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mapping within a real Hilbert space framework. The technique relies two modified mildly
inertial methods and the subgradient extragradient approach. In addition, it can be viewed as
an advancement over the previously known inertial subgradient extragradient approach. Based on
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confirm the efficiency and benefit of the proposed algorithm, we present a few numerical experiments.
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1. Introduction

In [22], Muu and Oetti considered the equilibrium problem (EP) as a generalization of several
problems in nonlinear analysis, and these problems include convex minimization, variational
inequalities, Nash-equilibrium problems, fixed point problems, and saddle point problems [8, 22].
The EP has applications in many mathematical models from various fields of applied science and
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engineering such as economics, physics, image restoration, finance, ecology, network elasticity,
transportation, and optimization. Let C be a nonempty, convex, and closed subset of a real Hilbert
space H and g : C × C → R be a bifunction such that g(x, x) = 0 for all x ∈ C. The EP, as defined by
Muu and Oetti [22], is formulated as follows: Find x∗ ∈ C such that

g(x∗,w) ≥ 0, ∀w ∈ C. (1.1)

The solution of the EP (1.1) is denoted by EP(g). Due to the fact that many real-life problems are
modeled with a pseudomonotone bifunction, several authors have considered solving EP (1.1) with
pseudomonotone bifunction g; see, for example, [15–17] and the references therein. On the other
hand, the theory of fixed points is an important concept in nonlinear analysis. Many problems in
applied sciences and engineering can be formulated as fixed point problems. A point x ∈ C is called
a fixed point of a self mapping T : C → C if T x = x. In this article, the set of all fixed point of T is
denoted by F(T ) = {x ∈ C : T x = x}. Finding the common solutions of EP and fixed points problems
(FPP) is important because some mathematical models constraints can be expressed as EP and FFP.
Some of these models can be found in several practical problems such as network resource allocation,
signal processing, image restoration and so on [17].

In [32], Tada and Takahashi introduced the following hybrid method for approximating the common
solution of monotone EP and FFP of nonexpansive mappings in real Hilbert spaces:

x0 ∈ C0 = Q0 = C,

zm ∈ C such that g(zm,w) + 1
λm
〈w − zm, zm − xm〉 ≥ 0, ∀w ∈ C,

wm = αmxm + (1 − αm)Tzm,

Cm = {u ∈ C : ‖wm − u‖ ≤ ‖xm − u‖},

Qm = {u ∈ C : 〈x0 − xm, u − xm〉 ≤ 0},
xm+1 = PCm∩Qm x0.

(1.2)

It is worthy to note that the method (1.2) requires solving a strongly monotonic generalized EP for
point zm: Find zm ∈ C such that

g(zm,w) +
1
λm
〈w − zm, zm − xm〉 ≥ 0, ∀w ∈ C. (1.3)

It is difficult to approximate the solutions of EP (1.1) when the bifunction assumption is weakened
from monotone to pseudomonotone [17]. In 2008, Quoc et al. [28] considered a new method known
as the extrgradient method (EM). Their results are extension and generalization of the results of
Korpelevic [18] and Antipin [2] to the case of EP involving a pseudomonotone bifunction. In 2013,
Ahn [1] considered an iterative method for finding the common solution of EP with a pseudomonotone
bifunction and FPP of nonexpansive mappings. The major drawback of the methods in [28] and [1]
is that, one needs to solve two strongly convex optimization problems in the feasible set C in each
iteration of the algorithms. In order to improve the extragradient method, Hieu [15] followed the
results of Censor et al. [9, 10] to introduce a Halpern-type subgradient extragradient method. This
method involves a half-space in the second minimization problem. It is noticed that the Halpern-type
method is dependent on Lipschitz-type constants of the bifunction and that these constants are difficult
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to determine. Recently, Yang and Liu [33] introduced a modified Halpern-type method which does
not require the prior knowledge of the Lipschitz-type constants. Their method has a non-increasing
step-size. In real Hilbert spaces, the authors proved a strong convergence theorem for approximating
the common solution of pseudomonotone EP and FFP of nonexpansive mappings.

