1}. But, (3.24) is not valid since
ᵀ1 ∗ᵀ2 = 1, i.e., ᵀ1 ≤ ᵀ2) and ᵀ1 ∈ kerX( f ), but ᵀ2 < kerX( f ). Also, in Example 3.5(ii), we can observe
that kerX( f ) = {1,ᵀ1,ᵀ3,ᵀ4}. But, (3.24) is not valid since ᵀ3 ∗ ᵀ2 = 1, i.e., ᵀ3 ≤ ᵀ2 and ᵀ3 ∈ kerX( f ),
but ᵀ2 < kerX( f ).

Proposition 3.43. Let f be an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic
GE-derivation on X. If X is commutative, then it satisfies (3.24).
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Proof. Let x, y ∈ X be such that x ≤ y. Then, x ∗ y = 1. Assume that f is an Ω(l,r)-endomorphic
GE-derivation on a commutative GE-algebra X. If x ∈ kerX( f ), then fx = 1, and so

fy
(GE2)
= f1∗y = f(x∗y)∗y

(2.3)
= f(y∗x)∗x

(3.4)
= (Ωy∗x ∗ fx) � ( fy∗x ∗Ωx) = (Ωy∗x ∗ 1) � ( fy∗x ∗Ωx)

(2.4)
= 1 � ( fy∗x ∗Ωx)

(3.2)
= 1

which shows that y ∈ kerX( f ). Suppose that f is an Ω(r,l)-endomorphic GE-derivation on a commutative
GE-algebra X. If x ∈ kerX( f ), then fx = 1, and so

fy
(GE2)
= f1∗y = f(x∗y)∗y

(2.3)
= f(y∗x)∗x

(3.4)
= ( fy∗x ∗Ωx) � (Ωy∗x ∗ fx) = ( fy∗x ∗Ωx) � (Ωy∗x ∗ 1)

(2.4)
= ( fy∗x ∗Ωx) � 1

(3.2)
= 1

which shows that y ∈ kerX( f ). �

If X satisfies (3.24), then X may not be commutative. From Example 3.34(i), we can observe that
kerX( f ) = {1,ᵀ3,ᵀ4,ᵀ5} satisfies (3.24). But, X is not commutative. Also, from Example 3.34(ii), we
can observe that kerX( f ) = {1,ᵀ3,ᵀ5} satisfies (3.24). But, X is not commutative since (ᵀ1 ∗ᵀ2) ∗ᵀ2 =

ᵀ2 ∗ ᵀ2 = 1 , ᵀ1 = 1 ∗ ᵀ1 = (ᵀ2 ∗ ᵀ1) ∗ ᵀ1.

Corollary 3.44. If f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X, then its Ω-kernel is a GE-filter of X.

Proof. It is clear that 1 ∈ kerX(Ω). Let x, y ∈ X be such that x ∈ kerX(Ω) and x ∗ y ∈ kerX(Ω). Then,
Ωx = 1 and Ωx∗y = 1, and so 1 = Ωx∗y = Ωx ∗ Ωy = 1 ∗ Ωy = Ωy, that is, y ∈ kerX(Ω). Therefore,
kerX(Ω) is a GE-filter of X. �

We know from Remark 3.42 that the f -kernel is not a GE-filter of X for every Ω(l,r)-endomorphic
GE-derivation or Ω(r,l)-endomorphic GE-derivation f on X. Finally, we find a condition for the f -kernel
to be a GE-filter of X.

Theorem 3.45. Let f be an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation
on X. If f is a GE-endomorphism on X, then its f -kernel is a GE-filter of X.

Proof. Assume that f is a GE-endomorphism on X. It is clear that 1 ∈ kerX( f ). Let x, y ∈ X be such
that x ∈ kerX( f ) and x ∗ y ∈ kerX( f ). Then, fx = 1 and fx∗y = 1. Hence, 1 = fx∗y = fx ∗ fy = 1 ∗ fy = fy,
and thus y ∈ kerX( f ). Therefore, kerX( f ) is a GE-filter of X. �

4. Conclusions

The concept of derivation is commonly used in a variety of contexts, including mathematics,
linguistics, physics, and chemistry, as it represents a source or the process of obtaining something
from a source. It is a well-known fact that the concept of derivation is mainly addressed in calculus in
the field of mathematics. With the aim of addressing the concept of derivation in GE-algebra, one of
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the logical algebras, we have introduced the notion of Ω(l,r)-endomorphic (resp., Ω(r,l)-endomorphic)
GE-derivation using the binary operation “�” on a GE-algebra X given by � (x, y) = (y ∗ x) ∗ x and the
GE-endomorphism Ω : X → X, and investigated several properties. We have studied the conditions
under which Ω(l,r)-endomorphic GE-derivations or Ω(l,r)-endomorphic GE-derivations to satisfy
certain equalities and inequalities. We have explored the conditions under which f becomes order
preserving when f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on
X. We have observed that the f -kernel of f and the Ω-kernel of f formed by the Ω(r,l)-endomorphic
GE-derivation or Ω(l,r)-endomorphic GE-derivation are GE-subalgebras. Also, we have observed that
the Ω-kernel of f is a GE-filter of X, but the f -kernel of f is not a GE-filter of X. Finally, we have
explored the condition under which the f -kernel of f formed by the Ω(r,l)-endomorphic GE-derivation
or Ω(l,r)-endomorphic GE-derivation becomes a GE-filter.

With the results and ideas obtained in this paper in the background, we will attempt to develop
various forms of derivations on GE-algebras, and we also plan to study the concept of derivations in
various forms of logical algebra.
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