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1. Introduction

This paper deals with the oscillatory behavior of mixed neutral differential equations

(
r (s)

(
(y (s) + ψ (s) y (λ (s)))′

)α)′
+

∫ a2

a1

η (s, ϱ) 𭟋 (y (δ (s, ϱ))) dϱ = 0, (1.1)

where s ≥ s0. Throughout this study, we will assume:

(M1) α > 1 is the quotient of odd positive integers;

(M2) r ∈ C1 ([s0,∞) , (0,∞)) , r′ ≥ 0, η ∈ C ([s0,∞) × [a1, a2] ,R) , η (s, ϱ) ≥ 0 for s ≥ s0 and
ϱ ∈ [a1, a2] , ψ ∈ C ([s0,∞) , (0, 1)) , inf s≥s0 ψ (s) , 0, ψ, η are not identically zero for large s, and
under the non-canonical form, that is, ∫ ∞

s0

1
r1/α (ζ)

dζ < ∞; (1.2)
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(M3) λ ∈ C ([s0,∞) , (0,∞)) , λ (s) ≤ s, and lims→∞ λ (s) = ∞;

(M4) δ ∈ C ([s0,∞) × [a1, a2] ,R) , δ (s, ϱ) ≥ s for s ≥ s0 and ϱ ∈ [a1, a2], δ has nonnegative partial
derivatives, and lims→∞ δ (s, ϱ) = ∞;

(M5) 𭟋 ∈ C (R,R) such that |𭟋 (y)| ≥ k |yα| for y , 0, where k is a constant, k > 0.

By a solution of (1.1), we mean any differentiable function ϑ (s) = y (s) + ψ (s) y (λ (s)) which
does not vanish eventually such that r (s)

(
(y (s) + ψ (s) y (λ (s)))′

)α is differentiable, satisfying (1.1) for
sufficiently large s.

As is customary, a solution y (s) of (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed oscillatory
if all its solutions oscillate.

Neutral differential equations play an important role in applications of real life, for instance, in
applied mathematics [1, 2], ecology [3], and engineering [4].

In dynamical models, oscillation and retarded/advanced effects are often formulated by means of
external sources and/or nonlinear diffusion, perturbing the natural evolution of related systems; see,
e.g., [5, 6]. The oscillation theory of differential equations is an important branch of performance of
differential equations, which is widely used in the natural sciences and engineering. Therefore, the
vibration performance of different parts has attracted people’s attention, and a lot of research work
has been done in the area of oscillatory behavior in various classes of differential equations. For
further exploration of this topic, we recommend referring to the articles cited as [7–12] and the related
references mentioned within those works.

Due to the fact that many phenomena are influenced not only by the present conditions but also
by their past states, by considering delay differential equations, we can gain insight into the intrinsic
nature of phenomena and predict their future evolution. Hence, studying delay differential equations
holds significant theoretical and practical importance.

The literature provides a comprehensive discussion of the oscillation and asymptotic behavior
of solutions for different classes of delay and advanced differential equations, see [13–26], where
the researchers have made significant contributions to this field, employing various mathematical
techniques.

Extensive efforts have been dedicated to the advancement of the oscillation theory pertaining
to second-order delay equations and advanced equations. Numerous notable contributions have
been made in this area, see [27–37]. In the case of second-order delay equations, Dzurina and
Jadlovska [27, 28] investigated the second-order differential equations(

r (s)
(
y′ (s)

)α)′
+ η (s) yα (δ (s)) = 0, (1.3)

in the non-canonical case (1.2), where δ (s) ≤ s. The authors prove that Eq (1.3) is oscillatory using
one condition.

Chatzarakis and Jadlovska [32] presented some sufficient conditions for the oscillation of (1.3) in
the canonical case ∫ ∞

s0

1
r1/α (ζ)

dζ = ∞, (1.4)

where δ (s) ≤ s.
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Research papers [33–35] presented different results in the study of the oscillation of equation(
r (s)

(
(y (s) + ψ (s) y (λ (s)))′

)α)′
+ η (s) yα (δ (s)) = 0,

in the canonical case (1.4), where δ (s) ≤ s.
In the case of advanced equations of the second-order, Jadlovska [36] and Chatzarakis et al. [37]

established new oscillation results of (1.3) in the non-canonical case (1.2), where δ (s) ≥ s.
The investigation of oscillation behavior in solutions of delay differential equations has received

considerable attention. However, when it comes to the study of mixed differential equations, the
available results are relatively scarce, see, for example, [38–43].

