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Abstract: Certain phenomena with uncertain properties that take the shape of intricate mathematical 
modeling are known to have fuzzy system integro-differential equations (FSIDEs). The methods used 
to roughly solve FSIDEs seek to provide open-form solutions that are regarded as solutions for 
polynomial series. However, for many FSIDEs, the polynomial series solutions are not easily derived, 
especially in nonlinear forms. Meanwhile, some existing approximate techniques cannot guarantee 
convergence of the series solution. Nevertheless, to solve second-kind fuzzy Fredholm integro-
differential equations (FFSIDEs), there exist perturbation techniques based on the standard Homotopy 
Analysis Method (HAM) that have the ability to control and rate solution convergence. Therefore, this 
study focused on modifying new approximate techniques, fuzzy Fredholm HAM (HAMFF), for 
solving second-kind FFSIDEs subject to initial and boundary value problems. In the theoretical 
framework modification, the establishment of the series solution convergence was done based on 
combining some fuzzy sets theory concepts and convergence-control parameters from standard HAM. 
The HAMFF was not only able to solve linear systems but also difficult nonlinear systems with proper 
accuracy. The demonstration of the modified technique's performance was shown in comparison to 
other methods, where HAMFF was individually superior in terms of accuracy for solving linear and 
nonlinear test problems of FFSIDEs. 
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1. Introduction  

The mathematical models with uncertainty properties take the forms fuzzy differential equations 
(FDEs), fuzzy integral equations (FIEs), or fuzzy integro-differential equations (FIDEs). Therefore, 
the solution of integro-differential equations (IDEs) that have been considered the main core of some 
physical systems play a significant role in science and engineering [1–6]. Some of these systems are 
linear and nonlinear Fredholm IDEs, and their solutions are continuously growing in many physical 
problems that arise naturally under uncertainty properties. The study of FDEs and fuzzy integral equations 
is currently the focus of much research. The starting point of fuzzy sets was first introduced by Zadeh [7]. 
The fuzzy integral equations were previously derived by Kaleva and Seikkala [8,9]. Lately, a lot of 
academics have focused on this topic and produced a ton of studies that are published in the literature [10]. 
As a result, fuzzy models constrained by FSIDEs behave more like the actual process because the after 
effect is incorporated into it by using the concepts of fuzzy derivatives and fuzzy integrals [11–12], which 
have several benefits, including the ability to incorporate additional conditions into the problem structure 
and the ability to structure realistic problems. However, the idea of Hukuhara derivatives that FDEs were 
developed [13]. FDEs and FIEs were extended to FIDEs, which first appeared in 1999 [14]. That study 
paved the way for future research on FSIDEs by applying principles from fuzzy sets theory to the analysis 
of FDEs and FIEs.  

Typically, it is difficult and limiting to obtain the exact analytical solutions for linear FIDEs. 
Unfortunately, there isn’t an analytical solution for the majority of the intricate physical phenomena 
that can be explained by nonlinear FSIDEs [15]. Analytical solutions are not found in many cases. 
However, there is always a need for the solutions to these equations because of their practical 
applications, such as the fuzzy Riccati differential equation [16]. Therefore, in order to handle such 
fuzzy situations, it is frequently important to suggest effective approximate techniques. In the 
meantime, the approximate-analytic class of methods under the approximation techniques can directly 
evaluate the solution accuracy for the systems involving high-order FIDEs. In addition to being 
applicable to nonlinear systems of FIDEs without the need for linearization or discretization as 
numerical approximate techniques [17]. Although some numerical class techniques and approximate 
analytical class techniques are employed and analyzed to obtain the approximate solution of a system 
of second-kind Fredholm-integro differential equations in the crisp domain [8–12], also in the fuzzy 
domain, the learning algorithm approximate method (LAM) is used to obtain the solution of these 
systems in 2017 [12]. 

Nevertheless, the series solution’s convergence cannot be guaranteed by some current 
approximate-analytical techniques. However, perturbation-based methods such as the standard fuzzy 
HAM approach [17] exist to solve fuzzy problems and have the capacity to control convergence. The 
idea of HAM first appeared in Liao PhD thesis 1992 [18] to deal with approximate solutions for linear 
and nonlinear mathematical engineering models. It was found that the HAM provides a solution in 
series form with a degree of polynomial function HAM that converges to the close form solution; 
otherwise, the solution is approximated to some degree of accuracy to the open form solution [17,19]. 
Also, the basic idea of HAM provides a great technique to rate the solution convergence through the 
convergence control parameter. The standard HAM has been modified and used to solve a variety of 
mathematical problems in the fuzzy domain, such as fuzzy FDEs [19], fuzzy partial differential 
equations [20], fuzzy fractional differential equations [21,22], fuzzy integral equations [17], and fuzzy 
integro-differential equations [23]. According to the aforementioned survey, the majority of the 
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research that used numerical and approximation analytical techniques was applied on crisp system 
Fredholm IDEs, with only one implementation on FFSIDEs. As a result, we believe it is vital to 
propose new approximation analytical techniques to overcome such challenges, as we will demonstrate 
in the next sections. HAMFF, would give significant contribution toward overcoming obstacles of 
existing methods such as the Variational iteration method (VIM), the Adomian decomposition method 
(ADM) etc for example the proposed methods will help us to simplify the complexity of the uncertain 
nonlocal derivative when solving FFSIDEs. Furthermore, unlike all existing methods HAMFF 
provides the convergence parameter to control the accuracy of the solution, thus ensuring the 
convergence of the approximate series solutions. Also, the series solutions provided by the HAMFF have 
the ability to show the graphical designs of the solutions. Consequently, the goal of this research is to 
create a new convergence-controlled approximate analytical technique, HAMFF, for solving problems 
that are subject to boundary and initial conditions. The formulation and analysis of this study involving 
a theoretical framework and methodology relies on some well-known concepts of fuzzy sets theory that 
have been used to help build our recommended technique to solve FFSIDEs. These concepts include 
properties of fuzzy numbers [24], fuzzy extension principles [25], the α-cuts [26], fuzzy function [27], 
fuzzy differentiations, and the context of fuzzy integration [28–30]. 

2. Fuzzy analysis of FSFIDEs 

The following terms must be defined in order to analyze the suggested system in this work.  
Definition 2.1. [24] A triangular fuzzy number is a fuzzy set 𝐴ሚ = (𝑠ଵ, 𝑠ଶ, 𝑠ଷ) that, satisfies the 
membership function, 

𝑇𝑟𝑖஺෨(𝑥) = ൞

0 if 𝑥 < 𝑠ଵ

(𝑥 − 𝑠ଵ) (𝑠ଶ − 𝑠ଵ)⁄ if 𝑠ଵ ≤ 𝑥 ≤ 𝑠ଶ

(𝑠ଷ − 𝑥) (𝑠ଷ − 𝑠ଶ)⁄ if 𝑠ଶ ≤ 𝑥 ≤ 𝑠ଷ

0 if 𝑥 > 𝑠ଷ

, 

where the crisp interval can be defined by 𝛼-cut operation where 𝛼 ∈ [0,1], such that, 

𝐴ሚఈ = ൣ𝑠ଵ
(ఈ), 𝑠ଷ

(ఈ)൧ = [(𝑠ଶ − 𝑠ଵ)𝛼 + 𝑠ଵ, −(𝑠ଷ − 𝑠ଶ)𝛼 + 𝑎ଷ] 

where at 𝛼 = 1 the lower and upper bound of 𝐴ሚఈ are equal and this is the original crisp number. 
Moreover, according to [24] the triangular fuzzy number satisfies the following properties: 

(1) It is convex (the line by 𝛼-cut is continuous and the 𝛼-cut interval satisfies for 𝐴ఈ = ൣ𝑠ଵ
(ఈ), 𝑠ଷ

(ఈ)൧, 

if there is two different 𝑠ଵ < 𝑠ଶ ⇒ 𝑠ଵ
(ఈభ) ≤ 𝑠ଵ

(ఈమ) and 𝑠ଷ
(ఈభ) ≥ 𝑠ଷ

(ఈమ)).  
(2) It is normalized (the maximum membership value is 1, ∃𝑥 ∈ ℝ, 𝜇஺(𝑥) = 1). 
(3) Its membership function is piecewise continuous. 
(4) It is defined in the real number. 
Definition 2.2. [28] The integral of the fuzzy function 𝑓ሚ in [𝑎, 𝑏] is the fuzzy number with α-levels 
denoted by, 

ቈන 𝑓ሚ(𝑥)𝑑𝑥
௕

௔

቉

ఈ

= ቈන 𝑓(𝑥; 𝛼)𝑑𝑥
௕

௔

, න 𝑓‾(𝑥; 𝛼)𝑑𝑥
௕

௔

቉ 
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where ∫ 𝑓(𝑥; 𝛼)𝑑𝑥
௕

௔
 and ∫ 𝑓‾(𝑥; 𝛼)𝑑𝑥

௕

௔
 are the Riemann integrals of the real functions 𝑓(𝑥; 𝛼) , 

𝑓(𝑥; 𝛼)in the interval [𝑎, 𝑏]. 

Now, the general form of the fuzzy system of Fredholm integro-differential equations (FSFIDEs) of 
the second kind [10] is defined as 

𝑢̃௜
(୬)(𝑥, 𝛼) = 𝑓௜(𝑥, 𝛼) + ∑  ଶ

௝ୀଵ 𝜆̃௜௝(𝛼) ∫  
ୠ

ୟ
𝑘̃௜௝൫𝑥, 𝑡, 𝑢̃௜(𝑡, 𝛼)൯,     𝑖 = 1,2    (1) 

the initial conditions 

𝑢̃௜(0, 𝛼) = ቀ𝑎௜(𝛼), 𝑎‾௜(𝛼)ቁ ,𝑢̃௜
ᇱ(0, 𝛼) = ቀ𝑎௜

ᇱ(𝛼), 𝑎‾௜
ᇱ(𝛼)ቁ , … , 𝑢̃௜

(௡ିଵ)(0, 𝛼)  

= ቀ𝑎௜
(௡ିଵ)(𝛼), 𝑎‾௜

(௡ିଵ)(𝛼)ቁ 

where 0 ≤ 𝛼 ≤ 1, 𝜆̃௜௝ are positive fuzzy parameters, 𝑘̃௜௝ is an arbitrary fuzzy function called the 
kernal of integral and 𝑓௜(𝑥, 𝛼)  is the given fuzzy function of 𝑥 ∈ [𝑎, 𝑏]  with 𝑢̃௜(𝑥, 𝛼)  as the 
unknown fuzzy functions 

𝑢̃௜(𝑥, 𝛼) = ൣ𝑢௜(𝑥, 𝛼), 𝑢‾ ௜(𝑥, 𝛼)൧,

𝑓௜(𝑥, 𝛼) = ቂ𝑓௜(𝑥, 𝛼), 𝑓‾௜(𝑥, 𝛼)ቃ ,
  

then we can write Eq (1) as 

𝑢௜
(୬)(𝑥, 𝛼) = 𝑓௜(𝑥, 𝛼) + ෍  

ଶ

௝ୀଵ

 𝜆௜௝(𝛼) න  
ୠ

ୟ

 𝑘௜௝ ቀ𝑥, 𝑡, 𝑢௜(𝑡, 𝛼)ቁ 𝑑𝑡,

𝑢‾ ௜
(୬)(𝑥, 𝛼) = 𝑓‾௜(𝑥, 𝛼) + ෍  

ଶ

௝ୀଵ

 𝜆‾௜௝(𝛼) න  
ୠ

ୟ

 𝑘‾௜௝൫𝑥, 𝑡, 𝑢‾ ௜(𝑡, 𝛼)൯𝑑𝑡.

