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Abstract: Certain phenomena with uncertain properties that take the shape of intricate mathematical
modeling are known to have fuzzy system integro-differential equations (FSIDEs). The methods used
to roughly solve FSIDEs seek to provide open-form solutions that are regarded as solutions for
polynomial series. However, for many FSIDESs, the polynomial series solutions are not easily derived,
especially in nonlinear forms. Meanwhile, some existing approximate techniques cannot guarantee
convergence of the series solution. Nevertheless, to solve second-kind fuzzy Fredholm integro-
differential equations (FFSIDESs), there exist perturbation techniques based on the standard Homotopy
Analysis Method (HAM) that have the ability to control and rate solution convergence. Therefore, this
study focused on modifying new approximate techniques, fuzzy Fredholm HAM (HAMFF), for
solving second-kind FFSIDEs subject to initial and boundary value problems. In the theoretical
framework modification, the establishment of the series solution convergence was done based on
combining some fuzzy sets theory concepts and convergence-control parameters from standard HAM.
The HAMFF was not only able to solve linear systems but also difficult nonlinear systems with proper
accuracy. The demonstration of the modified technique's performance was shown in comparison to
other methods, where HAMFF was individually superior in terms of accuracy for solving linear and
nonlinear test problems of FFSIDEs.

Keywords: fuzzy sets theory; fuzzy system of Fredholm integro-differential equations (FSFIDEs);
homotopy analysis method (HAM); convergent control parameter
Mathematics Subject Classification: 35A15, 45G15, 65H20, 49M27




1705

1. Introduction

The mathematical models with uncertainty properties take the forms fuzzy differential equations
(FDEs), fuzzy integral equations (FIEs), or fuzzy integro-differential equations (FIDEs). Therefore,
the solution of integro-differential equations (IDEs) that have been considered the main core of some
physical systems play a significant role in science and engineering [1-6]. Some of these systems are
linear and nonlinear Fredholm IDEs, and their solutions are continuously growing in many physical
problems that arise naturally under uncertainty properties. The study of FDEs and fuzzy integral equations
is currently the focus of much research. The starting point of fuzzy sets was first introduced by Zadeh [7].
The fuzzy integral equations were previously derived by Kaleva and Seikkala [8,9]. Lately, a lot of
academics have focused on this topic and produced a ton of studies that are published in the literature [10].
As a result, fuzzy models constrained by FSIDEs behave more like the actual process because the after
effect is incorporated into it by using the concepts of fuzzy derivatives and fuzzy integrals [11-12], which
have several benefits, including the ability to incorporate additional conditions into the problem structure
and the ability to structure realistic problems. However, the idea of Hukuhara derivatives that FDEs were
developed [13]. FDEs and FIEs were extended to FIDEs, which first appeared in 1999 [14]. That study
paved the way for future research on FSIDEs by applying principles from fuzzy sets theory to the analysis
of FDEs and FIEs.

Typically, it is difficult and limiting to obtain the exact analytical solutions for linear FIDEs.
Unfortunately, there isn’t an analytical solution for the majority of the intricate physical phenomena
that can be explained by nonlinear FSIDEs [15]. Analytical solutions are not found in many cases.
However, there is always a need for the solutions to these equations because of their practical
applications, such as the fuzzy Riccati differential equation [16]. Therefore, in order to handle such
fuzzy situations, it is frequently important to suggest effective approximate techniques. In the
meantime, the approximate-analytic class of methods under the approximation techniques can directly
evaluate the solution accuracy for the systems involving high-order FIDEs. In addition to being
applicable to nonlinear systems of FIDEs without the need for linearization or discretization as
numerical approximate techniques [17]. Although some numerical class techniques and approximate
analytical class techniques are employed and analyzed to obtain the approximate solution of a system
of second-kind Fredholm-integro differential equations in the crisp domain [8—12], also in the fuzzy
domain, the learning algorithm approximate method (LAM) is used to obtain the solution of these
systems in 2017 [12].

Nevertheless, the series solution’s convergence cannot be guaranteed by some current
approximate-analytical techniques. However, perturbation-based methods such as the standard fuzzy
HAM approach [17] exist to solve fuzzy problems and have the capacity to control convergence. The
idea of HAM first appeared in Liao PhD thesis 1992 [18] to deal with approximate solutions for linear
and nonlinear mathematical engineering models. It was found that the HAM provides a solution in
series form with a degree of polynomial function HAM that converges to the close form solution;
otherwise, the solution is approximated to some degree of accuracy to the open form solution [17,19].
Also, the basic idea of HAM provides a great technique to rate the solution convergence through the
convergence control parameter. The standard HAM has been modified and used to solve a variety of
mathematical problems in the fuzzy domain, such as fuzzy FDEs [19], fuzzy partial differential
equations [20], fuzzy fractional differential equations [21,22], fuzzy integral equations [17], and fuzzy
integro-differential equations [23]. According to the aforementioned survey, the majority of the
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research that used numerical and approximation analytical techniques was applied on crisp system
Fredholm IDEs, with only one implementation on FFSIDEs. As a result, we believe it is vital to
propose new approximation analytical techniques to overcome such challenges, as we will demonstrate
in the next sections. HAMFF, would give significant contribution toward overcoming obstacles of
existing methods such as the Variational iteration method (VIM), the Adomian decomposition method
(ADM) etc for example the proposed methods will help us to simplify the complexity of the uncertain
nonlocal derivative when solving FFSIDEs. Furthermore, unlike all existing methods HAMFF
provides the convergence parameter to control the accuracy of the solution, thus ensuring the
convergence of the approximate series solutions. Also, the series solutions provided by the HAMFF have
the ability to show the graphical designs of the solutions. Consequently, the goal of this research is to
create a new convergence-controlled approximate analytical technique, HAMFF, for solving problems
that are subject to boundary and initial conditions. The formulation and analysis of this study involving
a theoretical framework and methodology relies on some well-known concepts of fuzzy sets theory that
have been used to help build our recommended technique to solve FFSIDEs. These concepts include
properties of fuzzy numbers [24], fuzzy extension principles [25], the a-cuts [26], fuzzy function [27],
fuzzy differentiations, and the context of fuzzy integration [28-30].

2. Fuzzy analysis of FSFIDEs

The following terms must be defined in order to analyze the suggested system in this work.
Definition 2.1. [24] A triangular fuzzy number is a fuzzy set A = (sq,5,,53) that, satisfies the
membership function,

0 if x <58
(x—s51)/(s,—51) if s;<x<s,
(s3—x)/(s3—5y) if s, <x<s3
0 if X > S3

Triz(x) =

where the crisp interval can be defined by a-cut operation where a € [0,1], such that,
Ay = [519,559] = [(s, — s)a + 51, — (53 — s5)a + as]
where at @ = 1 the lower and upper bound of A, are equal and this is the original crisp number.
Moreover, according to [24] the triangular fuzzy number satisfies the following properties:

(1) It is convex (the line by a-cut is continuous and the a-cut interval satisfies for 4, = [51 @ 5, ("‘)],

if there is two different s; < 5, = 5,@) < 5,(@) and s;,(*) > 5,(@2)),
(2) It is normalized (the maximum membership value is 1, Ix € R, u,(x) = 1).
(3) Its membership function is piecewise continuous.
(4) It is defined in the real number.
Definition 2.2. [28] The integral of the fuzzy function f in [a, b] is the fuzzy number with o-levels

denoted by,
b @ b b
[f f(x)dxl = U i(x; a)dx,j f(x; a)dxl
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where f: f(x; @)dx and f: f(x;@)dx are the Riemann integrals of the real functions f(x;a),

f (x; @)in the interval [a, b].

