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1. Introduction

In 2004, Berinde introduced a novel class of contractive type mappings initially referred to as “weak
contractions” in [1]. However, Berinde later renamed this class as “almost contractions” in [2, 3].

Definition 1. A self-mapH defined on a metric space pX, dq is termed as an almost contraction when
there exists a constant δwithin the interval p0, 1q and a nonnegative constantL, such that for all %, ς P X

dpH%,Hςq ď δdp%, ςq `LdpH%, ςq. (1.1)
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Berinde [1] proves that an almost contraction mapping H defined on a complete metric space has
at least one fixed point. This class of mappings not only unifies and generalizes renowned fixed point
theorems such as Banach, Kannan, Chatterjea, Zamfirescu, Reich, Bianchini, Ćirić, Hardy and Rogers,
Rus, Rhoades, and others, but also extends their scope significantly.

Note that the almost contraction condition (1.1) does not guarantee a unique fixed point, although a
sequence of Picard iterations converges to a fixed point. In response to this issue, Berinde [1] posed an
open question to identify a contractive condition distinct from (1.1) that ensures the uniqueness of fixed
points for weak contractions, under the conditions stated in their result. This question was addressed
by Babu et al. [4]. To establish a uniqueness theorem, they introduced a slightly stronger category of
almost contraction conditions referred to as condition (B).

Definition 2. A self-map T defined on metric space pX, dq is said to satisfy condition (B) if there exits
δ P p0, 1q and a nonnegative constant L such that for all %, ς P X,

dpH%,Hςq ď δdp%, ςq `Lmintdp%,H%q, dpς,Hςq, dp%,Hςq, dpς,H%qu. (1.2)

On the other hand, Kada et al. [5] introduced the concept of w-distance within metric spaces and
utilized it to establish a generalized fixed point theorem, extending the results of Subrahmanyam,
Kannan, Ćirić, and others. This concept influenced the improvement of several well-known results,
such as Caristi’s fixed point theorem, Ekeland’s ε-variation principle, and Takahashi’s non-convex
minimization theorem. Some recent results in this area can be found in [6–12]. Moreover, a
comprehensive collection of existence results concerning fixed points for contractive type mappings
can be found in the work of Reich and Zaslavski [13].

In the paper [14], Ran and Reuring generalized Banach’s theorem to partially ordered metric spaces.
On the other hand, in the paper [15], Alam and Imdad obtained a relational-theoretical version of the
Banach contraction principle. That result influenced the obtaining of new results, see [16–23].

The goal of this paper is to improve some known results of fixed points by using w-distances and
properties of locally symmetricH-transitivity of binary relations. Also, we give the application of the
obtained results for finding the solution of nonlinear matrix equations. Finally, we give a numerical
example to demonstrate the applicability of our results.

2. Preliminaries

In this paper, we consider that X represents a nonempty set, R denotes a nonempty binary relation
on X, N denotes a set of natural numbers, and N0 denotes the set of nonnegative integers.

Alam and Imdad [15] gave the following definition.

Definition 3. Let R be a nonempty binary relation defined on the set X, and letH be a self-map on X.

piq Any two elements %, ς P X are R-comparative if p%, ςq P R or pς, %q P R. This relationship is
symbolically represented as r%, ςs P R.

piiq A sequence t%ku Ă X that satisfies the condition p%k, %k`1q P R for all k P N0, is referred to as an
R-preserving sequence.

piiiq R is designated as H-closed when it satisfies the condition that if p%, ςq belongs to R, then
pH%,Hςq also belongs to R, for any %, ς P X.
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pivq R is referred to as d-self-closed under the condition that whenever there exists an R-preserving
sequence t%ku such that %k

d
ÝÑ %, we can always find a subsequence t%knu of t%ku such that

r%kn , %s belongs to R for all n P N0.

The terms in the following definition were introduced by Maddux in [24].

Definition 4. piq The completeness of R is defined by the property that every pair of elements in X
is R-comparative i.e., r%, ςs P R, for all %, ς P X.

piiq If E Ď X, then the set R|E defined as RX E2 remains a relation on E, which is induced by R.

In the following definition, we give the terms introduced by Alama, Kocev, and Imdad in [25].

Definition 5. piq The R-completeness of the metric space pX, dq is defined as the property where
every sequence in X, which is both R-preserving and Cauchy, converges.

piiq A self-map H defined on X is termed R-continuous at % P X, if any R-preserving sequence
%k

d
ÝÑ %, impliesH%k

d
ÝÑ H%.

Furthermore, if H exhibits this behavior at every point in X, it is simply categorized as R-
continuous.

Definition 6. (Alam and Imdad, [16]) Let a self-mappingH be defined on X. If for every R-preserving
sequence t%nu Ă HpXq, with a range denoted as E “ t%n : n P Nu, R|E is transitive, then H
is locallyH-transitive.