 

3. Formulation and analysis of HAMFF 

For the analysis of HAM in [18], we can have the substantive of the solution of Eq (1) for all 𝛼-
level sets values where 𝛼 ∈ [0,1] is the following process. 
The zeroth-order deformation is 

(1 − 𝑞)𝐿ൣ𝑢̃௜(𝑥, 𝑞, 𝛼) − 𝑓௜(𝑥, 𝛼)൧𝑞ℎ̃𝐻(𝑡)𝑁௜[𝑢̃௜(𝑥, 𝑞, 𝛼)],      (2) 

and by taking 𝑞 = 0 and 𝑞 = 1 we get. 

𝑢̃௜(𝑥, 0, 𝛼) = 𝑓௜(𝑥, 𝛼)
𝑢̃௜(𝑥, 1, 𝛼) = 𝑢̃௜(𝑥, 𝛼)

ൠ.         (3) 

From Eq (2), the fuzzy initial guess 𝑢̃௜,଴(𝑥, 𝛼) can be determined from 𝑓௜(𝑥, 𝛼) , then the taylor series 
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of 𝑞 for 𝑢̃௜(𝑥, 𝑞, 𝛼) is 

𝑢̃௜(𝑥, 𝑞, 𝛼) = 𝑢̃௜(𝑥, 0, 𝛼) + ∑  ஶ
௠ୀଵ  

௨̃೔,೘ቀ௫,ఈ,௛̃(௫)ቁ

௠!
𝑞௠,      (4) 

where 

𝑢̃௜,௠ ቀ𝑥, 𝛼, ℎ̃(𝛼)ቁ =
ଵ

௠!

ப௨̃೔,೘ቀ௫,ఈ,௤,௛̃(ఈ)ቁ

ப௤೘
ቤ

௤ୀ଴

      (5) 

the 𝑚-th order deformation 𝑓 or 𝑞 = 1 in Eq (4) is as follows;  

𝐿ൣ𝑢෤௜,௠(𝑥, 𝛼) − 𝜒௠𝑢෤௜,௠ିଵ(𝑥, 𝛼)൧ = ℎ෨(𝛼)ൣ𝑅௜,௠൫𝑢෤ሬ⃗ ௜,௠ିଵ൯൧, 

𝑅௜,௠൫𝑢෤ሬ⃗ ௜,௠ିଵ൯ = 𝑢෤௡
௜,௠ିଵ − (1 − 𝜒௠)𝑓ሚ௜(𝑥, 𝛼) − ∑ 𝜆̃௜௝(𝛼) ∫ 𝐹෨௜௝ ቀ𝑢෤௜,௠ିଵ(𝑡, 𝛼)ቁ 𝑑𝑡

௕

௔
ଶ
௝ୀଵ ,  

and the series solution of Eq (1) takes the following forms 

ቊ
𝑢௜,଴(𝑥, 𝛼) + ∑  ஶ

௠ୀଵ  𝑢௜,௠(𝑥, 𝛼, ℎ(𝛼))

𝑢‾ ௜,଴(𝑥, 𝛼) + ∑  ஶ
௠ୀଵ  𝑢‾ ௜,௠(𝑥, 𝛼, ℎ‾(𝛼))

.        (6) 

A convenient selecting of ℎ̃(𝛼) obtains the convergence of Eq (6) therefore, the solution in series 
form (homotopy solution). 

4. Convergence analysis HAMFF 

The approximate solution of Eq (1) is convergence based on best values of the parameter ℎ̃(𝛼) 
therefore, ℎ̃(𝛼) should be discussed to supply enough accuracy for ascertain order of the HAMFF 
series solution. Therefore, an accurate convergent solution is guaranteed when the convergence 
parameter is chosen appropriately. Finding the approximate solution with the least amount of residual 
error is one common method for choosing ℎ̃(𝛼). Assume that the residual of Eq (6) is denoted by 

𝑅𝐸෪ = ൣ𝑅𝐸, 𝑅𝐸൧, then defined the following residual form 

𝑅𝐸෪
ଵ൫𝑥, 𝛼, ℎ̃ଵ(𝛼)൯ = 𝑢̃(୬)൫𝑥, 𝛼, ℎ̃ଵ(𝛼)൯ − 𝑓ଵ(𝑥, 𝛼) − 𝜆̃ଵ(𝑥) ∫  

ୠ

ୟ
  𝑘̃ଵ ቀ𝑥, 𝑡, 𝑢̃ ቀ𝑡, 𝛼, ℎ̃ଵ(𝑥)ቁ   ,

𝑅𝐸෪
ଶ൫𝑥, 𝛼, ℎ̃ଶ(𝛼)൯ = 𝑣̃(୬)൫𝑥, 𝛼, ℎ̃ଶ(𝛼)൯ − 𝑓ଶ(𝑥, 𝛼) − 𝜆̃ଶ(𝛼) ∫  

ୠ

ୟ
  𝑘̃ଶ ቀ𝑥, 𝑡, 𝑣̃ ቀ𝑡, 𝛼, ℎ̃ଶ(𝛼)ቁ   ,

  

the mean square residual error (MSRE) of Eq (6) is define in the following form: 

𝑀𝑆𝑅𝐸෫
௜൫𝑥, 𝛼, ℎ̃௜(𝛼)൯ = ඨ

∑  భబ
ೕసబ  ቀோா෪ ೔൫௫,଴.ଵ௝,௛̃೔(ఈ)൯

మ

ଵ଴ାଵ
, 𝑖 = 1,2, 0 < 𝛼 ≤ 1,      (7)  

by using the least square method to optimize the values of ℎ̃௜(𝛼) such that 
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𝐽௜൫𝑥, 𝛼, ℎ̃௜(𝛼)൯ = ቀ∫ 𝑀𝑆𝑅𝐸෫
௜൫𝑥, 𝛼, ℎ̃௜(𝛼)൯

ଵ

଴
 ቁ

ଶ

𝑑𝑥, 𝑖 = 1,2      (8)  

and the nonlinear equation coming from Eq. (8) for any 𝛼 ∈ (0,1] is derived such that 

∂𝐽௜൫𝑥, 𝛼, ℎ̃௜(𝛼)൯

∂ℎ̃௜(𝛼)
= 0 ⇒

⎩
⎪
⎨

⎪
⎧

∂𝐽௜(𝑥, 𝛼, ℎ௜(𝛼))

∂ℎ௜(𝑥)
= 0,

∂𝐽‾௜൫𝑥, 𝛼, ℎ‾௜(𝛼)൯

∂ℎ‾௜
ᇱ(𝛼)

= 0.

 

Finally, the equation is solved for ℎ̃௜(𝛼) in each 𝛼-level set to obtain the best value of ℎ̃ by plotting 

curves called h-curves such that horizontal line segment with respect to 𝑢̃௜
(௡)(𝑥, 𝛼) to illustrate the 

best region of the ℎ෨(𝛼)values, which are the for 𝑥଴ < 𝑥 < 𝑋. It is familiar in the fuzzy environment 
to display the contract ℎ-curves, and to find the optimal value ℎ෨(𝛼) for each 𝛼 ∈ [0,1]. The choice 
the best value of ℎ෨(𝛼) provides the best accurate solution of the FFSIDEs with its corresponding fuzzy 
level set 𝛼෤ = ൣ𝛼, 𝛼൧, and then applied 𝛼 for each lower level set gets the best lower approximate 
solution. A similar step is applied to 𝛼 to determine the best upper solution. The following algorithm 
is summarizing the dynamic convergence of HAMFF: 

Step 1: Set 𝑢̃௜,଴(𝑥, 𝛼) = 𝑢̃௜,଴, ൫𝑢̃௜,଴ = ൛𝑢௜,଴, 𝑢‾ ௜,଴ൟ൯, 𝑢̃௜
ᇱ(0, 𝛼) = ቀ𝑎௜

ᇱ(𝛼), 𝑎‾௜
ᇱ(𝛼)ቁ , … . , 𝑢̃௜

(௡ିଵ)(0, 𝛼) =

ቀ𝑎௜
(௡ିଵ)(𝛼), 𝑎‾௜

(௡ିଵ)(𝛼)ቁ. 

Step 2: Set 𝜆̃(𝛼) = ൣ𝜆(𝛼), 𝜆‾(𝛼)൧. 

Step 3: Set 𝑚 = 1,2,3, … , 𝑛. 
Step 4: Set 𝑚 = 𝑚 + 1 and for 𝑚 = 1 to 𝑚 < 𝑛 evaluate 

𝑥̃௜,௠(𝑥, 𝛼) = 𝑥̃௜,௠ିଵ
୬ (x, 𝛼) + ℎ̃(𝛼)  ቂ𝑥̃௜,௠ିଵ

୬ (𝑥, 𝛼) − ∫ 𝑘̃௜௝ ቀ𝑥, 𝑡, 𝑥̃௜௠ିଵ ቀ𝑥, 𝛼, ℎ̃(𝛼)ቁ 𝑑𝑡 − (1 − 𝜒௠)𝑓௜(𝑥, 𝛼)ቃ .
௕

௔
  

Step 5: Compute 

𝑥̃௜,௠ ቀx, 𝛼, ℎ̃(𝛼)ቁ = 𝑥̃଴,௠ିଵ(x, 𝛼) + ∑  ௡
௞ୀଵ 𝑥̃௞,௠ିଵ(x, 𝛼), 𝑖 = 1,2.  

Step 6: Set the value of 𝛼଴ ∈ [0,1], 𝑥 ∈ [𝑎, 𝑏] and evaluate 

ℎ̃(𝛼଴) =
∂𝑥̃ ቀ𝑥, 𝛼଴, ℎ̃(𝛼଴)ቁ

∂ℎ̃(𝛼଴)
, 

then plot the ℎ-curve. 
Step 7: Define the residual form in Eqs (6)–(8) and substitute the ℎ̃(𝛼଴) in Eq (9) to compute the 
optimal value of ℎ̃(𝛼଴). 
Step 8: Replace-again the optimal values of ℎ̃(𝛼) for the lower and upper levels in Eq (10). 