Qi and Yu [38] and Zhang et al. [39] studied the differential equation(
r (s)

(
(y (s) + ψ (s) y (s − δ1) + ψ1 (s) y (s + δ2))′

)α)′
+

∫ a2

a1

η1 (s, ϱ) yα (s − ϱ) dϱ +
∫ a2

a1

η (s, ϱ) yα (s + ϱ) dϱ = 0, (1.5)

where δ1, δ2 ≥ 0, ψ1 ∈ C ([s0,∞) , (0, 1)), and η1 ∈ C ([s0,∞) × [a1, a2] ,R) . By using the Riccati
transformation technique, they obtained some sufficient conditions for oscillation of (1.5), under the
conditions (1.2) and (1.4).

Using new monotonic properties, Shi and Bai [40] studied the oscillatory behavior of solutions to a
second-order nonlinear differential equation with mixed neutral terms(

r (s)
(
(y (s) + ψ1 (s) y (λ1 (s)) + ψ2 (s) y (λ2 (s)))′

)α)′
+ η (s) yβ (δ (s)) = 0,

where λ1 (s) ≤ s, λ2 (s) ≥ s, δ (s) ≥ s, and α and β are ratios of two positive odd integers. They
introduced new conditions for the oscillation under condition (1.2). In the following, we describe one
of the results obtained in [40] for the convenience of the reader.

Theorem 1.1. Let α = β. Assume that (1.2) and∫ ∞

s0

η (ζ)
(
1 − ψ1 (δ (ζ)) − ψ2 (δ (ζ))

R (λ2 (δ (ζ)))
R (δ (ζ))

)α
dζ = ∞ (1.6)

hold. If

lim sup
s→∞

πα (s)
∫ s

s1

η (ζ)
(
1 − ψ1 (δ (ζ))

π (λ1 (δ (ζ)))
π (δ (ζ))

− ψ2 (δ (ζ))
)α
πα (δ (ζ))
πα (ζ)

dζ > 1, (1.7)

then (1.1) is oscillatory, where R (s) =
∫ s

s0
r−1/α (ζ) dζ.

Using generalized Riccati substitution, Moaaz et al. [43] studied the nonlinear differential equation
with mixed neutral terms(

r (s)
(
(y (s) + ψ1 (s) y (λ1 (s)) + ψ2 (s) y (λ2 (s)))′

)α)′
+ η1 (s) yα (δ1 (s)) + η2 (s) yα (δ2 (s)) = 0, (1.8)

where ψ1, ψ2, η1, η2 ∈ C ([s0,∞) , [0,∞)) , λ1, λ2, δ1, δ2 ∈ C ([s0,∞) ,R) , λ1 (s) ≤ s, λ2 (s) ≥
s, δ1 (s) ≤ s, and δ2 (s) ≥ s. The authors obtained new oscillation criteria that guarantee the oscillation
of the studied equation under condition (1.2). In the following, we describe one of the results obtained
in [43] for the convenience of the reader.
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Theorem 1.2. Suppose that H∗ (s) ≥ G∗ (s) > 0. If

lim sup
s→∞

πα (δ2 (s) ,∞)
∫ s

s1

G∗ (ζ) dζ > 1, (1.9)

then all solutions of (1.1) are oscillatory, where

π (s,∞) =
∫ ∞

s

1
r1/α (ζ)

dζ,

H∗ (s) = η1 (s) Bα
∗ (δ1 (ζ)) + η2 (s) Bα

∗ (δ2 (ζ)) ,

G∗ (s) = η1 (s) (B∗ (δ1 (ζ)))α + η2 (s) (B∗ (δ2 (ζ)))α ,

B∗ (s) = 1 − ψ1 (s)
π (λ1 (s) ,∞)
π (s,∞)

− ψ2 (s)

and

B∗ (s) = 1 − ψ1 (s) − ψ2 (s)
π (s1, λ2 (s))
π (s1, s)

, for s ≥ s1 ≥ s0.