Definition 7. (Khan, Swaleh, and Sessa, [26]) A function Ψ : r0,`8q Ñ r0,`8q is classified as an
altering distance function if it adheres to the properties of being both continuous and nondecreasing,
and, further, Ψpνq is equal to 0 if, and only if, ν is equal to 0.

The notion of R-lower semi-continuity, often denoted as R-LSC, has been introduced by Senapati
and Dey in the paper [27]. The authors have provided elucidating examples that demonstrate
the relatively weaker nature of R-LSC compared to both R-continuity and lower semi-continuity.
Moreover, they have introduced modifications to the definition of the w-distance [5].

Definition 8. (Senapati and Dey, [27]) Let pX, dq be a metric space. A w-distance q : XˆX Ñ r0,`8q
is defined as a function that adheres to the following properties for all %, ς, ξ P X:

piq qp%, ςq ď qp%, ξq ` qpξ, ςq.
piiq qp%, ¨q : X Ñ r0,`8q is R-LSC.
piiiq For every positive ε ą 0, there exists a positive δ ą 0 such that, when qp%, ςq ď δ and qp%, ξq ď δ

are satisfied, it implies that dpς, ξq ď ε.

It is a widely acknowledged fact that any metric defined on X also constitutes a w-distance on X.
The following is another example of w-distance.

Example 9. A function q : X ˆ X Ñ r0,`8q defined as qp%, ςq “ c, for all %, ς P X, where c is a
positive real number, on a metric space pX, dq qualifies as a w-distance on X. However, it is important
to note that q does not constitute a metric, as it does not satisfy the property qp%, %q “ 0 for any % P X,
which is one of the essential conditions for a function to be considered a metric.

AIMS Mathematics Volume 9, Issue 5, 12287–12304.



12290

Example 10. (Wongyat and Sintunavarat, [28]) Let X be the set of real numbers equipped with the
metric d : X ˆ X Ñ R`, defined as dp%, ςq “ |% ´ ς| for all %, ς P X. Let µ and υ be real numbers
greater than 1. Define q : X ˆ X Ñ r0,`8q as follows:

qp%, ςq “ maxtµpς ´ %q, υp%´ ςqu, for all %, ς P X,

then q is a w-distance for d. Additionally, the lack of symmetry in q prevents it from satisfying the
requirements of a metric.

The following lemma was obtained in Babu and Sailaja [29]. See also Turinici [30].

Lemma 11. Let pX, dq be a metric space with a w-distance q defined on it. If t%nu in X is not a Cauchy
sequence, then there exist a positive ε ą 0, along with two subsequences t%nku,t%mku of t%nu such that:

piq k ď nk ď mk, for all k P N.
piiq qp%nk , %mk´1q ď ε, for all k P N.
piiiq qp%nk , %mk

q ą ε, for all k P N.

Moreover, suppose that lim
kÑ`8

qp%n, %n`1q “ 0, then

pivq lim
kÑ`8

qp%nk , %mkq “ ε.

pvq lim
kÑ`8

qp%nk , %mk´1q “ ε.

Lemma 12. (Senapati and Dey, [27]) Let R be a binary relation and let q be a w-distance defined on a
metric space pX, dq. Suppose that there are R-preserving sequences t%ru and tςru in X, composed with
positive real numbers that converge to 0. Under these conditions, for %, ς, and ξ P X, the following
results hold:

piq If qp%n, ςq ď un and qp%n, ξq ď vn, for all n P N, then ς “ ξ. Moreover, if pp%, ςq “ 0 and
pp%, ξq “ 0, then ς “ ξ.

piiq If qp%n, ςnq ď un and qp%n, ξq ď vn, for all n P N, then ςn Ñ ξ.
piiiq If qp%n, ςq ď un, for all n P N, then t%nu is an R-preserving Cauchy sequence in X.
pivq If qp%n, %mq ď un, for all m ą n, then t%nu is an R-preserving Cauchy sequence in X.

Throughout this paper, we denote:

paq FpHq as the set of all fixed points of the self-mappingH .
pbq XpH ,Rq as the subset of X consisting of all elements % such that p%,H%q P R.
pcq Γp%, ςq “ max

 

qp%, ςq, qp%,H%q, qpς,Hςq, 1
2 rqp%,Hςq ` qpH%, ςqs

(

.
pdq ∆p%, ςq “ min tqp%,H%q, qpς,Hςq, qpH%, ςq, qp%,Hςqu.

