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Abstract: The circular intuitionistic fuzzy set (CIFS) extends the concept of IFS, representing each
set element with a circular area on the IFS interpretation triangle (IFIT). Each element in CIFS is
characterized not only by membership and non-membership degrees but also by a radius, indicating the
imprecise areas of these degrees. While some basic operations have been defined for CIFS, not all have
been thoroughly explored and generalized. The radius domain has been extended from [0, 1] to [0,

√
2].

However, the operations on the radius domain are limited to min and max. We aimed to address these
limitations and further explore the theory of CIFS, focusing on operations for membership and non-
membership degrees as well as radius domains. First, we proposed new radius operations on CIFS with
a domain [0, ψ], where ψ ∈ [1,

√
2], called a radius algebraic product (RAP) and radius algebraic sum

(RAS). Second, we developed basic operators for generalized union and intersection operations on CIFS
based on triangular norms and conorms, investigating their algebraic properties. Finally, we explored
negation and modal operators based on proposed radius conditions and examined their characteristics.
This research contributes to a more explicit understanding of the properties and capabilities of CIFS,
providing valuable insights into its potential applications, particularly in decision-making theory.
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1. Introduction

Fuzzy set (FS) [1] is designed to handle the problem of uncertainty. It assigns a value from 0
to 1 to an object, where higher value indicates a higher degree of membership, and vice versa. In
some cases, representation requires not only the membership degree (M) but also the non-membership
degree (N), with the relationship between the two being M + N = 1. The development of fuzzy
sets led to the concept of intuitionistic fuzzy sets (IFS) [2], introduced in 1983 as an extension of FS.
Since then, IFS has been extensively studied and modified. In general, IFS characterizes each element
by the degrees of membership and non-membership, with M + N ≤ 1. Research and development
on IFS can be classified into theoretical and applied development. Theoretical development includes
algebraic aspects such as subring fuzzy [4], and further advancements in homomorphism intuitionistic
fuzzy subrings [5, 6]. Additionally, IFS properties have been expanded, including the development of
operators based on t-norm and conorm and algebraic laws [7, 8], as well as extensions into complex
sets [9], distance metrics, similarity, and distance measures [10, 11, 14], among others. On the other
hand, applicative development involves solving decision-making problems using IFS [12, 13, 15].

In 1989, the representation of IFS membership and non-membership, initially crisp values (M,N),
was extended to interval values, giving rise to what is known as interval-valued IFS (IVIFS) [16].
This set is characterized by the values ofM and N being in interval form, with an element in IVIFS
represented as an ordered pair of membership and non-membership intervals. Research on IVIFS has
delved into various aspects, including basic operations, modal operators, and algebraic laws [17, 18],
determination of cosine similarity measure based on weighted reduced IFS [19], accuracy and score
functions [20], and IVIF-confidence intervals [21]. In application side, there has also been research in
decision-making, such as [22], and its integration with the DEMATEL Method combined with Choquet
integral [23].

Atanassov introduced another extension of IFS, distinct from IVIFS, known as circular IFS (CIFS).
This set expands upon IFS by considering (M,N) as the center and incorporating the radius as a
measure of imprecision. For (M,N) within IFS interpretation triangle (IFIT), the difference between
CIFS and IVIFS lies in the form of interpretation, where IVIFS has a rectangle interpretation, and
CIFS has a circle interpretation. The CIFS theory is at an early stage of development. Several studies
have begun to expand on CIFS; however, most of the research focuses on applications that have
previously been carried out on IFS or IVIFS, and not much theoretical research has been done on it.
For example, case studies of multi-criteria decision-making (MCDM) [26, 28], comparing IVIFS and
CIFS for present worth analysis [32], upgrading the TOPSIS method [34], demonstrating CIF-TOPSIS
with vague membership functions [27], extending the VIKOR method, design CIF-ELECTRE III for
group decision analysis [40], develop CIF-TODIM method [43], CIF-EDAS method [44],
CIF-PROMETHEE method [45], upgrade CIF-AHP method [46] and integrating with others [36, 37].
In terms of theoretical research, some studies have been conducted, such as some distance measures in
CIFS [25, 33, 39], similarity and entropy measures [41], divergence measures for CIFS [35], circular
q-rung orthopair fuzzy set theory [3], circular phytagorean fuzzy set [42] and generalized CIFS [38].

Several studies on CIFS, particularly theoretical ones, have often overlooked the novel
characteristics of the radius domain. Aspects such as the range r ∈ [0,

√
2], the intrinsic correlation

where smaller radius values enhance the clarity of the CIFS information, and the constraints posed by
previously defined operators have not been adequately emphasized. Furthermore, certain limitations
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may have served as motivation for the development of this paper. First, the radius domain, which is in
the interval [0,

√
2], makes the operator on the radius not belong to the t-norm or conorm category.

In [24] and [25], the operations on radius are limited to min and max. Operators used in fuzzy set
structures and their extensions are categorized as t-norm and conorm. It is necessary to have a radius
operator that has equivalent properties to the t-norm and conorm operators. The radius operator
should also be an interval extension of t-norm and conorm operators. Second, Atanassov [24]
proposed basic operations such as union, intersection, algebraic sum, algebraic product, and
arithmetic mean in CIFS. Generalization is possible by classifying basic operators into t-norm and
conorm. There is a need for the definition of generalized operators from the previously proposed
operators. Third, the proposed unary operators such as negation and modal operators in CIFS
introduced by Atanassov [24] do not significantly impact radius. The CIFS negation operator
produces comparable results to the IFS negation operator, indicating no significant difference between
CIFS and IFS. The objectives of this paper are described based on the three problems and constraints:

(1) To develop new radius operations for CIFS with domain [0, ψ], where ψ ∈ [1,
√

2], and justify
their properties as well as some special domains.