5. Applications and numerical results 

In this section, the HAMFF is applied to achieve an approximate-exact solution for FSFIDEs in 
three problems. We defined the maximum errors as follows to demonstrate the high accuracy of the 
solution when compared with the exact solution. 
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‖∙‖ஶ = ‖𝑢෤ா(𝑥, 𝛼) − u෤(𝑥, 𝛼)‖ஶ, 
where: 
𝑢෤ா(𝑥, 𝛼): Fuzzy exact solution, 
𝑢෤(𝑥, 𝛼): Fuzzy approximate solution (HAM). 
Moreover, giving the residual error (RE), the computation associated with the problem were performed 
using the Maple 18 package with a precision of 30 digits. 
Problem 1. Consider the following the crisp second kind linear SFIDEs [10] 

𝑢ᇱᇱ(𝑥) − 𝑥𝑣(𝑥) − 𝑢(𝑥) = (𝑥 − 2) sin 𝑥         

+ ∫ 𝑥[cos 𝑡 𝑢(𝑡) − sin 𝑡 𝑣(𝑡)]𝑑𝑡
ଵ

଴
,

𝑣ᇱᇱ(𝑥) − 2𝑥𝑢′(𝑥) + 𝑣(𝑥) = −2𝑥 cos 𝑥                 

+ ∫ sin 𝑥 [𝑐𝑜𝑠 𝑡 𝑢(𝑡) − 𝑠𝑖𝑛 𝑡 𝑣(𝑡)]𝑑𝑡.
ଵ

଴

      (9) 

Subject to initial conditions (ICs).   

𝑢(0) = 0, 𝑢′(0) = 1,

𝑣෤(0) = 1, 𝑣′(0, 𝛼) = 0.
          (10) 

Since this problem is crisp SFIDEs, we will first present fuzzification of the equation. In this study, 
the fuzzy version of system (9) is created. Such that from Definition 2.2 the fuzzy version of the 
integral operator is follows: 

න 𝑥[cos 𝑡 𝑢෤(𝑡, 𝛼) − sin 𝑡 𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴

=

⎩
⎪
⎨

⎪
⎧න 𝑥ൣcos 𝑡 𝑢(𝑡, 𝛼) − sin 𝑡 𝑣(𝑡, 𝛼)൧𝑑𝑡

ଵ

଴

න 𝑥[cos 𝑡 𝑢(𝑡, 𝛼) − sin 𝑡 𝑣(𝑡, 𝛼)]𝑑𝑡
ଵ

଴

 

න sin 𝑥 [𝑐𝑜𝑠 𝑡 𝑢෤(𝑡, 𝛼) − 𝑠𝑖𝑛 𝑡 𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴

=

⎩
⎪
⎨

⎪
⎧න sin 𝑥 ൣ𝑐𝑜𝑠 𝑡 𝑢(𝑡, 𝛼) − 𝑠𝑖𝑛 𝑡 𝑣(𝑡, 𝛼)൧𝑑𝑡

ଵ

଴

න sin 𝑥 [𝑐𝑜𝑠 𝑡 𝑢(𝑡, 𝛼) − 𝑠𝑖𝑛 𝑡 𝑣(𝑡, 𝛼)]𝑑𝑡.
ଵ

଴

 

Now according to the fuzzy analysis in [17] the fuzzy version of system (9) is as follows: 

𝑢෤ ᇱᇱ(𝑥, 𝛼) − 𝑥𝑣෤(𝑥, 𝛼) − 𝑢෤(𝑥, 𝛼) = (𝑥 − 2) sin 𝑥         

+ ∫ 𝑥[cos 𝑡 𝑢෤(𝑡, 𝛼) − sin 𝑡 𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
,

𝑣෤ᇱᇱ(𝑥, 𝛼) − 2𝑥𝑢ᇱ෩ (𝑥, 𝛼) + 𝑣෤(𝑥, 𝛼) = −2𝑥 cos 𝑥                 

+ ∫ sin 𝑥 [𝑐𝑜𝑠 𝑡 𝑢෤(𝑡, 𝛼) − 𝑠𝑖𝑛 𝑡 𝑣෤(𝑡, 𝛼)]𝑑𝑡.
ଵ

଴

    (11)   

From the Definition 2.1 of the triangular fuzzy numbers, we can defuzzify the ICs. Let ൣ0෨൧
ఈ

 and ൣ1෨൧
ఈ

be 

triangular fuzzy numbers corresponding with the ICs (10) for all  𝛼 ∈ [0,1] such that  
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𝑢෤(0, 𝛼) = ൣ0෨൧
ఈ

= (−1,0,1), 𝑢෤′(0, 𝛼) = ൣ1෨൧
ఈ

= (3,4,5) 

𝑣෤(0, 𝛼) = ൣ1෨൧
ఈ

= ቀ
ଵ

ସ
,

ଷ

ସ
,

଻

ସ
ቁ, 𝑣෤ᇱ(଴,ఈ) = ൣ0෨൧

ఈ
= ቀ−

ଵ

ଶ
, 0,

ଵ

ଶ
ቁ. 

According to the 𝛼-cut of triangular fuzzy number in Definition 2.1 the following fuzzy ICs of system (11) 
are defined as follows  

𝑢෤(0, 𝛼) = (𝛼 − 1,1 − 𝛼), 𝑢෤′(0, 𝛼) = (4𝛼 − 3,5 − 4𝛼),

𝑣෤(0, 𝛼) = ቀ
ଷ

ସ
𝛼 +

ଵ

ସ
,

଻

ସ
−

ଷ

ସ
𝛼ቁ , 𝑣෤′(0, 𝛼) = ቀ

ଵ

ଶ
𝛼 −

ଵ

ଶ
,

ଵ

ଶ
−

ଵ

ଶ
𝛼ቁ ,

       (12) 

where 𝑓ሚଵ(𝑥, 𝛼) = ቂ𝑓ଵ(𝑥, 𝛼), 𝑓
ଵ

(𝑥, 𝛼)ቃ and 𝑓ሚଶ(𝑥, 𝛼) = ቂ𝑓ଶ(𝑥, 𝛼), 𝑓
ଶ

(𝑥, 𝛼)ቃ are given by 

𝑓ଵ(𝑥, 𝛼) = (0.708073418𝑥 − 3. sin(𝑥) + 3.5 sin(𝑥) 𝑥)𝛼 − 0.708073418𝑥 + sin(𝑥)

− 2.5 𝑠𝑖𝑛(𝑥) 𝑥, 

𝑓ଶ(𝑥, 𝛼) = (0.708073418𝑠𝑖𝑛(𝑥) − 3.0𝑐𝑜𝑠(𝑥)𝑥)𝛼 − 0.708073418𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥)𝑥, 

𝑓
ଵ

(𝑥, 𝛼) = (−0.708073418𝑥 + 3. 𝑠𝑖𝑛(𝑥) − 3.5𝑠𝑖𝑛(𝑥)𝑥)𝛼 + 0.708073418𝑥 − 5.0𝑠𝑖𝑛(𝑥)

+ 4.5𝑠𝑖𝑛(𝑥)𝑥, 

𝑓
ଶ

(𝑥, 𝛼) = (−0.708073418𝑠𝑖𝑛(𝑥) + 3.0𝑐𝑜𝑠(𝑥)𝑥)𝛼 + 0.708073418𝑠𝑖𝑛(𝑥) − 5.0𝑐𝑜𝑠(𝑥)𝑥. 

The exact solutions of the system (11) are 

𝑢෤ா(𝑥, 𝛼) = ቂ𝛼𝑥 −
ଵ

଺
𝛼𝑥ଷ +

ଵ

ଵଶ଴
𝛼𝑥ହ, (2 − 𝛼)𝑥 − ቀ

ଵ

ଷ
−

ଵ

଺
𝛼ቁ 𝑥ଷ + ቀ

ଵ

଺଴
−

ଵ

ଵଶ଴
𝛼ቁ 𝑥ହቃ ,

𝑣෤ா(𝑥, 𝛼) = ቂ(2𝛼 − 1) −
ଵ

ଶ
𝛼𝑥ଶ +

ଵ

ଶସ
𝛼𝑥ସ, (3 − 2𝛼) − ቀ1 −

ଵ

ଶ
𝛼ቁ 𝑥ଶ + ቀ

ଵ

ଵଶ
−

ଵ

ଶସ
𝛼ቁ 𝑥ସቃ .

 (14) 

To solve the fuzzy system (11) according to the ICs (12) by means of the HAMFF to obtain the initial 
approximations. from section 3, the iterations of HAMFF are determined in the following recursive way: 

𝑢෤଴(𝑥, 𝛼) = 𝑢෤(0, 𝛼) + 𝑥𝑢෤′(0, 𝛼),

𝑣෤଴(𝑥, 𝛼) = 𝑣෤(0, 𝛼) + 𝑥𝑣෤′(0, 𝛼),
         (15) 

and choosing the linear operators 

𝐿[𝑢෤(𝑥, 𝑞, 𝛼)] =
డమ௨෥(௫,௤,ఈ)

డమ௫
,

𝐿[𝑣෤(𝑥, 𝑞, 𝛼)] =
డమ௩෤(௫,௤,ఈ)

డమ௫
,
 𝐿ିଵ = ∫ ∫ (∙)𝑑𝑡𝑑𝑡,

௫

଴

௫

଴
      (16) 

with the property 𝐿[𝑐ଵ + 𝑐ଶ𝑥] = 0,  where 𝑐ଵ  and 𝑐ଶ  are constants. Furthermore, formulation of 
system (9) according to HAMFF in Section 3 involved the embedding parameter 𝑞 ∈ [0,1] and the 
parameter can be defined with the nonlinear operators as follows: 
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⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑁ଵ[𝑢෤(𝑥, 𝑞; 𝛼), 𝑣෤(𝑥, 𝑞; 𝛼)] =

డమ௨෥(௫,௤;ఈ)

డమ௫
− 𝑥𝑣෤′(𝑥, 𝑞; 𝛼) − 𝑢෤(𝑥, 𝑞; 𝛼)

−𝑓ሚଵ(𝑥, 𝛼) − ∫ 𝑥[(cos 𝑡)𝑢෤(𝑡, 𝑞; 𝛼) − (sin 𝑡)𝑣෤(𝑡, 𝑞; 𝛼)]𝑑𝑡
ଵ

଴
,

𝑁ଶ[𝑢෤(𝑥, 𝑞; 𝛼), 𝑣෤(𝑥, 𝑞; 𝛼)] =
డమ௩෤(௫,௤,ఈ)

డమ௫
− 2𝑥𝑢෤′(𝑥, 𝑞; 𝛼) + 𝑣෤(𝑥, 𝑞; 𝛼)

+𝑓ሚଶ(𝑥, 𝛼) − ∫ sin 𝑥 [(cos 𝑡)𝑢෤(𝑡, 𝑞; 𝛼) − (sin 𝑡)𝑣෤(𝑡, 𝑞; 𝛼)]𝑑𝑡
ଵ

଴
.