3. Fixed point results for generalized almost contractions

In this section, we focus on establishing conditions under which the self-mapping H possesses a
fixed point. In particular, condition pc2q imposes requirements on the completeness of certain subsets
of the metric space rather than the entire metric space, and condition pc3q allows us to obtain fixed
point results for discontinuous mappings.
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Theorem 13. Let H be a self-mapping defined on a metric space pX, dq endowed with a symmetric
and locally H-transitive binary relation R, and let q be a w-distance on X, satisfying the condition
qp%, %q “ 0. Suppose the following conditions are met:

pc1q XpH ,Rq is nonempty.
pc2q There exists Y Ď X withHpXq Ď Y, such that pY, dq is R-complete.
pc3q Either R|Y is d-self-closed orH is R-continuous.
pc4q R isH-closed.
pc5q There exists Φ and Ψ such that

ΨpqpH%,Hςqq ď ΨpΓp%, ςqq ´ ΦpΓp%, ςqq `L∆p%, ςq, (3.1)

for all %, ς P X and p%, ςq P R.
pc6q y ÞÑ qp¨, yq is R-lower semi-continuous,

where L is a nonnegative constant, Φ : r0,`8q Ñ r0,`8q is an LSC satisfying Φpνq “ 0 if, and only
if, ν “ 0, and Ψ represents an altering distance function, thenH possesses a fixed point in X.

Proof. From assumption pc1q, we conclude that there exists %0 P XpH ,Rq. Define the sequence %r

of Picard iterates with initial point %0, i.e., %r “ H
r%0 for all r P N0. Since p%0,H%0q P R, from

H-closedness of R, we have

pH r%0,H
r`1%0q P R, for all r P N0,

so that
p%r, %r`1q P R, for all r P N0. (3.2)

Therefore, it can be asserted that t%ru is an R-preserving sequence. By employing the condition pc5q,
we obtain

Ψpqp%r, %r`1qq “ ΨpqpH%r´1,H%rqq

ď ΨpΓp%r´1, %rqq ´ ΦpΓp%r´1, %rqq `L∆p%r´1, %rq, (3.3)

where

Γp%r´1, %rq “ max
!

qp%r´1, %rq, qp%r´1,H%r´1q, qp%r,H%rq,

1
2
rqp%r´1,H%rq ` qpH%r´1, %rqs

)

“ max
!

qp%r´1, %rq, qp%r´1, %rq, qp%r, %r`1q,

1
2
rqp%r´1, %r`1q ` qp%r, %rqs

)

“ maxtqp%r´1, %rq, qp%r, %r`1qu,

and

∆p%r´1, %rq “ min tqp%r´1,H%r´1q, qp%r,H%rq, qpH%r´1, %rq, qp%r´1,H%rqu
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“ min tqp%r´1, %rq, qp%r, %r`1q, qp%r, %rq, qp%r´1, %r`1qu .

Now, if qp%r´1, %rq ď qp%r, %r`1q, then from (3.3), we have

Ψpqp%r, %r`1qq “ ΨpqpH%r´1,H%rqq ď Ψpqp%r, %r`1qq ´ Φpqp%r, %r`1qq

ă Ψpqp%r, %r`1qq,

which is a contradiction.
Thus, qp%r´1, %rq ě qp%r, %r`1q. So, we obtain that there exists a nonnegative ν such that

qp%r, %r`1q Ñ ν as r Ñ `8. Again, from Eq (3.3), we get

Ψpνq ď lim sup
rÑ`8

Ψpqp%r´1, %rqq ´ lim sup
rÑ`8

Φpqp%r´1, %rqq

ď lim sup
rÑ`8

Ψpqp%r´1, %rqq ´ lim inf
rÑ`8

Φpqp%r´1, %rqq

ď Ψpνq ´ Φpνq,

consequently, Φpνq “ 0, which in turn leads to the conclusion that ν must equal 0. Hence
lim

rÑ`8
qp%r, %r`1q “ 0.

Now, with the symmetric property of R, it is evident that if p%r, %r`1q P R so p%r`1, %rq P R for all
r P N0, then from (3.1), we get

Ψpqp%r`1, %rqq “ ΨpH%r,H%r´1q

ď ΨpΓp%r, %r´1qq ´ ΦpΓp%r, %r´1qq `L∆p%r, %r´1q, (3.4)

where

Γp%r, %r´1qq “ max

#

qp%r, %r´1q, qp%r,H%rq, qp%r´1,H%r´1q,

1
2
rqp%r,H%r´1q ` qpH%r, %r´1qs

+

“ max

#

qp%r, %r´1q, qp%r, %r`1q, qp%r´1, %rq,

1
2
rqp%r, %rq ` qp%r`1, %r´1qs

+

“ max tqp%r, %r´1q, qp%r, %r`1q, qp%r´1, %rq, qp%r`1, %rqu

and

∆p%r, %r´1q “ mintqp%r,H%rq, qp%r´1,H%r´1q, qpH%r, %r´1q, qp%r,H%r´1qu

“ mintqp%r, %r`1q, qp%r´1, %rq, qp%r`1, %r´1q, qp%r, %rqu.

