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1. Introduction and preliminaries

The concept of distance was axiomatically formulated in the beginning of the 19th century with the
introduction of metric spaces , by Frechet and Haussdorff. Since then, many authors have developed
this concept, with several results available in the literature. For the generalization of this concept, the
axioms of the metric space have been relaxed in several ways (see [1]), among which the notion of
a b-metric space takes great importance. Bakhtin [2] (and, independently, Czerwik [3]) presented the

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024683


14044

idea of b-metric spaces and showed different results based on the existence of fixed points. For the
sake of understanding, we present here the definition of a b-metric, also called a quasi-metric (see [4]).

Definition 1.1. (Czerwik [3]) Consider Q to be a non-empty set and b: Q × Q → [0,+∞) to be a
self-map fulfilling the below prerequisites:

(1) b(s, p) = 0⇔ s = p;
(2) b(s, p) = b(p, s) for all s, p ∈ Q;
(3) b(s, u) ≤ q[b(s, p) + b(p, u)] for all s, p, u ∈ Q, where q ≥ 1.

The function b: Q × Q → [0,+∞) is called a b-metric, while the pair (Q, b) is known as a b-metric
space.

Example 1.1. [4] The space Mp[0,1] (where p ∈ (0, 1)) of all real functions k(s), s ∈ [0, 1] such that∫ 1

0
|k(s)|pds < +∞

together with the functional

b(k, u) =
(∫ 1

0
|k(s) − u(s)|pds

) 1
p

, for each k, u ∈ Mp[0, 1]

is a b-metric space. Here, q = 2
1
p−1.

Example 1.2. [5] Let
Q = {tk : 1 ≤ k ≤ J}

for some J ∈ N and a ≥ 2. Define a function b: Q × Q→ [0,+∞) by

b(tk, tl) =


0, if k = l;
a, if |k − l| = 1;
2, if |k − l| = 2;
1, otherwise.

Accordingly, we obtain
b(ti, t j) ≤

a
2

[b(ti, tk) + b(tk, t j)]

for all i, j, k ∈ {1, 2, . . . , J}. The pair (Q, b) forms a b-metric space for a > 2. We can observe that the
standard triangular inequality does not hold in this case.

The b-metric space shares many topological properties with traditional metric spaces but does not
require continuity. Recently, Kamran et al. [6] presented a new generalization of metric spaces and
proved some important fixed-point results in the newly defined space. Further more, Alqahtani et al. [7]
studied common fixed point results on extended b-metric space.

Definition 1.2. [6] Consider Q to be a non-empty set and ϑ: Q × Q → [1,+∞). A function bϑ:
Q × Q→ [0,+∞) is said to be an extended b-metric if for all s, t, u ∈ Q the given axioms are satisfied

(1) bϑ(s, t) = 0 implies s = t;

AIMS Mathematics Volume 9, Issue 6, 14043–14061.



14045

(2) bϑ(s, t) = bϑ(t, s);
(3) bϑ(s, u) ≤ ϑ(s, u)[bϑ(s, t) + bϑ(t, u)].

The pair (Q, bϑ) is known as extended b-metric space.

Remark 1.1. [5] Suppose ϑ(s, t) = a, for a ≥ 1, then it is obvious that the b-metric and extended
b-metric spaces (bMS ) will coincide. Note that either the b-metric or the extended b-metric need to be
continuous like metric spaces.

Example 1.3. [5] Suppose p ∈ (0, 1), q > 1 and Q = lp(R) ∪ lq(R) equipped with the metric

b(s, v) =


bp(s, v), if s, v ∈ lp(R);
bq(s, v), if s, v ∈ lq(R);
0, otherwise.

Where

lr(R) = {s = {sn} ⊂ R :
+∞∑
n=1

|sn|
r < +∞}

for r = p, q, and

br(s, v) = (
+∞∑
n=1

|sn − vn|
r)1/r

for r = p, q, we can observe that (Q, bϑ) forms an extended bMS with

ϑ(s, v) =


21/p, if s, v ∈ lp(R);
21/q, if s, v ∈ lq(R);
1, otherwise.

Example 1.4. [6] Let G = {1, 2, 3}, ϑ: G×G → [1,+∞) and bϑ: G×G → [0,+∞) as ϑ(s, t) = 1+ s+ t
and

bϑ(1, 1) = bϑ(2, 2) = bϑ(3, 3) = 0 and bϑ(1, 2) = bϑ(2, 1) = 80,

bϑ(1, 3) = bϑ(3, 1) = 1000, and bϑ(2, 3) = bϑ(3, 2) = 600.

Example 1.5. [7] Let G = [0, 1], ϑ: G ×G → [1,+∞) and bϑ: G ×G → [0,+∞) be defined by

ϑ(s, e) =
1 + s + e

s + e
, bϑ(s, e) =

1
se
, s, e ∈ (0, 1], s , e;

bϑ(s, e) = 0, s, e ∈ [0, 1] s = e;

bϑ(s, 0) = bϑ(0, s) =
1
s
, s ∈ (0, 1].

Now we are going to discuss some basic notions like convergence, completeness, and Cauchy
sequence in extended bMS that are defined as:

Definition 1.3. [6] Suppose (Q,bϑ) be an extended b-metric space.

(1) A sequence {s j} j∈K in Q will converge to t ∈ Q, if for every ζ > 0 there exists K = K(ζ) ∈ K such
that bϑ(s j, s) < ζ for all j ≥ K. In this case, we write

lim
j→+∞

s j = s.
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(2) A sequence {s j} j∈K in Q is known as Cauchy sequence if for every ζ > 0 exists K = K(ζ) ∈ K such
that bϑ(s j, sm) < ζ, for all m, j ≥ K.