(2) To propose generalized union and intersection operators in CIFS, base them on t-norm and t-
conorm categories and subsequently verify their properties.

(3) To identify and propose negation and modal operators based on the radius interval condition, and
examine their relationship with the existing operators.

To accomplish these objectives, we begin with establishing fundamental definitions such as IFS,
IVIFS, and CIFS, along with their basic relations and operations in Section 2. Section 3, the
generalized intersection and union are introduced based on t-norm (conorm) with conditions of
membership, non-membership, and radius in the interval [0, 1]. Several algebraic properties have
been demonstrated, such as commutative, associative, and De Morgan’s laws. Furthermore, the
distributive property is proved for special cases namely algebraic sum-product, and arithmetic mean
types by modifying the operators on the radius. Section 4 defines the generalized radius operations on
the interval [0, ψ], where ψ ∈ [1,

√
2], and provides a proof of its algebraic properties. After defining

the radius operation, Section 5 introduces another form of the negation operator in CIFS,
accompanied by a proof of the De Morgan’s law. Finally, the integration of the negation operator with
the modal “necessity” and “possibility” operators is discussed, along with an examination of their
advanced properties. Conclusions and discussion of further research are given in Section 6.

2. Preliminaries

In this section, the basic definitions of IFS, IVIFS, and CIFS are provided. Let X be a finite set, any
x ∈ X,M(x) is defined as membership degree and N(x) is defined as non-membership degree of x.

2.1. Intuitionistic fuzzy sets

Definition 2.1. [2] An Intuitionistic fuzzy set (IFS)A in X is defined as an object of the form:

A = {〈x,MA(x),NA(x)〉 | x ∈ X},
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whereMA : X → [0, 1] and NA : X → [0, 1] and satisfies 0 ≤ MA(x) +NA(x) ≤ 1 for every x ∈ X.

Note that, in this caseMA(x) and NA(x) are given as a single values in [0, 1]. Further extension of
this set is when the values of membership and non-membership functions are presented in unit interval
[0, 1]. For any x ∈ X,M∗(x) is interval of membership degree andN∗(x) is interval of non-membership
degree for x. Let Int([0, 1]) are represented as interval in [0, 1].

2.2. Interval-valued intuitionistic fuzzy sets

Definition 2.2. [16] An interval-valued IFS (IVIFS)A∗ in X is defined as an object of the form:

A∗ = {〈x,M∗
A

(x),N∗
A

(x)〉 | x ∈ X},

whereM∗
A

: X → Int([0, 1]) and N∗
A

: X → Int([0, 1]) are defined byM∗
A

(x) =
[
M∗
A

L(x),M∗
A

U(x)
]
,

N∗
A

(x) =
[
N∗A

L(x),N∗
A

U(x)
]
, such that 0 ≤ M∗

A

U(x) +N∗A
U(x) ≤ 1 for every x ∈ X.

It can be observed that under the IFIT [16], the IFS forms a single point of intersection between
MA(x) and NA(x) for every x ∈ X, while for the IVIFS, its membership and non-membership
functions form a rectangular area. Atanassov [24] then introduced another extension of IFS, instead of
a rectangular area as in IVIFS, a circular area is proposed, called CIFS (CIFS). Under this new set, the
point of intersection between MA(x) and NA(x) in IFS can be represented by a circular area with
radius r and the center as the intersection point.

2.3. Circular intuitionistic fuzzy sets

Definition 2.3. [24, 25] A circular IFS (CIFS) Ar in X is defined as Ar = {〈x,MA(x),NA(x); r〉 | x ∈
X}, whereMA : X → [0, 1] and NA : X → [0, 1] satisfy 0 ≤ MA(x) +NA(x) ≤ 1 and r ∈ [0,

√
2] is

the radius of the circle around each element x ∈ X.

Moreover, the functionHAr whereHAr (x) = 1−MAr (x)−NAr (x) ∈ [0, 1] corresponds to the degree
of indeterminacy (uncertainty). It is clear that if r = 0, then A0 is an IFS (i.e., a single point), but for
r > 0, it cannot be represented by an IFS. Let L∗ = {(p, q)|p, q ∈ [0, 1] and p + q ≤ 1}, then Ar can be
written in the formAr = {〈x,Or(MA(x),NA(x))〉|x ∈ X} where,

Or(MA(x),NA(x)) = {〈p, q〉|p, q ∈ [0, 1] and
√

(MA(x) − p)2 + (NA(x) − q)2 ≤ r} ∩ L∗.
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Figure 1. Intepretating circular intuitionistic fuzzy sets.

Previously, Atanassov identified five possible forms of the circle (see Figure 1), two of which have
a center inside IFIT and the other three have a center on IFIT (x3 is on the coordinate-X or Y , x4 is on
the maximum limit of the coordinate-X or Y , and x5 is on (0, 0)). In the following, some related
properties of CIFS are provided, such as the relations, operations, and modal operators.

Definition 2.4. [24] Let Ar and Bs be CIFSs, for each x ∈ X, the relations between Ar and Bs are as
follows:

• Ar ⊂ρ Bs iff (r < s) and (MA(x) =MB(x) and NA(x) = NB(x)).
• Ar ⊂ν Bs iff (r = s) and one of the following conditions is fulfilled,

– MA(x) <MB(x) and NA(x) ≥ NB(x),
– MA(x) ≤ MB(x) and NA(x) > NB(x),
– MA(x) <MB(x) and NA(x) > NB(x).

• Ar ⊂ Bs iff (r < s) and one of the following conditions is fulfilled,

– MA(x) <MB(x) and NA(x) ≥ NB(x),
– MA(x) ≤ MB(x) and NA(x) > NB(x),
– MA(x) <MB(x) and NA(x) > NB(x).