If Γp%r, %r´1q “ qp%r`1, %rq, then from (3.4), we obtain,

Ψpqp%r`1, %rqq ď Ψpqp%r`1, %rqq ´ Φpqp%r`1, %rqq,
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which is a contradiction.
Now, suppose Γp%r, %r´1q “ qp%r, %r`1q, then from (3.4), we obtain,

Ψpqp%r`1, %rqq ď Ψpqp%r, %r`1qq ´ Φpqp%r, %r`1qq,

and Ψ

ˆ

lim
rÑ`8

qp%r`1, %rq

˙

“ 0, which implies that lim
rÑ`8

qp%r`1, %rq “ 0. Likewise, if Γp%r, %r´1q “

qp%r´1, %rq, we can arrive at the same conclusion.
Now, suppose Γp%r, %r´1q “ qp%r, %r`1q, then from (3.4), and using the property of monotonicity of

Ψ we can obtain the nonincreasing sequence tqp%r`1, %rqu converging to some ν ě 0. Continuing in
this process, we obtain that lim

rÑ8
qp%r`1, %rq “ 0.

Thus, in any case, we can conclude that lim
rÑ`8

qp%r`1, %rq “ 0.

Now, to prove that t%ru is a Cauchy sequence, suppose there does not exist ε ą 0 and subsequences
t%nku and t%mku of t%ru, such that k ď mk ă nk, qp%mk , %nkq ą ε ě qp%mk , %nk´1q for all k P N. Using
Lemma 11, we have

lim
kÑ`8

qp%mk , %nkq “ lim
kÑ`8

qp%mk`1 , %nk`1q “ ε. (3.5)

Now, using (3.5) and the triangular inequality, we get

qp%mk , %nkq ď qp%mk , %nk`1q ` qp%nk`1 , %nkq

ď qp%mk , %nkq ` qp%nk , %nk`1q ` qp%nk`1 , %nkq.

Also,

qp%mk , %nkq ď qp%mk , %mk`1q ` qp%mk`1 , %nkq

ď qp%mk , %mk`1q ` qp%mk`1 , %mkq ` qp%mk , %nkq.

Letting k Ñ `8, we obtain that qp%mk , %nk`1q “ ε, and qp%mk`1 , %nkq “ ε.
As t%ru is R-preserving and t%ru Ă HpXq, by locallyH-transitivity of R, we have p%mk , %nkq P R.
Hence, by (3.1), we obtain

Ψpqp%mk`1 , %nk`1qq “ ΨpqpH%mk ,H%nkqq

ď ΨpΓp%mk , %nkqq ´ ΦpΓp%mk , %nkq `L∆p%mk , %nkq, (3.6)

where

Γp%mk , %nkq “ max tqp%mk , %nkq, qp%mk ,H%mkq, qp%nk ,H%nkq,

1
2
rqp%mk ,H%nkq ` qpH%mk , %nkqs

*

“ max
"

qp%mk , %nkq, qp%mk , %mk`1q, qp%nk , %nk`1q,
1
2

“

qp%mk , %nk`1q ` qp%mk`1 , %nkq
‰

*

,

and

∆p%mk , %nkq “ mintqp%mk ,H%mkq, qp%nk ,H%nkq, qpH%mk , %nkq, qp%mk ,H%nkqu
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“ mintqp%mk , %mk`1q, qp%nk , %nk`1q, qp%mk`1 , %nkq, qp%mk , %nk`1qu.

Letting k Ñ `8 in (3.6) and leveraging the properties of Ψ and Φ, one arrives at the contradictory
statement Ψpεq ď Ψpεq ´ Φpεq. Therefore, by Lemma 12, t%ru is the R-preserving Cauchy sequence
in Y , and the R-completeness of pY, dq guarantees that there exists %˚ P Y with %r

d
ÝÑ %˚, as r Ñ `8.

From pc3q, we first suppose thatH is R-continuous. Since t%ru is R-preserving with %r
d
ÝÑ %˚, which

implies that %r`1 “ H%r
d
ÝÑ H%˚, and due to the uniqueness of limits, we obtain that H%˚ “ %˚.

Hence, %˚ is a fixed point ofH .
Now, if R|Y is d-self-closed, and as t%ru is R-preserving such that t%ru Ñ %˚, there exists

subsequence t%nku of t%ru with r%nk , %
˚s P R, for all k P N0. On using r%nk , %

˚s P R, symmetry of
binary relation R, and assumption pc5q, we have

Ψpqp%nk`1 ,H%
˚
qq “ ΨpqpH%nk ,H%

˚
qq ď ΨpΓp%nk , %

˚
qq ´ ΦpΓp%nk , %

˚
qq `L∆p%nk , %

˚
q, (3.7)

where

Γp%nk , %
˚
q “ max

"

qp%nk , %
˚
q, qp%nk , %nk`1q, qp%

˚,H%˚q,
1
2

“

qp%nk ,H%
˚
q ` qp%nk`1 , %

˚
q
‰

*

and

∆p%nk , %
˚
q “ mintqp%nk , %nk`1q, qp%

˚,H%˚q, qp%nk`1 , %
˚
q, qp%nk ,H%

˚
qu.