    (17) 

Using the above definition, with the assumption 𝐻(𝑥) = 1 we construct the zeroth-order deformation 
equation 

ቊ
(1 − 𝑞)𝐿[𝑢෤(𝑥, 𝑞, 𝛼) − 𝑢෤଴(𝑥, 𝛼)] = 𝑞ℎ𝐻(𝑥)𝑁ଵ[𝑢෤(𝑥, 𝑞; 𝛼), 𝑣෤(𝑥, 𝑞; 𝛼)],

(1 − 𝑞)𝐿[𝑣෤(𝑥, 𝑞, 𝛼) − 𝑣෤଴(𝑥, 𝛼)] = 𝑞ℎ𝐻(𝑥)𝑁ଶ[𝑢෤(𝑥, 𝑞; 𝛼), 𝑣෤(𝑥, 𝑞; 𝛼)].
     (18) 

Obviously, when 𝑞 = 0 and 𝑞 = 1 

𝑢෤(𝑥, 0, 𝛼) = 𝑢෤଴(𝑥, 𝛼), 𝑢෤(𝑥, 1, 𝛼) = 𝑢෤(𝑥, 𝛼), 

𝑣෤(𝑥, 0, 𝛼) = 𝑣෤଴(𝑥, 𝛼), 𝑣෤(𝑥, 1, 𝛼) = 𝑣෤(𝑥, 𝛼). 

Thus, we obtain the 𝑚𝑡ℎ −order deformation equations for 𝑚 ≥ 1 which are 

൝
𝐿[𝑢෤௠(𝑥, 𝛼) − 𝜒௠𝑢෤௠ିଵ(𝑥, 𝛼)] = ℎൣ𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,

𝐿[𝑣෤௠(𝑥, 𝛼) − 𝜒௠𝑣෤௠ିଵ(𝑥, 𝛼)] = ℎൣ𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,
      (19) 

where 

𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯ = 𝑢෤′′௠ିଵ(𝑥, 𝛼) − 𝑥𝑣෤′௠ିଵ(𝑥, 𝛼)−𝑢෤௠ିଵ(𝑥, 𝛼)                        

−(1 − 𝜒௠)𝑓ሚଵ(𝑥, 𝛼) − 𝜆ଵ ∫ 𝑥[cos 𝑡 𝑢෤௠ିଵ(𝑡, 𝛼) − sin 𝑡 𝑣෤௠ିଵ(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
,

𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯ = 𝑣෤′′௠ିଵ(𝑥, 𝛼) − 2𝑥𝑢෤′௠ିଵ(𝑥, 𝛼) + 𝑣෤௠ିଵ(𝑥, 𝛼)                            

+(1 − 𝜒௠)𝑓ሚଶ(𝑥, 𝛼) − 𝜆ଶ ∫ sin 𝑥 [cos 𝑡 𝑢෤௠ିଵ(𝑡, 𝛼) − sin 𝑡 𝑣෤௠ିଵ(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
.

  (20) 

Now, for 𝑚 ≥ 1, the solutions of the mth-order deformation Eq (17) are 

൝
𝑢෤௠(𝑥, 𝛼) = 𝜒௠𝑢෤௠ିଵ(𝑥, 𝛼) + ℎ𝐿ିଵൣ𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,

𝑣෤௠(𝑥, 𝛼) = 𝜒௠𝑣෤௠ିଵ(𝑥, 𝛼) + ℎ𝐿ିଵൣ𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧.
       (21) 

Thus, the approximate solutions in a series form are given by 

𝑢෤(𝑥, 𝛼) = 𝑢෤଴(𝑥, 𝛼) + ∑ 𝑢෤௞(𝑥, 𝛼)଺
௞ୀଵ ,

𝑣෤(𝑥, 𝛼) = 𝑣෤଴(𝑥, 𝛼) + ∑ 𝑣෤௞(𝑥, 𝛼)଺
௞ୀଵ .

         (22) 

From Section 4, the residual function with respect to this solution for the system (9) is obtained by the 
substitution of the series solution (19) into the original system (9) such that  
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𝑅𝐸෪
ଵ(𝑥, 𝛼) = 𝑢෤ ᇱᇱ(𝑥, 𝛼) − 𝑥𝑣෤ᇱ(𝑥, 𝛼) − 𝑢෤(𝑥, 𝛼) − 𝑓ሚଵ(𝑥, 𝛼)

− ∫ 𝑥[(cos 𝑡)𝑢෤(𝑡, 𝛼) − (sin 𝑡)𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
,

𝑅𝐸෪
ଶ(𝑥, 𝛼) = 𝑣෤ᇱᇱ(𝑥, 𝛼) − 2𝑥𝑢ᇱ෩ (𝑥, 𝛼) + 𝑣෤(𝑥, 𝛼) + 𝑓ሚଶ(𝑥, 𝛼)

− ∫ sin 𝑥 [(cos 𝑡)𝑢෤(𝑡, 𝛼) − (sin 𝑡)𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
.

     (23)  

The ℎ෨௜(𝛼)-curves of sixth-order HAMFF upper and lower bound solutions 𝑢෤(𝑥, 𝛼) and 𝑣෤(𝑥, 𝛼) at 
𝑥 = 0.3 and 𝛼 = 0.5 for system (9) are shown in the following Tables 1 and 2 and Figures 1–4. 

 

Figure 1. The h-curve representation of sixth-order HAMFF lower solution for system (9) 
of 𝑢(0.3; 0.5; ℎ). 

 

Figure 2. The h-curve representation of sixth-order HAMFF upper solution for system (11) 
of 𝑢(0.3; 0.5; ℎ). 
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Figure 3. The h-curve representation of sixth-order HAMFF lower solution for system (11) 
of 𝑣(0.3; 0.5; ℎ). 

 

Figure 4. The h-curve representation of sixth-order HAMFF upper solution for system (9) 
of 𝑣(0.3; 0.5; ℎ). 

Table 1. Best values of the convergence control parameter of sixth-order HAMFF 
solution 𝑢෤(𝑥, 𝛼)  of system (11) at 𝑥 = 0.3  and 𝛼 = 0.5,  where * denoted to the 
optimal value of ℎ෨ଵ. 

 ℎଵଵ* -0.993770765902976  ℎଵଶ -0.940282902800624  ℎଵଷ -0.913774159351708 

 ℎଵଵ* -0.995692236847504  ℎଵଶ -0.937399868820798  ℎଵଷ -0.908804197021662 
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Table 2. Best values of the convergence control parameter of sixth-order HAMFF 
solution 𝑣෤(𝑥, 𝛼)  of system (11) at 𝑥 = 0.3  and 𝛼 = 0.5,  where * denoted to the 
optimal value of ℎ෨ଶ. 

 ℎଶଵ* -0.997396591174385  ℎଶଶ -0.943482345592162  ℎଶଷ -0.911405157147745 

 ℎଶଵ* -0.999232447779833  ℎଶଶ -0.940161255064283  ℎଶଷ -0.906821208973723 

By comparing the Tables 3–6, we can see how the results improve after the minimization process. 

Table 3. Solution and accuracy sixth-order HAMFF for system (9) of 𝑢෤(𝑥, 𝛼) at 𝑥 = 0.5 
and ℎ෨௜ = −1 with 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 
ห𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)ห 
𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 

|𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)| 

0.0 
-
0.239712769 

-
0.239712815 

4.628E-08 1.198563846 1.198563912 6.571E-08 

0.2 
-
0.095885107 

-
0.095885142 

3.508E-08 1.054736184 1.054736239 5.451E-08 

0.4 0.047942553 0.047942529 2.388E-08 0.910908523 0.910908566 4.331E-08 
0.6 0.191770215 0.191770202 1.268E-08 0.767080861 0.767080893 3.211E-08 
0.8 0.335597877 0.335597875 1.485E-09 0.623253200 0.623253221 2.091E-08 
1.0 0.479425538 0.479425548 9.714E-09 0.479425538 0.479425548 9.714E-09 

Table 4. Solution and accuracy sixth-order HAMFF for system (11) of 𝑣෤(𝑥, 𝛼) at 𝑥 = 0.5 
and ℎ෨௜ = −1 with 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 
ห𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)ห 
𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 

|𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)| 

0.0 
-

2.193956404 
-

2.193956432 
2.793E-08 3.949121528 3.949121561 3.340E-08 

0.2 
-

1.579648611 
-

1.579648633 
2.180E-08 3.334813735 3.334813762 2.726E-08 

0.4 
-

0.965340818 
-

0.965340833 
1.566E-08 2.720505941 2.720505962 2.113E-08 

0.6 
-

0.351033024 
-

0.351033034 
9.535E-09 2.106198148 2.106198163 1.499E-08 

0.8 0.263274768 0.263274765 3.401E-09 1.491890355 1.491890364 8.865E-09 
1.0 0.877582561 0.877582564 2.731E-09 0.877582561 0.877582564 2.731E-09 

Tables 3 and 4 show a comparison of the absolute errors applying the HAMFF (𝑚 = 6) with the 
exact solutions (11) within the interval 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5 with best values of the convergence 
control parameter ℎ෨௜ after minimization which are listed in the following tables (see Tables 5 and 6). 
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Table 5. Solution and accuracy sixth-order HAMFF for system (11) of 𝑢෤(𝑥, 𝛼) at = 0.3 , 

ℎ෨௜ = ℎଵଵ, ℎ෨௜ = ℎଵଵand 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 
ห𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)ห 
𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 

|𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)| 

0.0 
-

0.239712769 
-

0.239712775 
5.966E-09 1.198563846 1.198563860 1.350E-08 

0.2 
-

0.095885107 
-

0.095885113 
6.133E-09 1.054736184 1.054736195 1.040E-08 

0.4 0.047942553 0.047942547 6.300E-09 0.910908523 0.910908530 7.315E-09 
0.6 0.191770215 0.191770208 6.467E-09 0.767080861 0.767080865 4.221E-09 
0.8 0.335597877 0.335597870 6.634E-09 0.623253200 0.623253201 1.128E-09 
1.0 0.479425538 0.479425531 6.800E-09 0.479425538 0.479425536 1.964E-09 

Table 6. Solution and accuracy sixth-order HAMFF for system (11) of 𝑣෤(𝑥, 𝛼) at 𝑥 = 0.3, 

ℎ෨௜ = ℎଶଵ, ℎ෨௜ = ℎଶଵand 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 
ห𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)ห 
𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 

|𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)| 

0.0 
-

2.193956404 
-

2.193956416 
1.186E-08 3.949121528 3.949121552 2.445E-08 

0.2 
-

1.579648611 
-

1.579648621 
1.028E-08 3.334813735 3.334813754 1.970E-08 

0.4 
-

0.965340818 
-

0.965340826 
8.700E-09 2.720505941 2.720505956 1.496E-08 

0.6 
-

0.351033024 
-

0.351033031 
7.118E-09 2.106198148 2.106198158 1.021E-08 

0.8 0.263274768 0.263274763 5.536E-09 1.491890355 1.491890360 5.463E-09 
1.0 0.877582561 0.877582557 3.954E-09 0.877582561 0.877582562 7.146E-10 

In the following Figures 5–10 shows the exact solutions ( 𝑢෤ா(𝑥, 𝛼) , 𝑣෤ா(𝑥, 𝛼) ) and the fuzzy 
approximate solutions by HAM (𝑢෤(𝑥, 𝛼), 𝑣෤(𝑥, 𝛼)) of the system (11) are in the form of fuzzy numbers 
for any 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.3 and ℎ෨௜ = −1. 
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Figure 5. The exact and HAMFF lower and upper solutions of system (11) 𝑢෤ா(𝑥, 𝛼) and 
𝑢෤(𝑥, 𝛼) for all 𝛼 ∈ [0,1]. 