Now, the general form of the fuzzy system of Fredholm integro-differential equations (FSFIDEs) of
the second kind [10] is defined as

™M (x, @) = fite @) + 320y 1 (@) [ ki (x 6 w6 @), i = 1,2 (1)
the initial conditions
#%(0,@) = (@ (@), &(@) &' (0,0 = (a/(@),a' (@), .., 7" (0,@)
= (a,"(@),5," V(@)
where 0 < a <1, 4 j are positive fuzzy parameters, k; j 1s an arbitrary fuzzy function called the

kernal of integral and f;(x,a) is the given fuzzy function of x € [a,b] with ii;(x,a) as the
unknown fuzzy functions

; (x, @) = [w; (x, @), 4 (x, @)],

fiGea) = |fiGx @), filx @),

then we can write Eq (1) as
2 b
Ei(n)(x' a) = ﬁ(x, a) + Z /_1ij(a)f kij (x, t,u;(t, a)) dt,
j=1 a
2 b
_(n) _7 1. Bo(x t i d
u; (x,a) = filx,a) + ij(@) ij (x, t,u;(t, a)) t.
j=1 a

3. Formulation and analysis of HAMFF
For the analysis of HAM in [18], we can have the substantive of the solution of Eq (1) for all a-

level sets values where « € [0,1] is the following process.
The zeroth-order deformation is

(1 - Q)L[ﬂl (x, q, a) - ﬁ(xr a)]qﬁH(t)Nl [ﬁl (.X', q, Qf)], (2)

and by taking ¢ = 0 and q =1 we get.
ai (x) Or a) = f:i(x' (X) } (3)

ai (x) 1r a) = ﬁi(x' (X)

From Eq (2), the fuzzy initial guess ii; o(x, @) can be determined from fi(x, @) , then the taylor series
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of g for #;(x,q,a)is

Uim (x,a,fl(x))

i;(x,q, ) = 1;(x,0,a) + X1 — qm, 4)
where
i . 1 08 m(x@q.h(@)
i m (x, a, h(a)) TR F— (5)
q=0

the m-th order deformation f or q = 1 in Eq (4) is as follows;

L[ﬁi,m(xr a) — Xmﬁi,m—l(x: a)] = Fl(“) [Ri,m (ﬁ)i,m—l)]:

= . = = bs (-
Rign(im—1) = @it — (1 = xm) fix, @) = X3, Ay (@) [ Fy; (ui,m—l(tr a)) dt,
and the series solution of Eq (1) takes the following forms

{Ei,o(x: @) + Xm=1 Uim (X, @, h(a))

Ujo(x,a) + Ym=1 Uy (X, @, E(“))‘

(6)

A convenient selecting of h(a) obtains the convergence of Eq (6) therefore, the solution in series
form (homotopy solution).

4. Convergence analysis HAMFF

The approximate solution of Eq (1) is convergence based on best values of the parameter h(a)
therefore, h(a) should be discussed to supply enough accuracy for ascertain order of the HAMFF
series solution. Therefore, an accurate convergent solution is guaranteed when the convergence
parameter is chosen appropriately. Finding the approximate solution with the least amount of residual
error is one common method for choosing h(a). Assume that the residual of Eq (6) is denoted by

—_—~

E = [@ , ﬁ], then defined the following residual form

RE,(x, &, by (@) = ™ (x, &, hy (@) — f1 (x, @) — 11 (x) fab k, (x, t, i (t, a, Ftl(x)),
RE(x, @, hy(a)) = 5™ (x, @, hp(@) = fo (e, ) = Dp(@) [} Kz (36,5 (8,0, by (@),

the mean square residual error (MSRE) of Eq (6) is define in the following form:

10+1

—— ~ 10 ﬁi ,0.1',Fl.i z . _
MSRE;(x, &, hy(a)) = szo( (0UR@) =12, 0<a<1, 7)

by using the least square method to optimize the values of h;(a) such that
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~ 1 — . 2 _
Ji(x, @, (@) = (fo MSRE;(x, @, hi(a))) dx, i =1,2 (8)
and the nonlinear equation coming from Eq. (8) for any a € (0,1] is derived such that

ali (x, Q, hi (a))

oJi(x, @, hy(a)) PN oh;(x) =0,
oh (@) ofi(x, @ k(@) _
ohj(a)

Finally, the equation is solved for h;(a) ineach a-level set to obtain the best value of h by plotting
curves called h-curves such that horizontal line segment with respect to ﬁgn) (x, @) to illustrate the
best region of the h(a)values, which are the for x, < x < X. It is familiar in the fuzzy environment
to display the contract h-curves, and to find the optimal value h(a) for each a € [0,1]. The choice
the best value of h(a) provides the best accurate solution of the FFSIDEs with its corresponding fuzzy
level set @ = [g, E], and then applied a for each lower level set gets the best lower approximate

solution. A similar step is applied to @ to determine the best upper solution. The following algorithm
is summarizing the dynamic convergence of HAMFF:

Step 1: Set ﬁi,O(xl a) = ﬁi,O' (ﬁi,O = {Ei,o; ai,O})) ﬁi’(ol (X) = (Qi’(a); di,(a)) JETE) ai (n=1) (Or a) =
(¢ D(@), @™ D(a)).

Step 2: Set A(a) = [A(a), 1(a)].

Step 3: Set m =1,2,3, ...,n.

Step 4: Set m=m+ 1 and for m =1 to m <n evaluate

Fin (6 @) = 2 (@) + (@) |2y (@) = f) Ky (3£ Fimes (% @, B(@) ) dt — (1 = xm) i, @)
Step 5: Compute

Fin (% € A(@)) = Zomo1 (%, 0) + Tiey Bmor(x,0), i = 12

Step 6: Set the value of @y € [0,1],x € [a, b] and evaluate

0x (x, ay, fl(ao))
dh(ao)

then plot the h-curve.

Step 7: Define the residual form in Eqgs (6)—(8) and substitute the h(a,) in Eq (9) to compute the

optimal value of h(a,).
Step 8: Replace-again the optimal values of h(a) for the lower and upper levels in Eq (10).

Fl(ao) =

)

5. Applications and numerical results

In this section, the HAMFF is applied to achieve an approximate-exact solution for FSFIDEs in
three problems. We defined the maximum errors as follows to demonstrate the high accuracy of the
solution when compared with the exact solution.
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lleo = llttg Cx, @) — Ux, @) |,

where:

i (x, a): Fuzzy exact solution,

©i(x, a): Fuzzy approximate solution (HAM).