Taking the limit k Ñ `8, in (3.7), we obtain

Ψpqp%˚,H%˚qq ď Ψpqp%˚,H%˚qq ´ Φpqp%˚,H%˚qq,

which is possible only if qp%˚,H%˚q “ 0. Therefore, by piq of Lemma 12, we obtain %˚ “ H%˚. �

Theorem 14. If, in conjunction with the assumptions in the statement of Theorem 13, the following
condition holds:

pc7q R|FpHq is complete.

ThenH possesses a unique fixed point.

Proof. By Theorem 13, it can be established that H possesses a fixed point. The next task is to
demonstrate that H has a unique fixed point. Suppose %, ς P F, then we have Hp%q “ %, Hpςq “ ς.
As F is R-complete r%, ςs P R, by applying condition pc5q to these particular points, we obtain

Ψpqp%, ςqq “ ΨpqpH%,Hςqq ď ΨpΓp%, ςqq ´ ΦpΓp%, ςqq `L∆p%, ςq,

where,
Γp%, ςq “ max

 

qp%, ςq, qp%,H%q, qpς,Hςq, 1
2rqp%,Hςq ` qpH%, ςqs

(

“ qp%, ςq, and ∆p%, ςq “

mintqp%,H%q, qpς,Hςq, qpH%, ςq, qp%,Hςqu “ 0.
Thus, Ψpqp%, ςqq ď Ψpqp%, ςqq ´ Φpqp%, ςqq, which implies that Φpqp%, ςqq “ 0. Consequently,

qp%, ςq “ 0, and using condition piq of Lemma 12, leads to % “ ς. It can be concluded that H
possesses a unique fixed point. �
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Example 15. Let X “ r0,`8q, and consider the function d : XˆX Ñ R` defined by dp%, ςq “ |%´ς|
for all %, ς P X. Additionally, letH : X Ñ X be such that

H% “

#

%2

2 , if % P r0, 2s
1
2 , otherwise,

and ψ, φ : r0,`8q Ñ r0,`8q by ψptq “ 5t
12 , and φptq “ t

4 .

It is evident that φ is a lower semi-continuous function and satisfies the condition φptq “ 0, if and
only if, t “ 0. Additionally, it can be observed that ψ is an altering distance function.

Define q : X ˆ X Ñ r0,`8q by qp%, ςq “ maxt2pς ´ %q, 4p% ´ ςqu for all %, ς P X, then, it can be
observed that q is a w-distance for d. Also, define the relation R by

R “

"

p%, ςq P X2 : maxt%, ςu ď
1
2

*

.

This relation R exhibits the property of being symmetric locallyH-transitive, andH is R-continuous.
It can also be observed that R isH-closed. Moreover, the set XpH ,Rq is nonempty, and there exists a
subset Y “ r0, 2s of X such thatHpXq Ď Y and pY, dq is R-complete.

We will now demonstrate that condition (3.1) holds for all p%, ςq P R. Here,

ψpqpH%,Hςqq “
5

12

ˆ

max
"

2
ˆ

ς2

2
´
%2

2

˙

, 4
ˆ

%2

2
´
ς2

2

˙*˙

. (3.8)

Suppose %, ς P X such that p%, ςq P R and % ď ς, then we have

ψpqpH%,Hςqq “
5

12

ˆ

2
ˆ

ς2

2
´
%2

2

˙˙

ď
5

12
pς ´ %q psince ς ` % ď 1q

ď
1
3
p2ς ´ ς2

q

“
1
6

ˆ

max
"

2
ˆ

ς2

2
´ ς

˙

, 4
ˆ

ς ´
ς2

2

˙*˙

ď
5

12
pΓp%, ςqq ´

1
4
pΓp%, ςqq ` L∆p%, ςq.

Now, suppose that %, ς P X such that p%, ςq P R and % ě ς, then we have

ψpqpH%,Hςqq “
5
12

ˆ

4
ˆ

%2

2
´
ς2

2

˙˙

ď
1
3

`

2%´ %2
˘

“
1
6

ˆ

max
"

2
ˆ

%2

2
´ %

˙

, 4
ˆ

%´
%2

2

˙*˙

ď
5
12
pΓp%, ςqq ´

1
6
pΓp%, ςqq ` L∆p%, ςq.

AIMS Mathematics Volume 9, Issue 5, 12287–12304.