It is noted that most of the works concerned with studying the oscillatory behavior of mixed
differential equations were in the legal case

∫ ∞
s0

1/r1/α (ζ) dζ = ∞. Therefore, the aim of this
research was to study the oscillatory behavior of mixed differential equations in the non-canonical
case

∫ ∞
s0

1/r1/α (ζ) dζ < ∞, as well as, finding new oscillation criteria that improve and extend some
of the results in previous studies. To illustrate the applicability of our results, several examples are
presented.

2. Main results

In the following, we present some notations that will be used in the rest of the paper:

ϑ (s) := y (s) + ψ (s) y (λ (s))

and

π (s) =
∫ ∞

s

1
r1/α (ζ)

dζ.

First, we present the following useful lemmas, which will be used later in the proofs of our results.

Lemma 2.1. Let y(s) be a positive solution of (1.1). If (1.2) holds and∫ ∞

s0

(∫ a2

a1

η (ζ, ϱ) dϱ
)

dζ = ∞, (2.1)

then,
ϑ (s) > 0, ϑ′ (s) < 0,

(
r (s)

(
ϑ′ (s)

)α)′
≤ 0. (2.2)
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Proof. Suppose that (1.1) has a positive solution y(s) on [s0,∞). Obviously, y(s) > 0, y (λ (s)) > 0, and
y (δ (s)) > 0 for s ≥ s1 ≥ s0. In view of (1.1), we have

(
r (s)

(
ϑ′ (s)

)α)′
= −

∫ a2

a1

η (s, ϱ) 𭟋 (y (δ (s, ϱ))) dϱ ≤ 0. (2.3)

Thus, r (s) (ϑ′ (s))α is decreasing, and so either ϑ′ (s) < 0 or ϑ′ (s) > 0. Suppose that ϑ′ (s) > 0. Then,

y (s) = ϑ (s) − ψ (s) y (λ (s)) ≥ ϑ (s) − ψ (s)ϑ (λ (s)) ≥ ϑ (s) (1 − ψ (s)) ,

and so
𭟋 (y (δ (s, ϱ))) ≥ kyα (δ (s, ϱ)) ≥ kϑα (δ (s, ϱ)) (1 − ψ (δ (s, ϱ)))α , (2.4)

and using (2.4) and (2.3), we have

(
r (s)

(
ϑ′ (s)

)α)′
≤ −k

∫ a2

a1

η (s, ϱ)ϑα (δ (s, ϱ)) (1 − ψ (δ (s, ϱ)))α dϱ.

Since δ (s, ϱ) is nondecreasing with respect to ϱ, we find δ (s, ϱ) ≥ δ (s, a1) for ϱ ∈ (a1, a2), and so

(
r (s)

(
ϑ′ (s)

)α)′
≤ −kϑα (δ (s, a1))

∫ a2

a1

η (s, ϱ) (1 − ψ (δ (s, ϱ)))α dϱ. (2.5)

Define ω (s) by

ω (s) =
r (s) (ϑ′ (s))α

ϑα (δ (s, a1))
. (2.6)

Then, ω (s) > 0. Differentiating (2.6) and using (2.5), we find

ω′ (s) =
(r (s) (ϑ′ (s))α)′

ϑα (δ (s, a1))
−
αr (s) (ϑ′ (s))α ϑα−1 (δ (s, a1))ϑ′ (δ (s, a1)) δ′ (s, a1)

ϑ2α (δ (s, a1))

≤ −k
∫ a2

a1

η (s, ϱ) (1 − ψ (δ (s, ϱ)))α dϱ −
αr (s) (ϑ′ (s))α ϑα−1 (δ (s, a1))ϑ′ (δ (s, a1)) δ′ (s, a1)

ϑ2α (δ (s, a1))

≤ −k
∫ a2

a1

η (s, ϱ) (1 − ψ (δ (s, ϱ)))α dϱ −
αϑ′ (δ (s, a1)) δ′ (s, a1)

ϑ (δ (s, a1))
ω (s)

≤ −k
∫ a2

a1

η (s, ϱ) (1 − ψ (δ (s, ϱ)))α dϱ. (2.7)