Moreover, giving the residual error (RE), the computation associated with the problem were performed
using the Maple 18 package with a precision of 30 digits.

Problem 1. Consider the following the crisp second kind linear SFIDEs [10]

u'’(x) —xv(x) —u(x) = (x —2)sinx
+ folx[cos tu(t) —sintv(t)]dt,

v (x) — 2xu'(x) + v(x) = —2x cosx ©)
+ f01 sinx [cos tu(t) — sintv(t)]dt.
Subject to initial conditions (ICs).
u(0) =0, u'(0) =1,
(10)

7(0) =1, v'(0,a) = 0.

Since this problem is crisp SFIDEs, we will first present fuzzification of the equation. In this study,
the fuzzy version of system (9) is created. Such that from Definition 2.2 the fuzzy version of the
integral operator is follows:

1
1 f x[costg(t, a) —sintv(t, a)]dt
f x[costii(t,a) —sint ¥(t,a)]dt = 01
0 f x[costu(t,a) —sintv(t,a)]dt
0

1

) {f sinx [cos tu(t,a) —sintv(t, a)]dt

j sinx [cos tii(t,a) — sint U(t,a)]dt = 01

0 j sinx [costu(t,a) — sintv(t, a)]dt.
0

Now according to the fuzzy analysis in [17] the fuzzy version of system (9) is as follows:

" (x,a) —xU(x,a) —ii(x,a) = (x —2)sinx
+ folx[costﬁ(t, a) — sint ¥(t, a)]dt, an

7" (x,a) — 2xu' (x,a) + ¥(x, @) = —2x cosx
+ fol sinx [cos tTi(t,a) — sint (t, a)]dt.

From the Definition 2.1 of the triangular fuzzy numbers, we can defuzzify the ICs. Let [6] u and [i] abe

triangular fuzzy numbers corresponding with the ICs (10) forall a € [0,1] such that
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(0, a) = [6]a =(-1,0,1), @#'(0,a) = [i]a = (3,4,5)
0.0 =[], = (3.2.9). 09 = [0], = (-3.03)

According to the a-cut of triangular fuzzy number in Definition 2.1 the following fuzzy ICs of system (11)
are defined as follows

10,a0) =(a—1,1— ), @'(0,a) = (4a — 3,5 — 4a),

N (3 17 3 o (1 11 1 (12)
v(ola) - (Za +Z,Z_Za), v (0,“) = (Eaf _E,E_Ea)'
where f;(x,a) = [ﬁ(x, a),]_cl(x, a)] and fo(x,a) = [£2 (x, a),]_cz(x, a)] are given by
fi(x,a) = (0.708073418x — 3.sin(x) + 3.5sin(x) x)a — 0.708073418x + sin(x)
— 2.5sin(x) x,
fo(x, @) = (0.708073418sin(x) — 3.0cos(x)x)a — 0.708073418sin(x) + cos(x)x,
]_Cl(x, a) = (—0.708073418x + 3.sin(x) — 3.5sin(x)x)a + 0.708073418x — 5.0sin(x)
+ 4.5sin(x)x,
j_fz(x, a) = (—0.708073418sin(x) + 3.0cos(x)x)a + 0.708073418sin(x) — 5.0cos(x)x.
The exact solutions of the system (11) are
~ — _lo3 0L 05 (0= _(1_1 3 (L_ L 5
tg(x,a) = [ax cax® +—ax ,(2—a)x (3 6a)x + (60 0 a)x ], (14)
Ue(x, a) = [(Za —1) —tax? + —ax*, (3 - 2a) — (1 —la) x? + (i—ia)x“]
EAS 2 24 ’ 2 12 24 .

To solve the fuzzy system (11) according to the ICs (12) by means of the HAMFF to obtain the initial
approximations. from section 3, the iterations of HAMFF are determined in the following recursive way:

iy (x, ) = (0, ) + xii' (0, a),

(15)
Do(x, ) = 7(0,) + x7'(0, ),
and choosing the linear operators

. 0%1(x,q,a)

Llii(x,q, a)] = ——=,
L% T = (Y (Y (O dedt, (16)

. 9%v(x,q,a) 00
L[P(x,q,a)] = B

with the property L[c; + c,x] = 0, where ¢; and c, are constants. Furthermore, formulation of
system (9) according to HAMFF in Section 3 involved the embedding parameter q € [0,1] and the
parameter can be defined with the nonlinear operators as follows:

AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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9%1i(x,q;0)
02x

—f(x, @) = [ x[(cos O)7(t, g; @) — (sin )5 (¢, q; @)]dle,

%% (x,q,a)
9%x

L +fH(x,a) — fol sinx [(cost)ii(t, q; @) — (sint)¥(t,q; a)]dt.

(N, [(x, q; @), §(x, q; @)] = —x0'(x, ¢; @) — i(x, ¢; @)

Nyli(x, q; ), 7(x,q; )] = — 2x1'(x,q; ) + 7(x, q; @)

(17)

Using the above definition, with the assumption H(x) = 1 we construct the zeroth-order deformation

equation

(1= @)Lu(x,q, @) — Uy (x, )] = ghH(xX)N, [6(x, g; @), U(x, q; @)],
{(1 = @QL[v(x, q, @) = Uo(x, @)] = qhH(x)N,[i(x, ¢; @), D(x, g; @)].
Obviously, when g =0 and g =1
i(x,0,a) =1y(x,a), i(x,1,a)=1d(x a),
7(x,0,a) = Vy(x,a), ¥(x,1,a)=0(x,a).

Thus, we obtain the mth —order deformation equations for m > 1 which are
L[t (%, @) = Xomilm—1 (%, @] = B[Ry (thm-1, 1),
L[Dm(x, @) — YmPm—1(x, @)] = h[Rz,m(ﬁm—p ﬁm—l)]i
where
Rl,m (ﬁm—lr gm—l) = ﬁ”m—l(x; 0{) - xﬁ’m—l(x; a)_am—l(x' a)

(1= ) file, @) — 44 folx[cos tily,_q(t, @) —sint ¥, (t, a)]dt,

RZ,m(ﬁm—li ﬁm—l) =" mo1(x @) = 2xT 1 (x, @) + U g (x, @)

+(1 = xm) fo(x, @) — 2y f01 sinx [cost @i,,_,(t,a) — sint ¥,,_,(t, a)]dt.

Now, for m = 1, the solutions of the mth-order deformation Eq (17) are

ﬁm(xi (X) = Xmﬁm—l(x' (X) + hL_l[Rl,m(ﬁm—li 'gm—l)];

U (x, @) = ¥mUm—1(x, @) + hL_l[RZ,m(ﬁm—li 13m—1)]-

Thus, the approximate solutions in a series form are given by

ﬁ(xl (X) = ﬁO(x' (X) + 22=1 ak(xl (X) ’
ﬁ(x' a) = ﬁO (x, a) + 22=1 ﬁk (x, a) .