• Ar ⊆ρ Bs iff (r < s) and satisfied (MA(x) =MB(x) and NA(x) = NB(x)).
• Ar ⊆ν Bs iff (r = s) and satisfied (MA(x) ≤ MB(x) and NA(x) ≥ NB(x)).
• Ar ⊆ Bs iff (r ≤ s) and satisfied (MA(x) ≤ MB(x) and NA(x) ≥ NB(x)).
• Ar =ρ Bs iff (r = s).
• Ar =ν Bs iff (MA(x) =MB(x) and NA(x) = NB(x)).
• Ar = Bs iff (r = s) and satisfied (MA(x) =MB(x) and NA(x) = NB(x)).

Definition 2.5. [24] Let Ar,Bs are CIFSs and operation radius ∝∈ {min,max}. The negation,
intersection, union, algebraic product, algebraic sum, and arithmetic mean operators between Ar and
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Bs respectively as follows:

¬Ar = {〈x,NA(x),MA(x); r〉|x ∈ X}.

Ar ∩∝ Bs = {〈x,min(MA(x),MB(x)),max(NA(x),NB(x));∝ (r, s)〉|x ∈ X}.

Ar ∪∝ Bs = {〈x,max(MA(x),MB(x)),min(NA(x),NB(x));∝ (r, s)〉|x ∈ X}.

Ar ◦∝ Bs = {〈x,MA(x) · MB(x),NA(x) +NB(x) − NA(x) · NB(x);∝ (r, s)〉|x ∈ X}.

Ar +∝ Bs = {〈x,MA(x) +MB(x) −MA(x) · MB(x),NA(x) · NB(x);∝ (r, s)〉|x ∈ X}.

Ar@∝Bs = {〈x,
MA(x) +MB(x)

2
,
NA(x) +NB(x)

2
;∝ (r, s)〉|x ∈ X}.

Definition 2.6. [24] LetAr be CIFS, then modal operator “necessity” and “possibility” ofAr have the
form:

�Ar = {〈x,MA(x), 1 −MA(x); r〉|x ∈ X}

= {〈x,Or(MA(x), 1 −MA(x))〉|x ∈ X},

♦Ar = {〈x, 1 − NA(x),NA(x); r〉|x ∈ X}

= {〈x,Or(1 − NA(x),NA(x))〉|x ∈ X}.

2.4. Triangular norms (conorms)

The operators used in membership functions of FS has several criteria that must be fulfilled, as well
as non-membership functions in IFS. Operators such as minimum, maximum, algebraic product, and
algebraic sum are included in the triangular norms or conorms as the following:
Definition 2.7. [29, 30] A triangular norm (briefly t-norm) is binary operation T on the unit interval
[0, 1] with definition T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1]:

(T1) T (x, y) = T (y, x),
(T2) T (x,T (y, z)) = T (T (x, y), z),
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z,
(T4) T (x, 1) = x.

Definition 2.8. [29, 30] A triangular conorm (t-conorm for short) is binary operation S on the unit
interval [0, 1] with definition S : [0, 1]2 → [0, 1] which satisfies for all x, y, z ∈ [0, 1], (T1-T3) and

(S4) S(x, 0) = x.

Some examples of functions under t-norm or t-conorm include:

TM(x, y) = min(x, y)
TP(x, y) = xy

TL(x, y) = max(x + y − 1, 0)

TD(x, y) =

0 i f (x, y) ∈ [0, 1[2

min(x, y) otherwise

SM(x, y) = max(x, y)
SP(x, y) = x + y − xy

SL(x, y) = min(x + y, 1)

SD(x, y) =

1 i f (x, y) ∈]0, 1]2

max(x, y) otherwise

The operator S is also called the dual of T and has the relation T (x, y) = 1 − S(1 − x, 1 − y) while
the classification on both of them is in accordance with the prevailing properties. In this paper, we
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focus on two operators, the operator TP is called product t-norm (algebraic product) and the operator
SP is called probabilistic sum (algebraic sum). Both operators satisfy the properties of monotone,
continuous, strictly, cancellation law, and archimedean. Moreover, algebraic properties on its members
such as idempotent, nilpotent and zero divisor can also be shown.
Remark 1 : In Definition 2.5, the operations onM and N fall under the category of t-norm, allowing
them to be extended and applied using various forms of t-norm or conorm. This differs from the radius,
which operates within the domain interval [0,

√
2], where the operation used is not a t-norm or conorm.

The operations applied to the radius are constrained to min and max. Expanding the radius from the
interval [0, 1] to [0,

√
2] presents an opportunity to extend the operations on t-norm (conorm) into

new operations. To maintain generality, the following proposes the extension of the algebraic sum and
product operators into the interval [0,

√
2].

3. Extension of radius operations in interval [0, ψ] with ψ ∈ [1,
√

2]

In early research, Attanasov [24] introduced the radius domain in the interval [0, 1] and the min
and max operators as initial operations. In this case, the selection of min and max operators can
refer to the category type of t-norm and t-conorm functions so that the operators on the radius can be
projected using t-norm and t-conorm operators. Furthermore, the radius interval is expanded to [0,

√
2]

to ecompass the entire IFIT region within the circle range [25]. This expansion causes the categories
of min and max operations to no longer be seen as t-norm and t-conorm functions and has an impact
on the limitations of operators other than min and max.

In this section, the operators extension algebraic product, T ∗ and extension algebraic sum, S∗ are
defined on the interval [0, ψ] with ψ ∈ [1,

√
2]. These operators are based on the algebraic product

and algebraic sum on the t-norm and t-conorm. The T ∗ and S∗ operators are expected to have similar
properties and structure to the algebraic product and sum.
Definition 3.1. Let ψ ∈ [1,

√
2] and T ∗,S∗ : [0, ψ]2 → [0, ψ] where for a, b ∈ [0, ψ] can be defined as

T ∗(a, b) = ab
ψ

and S∗(a, b) = a + b − ab
ψ

.
Next, we will show the properties related to the t-norm axioms of the operator in Definition 2.4.