Integrating (2.7), we get

ω (s) ≤ ω (s2) − k
∫ s

s2

(∫ a2

a1

η (ζ, ϱ) (1 − ψ (δ (ζ, ϱ)))α dϱ
)

dζ

≤ ω (s2) − k inf
s≥s2

inf
a2≥a1

(1 − ψ (δ (s, a2)))α
∫ s

s2

(∫ a2

a1

η (ζ, ϱ) dϱ
)

dζ. (2.8)

From (2.8) and (2.1), we see that ω (s) → −∞ as s → ∞, a contradiction. Thus, ϑ′ (s) > 0 is
impossible. Hence, ϑ (s) satisfies (2.2). □
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Lemma 2.2. Let y(s) be a positive solution of (1.1). If (2.2) holds, then(
ϑ (s)
π (s)

)′
≥ 0, (2.9)

for s ≥ s1 ≥ s0.

Proof. Suppose that (1.1) has a positive solution y(s) on [s0,∞). Obviously, y(s) > 0, y (λ (s)) > 0, and
y (δ (s)) > 0 for s ≥ s1 ≥ s0. Since (2.2) is satisfied, it follows from the monotonicity of r1/α (s)ϑ′ (s)
that

ϑ (s) ≥ −
∫ ∞

s

r1/α (ζ)ϑ′ (ζ)
r1/α (ζ)

dζ ≥ −r1/α (s)ϑ′ (s)
∫ ∞

s

1
r1/α (ζ)

dζ

≥ −r1/α (s)ϑ′ (s) π (s) , (2.10)

that is,
ϑ (s) + r1/α (s)ϑ′ (s) π (s) ≥ 0. (2.11)

Now, (
ϑ (s)
π (s)

)′
=
π (s)ϑ′ (s) − ϑ (s) π′ (s)

π2 (s)
. (2.12)

From (2.11) and (2.12), we conclude that(
ϑ (s)
π (s)

)′
=

r1/α (s) π (s)ϑ′ (s) + ϑ (s)
r1/α (s) π2 (s)

≥ 0.

The proof is complete. □

Next, we introduce the oscillation criteria for (1.1).

Theorem 2.1. Assume that (1.2) holds. If

0 < 1 − ψ (δ (s, a2))
π (λ (δ (s, a2)))
π (δ (s, a2))

< 1, inf
s≥s1

inf
a2≥a1

(
1 − ψ (δ (s, a2))

π (λ (δ (s, a2)))
π (δ (s, a2))

)
> 0 (2.13)

and ∫ ∞

s0

 1
r1/α (u)

(∫ u

s0

(∫ a2

a1

η (ζ, ϱ) πα (δ (ζ, ϱ)) dϱ
)

dζ
)1/α du = ∞, (2.14)

then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a positive solution y(s) on [s0,∞). Obviously, y(s) > 0, y (λ (s)) > 0, and
y (δ (s)) > 0 for s ≥ s1 ≥ s0. It is known that (2.1) is necessary for (2.14) to be valid. In fact, since the
function ∫ ∞

s0

(∫ a2

a1

η (ζ, ϱ) πα (δ (ϱ)) dϱ
)

dζ

is unbounded due to (1.2) and π′ (s) < 0, (2.1) must hold. From Lemma 2.1, we find that ϑ (s)
satisfies (2.2) for s ≥ s1, and by using (2.9) in Lemma 2.2, we see that there is c > 0 such that

ϑ (s)
π (s)

≥ c (2.15)
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and

y (s) = ϑ (s) − ψ (s) y (λ (s)) ≥ ϑ (s) − ψ (s)ϑ (λ (s))

≥ ϑ (s) − ψ (s)
π (λ (s))ϑ (s)

π (s)
= ϑ (s)

(
1 − ψ (s)

π (λ (s))
π (s)

)
,

and so

𭟋 (y (δ (s, ϱ))) ≥ kyα (δ (s, ϱ)) ≥ kϑα (δ (s, ϱ))
(
1 − ψ (δ (s, ϱ))

π (λ (δ (s, ϱ)))
π (δ (s, ϱ))

)α
. (2.16)

Using (2.16) and (1.1), we have

(
r (s)

(
ϑ′ (s)