In order to speed up the process of solving the smooth convex minimization problem, Polyak
originally presented and examined the idea of inertial extrapolation in [27] in 1964. Since then,
scientists have employed this method to accelerate the rate at which many iterative processes converge.
Since its conception, the inertial extrapolation approach has been refined, extended, and generalized
by numerous authors; see [3–7] and the references therein. Relaxation techniques have proven to be
an effective method for improving the rate of convergence in this field of study; see [23–25]. It is
common knowledge that when inertial and relaxation techniques are combined, the results increase
and the rate of convergence is higher than when either approach is used alone; see [19, 20, 26]. Very
recently, Ceng et al. [11] introduced and studied a mildly inertial algorithm with a linesearch process for
finding a common solution of the variational inequality problem and the common fixed-point problem
of an asymptotically nonexpansive mapping and finitely many nonexpansive mappings by using a
subgradient approach. For more details on the mildly inertial concept; see, [11, 31] and the reference
in them.

Is it feasible to introduce a new step-size rule in conjunction with a new double inertial extrapolation
to solve a pseudomonotone inequality problem and a fixed point problem in the framework of Hilbert
space?

Motivated by the above results, in this article, we propose a new self-adaptive inertial subgradient
extragradient method which does not rely on the prior knowledge of the Lipschitz-type constants of the
bifunction. The suggested method is used to approximate the common solution of pseudomonotone
EP and FFP of nonexpansive in a real Hilbert space. Our method includes two modified mildly inertial
terms which improve the speed of convergence of the suggested method. Under some mild conditions
on the control parameters, we prove the weak convergence of the result of the suggested method.
Furthermore, we present some numerical examples to demonstrate the computational advantage of our
method over some well known method in the literature.

The remaining part of this article is arranged as follows: In Section 2, we give some useful results
and definitions in this study. In Section 3, we present the suggested method and the necessary
conditions for obtaining our main result. In Section 4, we establish the strong convergence results
of the suggested method. In Section 5, we present a numerical experiment to show the efficiency of
our method, and in Section 6, we give th conclusion of our study.

2. Preliminaries

In this section, we begin by recalling some known and useful results which are needed in the sequel.
Let H be a real Hilbert space. We denotes strong and weak convergence by “→” and “⇀”, respectively.
For any x, y ∈ H and α ∈ [0, 1], it is well-known that

‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2. (2.1)

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2. (2.2)
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‖x − y‖2 ≤ ‖x‖2 + 2〈y, x − y〉. (2.3)

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2. (2.4)

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x − y‖2 − αγ‖x − z‖2 − γβ‖y − z‖2. (2.5)

Definition 2.1. [8, 12, 14] Let g : C ×C → R be a mapping. Then g is said to be

(a) Strongly monotone on C if there exists a constant τ > 0 such that

g(x, y) + g(y, x) ≤ −τ‖x − y‖2, (2.6)

for all x, y ∈ C;
(b) Monotone on C if

g(x, y) + g(y, x) ≤ 0, (2.7)

for all x, y ∈ C;
(c) Strongly pseudomonotone on C if there exists a constant γ > 0 such that

g(x, y) ≥ 0⇒ g(x, y) ≤ −γ‖x − y‖2, ∀x, y ∈ C;

(d) Pseudomonotone on C if

g(x, y) ≥ 0⇒ g(y, x) ≤ 0, ∀ x, y ∈ C;

(e) Satisfying a Lipschitz-like condition if there exist two positive constants L1, L2 such that

g(x, y) + g(y, z) ≥ g(x, z) − L1‖x − y‖2 − L2‖y − z‖2, ∀ x, y, z ∈ C. (2.8)

Let C be a nonempty, closed and convex subset of H. For any u ∈ H, there exists a unique point
PCu ∈ C such that

‖u − PCu‖ ≤ ‖u − y‖, ∀y ∈ C.

The operator PC is called the metric projection of H onto C. It is well-known that PC is a
nonexpansive mapping and that PC satisfies

〈x − y, PC x − PCy〉 ≥ ‖PC x − PCy‖2, (2.9)

for all x, y ∈ H. Furthermore, PC is characterized by the following property:

‖x − y‖2 ≥ ‖x − PC x‖2 + ‖y − PC x‖2

and

〈x − PC x, y − PC x〉 ≤ 0, (2.10)
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for all x ∈ H and y ∈ C. A subset C of H is called proximal if for each x ∈ H, there exists y ∈ C such
that

‖x − y‖ = d(x,C).

The Hausdorff metric on H is as follows:

H(A, B) := max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}
,

for all subsets A and B of H.
The normal cone NC to C at a point x ∈ C is defined by NC(x) = {z ∈ H : 〈z, x − y〉 ≥ 0, ∀y ∈ C}.