Theorem 3.1. Let ψ ∈ [1,
√

2] and for a, b ∈ [0, ψ], T ∗(a, b) = ab
ψ

and S∗(a, b) = a + b − ab
ψ

. The
operations T ∗ and S∗ satisfy the following properties:

(i) T ∗ and S∗ are commutative.

(ii) T ∗ and S∗ are associative.

(iii) T ∗ and S∗ are monotonic.

(iv) The neutral element in T ∗ is ψ and the neutral element in S∗ is 0.

(v) T ∗(a, b) = ψ − S∗(ψ − a, ψ − b) and S∗(a, b) = ψ − T ∗(ψ − a, ψ − b).

Proof. Let ψ ∈ [1,
√

2] and a, b ∈ [0, ψ] such that,

(i) T ∗(a, b) = ab
ψ

= ba
ψ

= T ∗(b, a) and S∗(a, b) = a + b − ab
ψ

= b + a − ba
ψ

= S∗(b, a). So it is proven
that T ∗ and S∗ are commutative.

(ii) Let c ∈ [0, ψ], then
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T ∗(a,T ∗(b, c)) = T ∗(a, bc
ψ

) =
a bc
ψ

ψ
=

ab
ψ c

ψ
= T ∗( ab

ψ
, c) = T ∗(T ∗(a, b), c) and

S∗(a,T ∗(b, c)) = S∗
(
a, b + c − bc

ψ

)
= a +

(
b + c − bc

ψ

)
−

a
(
b+c− bc

ψ

)
ψ

= a + b + c − bc
ψ
− ab

ψ
− ac

ψ
+ abc

ψ2

= a + b − ab
ψ

+ c −
(
a+b− ab

ψ

)
c

ψ

= S∗(a + b − ab
ψ
, c)

= S∗(S∗(a, b), c).

Hence, it is proved that T ∗ and S∗ are associative.

(iii) Let c ∈ [0, ψ] where b ≤ c, then T ∗(a, b) = ab
ψ
≤ ac

ψ
= T ∗(a, c) and S∗(a, b) = a + b − ab

ψ
≤

a + c − ac
ψ

= S∗(a, c). So T ∗ and S∗ have monotonic.

(iv) Suppose the neutral element in T ∗ is e′ ∈ [0, ψ], then T ∗(a, e′) = T ∗(e′, a) = a. It means
ae′
ψ

= a and obtained e′ = ψ. Similarly, suppose the neutral element in S∗ is e′′, then S∗(a, e′′) =

S∗(e′′, a) = a and we get e′′ = 0.

(v) It can be shown that ψ − S∗(ψ − a, ψ − b) = T ∗(a, b) and also ψ − T ∗(ψ − a, ψ − b) = S∗(a, b).

ψ − S∗(ψ − a, ψ − b) = ψ −
(
[ψ − a] + [ψ − b] − [ψ−a][ψ−b]

ψ

)
= ψ − (ψ − a + ψ − b − ψ + a + b − ab

ψ
)

= ab
ψ

= T ∗(a, b)

ψ − T ∗(ψ − a, ψ − b) = ψ −
(

[ψ−a][ψ−b]
ψ

)
= ψ −

(
ψ − a − b + ab

ψ

)
= a + b − ab

ψ
= S∗(a, b). �

If ψ = 1, the domain interval [0, 1] is obtained so that T ∗(a, b) = ab/1 = ab = Tp (product t-norm)
and S∗(a, b) = a + b − ab

1 = a + b − ab = Sp (probabilistic sum t-conorm). Moreover, if ψ =
√

2,
the domain interval is [0,

√
2] such that T ∗(a, b) = ab

√
2

and S∗(a, b) = a + b − ab
√

2
. It can be seen that

the variable ψ is an index of expansion that occurs in the domain interval from 1 to
√

2 . This raises
the question whether the properties and characters that apply Tp also apply to T ∗ and Sp also apply to
S∗. The properties and characters in question are monotone, continuous, strict, cancellation law and
archimedean.

Remark 2. The combination of monotonicity and commutativity leads to the non-decreasing
property of T ∗. If a ≤ b and c ≤ d, then we get T ∗(a, c) ≤ T ∗(a, d) = T ∗(d, a) ≤ T ∗(d, b) = T ∗(b, d).
The same effect occurs for S∗, such that S∗(a, c) ≤ S∗(b, d).
Theorem 3.2. Given T ∗ and S∗ in Definition 3.1, both operations satisfy the properties:
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(i) T ∗ and S∗ are continuous for every (a, b) ∈ [0, ψ]2 with ψ ∈ [1,
√

2].

(ii) T ∗ and S∗ are strictly monotone.

(iii) T ∗ and S∗ satisfy cancellation law.

(iv) T ∗ and S∗ are archimedean.

Proof. The proof will be done on the operator T ∗ (The same assumption is used for S∗).