)α)′
≤ −k

∫ a2

a1

η (s, ϱ)ϑα (δ (s, ϱ))
(
1 − ψ (δ (s, ϱ))

π (λ (δ (s, ϱ)))
π (δ (s, ϱ))

)α
dϱ. (2.17)

From (2.15) and (2.17), we see that

(
r (s)

(
ϑ′ (s)

)α)′
≤ −k

∫ a2

a1

η (s, ϱ) cαπα (δ (s, ϱ))
(
1 − ψ (δ (s, ϱ))

π (λ (δ (s, ϱ)))
π (δ (s, ϱ))

)α
dϱ. (2.18)

Integrating (2.18), we get

r (s)
(
ϑ′ (s)

)α
≤ −cαk

∫ s

s1

(∫ a2

a1

η (ζ, ϱ) πα (δ (ζ, ϱ))
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱ

)
dζ,

that is,

ϑ′ (s) ≤ −
ck1/α

r1/α (s)

(∫ s

s1

(∫ a2

a1

η (ζ, ϱ) πα (δ (ζ, ϱ))
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱ

)
dζ

)1/α

. (2.19)

Integrating (2.19), and using (2.13) and (2.14), we find

ϑ (s) ≤ ϑ (s1) −
∫ s

s1

ck1/α

r1/α (u)

∫ u

s1

∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ)) π(λ(δ(ζ,ϱ)))

π(δ(ζ,ϱ))

)α
π−α (δ (ζ, ϱ))

dϱ

 dζ


1/α

du

≤ −ck1/α inf
s≥s1

inf
a2≥a1

(
1 − ψ (δ (s, a2))

π (λ (δ (s, a2)))
π (δ (s, a2))

) ∫ s

s1

(∫ u

s1

∫ a2

a1

η(ζ,ϱ)
π−α(δ(ζ,ϱ))dϱdζ

)1/α

r1/α (u)
du + ϑ (s1) ,

from (2.13) and (2.14), we see that ϑ (s)→ −∞ as s→ ∞, a contradiction. □

Theorem 2.2. Assume that (1.2), (2.1) and (2.13) hold. If∫ ∞

s0

(
kπα (δ (ζ, a2))

∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱ −

αα+1r−1/α (ζ)
(α + 1)α+1 π (ζ)

)
dζ = ∞,

(2.20)
then (1.1) is oscillatory.
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Proof. Suppose that (1.1) has a positive solution y(s) on [s0,∞). Obviously, y(s) > 0, y (λ (s)) > 0, and
y (δ (s)) > 0 for s ≥ s1 ≥ s0. From Lemma 2.1, we see that ϑ (s) satisfies (2.2). Define ϕ (s) by

ϕ (s) =
r (s) (ϑ′ (s))α

ϑα (s)
. (2.21)

Differentiating on both sides of (2.21), we obtain

ϕ′ (s) =
(r (s) (ϑ′ (s))α)′

ϑα (s)
−
αr (s) (ϑ′ (s))α+1

ϑα+1 (s)
. (2.22)

Using (2.17) and (2.22), we find

ϕ′ (s) ≤
−k

∫ a2

a1
η (s, ϱ)ϑα (δ (s, ϱ))

(
1 − ψ (δ (s, ϱ)) π(λ(δ(s,ϱ)))

π(δ(s,ϱ))

)α
dϱ

ϑα (s)
−
αr (s) (ϑ′ (s))α+1

ϑα+1 (s)
.

By using (2.9) in Lemma 2.2 and (2.21), we conclude that

ϕ′ (s) ≤ −k
πα (δ (s, a2))

πα (s)

∫ a2

a1

η (s, ϱ)
(
1 − ψ (δ (s, ϱ))

π (λ (δ (s, ϱ)))
π (δ (s, ϱ))

)α
dϱ − αr (s)

ϕ(α+1)/α (s)
r(α+1)/α (s)

. (2.23)

Multiplying (2.23) by πα (s) and integrating the resulting inequality, we find

ϕ (s)
π−α (s)

−
ϕ (s1)
π−α (s1)

≤ −k
∫ s

s1

πα (δ (ζ, a2))
∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱdζ

−

∫ s

s1

απα (ζ)
ϕ(α+1)/α (ζ)

r1/α (ζ)
dζ −

∫ s

s1

απα−1 (ζ) ϕ (ζ)
r1/α (ζ)

dζ. (2.24)