12296

Here, L ě 0,

Γp%, ςq “ max
"

max t2pς ´ %q, 4p%´ ςqu ,max
"

2
ˆ

%2

2
´ %

˙

, 4
ˆ

%´
%2

2

˙*

,

max
"

2
ˆ

ς2

2
´ ς

˙

, 4
ˆ

ς ´
ς2

2

˙*

,max
1
2

ˆ"

2
ˆ

ς2

2
´ %

˙

, 4
ˆ

%´
ς2

2

˙*

`max
"

2
ˆ

ς ´
%2

2

˙

, 4
ˆ

%2

2
´ ς

˙*˙*

and

∆p%, ςq “ min
"

max
"

2
ˆ

%2

2
´ %

˙

, 4
ˆ

%´
%2

2

˙*

,max
"

2
ˆ

ς2

2
´ ς

˙

, 4
ˆ

ς ´
ς2

2

˙*

,

max
"

2
ˆ

ς ´
%2

2

˙

, 4
ˆ

%2

2
´ ς

˙*

,max
"

2
ˆ

ς2

2
´ %

˙

, 4
ˆ

%´
ς2

2

˙**

.

Therefore, all the hypotheses of Theorem 13 are met and consequently,H possesses a fixed point in X.

Remark 16. piq It is worth noting that the binary relation R considered in our example lacks
reflexivity, irreflexivity, and orthogonality. Instead, R satisfies only the symmetry condition.

piiq It is interesting to observe that the mappingH in the above example is not continuous.
piiiq The mapping H in the above example neither meets the contractive condition outlined in

Theorem 3.1 by Lakziana and Rhoades [11], nor does it adhere to the contractive condition
specified in Theorem 3.6 by Wongyat and Sintunavarat [28]. This can be verified by considering
the values % “ 9

5 , ς “
2
5 and % “ 1, ς “ 0, respectively. Additionally, several other results

in [31–33] are not applicable in the presented example.
pivq Furthermore, it is worth mentioning that even though p 9

20 ,
2
5q P R, a recent finding in this direction

by Antal, Khantwal, Negi, and Gairola (Theorem 3.1 in [23]) is not applicable to the presented
example when considering % “ 9

20 , ς “
2
5 .

The assumption q “ d added to the hypotheses of Theorem 13 yields the following result without
relying on the symmetric property of the binary relation.

Theorem 17. Let H be a self-mapping defined on a metric space pX, dq equipped with a locally H
transitive binary relation R. Assume that conditions (c1)–(c4) hold, and there exists Φ,Ψ : r0,`8q Ñ
r0,`8q such that

ΨpdpH%,Hςqq ď ΨpΓp%, ςqq ´ ΦpΓp%, ςqq `L∆p%, ςq, (3.9)

for all %, ς P X with p%, ςq P R, thenH has a fixed point.

Remark 18. By giving the precise definitions of the functions Φ and Ψ, along with the nonnegative
constant L, it becomes evident that we can draw the following conclusions, underscoring the extensive
applicability and versatility of Theorem 13.

pT1q When we substitute L “ 0 into Eq (3.1) of Theorem 13, we derive fixed-point results for
Relational pΨ,Φq-weak contraction, i.e., for mappingH satisfying condition

ΨpdpH%,Hςqq ď ΨpΓp%, ςqq ´ ΦpΓp%, ςqq, for all %, ς P X with p%, ςq P R.
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pT2q If we set Ψpνq “ ν and Φpνq “ p1´kqν for all ν P r0,`8q in Theorem 17, we attain a fixed-point
result for Relational almost contractions, i.e., mappingH that satisfies

dpH%,Hςq ď kΓp%, ςq `L∆p%, ςq, for all %, ς P X, k ă 1 with p%, ςq P R.

It is worth highlighting that when we consider R as the universal relation in pT1q and pT2q, we can
deduce the classical forms of weak contraction and almost contraction, respectively. Consequently, all
the corollaries associated with these classical definitions also transform into corollaries of the results
we have demonstrated.

Corollary 19. (Radenović and Kadelburg, [34]) Let pX,ĺ, dq be the ordered complete metric space
and let H : X Ñ X be a nondecreasing mapping such that there exists an element %0 P X satisfying
%0 ĺ f%0. Furthermore, suppose there exist Φ and Ψ such that,

ΨpdpH%,Hςqq ď ΨpΓp%, ςqq ´ ΦpΓp%, ςqq, for all %, ς P X with % ĺ ς,

where Γp%, ςq “ max
 

dp%, ςq, dp%,H%q, dpς,Hςq, 1
2pdp%,Hςq ` dpς,H%qq

(

, thenH has at least one
fixed point in X if at least one of the following conditions is fulfilled

piq Either, whenever a nondecreasing sequence t%ru converges to % P X, then %r ĺ % for all r.
piiq H is continuous.

Corollary 20. (Alam and Imdad, [15]) Let pX, dq be the complete metric space endowed with R, and
H be a self-mapping defined on X. Let (c2)–(c4) hold, and there exists α P r0, 1q such that

dpH%,Hςq ď αdp%, ςq, for all %, ς P X with p%, ςq P R.

Thus,H has a fixed point.