Definition 1.4. [5] Suppose every Cauchy sequence in Q is convergent, then the extended-bMS (Q, bϑ)
is said to be complete.

Definition 1.5. [5] Let (Q, bϑ) be an extended-bMS and ℸ: Q → Q be a self-map. For to ∈ Q, the
orbit of ℸ at to is the set

O(to, ℸ) = {to, ℸto, ℸ
2to, . . .}.

The function ℸ is known as orbitally continuous at a given point e ∈ Q if

lim
j→+∞
ℸ jto = e implies ℸℸ jto = ℸe.

Besides that, suppose every Cauchy sequence {ℸ jto} in Q is convergent, then the extended-bMS
(Q, bϑ) is called ℸ-orbitally complete.

Definition 1.6. [8] Suppose (R, bϑ) be an extended b-metric. The mapping ℸ: R → R is known as
m-continuous, where m = 1, 2, . . ., if

lim
n→+∞

ℸmtn = ℸe,

whenever tn is a sequence in R such that

lim
n→+∞

ℸm−1tn = e.

Remark 1.2. [1] It is notable that every continuous function is orbitally continuous in Q and every
complete extended-bMS is ℸ-orbitally complete for any ℸ: Q → Q, but the converse is not necessarily
true.

Besides that, it is obvious that 1-continuity results in 2-continuity, which in turn will result in 3-
continuity, and so on; but the converse of this is not true. This might be clearer from this example:
consider the self-mapping ℸ: Q→ Q, where Q = [0,+∞), defined by

T s =
{

5, if s ∈ [0, 5],
1, if s ∈ (5,+∞),

we can clearly see that ℸ is discontinuous (at s = 5), while it is 2-continuous because T 2s = 5.

Definition 1.7. [4] A self-mapping ¥: [0,+∞) → [0,+∞) is said to be a comparison function if it is
increasing and ¥n(s)→ 0 as n→ +∞ for every s ∈ [0,+∞), where ¥n is the nth iterate of ¥.

Lemma 1.1. [4] Suppose ¥: [0,+∞)→ [0,+∞) is a comparison function, then

(1) ¥ is continuous at 0;
(2) every iterate ¥k of ¥, k ≥ 1 is also a comparison function;
(3) ¥(s) < s for all s > 0.
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Definition 1.8. [4] Suppose t ≥ 1 be a real number. A self-mapping ¥: [0,+∞) → [0,+∞) is said to
be a (b)-comparison function if it is increasing and if there exist ko ∈ N, a ∈ [0, 1) and a convergent
non-negative series

∑+∞
k=1 wk such that

tk+1¥k+1(s) ≤ atk¥k(s) + wk

for k ≥ ko and any s ≥ 0.

The set of all (b)-comparison functions is denoted by Θ. The (b)-comparison function is said to be
a (c)-comparison function if we take t = 1. It is easy to show that every (c)-comparison function is a
(b)-comparison function, but the converse is not true. Another important property of (b)-comparison
functions is presented by Berinde [4].

Lemma 1.2. [4] Suppose Ξ: [0,+∞)→ [0,+∞) be a (b)-comparison function. Then:

(1) The series
∑∞

t=0 htΞt(s) converges for any s ∈ [0,+∞);
(2) The function bs: [0,+∞)→ [0,+∞) defined as

bs =

+∞∑
t=0

htΞt(s)

is increasing and is continuous at s = 0.

Remark 1.3. [5] Each (b)-comparison function Ξ satisfies Ξ(s) < s and

lim
n→+∞

Ξn(t) = 0

for each s > 0.

Definition 1.9. [9] Let α: Q × Q → [0,+∞) be a mapping and Q , ∅. A self-mapping ℸ: Q → Q is
called α-orbital admissible if for all a ∈ Q, we have

α(a, ℸ(a)) ≥ 1 implies α(ℸ(a), ℸ2(a)) ≥ 1.

Besides, the α-orbital admissible function ℸ is said to be triangular α-orbital admissible if

(ℸO) α(a, t) ≥ 1 and α(a, ℸ(t)) ≥ 1 implies α(a, ℸ(t)) ≥ 1, for all a, t ∈ Q.

Besides that, we say that the extended-bMS (Q, bϑ) is α-regular if for any sequence tn in Q such that

lim
n→∞

tn = t and α(tn, tn+1) ≥ 1,

we have α(tn, t) ≥ 1 (for more details and examples, see [9]). Popescu [9] redefined the concept of α-
admissible mapping and triangular α-admissible mapping. Qawagneha et al. [10] investigated common
fixed points for pairs of triangular α -admissible mappings. The idea of interpolative contractions was
very recently introduced by [11], and the well-known Kannan-type contractions were revisited in the
context of interpolation. Subsequently, most famous contractions (Rus [4], Ćirić [12], Reich [13],
Hardy and Rogers [14], Kannan [15], Bianchini and Grandolf [16]) have been revisited in this newly
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introduced context-(see [11,17,18]). Following this trend and using the idea of fractional interpolative
contraction, Fulga [1] established some fixed-point results in the framework of bMS . Additionally
Debnath et al. studied interpolative Hardy-Rogers and Reich-Rus-Ćirić- type contractions in b-metric
and rectangular bMS [19].

Non-linear integral equations have emerged in various fields of science and engineering, offering
powerful tools for modeling physical phenomena and solving problems in diverse areas such as
physics, engineering, and economics. Various researchers have studied these equations using different
approaches, some of which can be found in [20–22].