(18)

(19)

(20)

1)

(22)

From Section 4, the residual function with respect to this solution for the system (9) is obtained by the

substitution of the series solution (19) into the original system (9) such that

AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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RE,(x,a) = 1" (x,a) — x¥'(x, a) — ii(x, @) — f1(x, @)
— [} x[(cos )a(t, @) — (sin)(t, a)]dt,
RE,(x,a) = ¥ (x,a) — 2xu' (x, @) + ¥(x, a) + f,(x, )
- fol sin x [(cos t)Ti(t, @) — (sint)¥(t, a)]dt .

(23)

The h;(a)-curves of sixth-order HAMFF upper and lower bound solutions #(x,a) and #(x, a) at
x = 0.3 and a = 0.5 for system (9) are shown in the following Tables 1 and 2 and Figures 1-4.

Figure 1. The h-curve representation of sixth-order HAMFF lower solution for system (9)
of u(0.3;0.5; h).

0.5284

0.5264

h

Figure 2. The h-curve representation of sixth-order HAMFF upper solution for system (11)
of u(0.3;0.5; h).

AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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—0.761

Figure 3. The h-curve representation of sixth-order HAMFF lower solution for system (11)
of v(0.3;0.5; h).

Figure 4. The h-curve representation of sixth-order HAMFF upper solution for system (9)
of v(0.3;0.5; h).

Table 1.
solution

optimal value of hj.

Best values of the convergence control parameter of sixth-order HAMFF
Ti(x,a) of system (11) at x = 0.3 and a = 0.5, where * denoted to the

*
hyy

-0.993770765902976

-0.940282902800624

-0.913774159351708

7 o%
hi1

-0.995692236847504

-0.937399868820798

-0.908804197021662

AIMS Mathematics
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Table 2. Best values of the convergence control parameter of sixth-order HAMFF
solution ¥(x,a) of system (11) at x = 0.3 and a = 0.5, where * denoted to the
optimal value of h,.

*
ha

-0.997396591174385

has

-0.943482345592162

has

-0.911405157147745

ook
haq

-0.999232447779833

EZZ

-0.940161255064283

E23

-0.906821208973723

By comparing the Tables 3—6, we can see how the results improve after the minimization process.

Table 3. Solution and accuracy sixth-order HAMFF for system (9) of #i(x, @) at x = 0.5

and h; = —1 with 0 < a < 1.

v _ e (x, @)
a ug(x, a) u(x, @) —u(x )| ug(x, a) u(x, a) — ()]
0.0 0239712769 0239712815 4.628E-08 1.198563846 1.198563912 6.571E-08
0.2 0.095885107 0.095885142 3.508E-08 1.054736184 1.054736239 5.451E-08
0.4 0.047942553 0.047942529 2.388E-08 0.910908523 0.910908566 4.331E-08
0.6 0.191770215 0.191770202 1.268E-08 0.767080861 0.767080893 3.211E-08
0.8 0.335597877 0.335597875 1.485E-09 0.623253200 0.623253221 2.091E-08
1.0 0.479425538 0.479425548 9.714E-09 0.479425538 0.479425548 9.714E-09
Table 4. Solution and accuracy sixth-order HAMFF for system (11) of ¥(x, ) at x = 0.5
and h; = —1 with 0 < a < 1.
|EE(x' (X) - = IEE(x' (X)
a ve(x, @) v(x, ) “o(x, )| vg(x, a) v(x,a) — (x|
0.0 2193956404  2.193956432 2.793E-08  3.949121528 3.949121561  3.340E-08
0.2 1579648611  1.579648633 2.180E-08  3.334813735 3.334813762  2.726E-08
0.4 0.965340818  0.965340833 1.566E-08  2.720505941 2.720505962  2.113E-08
0.6 0351033024 0351033034 9.535E-09  2.106198148 2.106198163  1.499E-08
0.8 0.263274768 0.263274765 3.401E-09 1.491890355 1.491890364 8.865E-09
1.0 0.877582561 0.877582564 2.731E-09 0.877582561 0.877582564 2.731E-09

Tables 3 and 4 show a comparison of the absolute errors applying the HAMFF (m = 6) with the
exact solutions (11) within the interval 0 < a <1 at x = 0.5 with best values of the convergence
control parameter h; after minimization which are listed in the following tables (see Tables 5 and 6).
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Table 5. Solution and accuracy sixth-order HAMFF for system (11) of @i(x,a) at = 0.3 ,

iil S hlll iil S Elland 0 S (04 S 1.

e _ e (x, @)
a ug(x, @) u(x, a) " u(x, )| ug (x, a) u(x, a) ()|
0.0 0239712769 0239712775 5.966E-09  1.198563846 1.198563860  1.350E-08
0.2 0.095885107 0.095885113 6.133E-09  1.054736184 1.054736195  1.040E-08
0.4 0.047942553 0.047942547 6.300E-09 0.910908523 0.910908530 7.315E-09
0.6 0.191770215 0.191770208 6.467E-09 0.767080861 0.767080865 4.221E-09
0.8 0.335597877 0.335597870 6.634E-09 0.623253200 0.623253201 1.128E-09
1.0 0.479425538 0.479425531 6.800E-09 0.479425538 0.479425536 1.964E-09
Table 6. Solution and accuracy sixth-order HAMFF for system (11) of ¥(x, ) at x = 0.3,
iil S hz]_, fll = EZland 0 S a S 1.
lvg (x, @) — — Ve (x, @)
a ve(x, @) v(x, ) ~o(x, )| vg(x, a) v(x,a) —(x )|
0.0 5 193956404  2.193956416 1.186E-08 3.949121528 3.949121552 2.445E-08
0.2 1579648611 1.579648621 1.028E-08 3.334813735 3.334813754 1.970E-08
0.4 0.965340818  0.965340826 8.700E-09 2.720505941 2.720505956 1.496E-08
0.6 0351033024 0351033031 7.118E-09 2.106198148 2.106198158 1.021E-08
0.8 0.263274768 0.263274763  5.536E-09  1.491890355 1.491890360  5.463E-09
1.0 0.877582561 0.877582557  3.954E-09  0.877582561 0.877582562  7.146E-10

In the following Figures 5-10 shows the exact solutions (iig(x,a), Ug(x,a)) and the fuzzy
approximate solutions by HAM (@i (x, @), ¥(x, a)) of the system (11) are in the form of fuzzy numbers

forany 0 <a <1 atx=0.3and h; = —1.
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Figure 5. The exact and HAMFF lower and upper solutions of system (11) iz (x, @) and
ii(x,a) forall a € [0,1].

Lower

|— Exact  ©  Approximate|

Figure 6. The exact and HAMFF lower and upper solutions of system (11) ¥ (x, @) and
U(x,a) forall a € [0,1].
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Figure 7. The exact lower and upper solutions of system (11) iz (x,a) forall x,a € [0,1].

Figure 8. The HAMFF lower and upper solutions of system (11) and #(x,a) forall x,a € [0,1].

AIMS Mathematics Volume 10, Issue 1, 1704-1740.



1719

Figure 9. The exact lower and upper solutions of system (11) ¥z (x,a) forall x,a € [0,1].