4. Application

In this section, we have applied our research findings to derive a result concerning the existence of
solutions for a nonlinear matrix equation, which is associated with an arbitrary binary relation. In this
context, let the set denoted asMpnq encompass all square matrices with dimensions of n ˆ n, while
Hpnq, Kpnq, and Ppnq, respectively, represent the sets of Hermitian matrices, positive semi-definite
matrices, and positive definite matrices. When we have a matrix C from Hpnq, we use the notation
}C}tr to refer to its trace norm, which is the sum of all its singular values. If we have matrices P and
Q fromHpnq, the notation P ľ Q signifies that the matrix P´ Q is an element of the set Kpnq, while
P ą Q indicates that P´ Q belongs to the set Ppnq. The upcoming discussion relies on the following
lemmas of Ran and Reurings, [35].

Lemma 21. If = P Hpnq satisfies = ă In, then }=} ă 1.

Lemma 22. For nˆ n matrices = ľ O and ð ľ O, the following inequalities hold:

0 ď trp=ðq ď }=}trpðq.
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We shall now examine the following nonlinear matrix equation,

= “ A`

u
ÿ

i“1

v
ÿ

j“1

C˚i Υ jp=qCi. (4.1)

In the above equation, A is defined as a Hermitian and positive definite matrix. Additionally, the
notation C˚i refers to the conjugate transpose of a square matrix Ci of size n ˆ n. Furthermore, Υ j

represents continuous functions that preserve order, mapping fromHpnq to Ppnq. It is noteworthy that
ΥpOq “ O, where O represents a zero matrix.

Theorem 23. Let the following conditions apply:

pH1q There existsA P Ppnq with
řu

i“1

řv
j“1 C

˚
i Υ jpAqCi ą 0.

pH2q For all =, ð P Ppnq, = ĺ ð implies
řu

i“1

řv
j“1 C

˚
i Υ jp=qCi ĺ

řu
i“1

řv
j“1 C

˚
i Υ jpðqCi.

pH3q There exists a positive number N for which
řu

i“1 CiC
˚
i ă NIn.

pH4q For all =, ð P Ppnq with = ĺ ð, the following inequality holds

max
j
ptrpΥ jpðq ´ Υ jp=qqq ď

trpð´ =q
2Nv

,

then the nonlinear matrix equation (4.1) has at least one solution. Moreover, the iteration

=r “ A`

u
ÿ

i“1

v
ÿ

j“1

C˚i Υ jp=r´1qCi, (4.2)

where =0 P Ppnq satisfies

=0 ĺ A`

u
ÿ

i“1

v
ÿ

j“1

C˚i Υ jp=0qCi,

converges to the solution of the matrix equation, in the context of the trace norm } ¨ }tr.

Proof. Let Ω : Ppnq Ñ Ppnq be a mapping defined by,

Ωp=q “ A`

u
ÿ

i“1

v
ÿ

j“1

C˚i Υ jp=qCi,

for all = P Ppnq.
Consider R “ tp=, ðq P Ppnq ˆ Ppnq : = ĺ ðu. Consequently, the fixed point of Ω serves as a

solution to the nonlinear matrix equation (4.1). It is pertinent to mention that R is Ω-closed, and Ω is
well-defined as well as R-continuous. Form condition pH1q, we have

řu
i“1

řv
j“1 C

˚
i Υ jp=qCi ą 0 for

some = P Ppnq. Thus, p=,Ωp=qq P R and, consequently, PpnqpΩ,Rq is nonempty.
Define d : Ppnq ˆ Ppnq Ñ R` by

dp=, ðq “ }=´ ð}tr, for all =, ð P Ppnq.

Thus, pPpnq, dq is an R-complete relational metric space, then

}Ωpðq ´Ωp=q}tr “ trpΩpðq ´Ωp=qq
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“ tr

˜

u
ÿ

i“1

v
ÿ

j“1

C˚i pΥ jpðq ´ Υ jp=qqCi

¸

“

u
ÿ

i“1

v
ÿ

j“1

trpC˚i pΥ jpðq ´ Υ jp=qqCiq

“

u
ÿ

i“1

v
ÿ

j“1

trpCiC
˚
i pΥ jpðq ´ Υ jp=qqq

“ tr

˜˜

u
ÿ

i“1

CiC
˚
i

¸

v
ÿ

j“1

pΥ jpðq ´ Υ jp=qq

¸

ď

›

›

›

›

›

u
ÿ

i“1

CiC
˚
i

›

›

›

›

›

ˆ t ˆmax }pΥ jpðq ´ Υ jp=qq}tr

ď
}ð´ =}tr

2

ď
Γpð,=q

2

“ Γpð,=q ´

„

Γpð,=q ´
Γpð,=q

2



.