Motivated by the above contributions using fractional interpolative contractions some fixed-point
results are studied in the setting of extended-bMS . The work here presented generalizes some well-
known results from the existing literature. For the authenticity of the present work a key theorems is
used to establish the existence of solutions for the Fredholm integral equations. The results obtained
can be extended to investigate the existence of solutions for other integral equations (see [20, 21, 23]).

2. Main results

We initiate with the following definition of contractive mapping to prove the main results.

Definition 2.1. Let (Q, bϑ) be an extended-bMS . A mapping ℸ: Q → Q is known as Al
ℸ
-admissible

interpolative contraction (l = 1, 2) if ∃ ψ ∈ Θ and Ω: Q × Q→ [0,+∞) such that

1
2

bϑ(s, ℸs) ≤ bϑ(s, a) implies Ω(s, a)bϑ(ℸs, ℸa) ≤ ψ(Al
ℸ(s, a)), (2.1)

where p j ≥ 0, j = 1, 2, 3, 4, 5, are such that
∑5

j=1 p j = 1 and

A1
ℸ(s, a) =

[
bϑ(s, a)

]p1 ·
[
bϑ(s, ℸs)

]p2 ·
[
bϑ(a, ℸa)

]p3 ·
[bϑ(a, ℸa)(1 + bϑ(s, ℸs))

1 + bϑ(s, a)
]p4 ·

[bϑ(s, ℸa) + bϑ(a, ℸs)
2ϑ(s, ℸa)

]p5 , (2.2)

and

A2
ℸ(s, a) =


[
bϑ(s, a)

]p1 ·
[
bϑ(s, ℸs)

]p2 ·
[
bϑ(a, ℸa)

]p3 ·
[ bϑ(s,ℸs)bϑ(a,ℸa)+bϑ(s,ℸa)bϑ(a,ℸs)

max{bϑ(a,ℸa),bϑ(a,ℸs)}

]p4

·
[ bϑ(s,ℸs)bϑ(s,ℸa)+bϑ(a,ℸa)bϑ(a,ℸs)

max{bϑ(s,ℸa),bϑ(a,ℸs)}

]p5 , if max{bϑ(s, ℸa), bϑ(a, ℸs)} , 0;
0, otherwise,

(2.3)

for any s, a ∈ Q\Fixℸ(Q), (Fixℸ(Q) = {s ∈ Q|ℸs = s}).

Theorem 2.1. Let (Q, bϑ) be an extended-bMS and ℸ be an A1
ℸ-admissible interpolative contraction,

assume that ∃ a sequence {q j} j∈N, q j > 1, for all j ∈ N, such that ϑ(a j, am) < q j for all m > j, and ℸ
also satisfies:

i) There exists ao ∈ Q such that α(ao, ℸao) ≥ 1;

ii) ℸ is α-orbital admissible;

iii1) ℸ is orbitally continuous; or

iii2) ℸ is m-continuous for m ≥ 1.
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Then, ℸ possesses a fixed point ϖ ∈ Q and the sequence {ℸmao} converges to ϖ.

Proof. Suppose ao ∈ Q and the sequence {a j} be defined as a j = ℸ
jao, ∀ j ∈ N. Suppose there exists

k ∈ N such that
ak = ak+1 = ℸak,

then, we have that ak is a fixed point of ℸ and the proof is complete. Therefore, we suppose that
a j , a j+1 for any j ∈ N. Using assumption (ii), we obtain that ℸ is α-orbital admissible, so consider
that we have

α(ao, a1) = α(ao, ℸao) ≥ 1⇒ α(a1, a2) = α(ℸao, ℸ(ℸao)) ≥ 1⇒ · · · ⇒ α(a j−1, a j) ≥ 1.

On the other hand, we have that

1
2

bϑ(a j−1, ℸa j−1) =
1
2

bϑ(a j−1, a j) ≤ bϑ(a j−1, a j).

We mention in the beginning that ℸ is an A1
ℸ-admissible interpolative contraction, so from (2.1) we get

bϑ(ℸa j−1, ℸa j) ≤ α(a j−1, a j)bϑ(ℸa j−1, a j) ≤ ψ
(
A1
ℸ(a j−1, a j)

)
= ψ

([
bϑ(a j−1, a j)

]p1 ·
[
bϑ(a j−1, ℸa j−1)

]p2 ·
[
bϑ(a j, ℸa j)

]p3

·
[bϑ(a j, ℸa j)(1 + bϑ(a j−1, ℸa j1))

1 + bϑ(a j−1, a j)
]p4 ·

[bϑ(a j−1, ℸa j) + bϑ(a j, ℸa j−1)
2ϑ(a j−1, ℸa j)

]p5

)
= ψ

([
bϑ(a j−1, a j)

](p1+p2)
·
[
bϑ(a j, a j+1)

](p3+p4)

·
[ϑ(a j−1, a j+1)[bϑ(a j−1, a j) + bϑ(a j, a j+1)]

2ϑ(a j−1, a j+1)
]p5

)
= ψ

([
bϑ(a j−1, a j)

](p1+p2)
.
[
bϑ(a j, a j+1)

](p3+p4)
·
[bϑ(a j−1, a j) + bϑ(a j, a j+1)

2
]P5

)
.