Figure 10. The HAMFF lower and upper solutions of system (9) and ¥(x, @) forall x,a € [0,1].

According to Figures 5-10, one can summarize that the sixth-order HAMFF solutions of system (9)
satisfied the fuzzy solution in triangular fuzzy number forms. To show HAMFF accuracy of Eq (11)
crisp version was solved via the Euler polynomials (EP) [10] and Laguerre polynomials methods [11]
(MLP), comparison between sixth-order HAMFF solution EP with N = 6 iterations MLP [11] with
N =5 iterations can be made when @« = 1 which is equivalent to the crisp version of Eq (11) at the
same values of x € [0,1] that illustrated in Tables 7 and 8 and are displayed in Table 9 below.
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Table 7. Accuracy of sixth-order HAMFF solution for system (11)at « =1 and h; = —1.

X ug(x,1) u(x, 1) I—ui((fc',ll))l veg(x, 1) v(x, 1) l—vi(()jc’,ll))l
0.0 0.0 0.0 0.0 1.0 1.0 0.0
0.2 0.198669330 0.198669332 1.832E-09 0.980066577 0.980066579 1.758E-09
0.4 0.389418342 0.389418351 8.876E-09 0.921060994 0.921061000 6.568E-09
0.6 0.564642473 0.564642474 7.133E-10 0.825335614 0.825335599 1.523E-08
0.8 0.717356090 0.717355970 1.199E-07 0.696706709 0.696706666  4.290E-08
1.0 0.841470984 0.841470265 7.190E-07 0.540302305 0.540305187 2.881E-06
Table 8. Control parameters at &« = 1, where h; is the ideal expression.
hy1* | -0.997358653933643 | hy, | -0.934546746098124 | hq3 | -0.905342473297271
hy1* | -1.000822093275177 | h,, | -0.937048072427569 | h,3 | -0.903768109332694

Table 9. Accuracy of sixth-order HAMFF solution with EP [10] and MLP [11] for system (11)

at « =1 and h; with optimal values of h; = hy4, h, = 521.

|uE(xr 1) - u(x, l)l
3.309E-07

[10]
5.801E-05

[11]
1.568E-06

|UE(xr 1) - U(x, l)l
2.941E-06

[10] [11]
1.016E-04 5.780E-06

Indeed, the sixth- order HAMFF solution system (9) obtained better solution in terms of accuracy over
EP[10] and MLP [11] at @« = 1 as illustrated in Table 9 above.
Problem 2. Consider the fuzzy version following second kind linear FSFIDEs as follows:

320

" (x,a) — x¥'(x,@) + 2x8(x, @) =2+ —x — %xz + 2x3

+ [ xtlx@i(t, a) — to(t, @)ldt,

(24)
7" (x, ) — 2xi'(x, @) + 9(x, ) = =1 — %x — 5x2
+ [ xtla(t, @) + t25(t, a)ldt,
with the boundary conditions (BCs)
1(0,a) = 2a+ 1,5 -2a), ii(1,a) = Ba—1,5—3a), 25)

7(0,a) = 2a—1,3 - 2a), 7(1,a) = (6a — 5,7 — 6a).

System (24) was derived utilizing the same fuzzy analysis in problem 1 from the crisp version SFIDEs
in[11],
where

filx, @) = [ﬁ(x, a),}_fl(x, a)] and f,(x, ) = [£2 (x, a),j_fz(x, a)] are given by

91 79 47 7
filx,a) = <%x ——x%4+2+ 2x3) a+—x+=x2,

12 20 2
23 29
folx,a) = = ax —go¥ + 3a — 4 — 3ax? — 2x?,

AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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_( )_( 91 +79 2 _9_ o 3> 29 2_|_101 4t dx?
f1 xX,a) = 3Ox 12x x°|a 3x 12x x>,
f.( )—( 23 3+32> +247 8x2 + 2
fzx,a = 5x x‘|a 3Ox X .

The exact solutions of the system (24) are

fig(x, @) = [ax? — 2ax + 2a +1,(2 — )x — (4-2a)%+ (5 - 20)),

Pg(x,a) = [(@a — 2)x? + 2a — x + a, —ax +(3-2a)x+ (2 - a)].

To solve system (24) approximately, the HAMFF is applied to system (24) such that the method
iterations are determined in the following recursive way:

Ty (x, a) = (0, a) + xii' (0, ),

(26)
Po(x, @) = U(0,a) + x7'(0, @),
where #'(0,a) = €, and #'(0, @) = C,, calculated from the BCs (25).
Choosing the linear operators
- 0%1i(x,q,0)
L[u(xl q, a)] =T
ek LT = X [X(dtdt, (27)
~ _0%P(xq,a) 070
L[v(x, q a)] - T!
with the property L[c; + c;x] = 0, where ¢; and c, are constants.
C; = 2.7581 x 107° — 1.999999995¢, El = —3.999999989 + 1.999999995«,
C, = —1.000000009 + 2.000000001«, Ez = 2.999999992 — 2.000000001a.
As in Problem 1, nonlinear operators of system (21) are defined as follows
27 ~
(Nl [ti(x,q, ), T(x,q,a)] = % —xv'(x,q,a) + 2x)i(x,q,a)
—filx,a) — fol xt[xti(x, q,a) — tv(x, q,a)l]dt, 28)
25 ~
N, [ti(x, q, @), 7(x,q, )] = % —2xu'(x,q,a) + ¥(x,q, )
~ 1 ~ ~
L +(x, @) — [, (xt)[Ei(x, q, @) + t*T(x, q, a)]dt .

Using the above definition, with the assumption H(x) = 1 we construct the zeroth-order deformation
equation

{(1 ~ QLG g, @) = o (x, )] = ghH ()N, [U(x, g, @), 5(x, q, @), 29)
(1= @)L[o(x,q, @) = Vo (x, )] = ghH (x)N;[(x, q, @), D(x, q, 2)].
Obviously, when g =0 and g =1

(x,0,) =ty(x, @), (x,1,a)=1(x a),

7(x,0,a) = Vy(x,a), ¥(x,1,a)=7(x a).
Thus, we obtain the mth —order deformation equations for m > 1 which are

{L [Tl (X, @) = XomTim—1 (x, @)] = h[RLm(z?m_l, ?m_l)], G0)
L[Tp(x, @) = XmPm-1(x, @)] = h[RZ,m(l_im—li 17m—1)]:

where
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Rl,m(‘l:im—ll 3m—1) = 17”m—l(x: a) — xﬁ,m—l(x: a) + Zxﬁm—l(x: a)
~ 1 ~ -
~(1 =) fi(x, @) = [, xt[xty_1(t, @) = t,_1 (¢, @)]dt, G1)
Rz,m(ﬁm—ll 1_7>m—1) = +ﬁ”m—1(xr a) — Zxﬁ,m—l(x’ a) + ﬁm—l(x’ a)

+(1 = X o, @) = f Xt [y (t, @) + 20y (¢, )]dE .