Using the inequality

−BΩ + AΩ(α+1)/α ≥
−αα

(α + 1)α+1

Bα+1

Aα
, A, B > 0, (2.25)

where

A =
απα (ζ)
r1/α (ζ)

, B =
απα−1 (ζ)
r1/α (ζ)

and Ω = −ϕ (s) ,

(2.24) becomes

ϕ (s)
π−α (s)

−
ϕ (s1)
π−α (s1)

≤ −k
∫ s

s1

πα (δ (ζ, a2))
∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱdζ

+

∫ s

s1

αα+1

(α + 1)α+1

1
r1/α (ζ) π (ζ)

dζ. (2.26)

In view of (2.10) and (2.21), we have

1 ≥ −
r (s) (ϑ′ (s))α πα (s)

ϑα (s)
= −ϕ (s) πα (s) . (2.27)

From (2.26) and (2.27), we obtain

AIMS Mathematics Volume 9, Issue 6, 14473–14486.
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1 + πα (s1) ϕ (s1) ≥
∫ s

s1

kπα (δ (ζ, a2))
∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱdζ

−

∫ s

s1

αα+1r−1/α (ζ)
(α + 1)α+1 π (ζ)

dζ,

a contradiction. □

The following examples illustrate the applicability of our main results.

Example 2.1. Consider the following equation:s2
((

y (s) +
1
9

y
( s
2

))′)5/3′ + ∫ a2

a1

η0s3y5/3 (5s) dϱ = 0. (2.28)

We note that α = 5/3 > 1, r (s) = s2, ψ (s) = 1/9, λ (s) = s/2, η (s, ϱ) = η0s3, and δ (s, ϱ) = 5s. Then, it
is not difficult to see that

π (s) =
∫ ∞

s

1
r1/α (ζ)

dζ =
∫ ∞

s

1(
ζ2)3/5 (ζ)

dζ =
∫ ∞

s
ζ−6/5dζ =

5
s1/5 ,

0 < 1 − ψ (δ (s, a2))
π (λ (δ (s, a2)))
π (δ (s, a2))

= 1 −
(
1
9

)
21/5 < 1

and ∫ ∞

s0

 1
r1/α (u)

(∫ u

s0

(∫ a2

a1

η (ζ, ϱ) πα (δ (ζ, ϱ)) dϱ
)

dζ
)1/α du

=

∫ ∞

s0

 1(
u2)3/5


∫ u

s0

η0ζ
3 55/3(

(5ζ)1/5
)5/3

(a2 − a1)

 dζ


3/5 du

=

∫ ∞

s0

 1
u6/5

(
η0 (a2 − a1) 54/3

∫ u

s0

ζ8/3dζ
)3/5 du

=
(
η0 (a2 − a1) 54/3

)3/5
(

3
11

)3/5 ∫ ∞

s0

(
1

u6/5 u33/15
)

du = ∞.

From Theorem 2.1, we note that (2.28) is oscillatory.

Example 2.2. Consider the following equation:s9
((

y (s) +
1

20
y
( s
4

))′)3′ + ∫ 2

1
η0s5ϱy3 (4s) dϱ = 0. (2.29)

We note that a2 = 2, a1 = 1, ψ (s) = 1/20, α = 3 > 1, r (s) = s9, λ (s) = s/4, η (s, ϱ) = η0s5ϱ, and
δ (s, ϱ) = 4s. Then, it is not difficult to see that
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π (s) =
∫ ∞

s

1
r1/α (ζ)

dζ =
∫ ∞

s
ζ−3dζ =

1
2s2 ,∫ ∞

s0

(∫ a2

a1

η (ζ, ϱ) dϱ
)

dζ =
3η0

2

∫ ∞

s0

ζ5dζ = ∞,

0 < 1 − ψ (δ (s, a2))
π (λ (δ (s, a2)))
π (δ (s, a2))

= 1 −
16
20

< 1

and ∫ ∞

s0

(
kπα (δ (ζ, a2))

∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱ −

αα+1r−1/α (ζ)
(α + 1)α+1 π (ζ)

)
dζ

=

∫ ∞

s0

π3 (4ζ)
∫ a2

a1

η0ζ
5ϱ

(
1 −

1
20

2 (4ζ)2

2 (ζ)2

)3

dϱ −
34

(
2ζ2

)
44 (

ζ9)1/3

 dζ

=

∫ ∞

s0

(
3 (0.2)3 η0

24 (
46) ζ − 34 (2)(

44) ζ
)

dζ.