So,

bϑ(a j, a j+1) = ψ
([

bϑ(a j−1, a j)
](p1+p2)

·
[
bϑ(a j, a j+1)

](p3+p4)
·
[bϑ(a j−1, a j) + bϑ(a j, a j+1)

2
]P5

)
. (2.4)

Therefore,

bϑ(a j, a j+1) <
[
bϑ(a j−1, a j)

](p1+p2)
·
[
bϑ(a j, a j+1)

]p3+p4 ·
[bϑ(a j−1, a j) + bϑ(a j, a j+1)

2
]p5 ,

i.e., [
bϑ(a j, a j+1)

](1−p3−p4)
<

[
bϑ(a j−1, a j)

](p1+p2)
·
[bϑ(a j−1, a j) + bϑ(a j, a j+1)

2
]p5 .

If exists mo ∈ N such that
bϑ(amo−1, amo) ≤ bϑ(amo , amo+1),

then the above inequality becomes

bϑ(amo , amo+1) <
[
bϑ(amo−1, amo)

](p1+p2)
.
[
bϑ(amo , amo+1)

](p5+p3+p4)
,
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i.e., [
bϑ(amo , amo+1)

](p1+p2)
<

[
bϑ(amo−1, amo)

](p1+p2)
,

so,
bϑ(amo , amo+1) < bϑ(amo−1, amo),

but it is a contradiction, so for any j ∈ N,

bϑ(a j, a j+1) < bϑ(a j−1, a j).

Furthermore, returning to inequality (2.4), we have

bϑ(a j, a j+1) ≤ ψ(bϑ(a j−1, a j)) ≤ · · · ≤ ψ j(bϑ(ao, a1)). (2.5)

Let r ∈ N and j < m, then by (2.5) together with the condition (iii) of extended-bMS , we obtain

bϑ(a j, am) ≤ ϑ(a j, am)[bϑ(a j, a j+1) + bϑ(a j+1, am)]
≤ ϑ(a j, am)[bϑ(a j, a j+1)] + ϑ(a j, am)[ϑ(a j+1, am)[bϑ(a j+1, a j+2) + bϑ(a j+2, am)]]
...

≤ ϑ(a j, am)[bϑ(a j, a j+1)] + ϑ(a j, am)ϑ(a j+, am)bϑ(a j+1, a j+2)
+ · · · + ϑ(a j, am)ϑ(a j+1, am)ϑ(a j+2, am) · · ·ϑ(am−1, am)bϑ(ao, a1)
≤ ϑ(a j, am)ψ j(bϑ(ao, a1)) + ϑ(a j, am)ϑ(a j+1, am)ψ j+1(bϑ(ao, a1))
+ · · · + [ϑ(a j, am) · · ·ϑ(am−1, am)]ψm−1(bϑ(ao, a1))
≤ ϑ(a1, am)ϑ(a2, am) · · ·ϑ(am−1, am)ψ j(bϑ(ao, a1)) + ϑ(a1, am)ϑ(a2, am)
· · ·ϑ(am−1, am)ψ j+1(bϑ(ao, a1)) + · · · + ϑ(a1, am)ϑ(a2, am) · · ·ϑ(am−1, am)ψm−1(bϑ(ao, a1)).

Let

S j =

j∑
e=1

ψe(bϑ(ao, a1))
j∏

k=1

ϑ(ak, am), S m1 =

m−1∑
e=1

ψe(bϑ(ao, a1)),

we deduce
bϑ(a j, am) ≤ S m−1 − S j−1 for all m > j.

Consider the series
∞∑
j=1

ψ j(bϑ(ao, a1))
j∏

e=1

ϑ(ae, am).

Let
q = max{q1, q2, . . . , q j},

we have

u j = ψ
j(bϑ(ao, a1))

k∏
j=1

ϑ(a j, am) ≤ ψ j(bϑ(ao, a1))q j = v j.
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From Lemma 1.2, we have that
∑∞

k=0 ψ
k(bϑ(ao, a1))qk converges. For the convergence of series using

comparison criteria, we get that

∞∑
j=1

ψ j(bϑ(ao, a1))
j∏

e=1

ϑ(ae, am)

converges, and hence
lim

j,m→∞
bϑ(a j, am) = 0.

As a result, we say that {a j} j∈N is a Cauchy sequence in a ℸ-orbitally complete extended-bMS . Hence,
there exists a point ϖ ∈ Q, such that

lim
j→∞
ℸ jao = ϖ.

We can declare that ϖ is a fixed point of the self-mapping ℸ under of any hypothesis, (iii1) or (iii2).
Indeed,

ϖ = lim
j→∞

a j = lim
j→∞
ℸa j−1.

Moreover,
lim
j→∞
ℸma j = ϖ (2.6)

for every m ≥ 1.
If ℸ is m-continuous, then

lim
j→∞
ℸma j = ℸϖ,

and by (2.6), it follows that ℸϖ = ϖ. Suppose ℸ is considered to be orbitally continuous on Q, then

ϖ = lim
j→∞

a j = lim
j→∞
ℸa j−1 = lim

j→∞
ℸ(ℸ j−1ao) = ℸϖ.

Therefore, ϖ ∈ Fixℸ(Q). □

Theorem 2.2. Let (Q, bϑ) be an extended bMS . Suppose there exists a sequence {q j}, q j > 1, for all
j ∈ N such that ϑ(a j, am) < q j, for all m > j, and ℸ is A2

ℸ-admissible interpolative contraction, and ℸ
also satisfies:

i) There exists ao ∈ Q such that α(ao, ℸao) ≥ 1;

ii) ℸ is α-orbital admissible;

iii1) ℸ is orbitally continuous; or

iii2) ℸ is m-continuous for m ≥ 1.

Then ℸ has a fixed point ϖ ∈ Q.