Now, for m > 1, the solutions of the mth-order deformation system (24) are
{ﬁm(x: a) = Xmﬁm—l(x: a) + hL™! [Rl,m(‘l:im—ll gm—l)]' (32)
I (X, @) = YmUm—1(x, @) + hL™? [Rz,m(ﬁm—p ﬁm—l)]-

Thus, the approximate solutions in a series form are given by
i(x, @) = tg(x, @) + L=y Uy (x, @),
> - 9 = (33)
U(x,a) = To(x,a) + Ypeqg Uk (x, @) .

The residual error function with respect to this solution for the system (21) is

Ei(x,a) =" (x,a) — x¥'(x,a) + 2xii(x, a) — fi(x,a) — fol xt[xii(t,a) — tU(t, @)]dt, 2
,(x, ) = 7" (x, @) — 2xu/ (x, @) + ¥(x, @) — fo,(x, ) — fol xt[ii(t, @) + t25(t, a)]dt. G4

=l

l

E

The h;(a)-curves of ninth-order HAMFF upper and lower bound solutions i(x, a) and #(x, &) at x =
0.1 and @ = 0.5 for system (21) are shown in the following Tables 10 and 11 and Figures 11-14.

=

/ 1.90-
' ) 0

=1.5 o | -0.5
h

Figure 11. The h-curve representation of ninth-order HAMFF lower solution for system (24)

of u(0.1;0.5; h).
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Figure 12. The h-curve representation of ninth-order HAMFF upper solution for system (24)
of u(0.1;0.5; h).

K 0.504

1% 4

Figure 13. The h-curve representation of ninth-order HAMFF lower solution for system (24)
of v(0.1;0.5; h).
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Figure 14. The h-curve representation of ninth-order HAMFF upper solution for system (24)
of v(0.1;0.5; h).

Table 10. Best values of the convergence control parameter of ninth-order fuzzy HAMFF
solution #i(x, @) ofsystem (24)at x = 0.1 and @ = 0.5, where * denoted to the optimal
value of h,.

hqy*

-0.994760367994695203

hy*

-0.991888973708002525

Table 11. Best values of the convergence control parameter of ninth-order HAMFF
solution ¥(x, a) of system (24) at x = 0.1 and @ = 0.5, where * denoted to the optimal
value of h,.

hy*

-0.994874792763616010

has*

-0.985659503042079665

By comparing the Tables 12—15, we can see how the results improve after the minimization process.

Table 12. Solution and accuracy of ninth-order HAMFF for system (24) of fi(x, @) at x =
0.5 and h; = -1 with 0 < a < 1.

@ w60 uxa) '_“i((’j;’”;))l Lo aww e
0.0 1.000 1.000000001 1.382E-09 3.500  3.500000005 5.577E-09
0.2 1.250 1.250000001 1.801E-09 3.250  3.250000005 5.157E-09
04 1.500 1.500000002 2.221E-09 3.000  3.000000004 4.738E-09
0.6 1.750 1.750000002 2.640E-09 2.750  2.750000004 4.318E-09
0.8 2.000 2.000000003 3.060E-09 2.500  2.500000003 3.899E-09
1.0 2250 2.250000003 3.479E-09 2.250  2.250000003 3.479E-09
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Table 13. Solution and accuracy ninth-order HAMFF for system (24) of ¥(x, ) at x =

0.5 and h; = —1 with 0 < a < 1.
lve (x, @) _ - Vg (x, @)
a ve(x a) v(x, a) e a)| vg(x, a) v(x, a) Y
0.0 1000 00004 4.770E-09 3.500  3.499999996 3.408E-09
02 0550 < 0000004 4.634E-09 3.050  3.049999996 3.544E-09
04 -0.100 000004 4.498E-09 2.600  2.599999996 3.681E-09
0.6 0350  0.349999995 4.362E-09 2.150  2.149999996 3.817E-09
0.8 0.800  0.799999995 4.225E-09 1.700  1.699999996 3.953E-09
1.0 1250  1.249999995 4.089E-09 1.250  1.249999995 4.089E-09

Tables 12 and 13 show a comparison of the absolute errors applying the HAMFF (m = 9) with the
exact solutions within the interval 0 < a < 1 at x = 0.5 with best values of the convergence control

parameter h; after minimization which are listed in the following tables (see Tables 14 and 15).

The values of €y, and C,, at x =1 for 0 < a < 1 with optimal values of h; calculated from the
BCs (25) are as follows

C; =—22133x 1077 — 1.999999995q, C; = —3.999999995 + 1.999999995¢,
G, C, = 3.000000023 — 2.000000015 a.

= —1.000000005 + 2.000000005«,

Table 14. Solution and accuracy ninth-order HAMFF for system (24) of fi(x,@) at x =

0.1 and h; = hyq, h; = hyywith 0 < a < 1.

ug(x, @) _
a ug(x a) u(x, @) | ug(x, a) u(x, a) IuE_(x, @)
—ulx,a)l
- E(x' (X)|
0.0 1.0 0.999999998 1.112E-09 3.50 3.500000002 2.503E-09
0.2 1250  1.249999999 6.640E-10 3.250  3.250000002 2.042E-09
0.4 1.500 1.499999999 2.154E-10 3.000  3.000000001 1.581E-09
0.6 1.750 1.750000000 2.331E-10 2.750  2.750000001 1.120E-09
0.8 2.000 2.000000000 6.817E-10 2.500  2.500000000 6.599E-10
1.0 2250 2.250000001 1.130E-09 2.250  2.250000000 1.990E-10
AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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Table 15. Solution and accuracy ninth-order HAMFF for system (24) of ¥(x,a) at x =

0.1 and h; = hyy, h; = hyywith 0 < a < 1.

era) _ 17 (x, @)
a ve(x a) v(x, a) e a)| vg(x, a) v(x, ) Y
0.0 -1.000 1.000000002 2.752E-09 3.500  3.500000011 1.140E-08
0.2 -0.550 0.550000002 2.194E-09 3.050  3.050000009 9.896E-09
04 -0.100 0.100000001 1.636E-09 2.600  2.600000008 8.389E-09
0.6 0.350 0.349999998 1.078E-09 2.150  2.150000006 6.882E-09
0.8 0.800 0.799999999 5.201E-10 1.700 1.700000005 5.375E-09
1.0 1.250 1.250000000 3.791E-11 1.250 1.250000003 3.868E-09

In the following Figures 15-20 shows that the exact solutions (fiz(x, a), Ug(x, @)) and the fuzzy
approximate solutions by HAMFF (ii(x, «), ¥(x, @)) of the system (24) are in the form of fuzzy

numbers forany 0 < a <1 at x = 0.1 and h; = —1.

=3.5 =3 =2.5 =2 =15
X

I — Exact O _dpproximate I

Figure 15. The exact and HAMFF lower and upper solutions of system (24) iz (x, @) and

Ti(x,a) forall a € [0,1].
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Figure 16. The exact and HAMFF lower and upper solutions of system (24) ¥z (x, @) and
U(x,a) forall a € [0,1].