Lemma 2.1. [13] Let {δn} and {ωn} be sequences of positive real numbers, such that

δn+1 ≤ (1 + ωn)δn + ωnδn−1.

Then the following holds
δn+1 ≤ M · Πn

i=1(1 + 2ωi),

where M = max{δ1, δ2}. Moreover, if
∑∞

n=1 ωn < ∞, then {δn} is bounded.

Lemma 2.2. [21] Let {xm} be a sequence in H such that the following conditions hold:

(1) limm→∞ ‖xm − x‖ exist for any x ∈ H;
(2) all weak cluster points of {xn} lies in H.

Then {xm} converges weakly to some point in H.

Lemma 2.3. [30] Let {δm}, {βm} and {ωm} be sequences of positive real numbers, such that

δm+1 ≤ (1 + ωm)δm + βm.

If
∑∞

m=1 ωm < ∞, and
∑∞

m=1 βm < ∞. Then the limit of δm exists.

Lemma 2.4. [12] Let C be a convex subset of a real Hilbert space H and φ : C → R be a
subdifferential function on C. Then x∗ is a solution to the convex problem: minimize{φ(x) : x ∈ C}
if and only if 0 ∈ ∂φ(x∗) + NC(x∗), where ∂φ(x∗) denotes the subdifferential of φ and NC(x∗) is the
normal cone of C at x∗.

3. Proposed algorithm

Assumption 3.1. Condition A. Suppose that C is a nonempty, closed convex subset of a real Hilbert
space H. Let g : C ×C → R satisfies the following conditions:

(1) g is pseudomonotone on C, g(x, x) = 0 for all x ∈ H and satisfies the Lipschitz-type condition (2.8)
on H with positive constants c1, c2;

(2) g(·, x) is sequentially weakly upper semi-continuous on C for each fixed x ∈ C;
(3) g(x, ·) is convex, lower semi-continuous and subdifferential on C for every fixed x ∈ C;
(4) {Tm} is a sequence of nonexpansive mapping;
(5) S : C → C is a nonexpansive mapping;
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(6) The solution set Ω = Ep(g) ∩ F(S ) , ∅.

Next, we present the proposed modified mildly inertial subgradient extragradient algorithm
(Algorithm 3.1) and prove its weak convergence results.

Algorithm 3.1. Modified mildly inertial subgradient extragradient
Step 0. Let x0, x1 ∈ H, λ ∈ (1,∞), µ ∈ (0, 2

λ
), {γm}, {θm} ⊂ (0,∞),

∑∞
m=1 γm < ∞,

∑∞
m=1 θm < ∞ and

βm ⊂ (0, 1). For all m ∈ N, given {xm}, compute the sequence {xm+1} as follows:
Step 1. Compute

wm = xm − γm(Tmxm−1 − Tmxm),

zm = wm − θm(Tmxm−1 − Tmwm),

ym = argminu∈C{τmg(zm, u) +
1
2
‖u − zm‖

2},

if ym = zm, then stop and zm is a solution. Otherwise, go to step 2.
Step 2. Select ψm ∈ ∂2g(zm, ·)(ym) and µm ∈ NC(ym) such that

µm = zm − τmψm − ym,

and construct the half-space

Cm = {w ∈ H : 〈zm − τmψm − ym,w − ym〉 ≤ 0},

um = argminu∈Cm
{τmg(ym, u) +

1
2
‖ym − zm‖

2},

xm+1 = (1 − βm)um + βmS um,

τm+1 =

min
{
τm,

µ[‖ym−zm‖
2+‖um−ym‖

2]
4λ(g(zm,um)−g(zm,ym)−g(ym,um))}

}
, if g(zm, um) − g(zm, ym) − g(ym, um) > 0,

τm, otherwise.
(3.1)

Remark 3.1. The above iterative method is quite different from the usual double iterative methods in
the literature. The role of Tm is justified in our numerical experiment.

4. Convergence analysis

Lemma 4.1. The sequence τm+1 generated by Algorithm 3.1. Then,

lim
m→∞

τm ≥ min
{

µ

4 max{c1, c2}
, τ1

}
.