Proof. From the proof of the above theorem, for ao ∈ Q, we construct the sequence {a j}, where

a j = ℸa j−1 = ℸ
jao
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for any j ∈ N. Since a j−1 , a j for any j ∈ N, keeping in mind that ℸ is assumed to be A2
ℸ-admissible

interpolative contraction, we have

1
2

bϑ(a j−1, ℸa j−1) =
1
2

bϑ(a j−1, a j)

≤ bϑ(a j−1, a j),
α(a j−1, a j)bϑ(ℸa j−1, ℸa j) ≤ ψ(A2

ℸ(a j−1, a j)),

where

A2
ℸ =

[
bϑ(a j−1, a j)

]p1 ·
[
bϑ(a j−1, ℸa j−1)

]p2 ·
[
bϑ(a j, ℸa j)

]p3

·
[bϑ(a j−1, ℸa j−1)bϑ(a j, ℸa j) + bϑ(a j−1, ℸa j)bϑ(a j, ℸa j−1)

max{bϑ(a j, ℸa j), bϑ(a j, ℸa j−1)}
]p4

·
[bϑ(a j−1, ℸa j−1)bϑ(a j−1, ℸa j) + bϑ(a j, ℸa j)bϑ(a j, ℸa j−1)

max{bϑ(a j−1, ℸa j), bϑ(a j, ℸa j−1)}
]p5

=
[
bϑ(a j−1, a j)

]p1 ·
[
bϑ(a j−1, a j)

]p2 ·
[
bϑ(a j, a j+1)

]p3

·
[bϑ(a j−1, a j)bϑ(a j, a j+1) + bϑ(a j−1, a j)bϑ(a j, a j)

max{bϑ(a j, a j+1), bϑ(a j, a j)}
]p4

·
[bϑ(a j−1, a j)b(a j−1, a j+1) + bϑ(a j, a j+1)bϑ(a j, a j)

max{bϑ(a j−1, a j+1), bϑ(a j, a j)}
]p5

=
[
bϑ(a j−1, a j)

](p1+p2+p5+p4)
·
[
bϑ(a j, a j+1)

]p3 .

Since, by assumption, it follows that α(a j−1, a j) ≥ 1 for all j ∈ N, we have

bϑ(a j, a j+1) ≤ α(a j−1, a j)bϑ(ℸa j−1, ℸa j)
≤ ψ(A2

ℸ(a j−1, a j))

= ψ(
[
bϑ(a j−1, a j)

](p1+p2+p4+p5)
·
[
bϑ(a j, a j+1)

]p3)

<
[
bϑ(a j−1, a j)

](p1+p2+p4+p5)
·
[
bϑ(a j, a j+1)

]p3 .

Therefore, [
bϑ(a j, a j+1)

](1−p3)
<

[
bϑ(a j−1, a j)

](p1+p2+p4+p5)
,

i.e.,
bϑ(a j, a j+1) < bϑ(a j−1, a j), for any j ∈ N.

Furthermore, keeping in mind ψ2, we obtain

bϑ(a j, a j+1) < ψ(bϑ(a j−1, a j)) < ψ2(bϑ(a j−2, a j−1)) < · · · < ψ j(bϑ(ao, a1)),

and using the same method as in the proof of Theorem 2.1, we can see that the sequence {a j} is Cauchy.
Furthermore, since (Q, bϑ) is considered to be ℸ-orbitally complete, we can find a point ϖ ∈ Q such
that

lim
j→∞
ℸ jao = ϖ.
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Consider that ℸ is m-continuous, we have

ℸϖ = lim
j→∞
ℸma j = lim

j→∞
a j+m = ϖ,

and suppose that ℸ is orbitally continuous,we obtain

ℸϖ = lim
j→∞
ℸ(ℸ jao) = lim

j→∞
ℸa j = lim

j→∞
a j+1 = ϖ,

it means that ϖ is a fixed point of ℸ. □

The following corollaries are observed from the above results.

Corollary 2.1. Suppose (Q, bϑ) be a complete extended b-metric space. Suppose that there exists a
sequence {p j} j∈N , p j > 1 for all j ∈ N such that ϑ(s j, sm) < q j for all m > j and ℸ: Q → Q be a
mapping such that

α(s, v)bϑ(ℸs, ℸv) ≤ ψ(Al
ℸ(s, v)).

For any s, v ∈ Q\Fix(Q), where Al
ℸ
, l = 1, 2 is defined by (2.2) and (2.3), and ψ ∈ Θ. Then, ℸ has a

fixed point ϖ ∈ Q provided that:

i) There exists uo ∈ Q such that α(uo, ℸuo) ≥ 1;

ii) ℸ is α-orbital admissible;

iii1) ℸ is orbitally continuous; or

iii2) ℸ is m-continuous for m ≥ 1.

Corollary 2.2. Suppose (Q, bϑ) be a complete extended b-metric space. Suppose that there exists a
sequence {p j} j∈N, p j > 1, for all j ∈ N such that ϑ(s j, sm) < p j, for all m > j and ℸ: Q → Q be a
mapping such that

1/2bϑ(s, ℸs) ≤ bϑ(s, v) implies bϑ(ℸs, ℸv) ≤ ψ(Al
ℸ(s, v)).

For any s, v ∈ Q\Fix(Q), where Al
ℸ
, l = 1, 2, are defined by (2.2) and (2.3), and ψ ∈ Θ. Then, ℸ has a

fixed point ϖ ∈ Q, provided that either ℸ is orbitally continuous or ℸ is m-continuous for m ≥ 1.