L b
n [ a
|

3

in

SO0 0 T O WY W I W I IS A O U L O,

Figure 17. The exact lower and upper solutions of system (24) iz (x,a) forall x,a € [0,1].
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Figure 18. The HAMFF lower and upper solutions of system (24) and ii(x, a) forall x,a € [0,1].

Figure 19. The exact lower and upper solutions of system (24) ¥z (x, @) forall x,a € [0,1].
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Figure 20. The HAMFF lower and upper solutions of system (24) and #¥(x, a) forall x,a € [0,1].

According to Figures 15-20, one can summarize that the ninth-order HAMFF solutions of system (24)

satisfied the fuzzy solution in triangular fuzzy number forms are illustrated in Tables 16 and 17. Next,
a comparison between ninth-order HAMFF solution and the MLP [11] are displayed in Table 18 in
terms of accuracy at different values of x € [0,1] and a = 1.

Table 16. Accuracy of ninth-order HAMFF solution for system (24)at « =1 and h; = —1.

C; = 0.999999991.

The values of C;, and C,, at x =1 for a = 1 calculated from the BCs (22) are as follows
C; = —1.999999993,

lug (x, 1) |vg (x, 1)
x  ug(x,1) u(x, 1) —u(o1)] vg(x, 1) v(x, 1) — (1)
0.0 3.0 3.0 0.0 1.0 1.0 0.0
0.2 264 2.640000001 1.357E-09 1.16 1.159999998 1.652E-09
04 236  2.360000002 2.732E-09 1.24 1.239999996 3.240E-09
0.6 216 2.160000004 4.374E-09 1.24 1.239999994 5.138E-09
0.8 2.04 2.040000006 6.953E-09 1.16 1.159999991 8.385E-09
1.0 2.00 1.999999999 0.0 1.00  0.999999999 0.0
Table 17. Control parameters at &« = 1, where h; is the ideal expression.
hy1* | -0.989174220493120112
h,1* | -0.988661974289768555
AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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The values of C;, and C,, at x =1 for @« = 1 with optimal values of h;calculated from the BCs (22)
as follows
C; = —2.000000000, C, = 1.000000006.

Table 18. Accuracy of ninth-order HAMFF solution and MLP [11] for system (24) at « = 1
and h; with optimal values of hy = hy;, hy, = hy;.

x  ug(x,1) u(x,1) l—ui((}ycc’,ll))l vp(x, 1) v(x, 1) l—vi((ﬁc,,ll))l
0.0 3.0 3.0 0.0 1.0 1.0 0.0
02 264  2.639999999 1.799E-10 1.16  1.160000001 1.300E-09
0.4 2.36 2.359999999 2.774E-10 1.24 1.240000002 2.510E-09
06 216  2.159999999 1.135E-10 1.24  1.240000003 3.377E-09
0.8 2.04 2.040000001 1.026E-09 1.16 1.160000002 2.664E-09
1.0 2.00 2.000000000 0.0 1.00  0.999999999 0.0

From Table 18, the ninth-order HAMFF solution system (9) obtained better solution in terms of
accuracy MLP [11] at

a = 1 at different values of x .
Problem 3. From [4] the fuzzy version of second kind linear SFIDEs is defined as below:

() =filx,a) + f, [x?tﬁ(t, @) — xi(t, a)] dt,

¥ (xa) = fo(na) + ) [¥uc @) - Lo, o), )
with the ICs
10, 0) =(a—11—-0a), 7(0,a) =(1—a,a — 1), (36)
where
filx,a) = [ﬁ(x, a),]_cl(x, a)] = [% ax, (g - ﬁa) x],
and
flx,a) = [£2 (x, @), f,(x, a)] = [% ax?, (23—501 - %a) xz].
Section 3 of the HAMFF analysis of system (35) states the following:
g (x, @) = (0, ),
(37)

To(x, @) = 7(0, @),

and choosing the linear operators

_ 9T (x,q.2)
L[(x, q,@)] = ==, .

~ av(x,q,a) L™= fO (.)dt’
Lio(x,q, 0)] = ——,

with the property L[c;] = 0, where c; is a constant. Furthermore, the system (35) suggests that we
define the nonlinear operators as
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~ ~ 01i(x,q, ~
(Nl[u(xf q, a),v(x, q, Of)] = u(gxq 2 - fl(x; Qf)

- fol [x?tﬁ(x, q,a) +xv(x,q, a)] dt,

v (x,q,@) (38)

NZ [ﬁ(x, q, 0(), ﬁ(x, q, a)] = x - fZ (.X', Qf)

| - [P e+ Srat g @) de.

Using the above definition, with the assumption H(x) = 1, we construct the zeroth-order deformation
equation

{(1 - Q)L[a(x' q' (X) - ﬁO (x, a)] = qhH(x)Nl [a(x) q) a)) ﬁ(x) q) a)]; (39)
(1 - Q)L[ﬁ(x’ q, Qf) - ﬁO (x, a)] = qhH(x)NZ [ﬁ(x, q, 0(), ﬁ(x, q, a)]
Obviously, when g =0 and g =1
i(x,0,a) =ty(x, @), i(x,1,a)=1(x a),
7(x,0,0) = To(x,a), ¥(x,1,a) =9(x,a),
Thus, we obtain the mth —order deformation equations for m > 1 which are
L[am(x’ a) — Xmﬁm—l(x: a)] = h[Rl,m(‘l:im—ll gm—l)]'
N N = 3 (40)
L[Um(x’ a) — vam—l(xr a)] = h[Rz,m(um—ll vm—l)]:
where
Rl,m(‘l:im—ll 3m—1) = ﬁ,m—l(xr a)—(1- Xm)fl (x, @)
1[xt - .
_ fo [x?tum_l(t, a) + xUpy,_4(t, a)] dt, @)
Rz,m(ﬁm—li gm—l) = fjlm—l(x; a)—(1- Xm)fz (x,a)
1 ~ 2t
Iy [Pmo1 (60 + S P (6 @)
Now, for m > 1, the solutions of the mth-order deformation system (35) are
am(x: a) = Xmam—l(xr a) + hL_l[Rl,m(l:im—l' gm—l)]:
~ ~ -1 = jord (42)
vm(x’ a) = vam—l(x: a) + hL [Rz,m(um—l' vm—l)]-
Thus, the approximate solutions in a series form are given by
i(x, @) = tg(x, @) + L=y Uy (x, @),
i - o (43)
U(x,a) = To(x,a) + Ypeqg Uk (x, @) .
The residual error function with respect to this solution for the system (32) is
RE:(x,@) = @ (x,@) ~ fy(x,@) = J; [ a6 @) + x0(t,@)] dt,
’ (44)

RE;(x,a) = 7'(x,@) — fy(x, @) — [} [x*a(t,a) + “La(e, o)|de.