 

Figure 6. The exact and HAMFF lower and upper solutions of system (11) 𝑣෤ா(𝑥, 𝛼) and 
𝑣෤(𝑥, 𝛼) for all 𝛼 ∈ [0,1]. 
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Figure 7. The exact lower and upper solutions of system (11) 𝑢෤ா(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 

 

Figure 8. The HAMFF lower and upper solutions of system (11) and 𝑢෤(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 
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Figure 9. The exact lower and upper solutions of system (11) 𝑣෤ா(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 

 

Figure 10. The HAMFF lower and upper solutions of system (9) and 𝑣෤(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 

According to Figures 5–10, one can summarize that the sixth-order HAMFF solutions of system (9) 
satisfied the fuzzy solution in triangular fuzzy number forms. To show HAMFF accuracy of Eq (11) 
crisp version was solved via the Euler polynomials (EP) [10] and Laguerre polynomials methods [11] 
(MLP), comparison between sixth-order HAMFF solution EP with 𝑁 = 6 iterations MLP [11] with 
𝑁 = 5 iterations can be made when 𝛼 = 1 which is equivalent to the crisp version of Eq (11) at the 
same values of 𝑥 ∈ [0,1] that illustrated in Tables 7 and 8 and are displayed in Table 9 below. 
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Table 7. Accuracy of sixth-order HAMFF solution for system (11) at 𝛼 = 1 and ℎ௜ = −1. 

𝑥 𝑢ா(𝑥, 1) 𝑢(𝑥, 1) 
|𝑢ா(𝑥, 1)

− 𝑢(𝑥, 1)| 
𝑣ா(𝑥, 1) 𝑣(𝑥, 1) 

|𝑣ா(𝑥, 1)

− 𝑣(𝑥, 1)| 
0.0 0.0 0.0 0.0 1.0 1.0 0.0 

0.2 0.198669330 0.198669332 1.832E-09 0.980066577 0.980066579 1.758E-09 

0.4 0.389418342 0.389418351 8.876E-09 0.921060994 0.921061000 6.568E-09 

0.6 0.564642473 0.564642474 7.133E-10 0.825335614 0.825335599 1.523E-08 

0.8 0.717356090 0.717355970 1.199E-07 0.696706709 0.696706666 4.290E-08 

1.0 0.841470984 0.841470265 7.190E-07 0.540302305 0.540305187 2.881E-06 

Table 8. Control parameters at 𝛼 = 1, where ℎ௜ is the ideal expression. 

 ℎଵଵ* -0.997358653933643  ℎଵଶ -0.934546746098124  ℎଵଷ -0.905342473297271 

 ℎଶଵ* -1.000822093275177  ℎଶଶ -0.937048072427569  ℎଶଷ -0.903768109332694 

Table 9. Accuracy of sixth-order HAMFF solution with EP [10] and MLP [11] for system (11) 

at 𝛼 = 1 and ℎ௜ with optimal values of ℎଵ = ℎଵଵ, ℎଶ = ℎଶଵ. 

|𝑢ா(𝑥, 1) − 𝑢(𝑥, 1)|  [10]  [11]  |𝑣ா(𝑥, 1) − 𝑣(𝑥, 1)|  [10]  [11] 

3.309E-07 5.801E-05 1.568E-06  2.941E-06 1.016E-04 5.780E-06 

Indeed, the sixth- order HAMFF solution system (9) obtained better solution in terms of accuracy over 
EP [10] and MLP [11] at 𝛼 = 1 as illustrated in Table 9 above. 
Problem 2. Consider the fuzzy version following second kind linear FSFIDEs as follows: 

𝑢෤ ᇱᇱ(𝑥, 𝛼) − 𝑥𝑣෤ᇱ(𝑥, 𝛼) + 2𝑥𝑢෤(𝑥, 𝛼) = 2 +
ଷଶ଴

଺଺
𝑥 −

ଷ଻

ଵଶ
𝑥ଶ + 2𝑥ଷ

+ ∫ 𝑥𝑡[𝑥𝑢෤(𝑡, 𝛼) − 𝑡𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
,               

𝑣෤ᇱᇱ(𝑥, 𝛼) − 2𝑥𝑢෤ ᇱ(𝑥, 𝛼) + 𝑣෤(𝑥, 𝛼) = −1 −
ଵ଴ଽ

ଷ଴
𝑥 − 5𝑥ଶ

+ ∫ 𝑥𝑡[𝑢෤(𝑡, 𝛼) + 𝑡ଶ𝑣෤(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
,

     (24) 

with the boundary conditions (BCs) 

𝑢෤(0, 𝛼) = (2𝛼 + 1,5 − 2𝛼), 𝑢෤(1, 𝛼) = (3𝛼 − 1,5 − 3𝛼),

𝑣෤(0, 𝛼) = (2𝛼 − 1,3 − 2𝛼), 𝑣෤(1, 𝛼) = (6𝛼 − 5,7 − 6𝛼).
      (25) 

System (24) was derived utilizing the same fuzzy analysis in problem 1 from the crisp version SFIDEs 
in [11], 
where 

 𝑓ሚଵ(𝑥, 𝛼) = ቂ𝑓ଵ(𝑥, 𝛼), 𝑓
ଵ

(𝑥, 𝛼)ቃ and 𝑓ሚଶ(𝑥, 𝛼) = ቂ𝑓ଶ(𝑥, 𝛼), 𝑓
ଶ

(𝑥, 𝛼)ቃ are given by 

𝑓ଵ(𝑥, 𝛼) = ൬
91

30
𝑥 −

79

12
𝑥ଶ + 2 + 2𝑥ଷ൰ 𝛼 +

47

20
𝑥 +

7

2
𝑥ଶ, 

𝑓ଶ(𝑥, 𝛼) =
23

5
𝛼𝑥 −

29

30
𝑥 + 3𝛼 − 4 − 3𝛼𝑥ଶ − 2𝑥ଶ, 
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𝑓
ଵ

(𝑥, 𝛼) = ൬−
91

30
𝑥 +

79

12
𝑥ଶ − 2 − 2𝑥ଷ൰ 𝛼 −

29

3
𝑥ଶ +

101

12
𝑥 + 4 + 4𝑥ଷ, 

𝑓
ଶ

(𝑥, 𝛼) = ൬−
23

5
𝑥 − 3 + 3𝑥ଶ൰ 𝛼 +

247

30
𝑥 − 8𝑥ଶ + 2. 

The exact solutions of the system (24) are 
𝑢෤ா(𝑥, 𝛼) = ൣ𝛼𝑥ଶ − 2𝛼𝑥 + 2𝛼 + 1, (2 − 𝛼)𝑥

ଶ
− (4 − 2𝛼)𝑥 + (5 − 2𝛼)൧, 

𝑣෤ா(𝑥, 𝛼) = ൣ(𝛼 − 2)𝑥ଶ + (2𝛼 − 1)𝑥 + 𝛼, −𝛼𝑥
ଶ

+ (3 − 2𝛼)𝑥 + (2 − 𝛼)൧. 
To solve system (24) approximately, the HAMFF is applied to system (24) such that the method 
iterations are determined in the following recursive way: 

𝑢෤଴(𝑥, 𝛼) = 𝑢෤(0, 𝛼) + 𝑥𝑢෤′(0, 𝛼),

𝑣෤଴(𝑥, 𝛼) = 𝑣෤(0, 𝛼) + 𝑥𝑣෤′(0, 𝛼),
        (26) 

where 𝑢෤′(0, 𝛼) = 𝐶ሚଵ, and 𝑣෤′(0, 𝛼) = 𝐶ሚଶ, calculated from the BCs (25). 
Choosing the linear operators 

𝐿[𝑢෤(𝑥, 𝑞, 𝛼)] =
డమ௨෥(௫,௤,ఈ)

డమ௫
,

𝐿[𝑣෤(𝑥, 𝑞, 𝛼)] =
డమ௩෤(௫,௤,ఈ)

డమ௫
,
   𝐿ିଵ = ∫ ∫ (∙)𝑑𝑡𝑑𝑡,

௫

଴

௫

଴
      (27) 

with the property 𝐿[𝑐ଵ + 𝑐ଶ𝑥] = 0, where 𝑐ଵ and 𝑐ଶ are constants. 
𝐶ଵ =  2.7581 × 10ିଽ −  1.999999995𝛼, 𝐶ଵ = −3.999999989 +  1.999999995𝛼,

𝐶ଶ =  −1.000000009 +  2.000000001𝛼, 𝐶ଶ = 2.999999992 −  2.000000001α.
  

As in Problem 1, nonlinear operators of system (21) are defined as follows  

⎩
⎪⎪
⎨

⎪⎪
⎧𝑁ଵ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)] =

డమథ෩భ(௫,௤,ఈ)

డమ௫
− 𝑥𝑣′෩ (𝑥, 𝑞, 𝛼) + (2𝑥)𝑢෤(𝑥, 𝑞, 𝛼)

−𝑓ሚଵ(𝑥, 𝛼) − ∫ 𝑥𝑡[𝑥𝑢෤(𝑥, 𝑞, 𝛼) − 𝑡𝑣෤(𝑥, 𝑞, 𝛼)]𝑑𝑡
ଵ

଴
,

𝑁ଶ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)] =
డమ௩෤(௫,௤,ఈ)

డమ௫
− 2𝑥𝑢′෩ (𝑥, 𝑞, 𝛼) + 𝑣෤(𝑥, 𝑞, 𝛼)

+𝑓ሚଶ(𝑥, 𝛼) − ∫ (𝑥𝑡)[𝑢෤(𝑥, 𝑞, 𝛼) + 𝑡ଶ𝑣෤(𝑥, 𝑞, 𝛼)]𝑑𝑡
ଵ

଴
.