(i) It will be proved that for every (a, b) ∈ [0, ψ]2 with ψ ∈ [1,
√

2] and ε > 0, there exists δε > 0
such that for every (a, b) ∈ [0, ψ]2 with

√
(x − a)2 + (y − b)2 < δε holds | xy

ψ
− ab

ψ
| < ε. Let

ψ ∈ [1,
√

2], (a, b) ∈ [0, ψ]2 and ε > 0. Note that for every (x, y) ∈ [0, ψ]2 holds 0 < a, y < ψ, then

|
xy
ψ
− ab

ψ
| = 1

ψ
|xy − ab|

= 1
ψ

√
(xy − ab)2

= 1
ψ

√
(xy − ay + ay − ab)2

= 1
ψ

√
(x − a)2y2 + 2ay(x − a)(y − b) + a2(y − b)2

< 1
ψ

√
(x − a)2ψ2 + 2ψ(x − a)(y − b) + ψ2(y − b)2

=
√

(x − a)2 + 2(x − a)(x − b) + (y − b)2

=
√

((x − a) + (y − b))2

= |(x − a) + (y − b)|

≤ |x − a| + |y − b|

=
√

(x − a)2 +
√

(y − b)2

≤
√

(x − a)2 + (y − b)2 +
√

(x − a)2 + (y − b)2

= 2
√

(x − a)2 + (y − b)2.

By taking δε = 1
2ε, then for every (x, y) ∈ [0, ψ]2 with

√
(x − a)2 + (y − b)2 < δε satisfied | xy

ψ
− ab

ψ
| <

2
√

(x − a)2 + (y − b)2 < 2δε = 2(1
2ε) = ε.

(ii) Let ψ ∈ [1,
√

2] and a, b, c ∈ [0, ψ] with b < c. By using the monotonicity property in
Theorem 3.1, it is obtained that T ∗(a, b) < T ∗(a, c) and also S∗(a, b) < S∗(a, c). Thus T ∗ and S∗

are strictly monotone.

(iii) It will be proved that for every a, b, c ∈ [0, ψ] with ψ ∈ [1,
√

2], if T ∗(a, b) = T ∗(a, c) then a = 0
or b = c. Let ψ ∈ [1,

√
2] and a, b, c ∈ [0, ψ] that satisfy T ∗(a, b) = T ∗(a, c). Hence a(b−c)

ψ
= 0,

Otherwise a = 0 or b = c. Analogously using S∗ operator, if S∗(a, b) = S∗(a, c) then,

(b − c) −
a(b − c)

ψ
= 0

(b − c)(1 −
a
ψ

) = 0.
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The result is b = c or a = ψ.

(iv) We will prove for every (a, b) ∈]0, ψ[2 with ψ ∈ [1,
√

2], there exist n ∈ N such that a(n)
T ∗
< b. Let

ψ ∈ [0,
√

2], (a, b) ∈]0, ψ[2 then

a(n)
T ∗

= T ∗(a,T ∗(a, ...(T ∗(a, a))))︸                           ︷︷                           ︸
n times

=
an

ψn−1 .

Using contradiction, if an

ψn−1 − b ≥ 0 then

an

ψn−1 − b = ψ

(
a
ψ

)n

− b ≥ b
(

a
ψ

)n

− b = b
((

a
ψ

)n

− 1
)
≥ 0.

Since 0 < a < ψ, then
(

a
ψ

)n
− 1 < 0 and also b , 0 such that equation b

((
a
ψ

)n
− 1

)
≥ 0 is false. So

it is proved that there exist a(n)
T ∗
< b. Similarly with the operator S∗ then,

a(n)
S∗

= T ∗(a,T ∗(a, ...(T ∗(a, a))))︸                           ︷︷                           ︸
n times

= ψ − ψ(1 −
a
ψ

)n.

Analogously, by using contradiction, if it holds that ψ − ψ
(
1 − a

ψ

)n
− b ≥ 0 then,

ψ − ψ

(
1 −

a
ψ

)n

− b ≥ b − ψ
(
1 −

a
ψ

)n

− b = −ψ

(
1 −

a
ψ

)n

≥ 0.

Considering 0 < a < ψ, it follows
(
1 − a

ψ

)n
≥ 0 such that −ψ

(
1 − a

ψ

)n
≥ 0 is false and it is proved

for a(n)
S∗
< b. �

Theorem 3.3. Let T ∗ and S∗ operator , ψ ∈ [1,
√

2] and a ∈ [0, ψ] then applies:

(i) Element 0 and ψ are idempotent element in T ∗ and S∗.

(ii) The operator T ∗ and S∗ have no nilpotent elements and zero divisor.

Proof. Let ψ ∈ [1,
√

2],

(i) Element a ∈ [0, ψ] is called idempotent of T ∗(or S∗) iff T ∗(a, a) = a (or S∗(a, a) = a). Start with
T ∗(a, a) = a such that it is obtained,

T ∗(a, a) = a

a2

ψ
= a

a −
a2

ψ
= 0

a(ψ − a)
ψ

= 0.
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This leads to a = 0 or a = ψ. Now for operator S∗(a, a) = a we get,

S∗(a, a) = 0

2a −
a2

ψ
= a

a −
a2

ψ
= 0

a(ψ − a)
ψ

= 0.

This also means that a = 0 or a = ψ. Therefore, 0 and ψ for ψ ∈ [1,
√

2] are idempotent elements
for both T ∗ and S∗.

(ii) Element a ∈]0, ψ[ is called nilpotent of T ∗ (or S∗) iff there exist some n ∈ N such that a(n)
T ∗

= 0
(or a(n)

S∗
= 0 ). Starting with operator T ∗ we have a(n)

T ∗
= an

ψn−1 = 0 such that a = 0 is obtained.
Similarly for operator S∗, we have

an
S∗

= ψ − ψ

(
1 −

a
ψ

)n

= 0

ψ

(
1 −

a
ψ

)n

= ψ(
1 −

a
ψ

)n

= 1.