Proof. Plug α(s, v) = 1 in Theorems 2.1 and 2.2, respectively. □

By replacing the continuity of the function ℸ with the continuity of bϑ, we will have the following
result.

Theorem 2.3. Suppose (Q, bϑ) be a complete, α-regular extended-bMS , where bϑ is continuous, and
ℸ: Q→ Q is such that

1
2ϑ(a, v)

bϑ(a, ℸa) ≤ bϑ(a, v) implies α(a, v)bϑ(ℶa, ℸv) ≤ ψ(Al
ℸ(a, v)),

where ψ ∈ Θ and Al
ℸ
, for l = 1, 2 are given by (2.2) and (2.3). Consider that:

(1) There exists ao ∈ Q such that α(ao, ℸao) ≥ 1;
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(2) ℸ is α-orbital admissible.

Then, ℸ contains a fixed point ϖ ∈ Q, and the sequence {ℸmao} converges to this point ϖ.

Proof. As we know from the proof of Theorem 2.1, the sequence {a j} where

a j = ℸa j−1 = ℸ
jao

converges to a point ϖ ∈ Q, and this point ϖ is claimed to be a fixed point of the mapping ℸ. For this
reason, we can declare that

1
2ϑ(a, v)

bϑ(a j, ℸa j) ≤ bϑ(a j, ϖ) (2.7)

or
1

2ϑ(a, v)
bϑ(ℸa j, ℸ(ℸa j)) ≤ bϑ(ℸa j, ϖ). (2.8)

Indeed, supposing on contrary
1

2ϑ(a, v)
bϑ(a j, ℸa j) > bϑ(a j, ϖ)

and
1

2ϑ(a, v)
bϑ(ℸa j, ℸ(ℸa j)) > bϑ(ℸa j, ϖ),

we get that

bϑ(a j, a j+1) = bϑ(a j, ℸa j)
≤ ϑ(a, v)

[
bϑ(a j, ϖ) + bϑ(ϖ, ℸa j)

]
< ϑ(a, v)

[ 1
2ϑ(a, v)

bϑ(a j, ℸa j) +
1

2ϑ(a, v)
bϑ(ℸa j, ℸ(ℸa j))

]
=

1
2
[
bϑ(a j, a j+1) + bϑ(a j+1, a j+2)

]
≤ bϑ(a j, a j+1),

∵ bϑ(a j, a j+1) ≥ bϑ(a j+1, a j+2) ⇒ bϑ(a j, a j+1) < bϑ(a j, a j+1),

which leads to contradiction and then (2.7) and (2.8) holds. Keeping the regularity condition of the
space (Q, bϑ) in mind, we have that α(a j, ϖ) ≥ 1 for any j ∈ N.

Case 1. When l = 1, if (2.7) holds, we get

bϑ(a j+1, ϖ) ≤ α(a j, ϖ)bϑ(ℸa j, ℸϖ) ≤ ψ
(
A1
ℸ(a j, ϖ)

)
≤ A1

ℸ(a j, ϖ)
=

[
bϑ(a j, ϖ)

]p1 ·
[
bϑ(a j, ℸϖ)

]p2 ·
[
bϑ(ϖ, ℸϖ)

]p3

·
[bϑ(ϖ, ℸϖ)(1 + bϑ(a j, a j+1))

1 + bϑ(a j, ϖ)
]p4 ·

[bϑ(a j, ℸϖ) + bϑ(ϖ, a j+1)
2ϑ(a j, ℸϖ)

]p5 ,

we can distinguish the following two situations:

(1) p1 + p2 > 0, letting j→ +∞ above, we obtain bϑ(ϖ, ℸϖ) = 0, thus ℸϖ = ϖ.

AIMS Mathematics Volume 9, Issue 6, 14043–14061.



14055

(2) p1 = p2 = 0, when j→ ∞ above, and keeping in mind the continuity of extended-bMS we obtain

bϑ(ϖ, ℸϖ) < [bϑ(ϖ, ℸϖ)](p3+p4+p5) = bϑ(ϖ, ℸϖ),

which is a contradiction. So, we have ℸϖ = ϖ, i.e., ϖ is a fixed point of the mapping ℸ.

Case 2. When l = 2. If (2.7) holds, we obtain

bϑ(a j+1, ℸϖ) ≤ α(am, ϖ)bϑ(ℸa j, ℸϖ) ≤ ψ
(
A2
ℸ(a j, ϖ)

)
< A2

ℸ(a j, ϖ)
=

[
bϑ(a j, ϖ)

]p1 ·
[
bϑ(a j, a j+1)

]p2 ·
[
bϑ(ϖ, ℸϖ)

]p3

·
[bϑ(ϖ, ℸϖ)bϑ(a j, a j+1) + bϑ(ϖ, a j+1)bϑ(a j, ℸϖ)

max{bϑ(a j, a j+1), bϑ(a j+1, ℸϖ)}
]p4

·
[bϑ(ϖ, ℸϖ)bϑ(ϖ, a j+1) + bϑ(a j, a j+1)bϑ(a j, ℸϖ)

max{bϑ(ϖ, a j+1), bϑ(a j+1, ℸϖ)}
]p5 ,

if (2.8) holds,

bϑ(a j+2, ℸϖ) ≤ α(a j+1, ϖ)bϑ(ℸ2a j, ℸϖ) ≤ ψ
(
A2
ℸ(ℸa j, ϖ)

)
< A2

ℸ(ℸa j, ϖ)
=

[
bϑ(a j+1, ϖ)

]p1 ·
[
bϑ(a j+1, a j+2)

]p2 ·
[
bϑ(ϖ, ℸϖ)