     (28) 

Using the above definition, with the assumption 𝐻(𝑥) = 1 we construct the zeroth-order deformation 
equation 

൜
(1 − 𝑞)𝐿[𝑢෤(𝑥, 𝑞, 𝛼) − 𝑢෤଴(𝑥, 𝛼)] = 𝑞ℎ𝐻(𝑥)𝑁ଵ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)],

(1 − 𝑞)𝐿[𝑣෤(𝑥, 𝑞, 𝛼) − 𝑣෤଴(𝑥, 𝛼)] = 𝑞ℎ𝐻(𝑥)𝑁ଶ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)].
    (29) 

Obviously, when 𝑞 = 0 and 𝑞 = 1 

𝑢෤(𝑥, 0, 𝛼) = 𝑢෤଴(𝑥, 𝛼), 𝑢෤(𝑥, 1, 𝛼) = 𝑢෤(𝑥, 𝛼), 

𝑣෤(𝑥, 0, 𝛼) = 𝑣෤଴(𝑥, 𝛼), 𝑣෤(𝑥, 1, 𝛼) = 𝑣෤(𝑥, 𝛼). 

Thus, we obtain the 𝑚𝑡ℎ −order deformation equations for 𝑚 ≥ 1 which are 

ቊ
𝐿[𝑢෤௠(𝑥, 𝛼) − 𝜒௠𝑢෤௠ିଵ(𝑥, 𝛼)] = ℎൣ𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,

𝐿[𝑣෤௠(𝑥, 𝛼) − 𝜒௠𝑣෤௠ିଵ(𝑥, 𝛼)] = ℎൣ𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,
     (30) 

where 
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𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯ = 𝑣෤′′௠ିଵ(𝑥, 𝛼) − 𝑥𝑣෤′௠ିଵ(𝑥, 𝛼) + 2𝑥𝑢෤௠ିଵ(𝑥, 𝛼)

−(1 − 𝜒௠)𝑓ሚଵ(𝑥, 𝛼) − ∫ 𝑥𝑡[𝑥𝑢෤௠ିଵ(𝑡, 𝛼) − 𝑡𝑣෤௠ିଵ(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
,

𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯ = +𝑣෤′′௠ିଵ(𝑥, 𝛼) − 2𝑥𝑢෤′௠ିଵ(𝑥, 𝛼) + 𝑣෤௠ିଵ(𝑥, 𝛼)

+(1 − 𝜒௠)𝑓ሚଶ(𝑥, 𝛼) − ∫ 𝑥𝑡[𝑢෤௠ିଵ(𝑡, 𝛼) + 𝑡ଶ𝑣෤௠ିଵ(𝑡, 𝛼)]𝑑𝑡
ଵ

଴
.

     (31) 

Now, for 𝑚 ≥ 1, the solutions of the mth-order deformation system (24) are 

ቊ
𝑢෤௠(𝑥, 𝛼) = 𝜒௠𝑢෤௠ିଵ(𝑥, 𝛼) + ℎ𝐿ିଵൣ𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,

𝑣෤௠(𝑥, 𝛼) = 𝜒௠𝑣෤௠ିଵ(𝑥, 𝛼) + ℎ𝐿ିଵൣ𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧.
      (32) 

Thus, the approximate solutions in a series form are given by 

𝑢෤(𝑥, 𝛼) = 𝑢෤଴(𝑥, 𝛼) + ∑ 𝑢෤௞(𝑥, 𝛼)ଽ
௞ୀଵ ,

𝑣෤(𝑥, 𝛼) = 𝑣෤଴(𝑥, 𝛼) + ∑ 𝑣෤௞(𝑥, 𝛼)ଽ
௞ୀଵ .

        (33) 

The residual error function with respect to this solution for the system (21) is 

𝑅𝐸෪
ଵ(𝑥, 𝛼) = 𝑢෤ ᇱᇱ(𝑥, 𝛼) − 𝑥𝑣෤ᇱ(𝑥, 𝛼) + 2𝑥𝑢෤(𝑥, 𝛼) − 𝑓ሚଵ(𝑥, 𝛼) − ∫ 𝑥𝑡[𝑥𝑢෤(𝑡, 𝛼) − 𝑡𝑣෤(𝑡, 𝛼)]𝑑𝑡

ଵ

଴
,

𝑅𝐸෪
ଶ(𝑥, 𝛼) = 𝑣෤ᇱᇱ(𝑥, 𝛼) − 2𝑥𝑢ᇱ෩ (𝑥, 𝛼) + 𝑣෤(𝑥, 𝛼) − 𝑓ሚଶ(𝑥, 𝛼) − ∫ 𝑥𝑡[𝑢෤(𝑡, 𝛼) + 𝑡ଶ𝑣෤(𝑡, 𝛼)]𝑑𝑡

ଵ

଴
.

 (34) 

The ℎ෨௜(𝛼)-curves of ninth-order HAMFF upper and lower bound solutions 𝑢෤(𝑥, 𝛼) and 𝑣෤(𝑥, 𝛼) at 𝑥 =

0.1 and 𝛼 = 0.5 for system (21) are shown in the following Tables 10 and 11 and Figures 11–14. 

 

Figure 11. The h-curve representation of ninth-order HAMFF lower solution for system (24) 
of 𝑢(0.1; 0.5; ℎ). 
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Figure 12. The h-curve representation of ninth-order HAMFF upper solution for system (24) 
of 𝑢(0.1; 0.5; ℎ). 

 

Figure 13. The h-curve representation of ninth-order HAMFF lower solution for system (24) 
of 𝑣(0.1; 0.5; ℎ). 
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Figure 14. The h-curve representation of ninth-order HAMFF upper solution for system (24) 
of 𝑣(0.1; 0.5; ℎ). 

Table 10. Best values of the convergence control parameter of ninth-order fuzzy HAMFF 
solution 𝑢෤(𝑥, 𝛼) of system (24) at 𝑥 = 0.1 and 𝛼 = 0.5, where * denoted to the optimal 
value of ℎ෨ଵ. 

 𝒉𝟏𝟏* -0.994760367994695203 

 𝒉𝟏𝟏* -0.991888973708002525 

Table 11. Best values of the convergence control parameter of ninth-order HAMFF 
solution 𝑣෤(𝑥, 𝛼) of system (24) at 𝑥 = 0.1 and 𝛼 = 0.5, where * denoted to the optimal 
value of ℎ෨ଶ. 

 𝒉𝟐𝟏* -0.994874792763616010 

 𝒉𝟐𝟏* -0.985659503042079665 

By comparing the Tables 12–15, we can see how the results improve after the minimization process. 

Table 12. Solution and accuracy of ninth-order HAMFF for system (24) of 𝑢෤(𝑥, 𝛼) at 𝑥 =

0.5 and ℎ෨௜ = −1 with 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 
ห𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)ห 
𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 

|𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)| 
0.0 1.000 1.000000001 1.382E-09 3.500 3.500000005 5.577E-09 
0.2 1.250 1.250000001 1.801E-09 3.250 3.250000005 5.157E-09 
0.4 1.500 1.500000002 2.221E-09 3.000 3.000000004 4.738E-09 
0.6 1.750 1.750000002 2.640E-09 2.750 2.750000004 4.318E-09 
0.8 2.000 2.000000003 3.060E-09 2.500 2.500000003 3.899E-09 
1.0 2.250 2.250000003 3.479E-09 2.250 2.250000003 3.479E-09 
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Table 13. Solution and accuracy ninth-order HAMFF for system (24) of 𝑣෤(𝑥, 𝛼) at 𝑥 =

0.5 and ℎ෨௜ = −1 with 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 
ห𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)ห 
𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 

|𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)| 

0.0 -1.000 
-

1.000000004 
4.770E-09 3.500 3.499999996 3.408E-09 

0.2 -0.550 
-

0.550000004 
4.634E-09 3.050 3.049999996 3.544E-09 

0.4 -0.100 
-

0.100000004 
4.498E-09 2.600 2.599999996 3.681E-09 

0.6 0.350 0.349999995 4.362E-09 2.150 2.149999996 3.817E-09 
0.8 0.800 0.799999995 4.225E-09 1.700 1.699999996 3.953E-09 
1.0 1.250 1.249999995 4.089E-09 1.250 1.249999995 4.089E-09 

Tables 12 and 13 show a comparison of the absolute errors applying the HAMFF (𝑚 = 9) with the 
exact solutions within the interval 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5 with best values of the convergence control 
parameter ℎ෨௜ after minimization which are listed in the following tables (see Tables 14 and 15). 
The values of 𝐶ሚଵ, and 𝐶ሚଶ, at 𝑥 = 1 for 0 ≤ 𝛼 ≤ 1 with optimal values of ℎ෨௜ calculated from the 
BCs (25) are as follows 

𝐶ଵ = −2.2133 × 10ିଽ  −  1.999999995𝛼, 𝐶ଵ = − 3.999999995 + 1.999999995α,

𝐶ଶ = −1.000000005 +  2.000000005𝛼, 𝐶ଶ = 3.000000023 − 2.000000015 α.
 

Table 14. Solution and accuracy ninth-order HAMFF for system (24) of 𝑢෤(𝑥, 𝛼) at 𝑥 =

0.1 and ℎ෨௜ = ℎଵଵ, ℎ෨௜ = ℎଵଵwith 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 
ห𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)ห 
𝑢ா(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 

|𝑢ா(𝑥, 𝛼)

− 𝑢(𝑥, 𝛼)| 

0.0 1.0 0.999999998 1.112E-09 3.50 3.500000002 2.503E-09 
0.2 1.250 1.249999999 6.640E-10 3.250 3.250000002 2.042E-09 
0.4 1.500 1.499999999 2.154E-10 3.000 3.000000001 1.581E-09 
0.6 1.750 1.750000000 2.331E-10 2.750 2.750000001 1.120E-09 
0.8 2.000 2.000000000 6.817E-10 2.500 2.500000000 6.599E-10 
1.0 2.250 2.250000001 1.130E-09 2.250 2.250000000 1.990E-10 
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Table 15. Solution and accuracy ninth-order HAMFF for system (24) of 𝑣෤(𝑥, 𝛼) at 𝑥 =

0.1 and ℎ෨௜ = ℎଶଵ, ℎ෨௜ = ℎଶଵwith 0 ≤ 𝛼 ≤ 1. 