The above equation holds if only a = ψ is obtained for n odd or even. Since a ∈]0, ψ[, both
operators T ∗ and S∗ have no nilpotent element. Furthermore, element a ∈]0, ψ[ is called zero
divisor of T ∗ (or S∗) iff there exist some b ∈]0, ψ[ such that T ∗(a, b) = 0 (or S∗(a, b) = 0).
Analogously with nilpotent, we have only a = 0 or a = ψ that satisfies T ∗(a, b) = 0 and S∗(a, b) =

0, so the operators T ∗ and S∗ also have no zero divisor. �

At the end of this section, we will show the relation between T ∗ and Tp from the algebraic side
using the concept of semigroup. Given interval sets I = [0, 1] and I∗ = [0, ψ] with ψ ∈ [1,

√
2], and

also operator Tp : I2 → I and operator T ∗ : [I∗]2 → I∗ defined respectively:

Tp(a, b) = ab(∀a, b ∈ I),

T ∗(a, b) =
a∗b∗

ψ
(∀a, b ∈ I∗).

It can be shown that (I,Tp) and (I∗,T ∗) are both commutative semigroups with neutral elements.

Theorem 3.4. Semigroup (I,Tp) isomorphic to (I∗,T ∗) is denoted (I,Tp) � (I∗,T ∗).

Proof. It will be shown that there exists a bijective function ξ : I → I∗ such that for all a, b ∈ I,

ξ(Tp(a, b)) = T ∗(ξ(a), ξ(b)). (3.1)
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Define the function ξ : I → I∗ by ξ(a) = aψ for ψ ∈ [1,
√

2]. This implies that for all a, b ∈ I holds,

ξ(Tp(a, b)) = ξ(ab) = abψ =
aψ.bψ
ψ

= T ∗(ξ(a), ξ(b)).

Furthermore, the function ξ is injective because ∀a, b ∈ I if ξ(a) = ξ(b) then a = b holds. Moreover,
the function ξ is also surjective, because for any a∗ ∈ I∗ there exist a = a∗

ψ
∈ I such that ξ(a) = aψ =

( a∗
ψ

)ψ = a∗ for any ψ ∈ [1,
√

2]. Since the function ξ is injective, surjective and satisfies Eq (3.1), then
(I,Tp) � (I∗,T ∗). �

Similarly, the operators Sp : I2 → I and S∗ : [I∗]→ I∗ are defined respectively:

Sp(a, b) = a + b − ab(∀a, b ∈ I),

S∗(a, b) = a + b −
a∗b∗

ψ
(∀a, b ∈ I∗).

Theorem 3.5. Semigroup (I,Sp) isomorphic to (I∗,S∗) is denoted (I,Sp) � (I∗,S∗).

Proof. Straightforward. �

With the existence of operators T ∗ and S∗ that have the same structure, character, and properties
as Tp and Sp, they can be used as alternative operators of radius instead of the previously defined min
and max. Henceforth, in the case of CIFS using the value ψ =

√
2, the operator T ∗ is called radius

algebraic product (RAP) and is denoted ⊗, while the operator S∗ is called radius algebraic sum (RAS)
and is denoted ⊕.

4. Generalized operators for CIFS

This section begins by defining the generalized operators for CIFS based on t-norm (conorm). These
generalizations include the membership (M), non-membership (N), with the range [0, 1] and radius,
r with the range [0,

√
2]. Due to the difference in interval domains, this generalization process is

applied to M and N which belong to the t-norm (conorm) category [29, 30]. While the radius uses
min,max, RAP, and RAS. We focus on algebraic product and algebraic sum for alternative operations
on the radius and studying their related properties. Moreover, the arithmetic mean can also be applied
to directly affect the radius or be consistent with the operationsMA(x) and NA(x). The first step is to
define the generalization of intersection and union in CIFS using t-norm (conorm).
Definition 4.1. Let Ar,Bs are CIFSs in X with r, s ∈ [0, 1]. The generalized intersection (∩̃) and
generalized union (∪̃) of CIFSs can be presented as follows:

(Ar)∩̃T ,S,∝(Bs) = {〈x,T (MA(x),MB(x)),S(NA(x),NB(x));∝ (r, s)|x ∈ X〉},

(Ar)∪̃S,T ,∝(Bs) = {〈x,S(MA(x),MB(x)),T (NA(x),NB(x));∝ (r, s)|x ∈ X〉},

where T denotes t-norm and S denotes t-conorm, while ∝∈ {min,max,⊗,⊕}.
It is clear that the Definition 4.1 will be defined for radius r, s ∈ [0,

√
2]. It can be seen that

generalized intersection (Ar)∩̃T ,S,∝(Bs) is a CIFS in X if T (MA(x),MB(x)) + S(NA(x),NB(x)) ≤
1. Since Ar and Bs are CIFSs, obtained NA(x) ≤ 1 − MA(x) and NB(x) ≤ 1 − MB(x). Then,
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S(NA(x),NB(x)) ≤ S(1 −MA(x), 1 −MB(x)), which is equivalent to S∗(MA(x),MB(x)) = 1 −S(1 −
MA(x), 1 − MB(x)) ≤ 1 − S(NA(x),NB(x)), where the equality holds if A and B are fuzzy sets.
So, if T (MA(x),MB(x)) ≤ S∗(MA(x),MB(x)), then (Ar)∩̃T ,S,∝(Bs) is a CIFS in X. Analogously,
generalized union (Ar)∪̃S,T ,∝(Bs) is a CIFS when S(MA(x),MB(x)) ≤ T ∗(MA(x),MB(x)), where
T ∗(MA(x),MB(x)) = 1 − T (1 − MA(x), 1 − MB(x)). Thus, (Ar)∪̃S,T ,∝(Bs) is a CIFS in X, the so
called t-conorm (or dual t-norm T ).