Proof. Using (3.1) in Algorithm 3.1 and (2.8), we have

µ[‖wm − um‖
2 + ‖xm+1 − um‖

2]
4λ(g(wm, xm+1) − g(wm, um) − g(um, xm+1))

≥
µ[‖wm − um‖

2 + ‖xm+1 − um‖
2]

4λ[c1‖wm − um‖
2 + c2‖xn+1 − um‖

2]

≥
µ

4λmax{c1, c2}
≥

µ

4 max{c1, c2}
. (4.1)

Thus, the sequence τm is nonincreasing and has a lower bound of µ

4 max{c1,c2}
. It then follows that, there

exists
lim

m→∞
τm ≥ min

{
µ

4 max{c1, c2}
, τ1

}
.

�
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Theorem 4.1. Let {xm} be the sequence generated by Algorithm 3.1 such that the Assumption 3.1 holds.
Then, {xm} converges weakly to a point p ∈ Ω.

Proof. Let p ∈ Ω. Using Algorithm 3.1, Lemma 2.4 and the definition of um, we have

0 ∈ ∂2

(
τmg(ym, ·) +

1
2
‖zm − ·‖

2
)
(um) + NCm . (4.2)

Let vm ∈ ∂2g(ym, um) and χ ∈ NCm(um) such that

χ = zm − ψmvm − um, (4.3)

since χ ∈ NCm(um), then

τm〈vm, x − um〉 ≥ 〈zm − um, x − um〉 ∀x ∈ Cm, (4.4)

and since p ∈ Ep(g), we have

τm〈vm, p − um〉 ≥ 〈zm − um, p − um〉 ∀p ∈ Cm. (4.5)

In addition, since vm ∈ ∂2g(ym, um), we obtain

τm(g(ym, p) − g(ym, um)) ≥ τm〈vm, p − um〉. (4.6)

Combining (4.5) and (4.6), we have

τm(g(ym, p) − g(ym, um)) ≥ 〈zm − um, p − um〉. (4.7)

Since, p ∈ Ω, then g(p, ym) ≥ 0, thus, using the fact that g is pseudomonotone, we have g(ym, p) ≤ 0.
Hence, we get

−2τmg(ym, um) ≥ 2〈zm − um, p − um〉. (4.8)

Using the fact that um ∈ Cm, we obtain

〈zm − τmψm − ym, um − ym〉 ≤ 0,

so,
τm〈ψm, um − ym〉 ≥ 〈zm − ym, um − ym〉.

Since ψm ∈ ∂2g(zm, ym), and the definition of subdifferential, we obtain

g(zm, y) − g(zm, ym) ≥ 〈ψm, y − ym〉∀y ∈ H,

it then follows that

2τm(g(zm, um) − g(zm, ym)) ≥ 2〈zm − ym, um − ym〉. (4.9)

Using (4.8) and (4.9), we have
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2τm(g(zm, um) − g(zm, ym) − g(ym, um))
≥2〈zm − ym, um − ym〉 + 2〈zm − um, p − um〉

≥‖zm − ym‖
2 + ‖um − ym‖

2 + ‖um − p‖2 − ‖p − zm‖
2, (4.10)

which implies that

‖p − um‖
2 ≤ ‖zm − p‖2 − ‖zm − ym‖

2 − ‖um − ym‖
2 + 2τm(g(zm, um) − g(zm, ym) − g(ym, um)). (4.11)

Thus, using (3.1), we have

‖um − p‖2 ≤ ‖zm − p‖2 − ‖zm − ym‖
2 − ‖um − ym‖

2 +
µτm

2λτm+1
[‖zm − ym‖

2 + ‖um − ym‖
2]. (4.12)

Clearly, limm→∞
µτm

2λτm+1
=

µ

2λ < 1. Thus, we have

‖um − p‖2 ≤ ‖zm − p‖2 − (1 −
µ

2λ
)[‖zm − ym‖

2 + ‖um − ym‖
2]. (4.13)

In addition, using Algorithm 3.1, we have

‖zm − p‖ = ‖wm − θm(Tmxm−1 − Tmwm) − p‖

= ‖(wm − p) + [−θm(Tmxm−1 − Tmwm)]‖
≤ ‖wm − p‖ + ‖(−θm)(Tmxm−1 − Tmwm)‖
= ‖wm − p‖ + θm‖xm−1 − wm‖