𝛼 𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 
ห𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)ห 
𝑣ா(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 

|𝑣ா(𝑥, 𝛼)

− 𝑣(𝑥, 𝛼)| 

0.0 -1.000 
-

1.000000002 
2.752E-09 3.500 3.500000011 1.140E-08 

0.2 -0.550 
-

0.550000002 
2.194E-09 3.050 3.050000009 9.896E-09 

0.4 -0.100 
-

0.100000001 
1.636E-09 2.600 2.600000008 8.389E-09 

0.6 0.350 0.349999998 1.078E-09 2.150 2.150000006 6.882E-09 
0.8 0.800 0.799999999 5.201E-10 1.700 1.700000005 5.375E-09 
1.0 1.250 1.250000000 3.791E-11 1.250 1.250000003 3.868E-09 

In the following Figures 15–20 shows that the exact solutions (𝑢෤ா(𝑥, 𝛼), 𝑣෤ா(𝑥, 𝛼)) and the fuzzy 
approximate solutions by HAMFF (𝑢෤(𝑥, 𝛼), 𝑣෤(𝑥, 𝛼)) of the system (24) are in the form of fuzzy 
numbers for any 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.1 and ℎ෨௜ = −1. 

 

Figure 15. The exact and HAMFF lower and upper solutions of system (24) 𝑢෤ா(𝑥, 𝛼) and 
𝑢෤(𝑥, 𝛼) for all 𝛼 ∈ [0,1]. 
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Figure 16. The exact and HAMFF lower and upper solutions of system (24) 𝑣෤ா(𝑥, 𝛼) and 
𝑣෤(𝑥, 𝛼) for all 𝛼 ∈ [0,1]. 

 

Figure 17. The exact lower and upper solutions of system (24) 𝑢෤ா(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 
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Figure 18. The HAMFF lower and upper solutions of system (24) and 𝑢෤(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 

 

Figure 19. The exact lower and upper solutions of system (24) 𝑣෤ா(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 
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Figure 20. The HAMFF lower and upper solutions of system (24) and 𝑣෤(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 

According to Figures 15–20, one can summarize that the ninth-order HAMFF solutions of system (24) 
satisfied the fuzzy solution in triangular fuzzy number forms are illustrated in Tables 16 and 17. Next, 
a comparison between ninth-order HAMFF solution and the MLP [11] are displayed in Table 18 in 
terms of accuracy at different values of 𝑥 ∈ [0,1] and 𝛼 = 1. 

The values of 𝐶ଵ, and 𝐶ଶ, at 𝑥 = 1 for 𝛼 = 1 calculated from the BCs (22) are as follows 
𝐶ଵ = −1.999999993, 𝐶ଶ = 0.999999991. 

Table 16. Accuracy of ninth-order HAMFF solution for system (24) at 𝛼 = 1 and ℎ௜ = −1. 

𝑥 𝑢ா(𝑥, 1) 𝑢(𝑥, 1) 
|𝑢ா(𝑥, 1)

− 𝑢(𝑥, 1)| 
 𝑣ா(𝑥, 1) 𝑣(𝑥, 1) 

|𝑣ா(𝑥, 1)

− 𝑣(𝑥, 1)| 
0.0 3.0 3.0 0.0  1.0 1.0 0.0 
0.2 2.64 2.640000001 1.357E-09  1.16 1.159999998 1.652E-09 
0.4 2.36 2.360000002 2.732E-09  1.24 1.239999996 3.240E-09 
0.6 2.16 2.160000004 4.374E-09  1.24 1.239999994 5.138E-09 
0.8 2.04 2.040000006 6.953E-09  1.16 1.159999991 8.385E-09 
1.0 2.00 1.999999999 0.0  1.00 0.999999999 0.0 

Table 17. Control parameters at 𝛼 = 1, where ℎ௜ is the ideal expression. 

 ℎଵଵ* -0.989174220493120112 
 ℎଶଵ* -0.988661974289768555 
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The values of 𝐶ଵ, and 𝐶ଶ, at 𝑥 = 1 for 𝛼 = 1 with optimal values of ℎ௜calculated from the BCs (22) 
as follows 

𝐶ଵ = −2.000000000, 𝐶ଶ = 1.000000006. 

Table 18. Accuracy of ninth-order HAMFF solution and MLP [11] for system (24) at 𝛼 = 1 
and ℎ௜ with optimal values of ℎଵ = ℎଵଵ, ℎଶ = ℎଶଵ. 

𝑥 𝑢ா(𝑥, 1) 𝑢(𝑥, 1) 
|𝑢ா(𝑥, 1)

− 𝑢(𝑥, 1)| 
 𝑣ா(𝑥, 1) 𝑣(𝑥, 1) 

|𝑣ா(𝑥, 1)

− 𝑣(𝑥, 1)| 
0.0 3.0 3.0 0.0  1.0 1.0 0.0 
0.2 2.64 2.639999999 1.799E-10  1.16 1.160000001 1.300E-09 
0.4 2.36 2.359999999 2.774E-10  1.24 1.240000002 2.510E-09 
0.6 2.16 2.159999999 1.135E-10  1.24 1.240000003 3.377E-09 
0.8 2.04 2.040000001 1.026E-09  1.16 1.160000002 2.664E-09 
1.0 2.00 2.000000000 0.0  1.00 0.999999999 0.0 

From Table 18, the ninth-order HAMFF solution system (9) obtained better solution in terms of 
accuracy MLP [11] at 
𝛼 = 1 at different values of 𝑥 . 
Problem 3. From [4] the fuzzy version of second kind linear SFIDEs is defined as below: 

𝑢෤ ᇱ(𝑥, 𝛼) = 𝑓ሚଵ(𝑥, 𝛼) + ∫ ቂ
௫௧

ଶ
𝑢෤(𝑡, 𝛼) − 𝑥𝑣෤(𝑡, 𝛼)ቃ 𝑑𝑡

ଵ

଴
,

𝑣෤ᇱ(𝑥, 𝛼) = 𝑓ሚଶ(𝑥, 𝛼) + ∫ ቂ𝑥ଶ𝑢෤(𝑡, 𝛼) −
௫మ௧

ଶ
𝑣෤(𝑡, 𝛼)ቃ 𝑑𝑡

ଵ

଴
,
     (35) 

with the ICs 

𝑢෤(0, 𝛼) = (𝛼 − 1,1 − 𝛼), 𝑣෤(0, 𝛼) = (1 − 𝛼, 𝛼 − 1),     (36) 

where 

𝑓ሚଵ(𝑥, 𝛼) = ቂ𝑓ଵ(𝑥, 𝛼), 𝑓
ଵ

(𝑥, 𝛼)ቃ = ቂ
଻

ଵ଺
𝛼𝑥, ቀ

ଽ

଼
−

ଵଵ

ଵ଺
𝛼ቁ 𝑥ቃ,  

and 

𝑓ሚଶ(𝑥, 𝛼) = ቂ𝑓ଶ(𝑥, 𝛼), 𝑓
ଶ

(𝑥, 𝛼)ቃ = ቂ
ଵ଺ଽ

ଷ଴
𝛼𝑥ଶ, ቀ

ଶହଵ

ଷ଴
−

ଵ଺ସ

଺଴
𝛼ቁ 𝑥ଶቃ.  

Section 3 of the HAMFF analysis of system (35) states the following: 

𝑢෤଴(𝑥, 𝛼) = 𝑢෤(0, 𝛼),

𝑣෤଴(𝑥, 𝛼) = 𝑣෤(0, 𝛼),
         (37) 

and choosing the linear operators 

𝐿[𝑢෤(𝑥, 𝑞, 𝛼)] =
డ௨෥(௫,௤,ఈ)

డ௫
,

𝐿[𝑣෤(𝑥, 𝑞, 𝛼)] =
డ௩෤(௫,௤,ఈ)

డ௫
,
   𝐿ିଵ = ∫ (∙)𝑑𝑡,

௫

଴
        

with the property 𝐿[𝑐ଵ] = 0, where 𝑐ଵ is a constant. Furthermore, the system (35) suggests that we 
define the nonlinear operators as 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝑁ଵ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)] =

డ௨෥(௫,௤,ఈ)

డ௫
− 𝑓ሚଵ(𝑥, 𝛼)

− ∫ ቂ
௫௧

ଶ
𝑢෤(𝑥, 𝑞, 𝛼) + 𝑥𝑣෤(𝑥, 𝑞, 𝛼)ቃ 𝑑𝑡

ଵ

଴
,

𝑁ଶ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)] =
డ௩෤(௫,௤,ఈ)

డ௫
− 𝑓ሚଶ(𝑥, 𝛼)

− ∫ ቂ𝑥ଶ𝑣෤(𝑥, 𝑞, 𝛼) +
௫మ௧

ଶ
𝑢෤(𝑥, 𝑞, 𝛼)ቃ 𝑑𝑡

ଵ

଴
.

     (38)  

Using the above definition, with the assumption 𝐻(𝑥) = 1, we construct the zeroth-order deformation 
equation 

ቊ
(1 − 𝑞)𝐿[𝑢෤(𝑥, 𝑞, 𝛼) − 𝑢෤଴(𝑥, 𝛼)] = 𝑞ℎ𝐻(𝑥)𝑁ଵ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)],

(1 − 𝑞)𝐿[𝑣෤(𝑥, 𝑞, 𝛼) − 𝑣෤଴(𝑥, 𝛼)] = 𝑞ℎ𝐻(𝑥)𝑁ଶ[𝑢෤(𝑥, 𝑞, 𝛼), 𝑣෤(𝑥, 𝑞, 𝛼)].
   (39) 

Obviously, when 𝑞 = 0 and 𝑞 = 1 
𝑢෤(𝑥, 0, 𝛼) = 𝑢෤଴(𝑥, 𝛼), 𝑢෤(𝑥, 1, 𝛼) = 𝑢෤(𝑥, 𝛼), 
𝑣෤(𝑥, 0, 𝛼) = 𝑣෤଴(𝑥, 𝛼), 𝑣෤(𝑥, 1, 𝛼) = 𝑣෤(𝑥, 𝛼), 
Thus, we obtain the 𝑚𝑡ℎ −order deformation equations for 𝑚 ≥ 1 which are 

൝
𝐿[𝑢෤௠(𝑥, 𝛼) − 𝜒௠𝑢෤௠ିଵ(𝑥, 𝛼)] = ℎൣ𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,

𝐿[𝑣෤௠(𝑥, 𝛼) − 𝜒௠𝑣෤௠ିଵ(𝑥, 𝛼)] = ℎൣ𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,
     (40) 

where 

𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯ = 𝑢෤′௠ିଵ(𝑥, 𝛼) − (1 − 𝜒௠)𝑓ሚଵ(𝑥, 𝛼) 

− ∫ ቂ
௫௧

ଶ
𝑢෤௠ିଵ(𝑡, 𝛼) + 𝑥𝑣෤௠ିଵ(𝑡, 𝛼)ቃ 𝑑𝑡

ଵ

଴
,

𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯ = 𝑣෤′௠ିଵ(𝑥, 𝛼) − (1 − 𝜒௠)𝑓ሚଶ(𝑥, 𝛼)

− ∫ ቂ𝑥ଶ𝑢෤௠ିଵ(𝑡, 𝛼) +
௫మ௧

ଶ
𝑣෤௠ିଵ(𝑡, 𝛼)ቃ 𝑑𝑡

ଵ

଴
.