]p3

·
[bϑ(ϖ, ℸϖ)bϑ(a j+1, a j+2) + bϑ(ϖ, a j+2)bϑ(a j+1, ℸϖ)

max{bϑ(a j+1, a j+2), bϑ(a j+2, ℸϖ)}
]p4

·
[bϑ(ϖ, ℸϖ)bϑ(ϖ, a j+2) + bϑ(a j+1, a j+2)bϑ(a j+1, ℸϖ)

max{bϑ(ϖ, a j+2), bϑ(a j+2, ℸϖ)}
]p5 ,

we can distinguish the following two situations:

(1) p1 + p2 + p4 + p5 > 0, letting j→ ∞ above, we obtain bϑ(ϖ, ℸϖ) = 0, thus ℸϖ = ϖ.
(2) p1 = p2 = p4 = p5 = 0, in this case, when j→ ∞ above, we get

bϑ(ϖ, ℸϖ) < [bϑ(ϖ, ℸϖ)]p3 = bϑ(ϖ, ℸϖ),

which is a contradiction.

So, we get ℸϖ = ϖ, i.e., ϖ is a fixed point of the mapping ℸ. □

This result possesses the below corollaries.

Corollary 2.3. Let (Q, bϑ) be a complete extended bMS . Suppose {p j} j∈N be a sequence, p j > 1 for all
j ∈ N such that ϑ(s j, sm) < p j for all m > j and ℸ: Q → Q be a mapping such that ∃ k ∈ [0, 1) such
that

1/2bϑ(s, ℸs) ≤ bϑ(s, v) implies bϑ(ℸs, ℸv) ≤ kAl
ℸ(s, v),

for any s, v ∈ Q−Fie(Q) where Al
ℸ
, l = 1, 2 are defined by (2.2) and (2.3). Then, ℸ contains a fixed point

ϖ ∈ Q, provided that either ℸ is orbitally continuous or ℸ is m-continuous for m ≥ 1.

Proof. Plug ψ(t) = kt in the above corollary. □
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Corollary 2.4. Suppose (Q, bϑ) be a complete extended-bMS such that bϑ is continuous. Suppose there
exist a sequence {p j} j∈N, p j > 1 for all j ∈ N such that ϑ(s j, sm) < p j for all m > j, and ℸ: Q → Q be
a self-mapping. Then ℸ has a fixed point provided that

1
2ϑ(s, v)

bϑ(s, ℸs) ≤ bϑ(s, v) implies bϑ(ℸs, ℸv) ≤ ψ(Al
ℸ(s, v)),

where ψ ∈ 𭟋 and Al
ℸ
, l = 1, 2 are given by (2.2) and (2.3).

Proof. Put α(s, v) = 1 in Theorem 2.3. □

Corollary 2.5. Consider (Q, bϑ) be a complete extended-bMS such that bϑ is continuous. Suppose that
exists {p j} j∈N, p j > 1 for all j ∈ N such that ϑ(s j, sm) < p j for all m > j and ℸ: Q → Q, self-mapping.
Then ℸ will have a fixed point in Q provided that there exist k ∈ [0, 1) such that

1
2ϑ(s, v)

bϑ(s, ℸs) ≤ bϑ(s, v) implies bϑ(ℸs, ℸv) ≤ kAl
ℸ(s, v),

where Al
ℸ
, l = 1, 2 are given by (2.2) and (2.3).

Proof. Substituted ψ(t) = kt in the above corollary. □

Now, we are going to present some examples of the above results.

Example 2.1. Let Q = [0,+∞) and bϑ: Q × Q→ [0,+∞) be an extended-bMS defined as

bϑ(s, v) =
{

s+v, if s , v for all s, v ∈ Q;
0, if s = v;

and ϑ: Q × Q→ [1,+∞) be defined as ϑ(s, v) = 1 + s + v for all s, v ∈ Q. Let the mapping ℸ: Q→ Q
be defined by

ℸ(s) =


1
5 , if s ∈ [0, 1);
s+1
4 , if s ∈ [1, 2];
√

s
s2+9 +

In(s2+1)
s2+7 , if s ∈ (2,+∞);

and a function α : Q × Q→ [0,+∞), where

α(s, v) =



√
s + v + 1, if s, v ∈ [0, 1);

5, if s = 0 v = 2;

s4 + v
3 , if s = 1

4 , v ∈ {3, 9};

0, otherwise.

Let also the comparison function ψ: [0,∞) → [0,∞), ψ(s) = s/3, and we choose p1 = p5 = 1/5,
p2 = p4 = 1/10, and p3 = 2/5. Therefore, we can clearly see that conditions (i) and (ii) are verified,
and since ℸ2(s) = 1/5 is continuous, condition (iv) is also satisfied.

Case (1). For s, v ∈ [0, 1], we have bϑ(ℸs, ℸv) = 0, so inequality (2.1) holds.

Case (2). For s = 0 and v = 2, we have 1
2bϑ(0, 1/2) = 1/4 ≤ 2 = bϑ(0, 2) and bϑ(ℸs, ℸv) = 0. Thus, the
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inequality (2.1) holds.

Case(3). For s = 1/4 and v = 3, we have

1/2bϑ(1/4, ℸ1/4) = 0.25 ≤ 3.25 = bϑ(1/4, 3)
⇒ α(1/4, 3)bϑ(ℸ1/4,T3)
= 0.441716 < 0.8207
= A1

ℸ(1/4, 3),

hence (2.1) holds.