The properties of these operators are also a generalization of the basic properties of CIFS. The
properties like commutative, associative and De’Morgan law can be derived from the generalized
intersection and union in CIFS. However, for distributive properties of generalized union and
intersection do not always apply, therefore it is necessary to focus on the type of t-norm (conorm) to
be used. For example, if the t-norm used is min then, T (MA(x),MB(x)) = min(MA(x),MB(x)) and
S(NA(x),NB(x)) = max(NA(x),NB(x)) so for each x ∈ X can be written:

(Ar)∩̃min,max,min(Bs) = {〈x,min(MA(x),MB(x)),max(NA(x),NB(x)); min(r, s)〉}
= Ar ∩min Bs,

(Ar)∩̃min,max,max(Bs) = {〈x,min(MA(x),MB(x)),max(NA(x),NB(x)); max(r, s)〉}
= Ar ∩max Bs.

The same thing happened for generalized union (t-conorm). This time, if the t-norm used is an
algebraic product, then the t-conorm used is an algebraic sum, and the generalized intersection and
union becomes:

(Ar)∩̃◦,+,⊗(Bs) = {〈x,MA(x).MB(x),NA(x) +NB(x) − NA(x).NB(x); r.s〉} = Ar ◦⊗ Bs,

(Ar)∩̃◦,+,⊕(Bs) = {〈x,MA(x).MB(x),NA(x) +NB(x) − NA(x).NB(x); r + s − r.s〉} = Ar ◦⊕ Bs,

(Ar)∪̃+,◦,⊗(Bs) = {〈x,MA(x) +MB(x) −MA(x).MB(x),NA(x).NB(x); r.s〉} = Ar +⊗ Bs,

(Ar)∪̃+,◦,⊕(Bs) = {〈x,MA(x) +MB(x) −MA(x).MB(x),NA(x).NB(x); r + s − r.s〉} = Ar +⊕ Bs.

In the previous researchers [24], the operations used on the radius are only min and max. From
Definition 2.5 instead of using min and max as radius operations in CIFS, it can be generalized to
other t-norm (conorm) operators. We focus on the algebraic sum and product for radius operations.
In addition to the algebraic product and sum form, the definition of the mean arithmetic operator will
also be applied to the radius. Therefore, the definition ∝ in this paper includes min,max,⊗,⊕, and @.
Thus, Definition 2.5 can be expanded to:
Definition 4.2. LetAr,Bs are CIFS in X, radius operations ∝∈ {min,max,⊕,⊗,@}, and r, s ∈ [0,

√
2].

The algebraic product, algebraic sum and arithmetic mean operator of CIFSs can be presented as
follows:

Ar ◦∝ Bs ={〈x,MA(x).MB(x),NA(x) +NB(x) − NA(x).NB(x);∝ (r, s)〉|x ∈ X},

Ar +∝ Bs ={〈x,MA(x) +MB(x) −MA(x).MB(x),NA(x).NB(x);∝ (r, s)〉|x ∈ X},

Ar@∝Bs ={〈x,
MA(x) +MB(x)

2
,
NA(x) +NB(x)

2
;∝ (r, s)〉|x ∈ X}.
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The following example will show the difference between the min,max,⊗,⊕ and @ on radius part.

Example 1: LetAr and Bs are CIFS which are defined as follows:

Ar = {〈x, 0.52, 0.10; 0.3〉, 〈y, 0.24, 0.65; 0.3〉, 〈z, 0.40, 0.57; 0.3〉},
Bs = {〈x, 0.32, 0.68; 1.2〉, 〈y, 0.73, 0.11; 1.2〉, 〈z, 0.63, 0.20; 1.2〉}.

Using the algebraic product as the operator for membership and non-membership, compare the
radius values for each operation ∝. If ∝= min, then,

Ar ◦min Bs = {〈x, 0.17, 0.71; 0.3〉, 〈y, 0.18, 0.69; 0.3〉, 〈z, 0.25, 0.66; 0.3〉},

and if ∝= max, the another result will be,

Ar ◦max Bs = {〈x, 0.17, 0.71; 1.2〉, 〈y, 0.18, 0.69; 1.2〉, 〈z, 0.25, 0.66; 1.2〉}.

A significant difference occurs in the radius while the membership and non-membership values are
the same. So for Ar ◦⊗ Bs has a radius value of 0.254, Ar ◦⊕ Bs obtains a radius value of 1.245 and
Ar ◦@Bs obtains a radius value of 0.75. The next thing is to know the relation of each operation radius.
Theorem 4.1. Let Ar and Bs are CIFS, φ ∈ {∩,∪,+, ◦,@} and r, s ∈ [0, 1] the following equation
holds,

Arφ⊗Bs ⊆ρ ArφminBs ⊆ρ Arφ@Bs ⊆ρ ArφmaxBs ⊆ρ Arφ⊕Bs.

Proof. The proof of this theorem is focused on the radius value. Since the relation ⊆ρ is in
Definition 2.4, ifAr ⊆ρ Bs then r ≤ s applies to radius. Furthermore, using the operating properties of
the t-norm and conorm obtained for each r, s ∈ [0, 1],

rs
√

2
≤ min{r, s} ≤

r + s
2
≤ max{r, s} ≤ r + s −

rs
√

2
.

So it is proved for the theorem. �

Theorem 4.2. Let Ar and Bs are CIFS , φ ∈ {∩,∪,+, ◦,@},∝∈ {⊗,⊕,@} and r, s ∈ [0,
√

2], then the
following statements are true:

(i) (ArφminBs) ∩∝ (ArφmaxBs) = Ar ∩∝ Bs.

(ii) (ArφminBs) ∪∝ (ArφmaxBs) = Ar ∪∝ Bs.

(iii) (ArφminBs)@∝(ArφmaxBs) = Ar@∝Bs.