= ‖xm − γm(Tmxm−1 − Tmxm) − p‖ + θm‖xm−1 − (xm − γm(Tmxm−1 − Tmxm))‖
≤ ‖xm − p‖ + γm‖xm−1 − xm‖ + θm‖xm−1 − xm‖ + θmγm‖xm−1 − xm‖

= ‖xm − p‖ + (γm + θm + θmγm)‖xm−1 − xm‖. (4.14)

Using Algorithm 3.1, (4.13), and the definition of S , we have

‖xm+1 − p‖2 = ‖(1 − βm)um + βmS um − p‖2

= (1 − βm)‖um − p‖2 + βm‖S um − p‖2 − βm(1 − βm)‖S um − um‖
2

≤ ‖um − p‖2 − βm(1 − βm)‖S um − um‖
2

≤ ‖zm − p‖2 − (1 −
µ

2λ
)[‖zm − ym‖

2 + ‖um − ym‖
2] − βm(1 − βm)‖S um − um‖

2

≤ ‖zm − p‖2. (4.15)

From (4.14) and (4.15), we have

‖xm+1 − p‖ ≤ ‖zm − p‖

≤ ‖xm − p‖ + (γm + θm + θmγm)‖xm−1 − xm‖

≤ ‖xm − p‖ + ωm[‖xm−1 − p‖ + ‖xm − p‖]
= (1 + ωm)‖xm − p‖ + ωm‖xm−1 − p‖, (4.16)
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where ωm = γm + θm + θmγm. Using Lemma 2.1, we have that {xm} is bounded, consequently the
sequences {wm}, {zm} and {um} are bounded. It then follows that

∑∞
m=1 ωm‖xm−1 − p‖ < ∞. Using (4.16)

and Lemma 2.3, we have that limm→∞ ‖xm − p‖ exists. As such from (4.16), we obtain that

lim
m→∞

(γm + θm + θmγm)‖xm−1 − xm‖ = 0. (4.17)

Thus, we obtain

lim
m→∞
‖xm−1 − xm‖ = 0. (4.18)

From (4.14), we have that

‖zm − p‖2

≤‖xm − p‖2 + 2(γm + θm + θmγm)‖xm−1 − xm‖‖xm − p‖ + (γm + θm + θmγm)2‖xm−1 − xm‖
2. (4.19)

Thus, using (4.15) and (4.19), we have

‖xm+1 − p‖2 ≤ ‖zm − p‖2 − (1 −
µ

2λ
)[‖zm − ym‖

2 + ‖um − ym‖
2] − βm(1 − βm)‖S um − um‖

2

≤ ‖xm − p‖2 + 2(γm + θm + θmγm)‖xm−1 − xm‖‖xm − p‖ + (γm + θm + θmγm)2‖xm−1 − xm‖
2

− (1 −
µ

2λ
)[‖zm − ym‖

2 + ‖um − ym‖
2] − βm(1 − βm)‖S um − um‖

2, (4.20)

which implies that

(1 −
µ

2λ
)[‖zm − ym‖

2 + ‖um − ym‖
2] + βm(1 − βm)‖S um − um‖

2 (4.21)

≤‖xm − p‖2 − ‖xm+1 − p‖2 + 2(γm + θm + θmγm)‖xm−1 − xm‖‖xm − p‖ + (γm + θm + θmγm)2‖xm−1 − xm‖
2.

Using (4.18), we have

lim
m→∞

[(1 −
µ

2λ
)[‖zm − ym‖

2 + ‖um − ym‖
2] + βm(1 − βm)‖S um − um‖

2] = 0,

which implies that

lim
m→∞
‖zm − ym‖ = 0 , lim

m→∞
‖um − ym‖ = 0 and lim

m→∞
‖S um − um‖ = 0. (4.22)

Furthermore, from Algorithm 3.1, we have

‖zm − xm‖ ≤ ‖wm − xm‖ + θm‖xm−1 − wm‖

≤ ‖xm − γm(Tmxm−1 − Tmxm) − xm‖ + θm‖xm−1 − xm + γm(Tmxm−1 − Tmxm)‖
≤ ‖xm−1 − xm‖ + θm‖xm−1 − xm‖ + θmγm‖xm−1 − xm‖. (4.23)

Using (4.18), we have

lim
m→∞
‖zm − xm‖ = 0 = lim

m→∞
‖wm − xm‖. (4.24)
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Using (4.22) and (4.24), we have

lim
m→∞
‖xm − um‖ ≤ lim

m→∞
‖xm − zm‖ + lim

m→∞
‖zm − ym‖ + lim

m→∞
‖ym − um‖ = 0. (4.25)