Case(4). For s = 1/4 and v = 9, we have

1/2bϑ(1/4, ℸ1/4) = 0.225 ≤ 3.25 = bϑ(1/4, 9)
⇒ α(1/4, 9)bϑ(ℸ1/4, ℸ9)
= 0.8513 < 2.0433
= A1

ℸ(1/4, 9).

All other cases are true because α(s, v) = 0. Hence, the mapping ℸ is an A1
ℸ-admissible interpolative

contraction. So, as all the conditions of Theorem 2.1 are verified, we obtained that there exists a fixed
point of the mapping ℸ, that is u = 1/5.

Example 2.2. Let Q = {1, 2, 3, 5} and the extended-bMS defined bϑ: Q×Q→ R+ as bϑ(s, v) = |s− v|4

with ϑ(s, v) = 1 + x + y and ℸ: Q → Q such that ℸ(1) = ℸ(5) = 1 and ℸ(2) = ℸ(3) = 2. Taking
α: Q × Q → R+, α(s, v) = 3 f or all s, v ∈ Q, and ψ(t) = t/2. The constants here are all equal, i.e.,
pi = 1/5 ∀ i = {1, 2, 3, 4, 5}, we have

1
2ϑ(3, 5)

bϑ(3, ℸ3) = 1/18 < 16 = bϑ(3, 5),

which implies
α(3, 5)bϑ(ℸ3, ℸ5) = 3 < 8.2 = ψ(A2

ℸ(3, 5)).

Therefore, all the requirements of Theorem 2.3 are satisfied and it is clear that ℸ has (at least) a fixed
point.

3. Application

In this segment, we apply one of the observed results to study the existence of a solution for the
Fredholm integral equation. Suppose Q = C([a, b],R) be the space of all continuous real-valued
functions defined on [a,b]. Note that the space Q is complete by considering the extended-bMS

bϑ(s(e), v(e)) = sup
e∈[a,b]

|s(e) − v(e)|2

with
ϑ(s, v) = |s(e)| + |v(e)| + 2,
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where ϑ(s, v): Q × Q → [1,+∞) and ψ ∈ Θ be the b-comparison function defined as ψ(e) = e/2.
Consider the Fredholm integral equation as:

s(e) = f (e) +
∫ b

a
M(e, i, s(i))di for all i, e ∈ [a, b]. (3.1)

Define a mapping ℸ: Q→ Q, as

ℸ(s(e)) = f (e) +
∫ b

a
M(e, i, s(i))di, i, e ∈ [a, b].

Theorem 3.1. Consider that the following conditions hold:

(1) Suppose M: [p, q] × [p, q] × R→ R and g: [p, q]→ R be continuous.

(2) ℸ is Al
ℸ
-admissible interpolative contraction, Al

ℸ
, l = 1, 2 is defined in (2.2) and (2.3), respectively.

(3)

supe∈[p,q]|M(e, i, s(i)) − M(e, i, v(e))| ≤

√
Al
ℸ
(s(e), v(e))
√

2(q − p)
for each e, i ∈ [p, q] and s, v ∈ Q.

Then, the integral Eq (3.1) has a solution.

Proof. Suppose (Q, bϑ) be a complete extended-bMS and α(s, v) = 1. Then as

1
2ϑ(s(e), v(e))

bϑ(s(e), ℸ(s(e))) ≤ bϑ(s(e), ℸs(e))

= sup
e∈[p,q]

∣∣∣s(e) − ℸs(e)
∣∣∣2

= sup
e∈[p,q]

∣∣∣ f (e) +
∫ q

p
M(e, i, s(i))di − f (e) −

∫ q

p
M(e, i, s(i))di

∣∣∣2
≤ sup

e∈[p,q]

∣∣∣ f (e) +
∫ q

p
M(e, i, s(i))di − f (e) −

∫ q

p
M(e, i, v(i))di

∣∣∣2
= bϑ(s(e), v(e)),

we have

α(s(e), v(e))bϑ(ℸs(e), ℸv(e)) = bϑ(ℸs(e), ℸv(e))

= sup
e∈[p,q]

∣∣∣ℸs(e) − ℸv(e)
∣∣∣2

= sup
e∈[p,q]

∣∣∣ f (e) +
∫ q

p
M(e, i, s(i))di − f (e) −

∫ q

p
M(e, i, v(i))di

∣∣∣2
= sup

e∈[p,q]

∣∣∣ ∫ q

p
(M(e, i, s(i)) − M(e, i, v(i)))di

∣∣∣2
≤

( ∫ q

p
sup

e∈[p,q]

∣∣∣M(e, i, s(i)) − M(e, i, v(i))
∣∣∣di

)2
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≤

( ∫ q

p

√
Al
ℸ
(s(e), v(e))
√

2(q − p)
di

)2

=
Al
ℸ
(s(e), v(e))

2
= ψ(Al

ℸ(s(e), v(e))).

All the conditions of Theorem 2.3 are fulfilled. Therefore, the integral Eq (3.1) has a solution. □

4. Conclusions and future directions

Many physical problems can be described by various Fredholm integral equations. There are
several methods available in the literature for the establishment of solutions to these equations. One
powerful method is the fixed-point method. Therefore, in the current work, some new fractional
interpolative contractions were introduced. With the help of these fractional interpolative
contractions, some fixed-point results were studied in extended bMS . For the validity of the presented
results, certain examples were given. Lastly, as a practical application, an existence theorem for the
solution of the Fredholm integral equation was provided. This work generalizes some well-known
results from the existing literature. In the future, one can explore the established work for
multi-valued mapping and investigating the existence of solutions for integral inclusions.
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