The h;(a)-curves of ninth-order HAMFF upper and lower bound solutions 7i(x, @) and #(x,a) at x =
0.5 and a = 0.5 for system (35) are shown in the following Tables 19 and 20 and Figures 21-24.
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h

Figure 21. The h-curve representation of ninth-order HAMFF lower solution for system (35)
of u(0.5;0.5; h).
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h

Figure 22. The h-curve representation of ninth-order HAMFF upper solution for system (35)
of u(0.5;0.5; h).
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Figure 23. The h-curve representation of ninth-order HAMFF lower solution for system (35)
of v(0.5;0.5; h).
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Figure 24. The h-curve representation of ninth-order HAMFF upper solution for system (35)
of ©(0.5;0.5; h).

Table 19. Best values of the convergence control parameter of ninth-order HAMFF
solution #%i(x, @) ofsystem (35)at x = 0.5 and @ = 0.5, where * denoted to the optimal
value of h,.

hy1% | -1.05007026461221104226628591648

311* -1.05090002060914472244868635790

AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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Table 20. Best values of the convergence control parameter of ninth-order HAMFF
solution ¥(x, a) of system (35)at x = 0.5 and @ = 0.5, where * denoted to the optimal

value of h,.

hy,*

-1.05012728339193604133371209084

hy,*

-1.05086285144053136204330440090

In order to validate the ninth-order HAMFF solution of system (32), a comparative analysis with the
learning algorithm iteration (LAI) [4] corresponding with 200 iteration is displayed in Tables 21 and 22 in
terms of residual errors (RE;) and (RE,) respectively for different values of 0 < @ <1 at x = 0.5.

By comparing the Tables 21-23, we can see how the results improve after the minimization
process. A comparison between ninth-order HAM solution and the fuzzy neural network [4] with 200
numerical iterations is given.

Table 21. Show a comparison of the REs (ﬁ'l)

applying the HAMFF (m =9) and

LAI [4] within the interval 0 < @ <1 at x = 0.5 and h; = —1.

a u(x, @) RE,(x,a@) LAI[4] u(x, a) RE,(x,a) LAI[4]
0.0 0.0 0.0 0.0 0.249999946 1.770E-07 8.72E-06
0.2 0.024999993 2.205E-08 1.30E-07  0.224999950 1.636E-07 6.50E-07
0.4 0.049999986 4.411E-08 3.30E-07  0.199999954 1.503E-07 6.30E-07
0.6 0.074999980 6.617E-08 2.60E-07  0.174999958 1.369E-07 4.50E-07
0.8 0.099999973 8.823E-08 1.40E-07  0.149999962 1.236E-07 4,70E-07
1.0 0.124999966 1.102E-07 1.40E-07  0.124999966 1.102E-07 1.40E-07

Table 22. Show a comparison of the REs (ﬁ'z) applying the HAMFF (m =9) and

LAI [4] within the interval 0 < a <1 at x = 0.5 and h; = —1.

a v(x,a) RE(x,a) LAI[4] v(x,a)  RE,(x,a) LAI[4]
0.0 0.0 0.0 0.0 0.374999977 1.105E-07 3.01E-06
0.2 0.049999997 1.377E-08 3.50E-07  0.349999979 1.022E-07 2.20E-06
0.4 0.099999994 2.755E-08 4.40E-07  0.324999981 9.389E-08 2.13E-06
0.6 0.149999991 4.132E-08 6.60E-07  0.299999982 8.555E-08 2.10E-06
0.8 0.199999988 5.510E-08 2.40E-07  0.274999984 7.721E-08 1.32E-06
1.0 0.249999986 6.887E-08 1.12E-06  0.249999986 6.887E-08 1.24E-06

Tables 21 and 22 show a comparison of the REs applying the HAMFF (m = 9) with the errors [4]
within the interval 0 < @ <1 at x = 0.5 with best values of the convergence control parameter h;
after minimization which are listed in the following tables (see Table 23).

AIMS Mathematics
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Table 23. REs applying the HAMFF

(m=9) at

x = 0.5 and h; are optimal values of A; i

a ulx,a) RE(x,a ulx,a) RE,(x,a v(x,a) RE(x,a. (x,a) RE,(x,a
0. 0.2499999 2.190E- 0.3749999 4.495E-
0 0.0 0.0 04 08 0.0 0.0 99 10

0. 0.0249999 2.928E- 0.2249999 2.045E- 0.0499999 1.234E- 0.3499999 2.552E-
2 99 09 94 08 99 13 99 10

0. 0.0499999 5.856E- 0.1999999 1.900E- 0.0999999 2.468E- 0.3249999 6.091E-
4 98 09 94 08 99 13 99 11

0. 0.0749999 8.784E- 0.1749999 1.755E- 0.1499999 3.703E- 0.2999999 1.333E-
6 97 09 95 08 99 13 99 10

0. 0.0999999 1.171E- 0.1499999 1.610E- 0.1999999 4.937E- 0.2749999 3.276E-
8 96 08 95 08 99 13 99 10

1. 0.1249999 1.464E- 0.1249999 1.464E- 0.2499999 6.171E- 0.2499999 5.220E-
0 96 08 96 08 99 13 99 10

In the following Figures 25-28 show that the fuzzy approximate solutions by HAMFF (ii(x, ), ¥(x, a))
of the system (32) are in the form of fuzzy numbers forany 0 < a < 1 at x = 0.5 and h; = —1.

Lower

0.8+

0.6

0.4

-0.15
X

-0.10

-0.05

Lower

5 o]

Figure 25. The HAM lower and upper solutions of system (35) #i(x,a) forall a € [0,1].
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Figure 26. The HAM lower and upper solutions of system (35) #(x,a) forall a € [0,1].

Figure 27. The HAMFF lower and upper solutions of system (35) and #%(x,a) forall x,a € [0,1].
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Figure 28. The HAMFF lower and upper solutions of system (35) and #¥(x,a) forall x,a € [0,1].

The fuzzy solution in triangular fuzzy number forms was satisfied by the ninth-order HAMFF solutions
of system (35) as shown in Figures 25-28.

6. Conclusions

The method of approximate analytical class for solving FSIDEs, known as HAMFF, is the main
topic of this work. Using the HAMFF technique, the convergence of the series solution can be
efficiently managed by selecting the best convergence parameter for each fuzzy level set. In this study,
the FSFIDEs were proposed as utilized as an experimental study to demonstrate the HAMFF
technique’s precision in solving linear systems with initial conditions. The technique was found to
produce a polynomial series solution in close-analytical form that converges to the exact solution as
the series order increases. The novelty of HAMFF derived from basic concepts of the standard HAM
and some popular definitions and properties of fuzzy sets theory. The study also used the HAMFF to
find the series solution in nonlinear terms and suggested a new fuzzy version of FSFIDEs. The HAMFF
technique was discovered to offer the series solution FSFIDEs subject to boundary conditions. The
optimal convergence parameters for the suggested problems were also ascertained by utilizing the
HAMFF's convergence behavior in fuzzy environments to increase the accuracy of the technique. A
comparison analysis between the HAMFF and other approximate techniques is presented, showing
that the HAMFF obtained a better solution in terms of accuracy. It is noteworthy to note that all the
problems in this study that were solved with HAMFF obtained the series solution in the triangular
fuzzy numbers.

AIMS Mathematics Volume 10, Issue 1, 1704—1740.
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