Now, consider Ψpνq “ ν and Φpνq “ ν
2

Ψp}Ωpðq ´Ωp=q}q “ ΨpΓpð,=q ´ ΦpΓpð,=qq

ď ΨpΓpð,=q ´ ΦpΓpð,=qq `L∆pð,=q,

where,

Γpð,=q “ max

#

}ð´ =}tr, }ð´Ωð}tr, }=´Ω=}tr,

1
2
r}ð´Ω=}tr ` }Ωð´ =}trs

+

,

∆pð,=q “ min
!

}ð´Ωð}tr, }=´Ω=}tr, }Ωð´ =}tr, }ð´Ω=}tr

)

.

Consequently, upon fulfilling all the hypotheses stated in Theorem 17, it can be deduced that there
exists an element =˚ P Ppnq for which Ωp=˚q “ =˚ holds good. As a result, the matrix equation (4.1)
is guaranteed to possess a solution within the set Ppnq. �

Remark 24. Notably, when v is fixed to 1 in (4.1), the matrix equation (4.1) reduces to the form

= “ A`

u
ÿ

i“1

C˚i Υp=qCi, (4.3)

which have been used in some recent works [22, 36]. Now, we provide a numerical example for
v “ 2, a case that cannot be addressed using the matrix equation (4.3). This example underscores the
significance of Theorem 23 in addressing such cases.
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Example 25. Consider the nonlinear matrix equation (4.1) for u “ v “ 2 and n “ 3, with Υ1p=q “
=

5 ,
Υ2p=q “

=

7 , i.e.,

= “ A` C˚1
=

5
C1 ` C

˚
1
=

7
C1 ` C

˚
2
=

5
C2 ` C

˚
2
=

7
C2, (4.4)

where

A “

»

–

0.176674562512000 0.001431425364758 0.143907569548500
0.001431425364758 0.175004512364000 0.136284455213600
0.143907569548500 0.136284455213600 0.265964578250000

fi

fl ,

C1 “

»

–

0.229334125100201 0.104014127456352 0.071531425367845
0.276191245786598 0.127467845958641 0.069995456525158
0.149324142435689 0.118387539512365 0.241474567891235

fi

fl ,

C2 “

»

–

0.255967414256354 0.173174561254879 0.270564568574965
0.074041245659835 0.223551425456895 0.102704562136980
0.152197485963250 0.136274152638570 0.190331452689300

fi

fl .

All the conditions specified in Theorem 23 are met with N “ 1. To ascertain the convergence of t=nu

defined in (4.2), we commence with three distinct initial values.

U0 “

»

–

1
2 0 0
0 1

2 0
0 0 2

fi

fl ,

V0 “

»

–

1.237284512365845 0.250614562315200 0.299494715230000
0.125324512360000 0.151844125986500 0.131377596845688
0.053747485629586 0.067587485963625 0.234187182930000

fi

fl ,

W0 “

»

–

0.094417946131700 0.067327946131728 0.005448596215000
0.257846251849500 0.210305195620000 0.289837586420000
0.112469865423650 0.080324512369875 0.276111425369854

fi

fl .

After conducting 14 iterations, the subsequent approximation of the positive definite solution for the
system presented in (4.1) is as follows,

Û « U14 “

»

–

0.211336629947799 0.026371497053666 0.174441185376292
0.026371497053666 0.195945887514472 0.160168100290036
0.174441185376292 0.160168100290036 0.295063523472589

fi

fl ,

with error 2.5095ˆ 10´10,

V̂ « V14 “

»

–

0.211336629947578 0.026371497053505 0.174441185376116
0.026371497053505 0.195945887514342 0.160168100289893
0.174441185376116 0.160168100289893 0.295063523472432

fi

fl ,

with error 2.45107ˆ 10´12,
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Ŵ « W14 “

»

–

0.211336629947578 0.026371497053505 0.174441185376116
0.026371497053505 0.195945887514342 0.160168100289893
0.174441185376116 0.160168100289893 0.295063523472432

fi

fl ,

and with error 7.65452ˆ 10´12.
In Figure 1, we present a graphical depiction illustrating the convergence phenomenon.
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Figure 1. Convergence phenomenon.

5. Conclusions

This research establishes some fixed-point results for generalized almost contractions in a metric
space equipped with a binary relation R. We have improved some known fixed point results by
using w-distance and locally symmetric H-transitivity properties of binary relations. Also, we give
the application of the obtained results for finding the solution of nonlinear matrix equations of the
following type

= “ A`

u
ÿ

i“1

v
ÿ

j“1

C˚i Υ jp=qCi,

where, A represents a Hermitian positive definite matrix, while C˚i corresponds to the conjugate
transpose operation applied to the n ˆ n matrix C˚i . Furthermore, Υ j symbolizes order-preserving
continuous functions, mapping from the set of all Hermitian matrices to the set of positive definite
matrices. Finally, we provide a numerical example that demonstrates the applicability of our results.

Overall, this paper extends some results from the existing literature, opening new possibilities for
the study of almost contractions and their applications in mathematics and related fields.
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