We need to establish that the sequence {xm} converges weakly to x∗ ∈ Ω. Since {xm} is bounded, there
exists a weakly convergent subsequence of {xm}. Suppose that {xmk} is the subsequence of {xm} such
that {xmk} converges weakly to x∗. Furthermore, using (4.25), we obtain that a subsequence of {un} say
{unk} converges weakly to x∗, and using (4.22) and by the demiclosedness, we have that x∗ ∈ F(S ).
Using (4.9) and the subdifferential of g, we have

τmk(g(zmk , x) − g(zmk , ymk)) ≥ 〈zmk − ymk , x − ymk〉 ∀ x ∈ C, (4.26)

taking limit as k → ∞ and using Assumption 3.1(1) and (3), and the fact that limk→∞ τmk = τ > 0, we
have that g(x∗, x) ≥ 0 for all x ∈ C. Hence, x∗ ∈ Ω. Using Lemma 2.2, we obtain that {xm} converges
weakly to p and p ∈ Ω. �

5. Numerical example

In this section, some numerical examples are given to authenticate our main result. We compare
the performance of the numerical behavior of our Algorithm 3.1 (shortly, Alg. 3.1) with Algorithm 3.1
in [33] (shortly, LY Alg. 3.1) and Algorithm 4.1 in [15] (shortly, H Alg. 4.1). We perform all numerical
simulations using MATLAB R2020b and carried out on PC Desktop Intel R© CoreTM i7-3540M CPU
@ 3.00GHz × 4 memory 400.00GB.

Example 5.1. Let H = `2(R) = {x = (x1, x2, ..., xk, ...), , xk ∈ R and
∑∞

k=1 |xk|
2 < ∞} with inner product

〈·, ·〉 : `2 × `2 → R and norm ‖ · ‖ : `2 → R defined by 〈x, y〉 =
∑∞

k=1 xkyk and ‖x‖ = (
∑∞

k=1 |xk|
2)

1
2 , where

x = {xk}
∞
k=1, y = {yk}

∞
k=1. Now, let C = {x ∈ H : ‖x‖ ≤ 1}. The bifunction g : C → C is defined by

g(x, y) = (3 − ‖x‖)〈x, y − x〉,∀x, y ∈ C. As in [29], one can easily verify that g is a pseudomonotone
which is not monotone and g fulfills the Lipschitz-type condition with constants c1 = c2 = 5

2 . Let
Tm : `2 → `2 be defined by Tm = x

5m , for all m ∈ N, x ∈ C and define S : `2 → `2 by S x = x
4 , where

x = (x1, x2, ..., xk, ...), xk ∈ R. Now, we consider the following parameters for the various methods:
• For Alg. 3.1: λ = 2.4, µ = 0.7, γm = θm = 1

10m2+1 , βm = 1
5m ,

• For LY Alg. 3.1: αm = 1
1000(m+2) , βm = 0.8, λ0 = 1

4 , µ = 0.7.
• For H Alg. 4.1: λ = 2.4, αm = 1

1000(m+2) and βm = 0.8.
Next, we consider the following initial values:
Case A: x0 = (0, 1, 0, ..., 0, ...), x1 = (1, 1, 1, , ..., 0, ...),
Case B: x0 = (1, 1, 0, ..., 0, ...), x1 = (0, 1, 1, , ..., 0, ...),
Case C: x0 = (1, 0, 1, ..., 0, ...), x1 = (1, 0, 1, , ..., 0, ...),
Case D: x0 = (1, 0, ..., 0, ...), x1 = (1, 1, 0, , ..., 0, ...).

For the numerical computation, we used the stopping criterion TOLn = ‖xm+1 − xm‖ < 10−4 and we
obtained the following Table 1 and Figure 1:
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Table 1. Results of the numerical simulations for various cases.