Consequently, we conclude that condition (2.20) is satisfied if

η0 >

(
33

) (
25

) (
42

)
(0.2)3 = 1.728 × 106. (2.30)

From Theorem 2.2, we find that (2.29) is oscillatory if (2.30) holds.

Remark 2.1. If we assume that ψ2 (s) = 0 and η1 (s) = 0 in Eq (1.8), then it follows that(
r (s)

(
(y (s) + ψ1 (s) y (λ1 (s)))′

)α)′
+ η2 (s) yα (δ2 (s)) = 0. (2.31)

Moreover, if we consider the equations9
((

y (s) +
1

20
y
( s
4

))′)3′ + η0s5y3 (4s) = 0, (2.32)

as a special case of Eq (2.31), we can apply Theorem 1.2 and conclude that

B∗ (s) = 1 −
16
20
, B∗ (s) = 1 −

1
20
,

H∗ (s) = η0s5
(
1 −

1
20

)3

and G∗ (s) = η0s5
(
1 −

16
20

)3

,

and so we see that B∗ (s) ≥ B∗ (s) > 0 and H∗ (s) ≥ G∗ (s) > 0.
Now, condition (1.9) becomes

lim sup
s→∞

πα (δ2 (s) ,∞)
∫ s

s1

G∗ (ζ) dζ = lim sup
s→∞

(
1

2 (4s)2

)3 ∫ s

s1

η0ζ
5
(
1 −

16
20

)3

dζ > 1.
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Therefore, Eq (2.32) is oscillatory if η0 > 24.576 × 106.

Now, we can apply Theorem 1.1 and conclude that conditions (1.6) is satisfied, and condition (1.7)
becomes

lim sup
s→∞

πα (s)
∫ s

s2

η (ζ)
(
1 − ψ1 (δ (ζ))

π (λ1 (δ (ζ)))
π (δ (ζ))

− ψ2 (δ (ζ))
)α
πα (δ (ζ))
πα (ζ)

dζ

= lim sup
s→∞

(
1

2s2

)3 ∫ s

s2

η0ζ
5
(
1 −

16
20

)3 (
1

2 (4ζ)2

)3 (
2ζ2

)3
dζ > 1.

Therefore, Eq (2.32) is oscillatory if η0 > 24.576 × 106.

Finally, by using Theorem 2.2, we see that condition (2.20) becomes∫ ∞

s0

(
kπα (δ (ζ, a2))

∫ a2

a1

η (ζ, ϱ)
(
1 − ψ (δ (ζ, ϱ))

π (λ (δ (ζ, ϱ)))
π (δ (ζ, ϱ))

)α
dϱ −

αα+1r−1/α (ζ)
(α + 1)α+1 π (ζ)

)
dζ

=

∫ ∞

s0

 1
2346ζ6η0ζ

5
(
1 −

1
20

2 (4ζ)2

2 (ζ)2

)3

−
34

(
2ζ2

)
44 (

ζ9)1/3

 dζ

=

∫ ∞

s0

(
(0.2)3 η0

23 (
46) ζ − 34 (2)(

44) ζ
)

dζ = ∞.

Therefore, Eq (2.32) is oscillatory if η0 > 2.592 × 106.

Thus, our results provide a better criterion for oscillation as it guarantees the oscillation of
Eq (2.32) if η0 > 2.592 × 106.

3. Conclusions

This study aimed to investigate the oscillatory properties of solutions to second-order neutral
differential equations of mixed type. The results of this paper contribute to the understanding of the
asymptotic and oscillatory behavior of such equations. Taking into account conditions (M1)–(M5),
new oscillation criteria are presented that improve and extend some results in previous studies by
employing the Riccati transformation method.

A further extension of this study is to use our results to study a class of fourth-order neutral
differential equations.
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