     (41) 

Now, for 𝑚 ≥ 1, the solutions of the mth-order deformation system (35) are 

൝
𝑢෤௠(𝑥, 𝛼) = 𝜒௠𝑢෤௠ିଵ(𝑥, 𝛼) + ℎ𝐿ିଵൣ𝑅ଵ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧,

𝑣෤௠(𝑥, 𝛼) = 𝜒௠𝑣෤௠ିଵ(𝑥, 𝛼) + ℎ𝐿ିଵൣ𝑅ଶ,௠൫𝑢ሬ⃗෨௠ିଵ, 𝑣⃗෨௠ିଵ൯൧.
    (42) 

Thus, the approximate solutions in a series form are given by 

𝑢෤(𝑥, 𝛼) = 𝑢෤଴(𝑥, 𝛼) + ∑ 𝑢෤௞(𝑥, 𝛼)ଽ
௞ୀଵ ,

𝑣෤(𝑥, 𝛼) = 𝑣෤଴(𝑥, 𝛼) + ∑ 𝑣෤௞(𝑥, 𝛼)ଽ
௞ୀଵ .

        (43) 

The residual error function with respect to this solution for the system (32) is 

𝑅𝐸෪
ଵ(𝑥, 𝛼) = 𝑢෤ ᇱ(𝑥, 𝛼) − 𝑓ሚଵ(𝑥, 𝛼) − ∫ ቂ

௫௧

ଶ
𝑢෤(𝑡, 𝛼) + 𝑥𝑣෤(𝑡, 𝛼)ቃ 𝑑𝑡

ଵ

଴
,

𝑅𝐸෪
ଶ(𝑥, 𝛼) = 𝑣෤ᇱ(𝑥, 𝛼) − 𝑓ሚଶ(𝑥, 𝛼) − ∫ ቂ𝑥ଶ𝑢෤(𝑡, 𝛼) +

௫మ௧

ଶ
𝑣෤(𝑡, 𝛼)ቃ 𝑑𝑡

ଵ

଴
.
   (44) 

The ℎ෨௜(𝛼)-curves of ninth-order HAMFF upper and lower bound solutions 𝑢෤(𝑥, 𝛼) and 𝑣෤(𝑥, 𝛼) at 𝑥 =

0.5 and 𝛼 = 0.5 for system (35) are shown in the following Tables 19 and 20 and Figures 21–24. 
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Figure 21. The h-curve representation of ninth-order HAMFF lower solution for system (35) 
of 𝑢(0.5; 0.5; ℎ). 

 

Figure 22. The h-curve representation of ninth-order HAMFF upper solution for system (35) 
of 𝑢(0.5; 0.5; ℎ). 
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Figure 23. The h-curve representation of ninth-order HAMFF lower solution for system (35) 
of 𝑣(0.5; 0.5; ℎ). 

 

Figure 24. The h-curve representation of ninth-order HAMFF upper solution for system (35) 
of 𝑣(0.5; 0.5; ℎ). 

Table 19. Best values of the convergence control parameter of ninth-order HAMFF 
solution 𝑢෤(𝑥, 𝛼) of system (35) at 𝑥 = 0.5 and 𝛼 = 0.5, where * denoted to the optimal 
value of ℎ෨ଵ. 

 𝒉𝟏𝟏* -1.05007026461221104226628591648 

 𝒉𝟏𝟏* -1.05090002060914472244868635790 
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Table 20. Best values of the convergence control parameter of ninth-order HAMFF 
solution 𝑣෤(𝑥, 𝛼) of system (35) at 𝑥 = 0.5 and 𝛼 = 0.5, where * denoted to the optimal 
value of ℎ෨ଶ. 

 𝒉𝟐𝟏* -1.05012728339193604133371209084 

 𝒉𝟐𝟏* -1.05086285144053136204330440090 

In order to validate the ninth-order HAMFF solution of system (32), a comparative analysis with the 
learning algorithm iteration (LAI)  [4] corresponding with 200 iteration is displayed in Tables 21 and 22 in 
terms of residual errors ൫𝑅𝐸෪

ଵ൯ and ൫𝑅𝐸෪
ଶ൯ respectively for different values of 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5. 

By comparing the Tables 21–23, we can see how the results improve after the minimization 
process. A comparison between ninth-order HAM solution and the fuzzy neural network [4] with 200 
numerical iterations is given. 

Table 21. Show a comparison of the REs ൫𝑅𝐸෪
ଵ൯ applying the HAMFF (𝑚 = 9) and 

LAI [4] within the interval 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5 and ℎ෨௜ = −1. 

𝛼 𝑢(𝑥, 𝛼) 𝑅𝐸ଵ(𝑥, 𝛼) LAI [4]  𝑢(𝑥, 𝛼) 𝑅𝐸ଵ(𝑥, 𝛼) LAI [4] 
0.0 0.0 0.0 0.0  0.249999946 1.770E-07 8.72E-06 
0.2 0.024999993 2.205E-08 1.30E-07  0.224999950 1.636E-07 6.50E-07 
0.4 0.049999986 4.411E-08 3.30E-07  0.199999954 1.503E-07 6.30E-07 
0.6 0.074999980 6.617E-08 2.60E-07  0.174999958 1.369E-07 4.50E-07 
0.8 0.099999973 8.823E-08 1.40E-07  0.149999962 1.236E-07 4,70E-07 
1.0 0.124999966 1.102E-07 1.40E-07  0.124999966 1.102E-07 1.40E-07 

Table 22. Show a comparison of the REs ൫𝑅𝐸෪
ଶ൯ applying the HAMFF (𝑚 = 9) and 

LAI [4] within the interval 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5 and ℎ෨௜ = −1. 

𝛼 𝑣(𝑥, 𝛼) 𝑅𝐸ଶ(𝑥, 𝛼) LAI [4]  𝑣(𝑥, 𝛼) 𝑅𝐸ଶ(𝑥, 𝛼) LAI [4] 
0.0 0.0 0.0 0.0  0.374999977 1.105E-07 3.01E-06 
0.2 0.049999997 1.377E-08 3.50E-07  0.349999979 1.022E-07 2.20E-06 
0.4 0.099999994 2.755E-08 4.40E-07  0.324999981 9.389E-08 2.13E-06 
0.6 0.149999991 4.132E-08 6.60E-07  0.299999982 8.555E-08 2.10E-06 
0.8 0.199999988 5.510E-08 2.40E-07  0.274999984 7.721E-08 1.32E-06 
1.0 0.249999986 6.887E-08 1.12E-06  0.249999986 6.887E-08 1.24E-06 

Tables 21 and 22 show a comparison of the REs applying the HAMFF (𝑚 = 9) with the errors [4] 
within the interval 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5 with best values of the convergence control parameter ℎ෨௜ 
after minimization which are listed in the following tables (see Table 23). 
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Table 23. REs applying the HAMFF (𝑚 = 9) at 𝑥 = 0.5 and ℎ෨௜ are optimal values of ℎ෨௜௝ . 

𝜶 𝑢(𝑥, 𝛼) 𝑅𝐸ଵ(𝑥, 𝛼) 𝑢(𝑥, 𝛼) 𝑅𝐸ଵ(𝑥, 𝛼)  𝑣(𝑥, 𝛼) 𝑅𝐸ଶ(𝑥, 𝛼) 𝑣(𝑥, 𝛼) 𝑅𝐸ଶ(𝑥, 𝛼)

0.
0 

0.0 0.0 
0.2499999

94 
2.190E-

08 
 0.0 0.0 

0.3749999
99 

4.495E-
10 

0.
2 

0.0249999
99 

2.928E-
09 

0.2249999
94 

2.045E-
08 

 
0.0499999

99 
1.234E-

13 
0.3499999

99 
2.552E-

10 
0.
4 

0.0499999
98 

5.856E-
09 

0.1999999
94 

1.900E-
08 

 
0.0999999

99 
2.468E-

13 
0.3249999

99 
6.091E-

11 
0.
6 

0.0749999
97 

8.784E-
09 

0.1749999
95 

1.755E-
08 

 
0.1499999

99 
3.703E-

13 
0.2999999

99 
1.333E-

10 
0.
8 

0.0999999
96 

1.171E-
08 

0.1499999
95 

1.610E-
08 

 
0.1999999

99 
4.937E-

13 
0.2749999

99 
3.276E-

10 
1.
0 

0.1249999
96 

1.464E-
08 

0.1249999
96 

1.464E-
08 

 
0.2499999

99 
6.171E-

13 
0.2499999

99 
5.220E-

10 

In the following Figures 25–28 show that the fuzzy approximate solutions by HAMFF (𝑢෤(𝑥, 𝛼), 𝑣෤(𝑥, 𝛼)) 
of the system (32) are in the form of fuzzy numbers for any 0 ≤ 𝛼 ≤ 1 at 𝑥 = 0.5 and ℎ෨௜ = −1. 

 

Figure 25. The HAM lower and upper solutions of system (35) 𝑢෤(𝑥, 𝛼) for all 𝛼 ∈ [0,1]. 
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Figure 26. The HAM lower and upper solutions of system (35) 𝑣෤(𝑥, 𝛼) for all 𝛼 ∈ [0,1]. 

 

Figure 27. The HAMFF lower and upper solutions of system (35) and 𝑢෤(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 
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Figure 28. The HAMFF lower and upper solutions of system (35) and 𝑣෤(𝑥, 𝛼) for all 𝑥, 𝛼 ∈ [0,1]. 

The fuzzy solution in triangular fuzzy number forms was satisfied by the ninth-order HAMFF solutions 
of system (35) as shown in Figures 25–28. 

6. Conclusions 

The method of approximate analytical class for solving FSIDEs, known as HAMFF, is the main 
topic of this work. Using the HAMFF technique, the convergence of the series solution can be 
efficiently managed by selecting the best convergence parameter for each fuzzy level set. In this study, 
the FSFIDEs were proposed as utilized as an experimental study to demonstrate the HAMFF 
technique’s precision in solving linear systems with initial conditions. The technique was found to 
produce a polynomial series solution in close-analytical form that converges to the exact solution as 
the series order increases. The novelty of HAMFF derived from basic concepts of the standard HAM 
and some popular definitions and properties of fuzzy sets theory. The study also used the HAMFF to 
find the series solution in nonlinear terms and suggested a new fuzzy version of FSFIDEs. The HAMFF 
technique was discovered to offer the series solution FSFIDEs subject to boundary conditions. The 
optimal convergence parameters for the suggested problems were also ascertained by utilizing the 
HAMFF's convergence behavior in fuzzy environments to increase the accuracy of the technique. A 
comparison analysis between the HAMFF and other approximate techniques is presented, showing 
that the HAMFF obtained a better solution in terms of accuracy. It is noteworthy to note that all the 
problems in this study that were solved with HAMFF obtained the series solution in the triangular 
fuzzy numbers. 
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