Alg. 3.1 Alg. 3.1(Without (Tm)) YL Alg. 3.1 H Alg. 4.1
Iter CPU time (secs.) Iter CPU time (secs.) CPU time (secs.) Iter CPU time (secs.) Iter

Case A 21 0.0069 49 0.0125 0.0219 61 0.0236 82
Case B 35 0.0090 45 0.0098 0.0221 78 0.0236 82
Case C 40 0.0101 50 0.0105 0.0225 80 0.0237 85
Case D 41 0.0101 55 0.0112 0.0237 85 0.0237 85

Number of iterations
0 10 20 30 40 50 60 70 80 90

T
O

L
n

10-5

10-4

10-3

10-2

10-1

100

101

YL Alg. 3.1
Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg. 4.1

Number of iterations
0 10 20 30 40 50 60 70 80 90

T
O

L
n

10-5

10-4

10-3

10-2

10-1

100

101

YL Alg. 3.1
Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg. 4.1

Number of iterations
0 10 20 30 40 50 60 70 80 90

T
O

L
n

10-5

10-4

10-3

10-2

10-1

100

101

YL Alg. 3.1
Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg. 4.1

Number of iterations
0 10 20 30 40 50 60 70 80 90

T
O

L
n

10-5

10-4

10-3

10-2

10-1

100

101

YL Alg. 3.1
Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg. 4.1

Figure 1. Example 5.1, Case A (top left); Case B (top right); Case C (bottom left ); Case D
(bottom right ).

Example 5.2. Let H = L2([0, 1]) with the inner product 〈x, y〉 =
∫ 1

0
x(t)y(t)dt with inner product

‖x‖ = (
∫ 1

0
x2(t)dt)

1
2 for all x, y ∈ L2([0, 1]). We define the set C by C = {x ∈ H :

∫ 1

0
(s2 + 1)x(s)ds ≤ 1}

and the function g : C × C → R is defined by g(x, y) = 〈Bx, y − x〉, where Bx(s) = max{0, x(s)},
s ∈ [0, 1] for all x ∈ H. Now, let the mapping Tm : C → C be defined by Tmx = x

2m , for each m ∈ N and
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define S : C → C by S x = x
3 , for each x ∈ C. Now, we consider the following initial values:

Case I: x0 = s3 + 1, x1 = sin(3s),
Case II: x0 =

sin(4s)
30 , x1 =

cos(3s)
3 ,

Case III: x0 =
exp(3s)

80 , x1 =
exp(4s)

80 ,
Case IV: x0 = s3 + s2, x1 = s2 + 1.
For the numerical computation, we use the same parameters as in Example 5.1. We consider the
stopping criterion Tolm = ‖xm+1 − xm‖ < 10−5 and the following Table 2 and Figure 2 are obtained.

Table 2. Results of the numerical simulations for various cases.

Alg. 3.1 Alg. 3.1(Without (Tm)) YL Alg. 3.1 H Alg. 4.1
Iter CPU time (secs.) Iter CPU time (secs.) CPU time (secs.) Iter CPU time (secs.) Iter

Case A 25 0.0070 30 0.0092 0.0105 50 0.0226 80
Case B 38 0.0098 49 0.0102 0.0220 79 0.0224 84
Case C 40 0.0120 50 0.0105 0.0225 83 0.0225 84
Case D 41 0.0121 56 0.0123 0.0224 85 0.0230 90

Number of iterations
0 10 20 30 40 50 60 70 80

T
O

L
n

10-5

10-4

10-3

10-2

10-1

100
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m
)

Alg. 3.1
H Alg 4.1

Number of iterations
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L
n

10-5

10-4

10-3
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10-1

100

101
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Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg 4.1

Number of iterations
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YLAlg. 3.1
Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg 4.1

Number of iterations
0 10 20 30 40 50 60 70 80 90

T
O

L
n

10-5

10-4

10-3

10-2

10-1

100

101

YLAlg. 3.1
Alg. 3.1 (without T

m
)

Alg. 3.1
H Alg 4.1

Figure 2. Example 5.2, Case I (top left); Case II (top right); Case III (bottom left ); Case
IV (bottom right ).
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Remark 5.1. From the Tables 1 and 2 and Figures 1 and 2, it is evident that our new method
outperforms the compared methods.

6. Conclusions

In this work, we have introduced a modified subgradient extragradient iterative algorithm for
approximating the common solution of EP with pseudomonotone bifunction and FPP of nonexpansive
mappings in a real Hilbert space. The proposed method employs a self-adaptive step-size and does not
rely on the prior knowledge of the Lipscihtz-type constants of the pseudomonotone bifunctions. Under
some mild conditions, we proved the weak convergence result of the new method. We have shown
that the suggested method which includes two modified mildly inertial steps outperforms several well
known methods in the existing literature.
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