Proof. In proving points (i), (ii), and (iii) using a similar method. Since for let Ar,Bs are CIFS (i.e.
point 1),

(ArφminBs) ∩∝ (ArφmaxBs)
= {〈x, φ(MA(x),MB(x)), φ(NA(x),NB(x)); min(r, s)〉} ∩∝ {〈x, φ(MA(x),MB(x)),

φ(NA(x),NB(x)); max(r, s)〉}
= {〈x, φ(MA(x),MB(x)), φ(NA(x),NB(x));∝ (min(r, s),max(r, s))〉}.
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If ∝= ⊕, then ∝ (min(r, s),max(r, s)) = min(r, s) + max(r, s)− [min(r,s)·max(r,s)]
√

2
= r + s− rs

√
2
. The same

is true if ∝= ⊗ and @ are selected. A similar proof was also made for φ = ∩,∪, ◦,@ and for points 2
and 3. �

Because the algebraic product and sum are a type of t-norm (conorm), it is proven that they are
commutative, associative and De’Morgan law. However, further investigation is needed for the
arithmetic mean operator combined with the algebraic product or sum,
Theorem 4.3. (Commutative Law) Let Ar and Bs are CIFSs, ∝∈ {⊗,⊕,@} and r, s ∈ [0,

√
2] then

satisfied:

Ar +@ Bs = Bs +@ Ar,Ar ◦@ Bs = Bs ◦@ Ar, andAr@∝Bs = Bs@∝Ar,

Proof. Let say Ar +@ Bs = Ct, then radius part is t = r+s
2 = s+r

2 and the equation Ct = Bs +@ Ar is
proven. Next forAr@⊗Bs obtained,

Ar@⊗Bs = {〈x,
MA(x) +MB(x)

2
,
NA(x) +NB(x)

2
;

rs
√

2
〉}

= {〈x,
MB(x) +MA(x)

2
,
NB(x) +NA(x)

2
;

sr
√

2
〉}

= Bs@⊗Ar.

It can be seen that operator @⊗ is also commutative, so it is also proven forAr@⊕Bs andAr@@Bs.
�

Remark 3. Using the fact that for any r, s, t ∈ [0, 1] holds r+s
2 + t , r + s+t

2 then the arithmetic mean is
not associative. This means that for every φ ∈ {∩,∪,+, ◦} and ∝∈ {min,max,⊗,⊕} applies,

Arφ@(Bsφ@Ct) , (Arφ@Bs)φ@Ct andAr@∝(Bs@∝Ct) , (Ar@∝Bs)@∝Ct.

operators, we will show some properties that apply to RAP, RAS, and arithmetic mean on the radius
operator.
Theorem 4.4. Let r, s, t ∈ [0,

√
2], then the relations between operators ⊗,⊕ and @ satisfied,

(i) ⊗(r,⊗(s, t)) ≥ ⊗(⊗(r, s),⊗(r, t)).

(ii) ⊕(r,⊕(s, t)) ≤ ⊕(⊕(r, s),⊕(r, t)).

(iii) ⊗(r,⊕(s, t)) ≤ ⊕(⊗(r, s),⊗(r, t)).

(iv) ⊕(r,⊗(s, t)) ≥ ⊗(⊕(r, s),⊕(r, t)).

(v) ⊗(r,@(s, t)) = @(⊗(r, s),⊗(r, t)).
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(vi) ⊕(r,@(s, t)) = @(⊕(r, s),⊕(r, t)).

(vii) @(r,⊕(s, t)) ≤ ⊕(@(r, s),@(r, t)).

(viii) @(r,⊗(s, t)) ≥ ⊗(@(r, s),@(r, t)).

(ix) @(r,@(s, t)) = @(@(r, s),@(r, t)).

Proof. Let r, s, t ∈ [0,
√

2] real number. To prove that the left side is smaller or equal to the right side,
the difference between the left and right sides is negative and vice versa.

(i) From left side, ⊗(r,⊗(s, t)) = ⊗(r, st
√

2
) =

r st√
2
√

2
= rst

2 , and from right side we have,

⊗(⊗(r, s),⊗(r, t)) = ⊗( rs
√

2
, rt
√

2
) = r2 st

2
√

2
. Then the difference between the two is,[

rst
2

]
−

[
r2 st
2
√

2

]
=
√

2rst−r2 st
2
√

2
=

rst(
√

2−r)
2
√

2
≥ 0.

It means that ⊗(r,⊗(s, t)) ≥ ⊗(⊗(r, s),⊗(r, t)).

(ii) The value of the left side is, ⊕(r,⊕(s, t)) = ⊕
(
r, s + t − st

√
2

)
= r + (s + t − st

√
2
) −

r(s+t− st√
2

)
√

2

= r + s + t − rs
√

2
− rt
√

2
− st
√

2
+ rst

2 ,

while from the right side, ⊕(⊕(r, s),⊕(r, t)) = ⊗
(
r + s − rs

√
2
, r + t − rt

√
2

)
=

(
r + s − rs

√
2

)
+

(
r + t − rt

√
2

)
−

(
r+s− rs√

2

)(
r+t− rt√

2

)
√

2

= r + s − rs
√

2
+ r + t − rs

√
2

+ r2
√

2
+ rt
√

2
− r2t

2 + rs
√

2
+ st
√

2
− rst

2 −
r2 s
2 −

rst
2 + r2 st

2
√

2
.

The difference between the two is,

[r + s+ t− st
√

2
− rs
√

2
− rt
√

2
+ rst

2 ]− [r + s− rs
√

2
+r + t− rs

√
2
+ r2
√

2
+ rt
√

2
− r2t

2 + rs
√

2
+ st
√

2
− rst

2 −
r2 s
2 −

rst
2 + r2 st

2
√

2
]

= 3rst
2 − r − r2

√
2
− 2rt
√

2
+ r2t

2 −
2st
√

2
+ r2 s

2 −
r2 st
2
√

2

= 3
√

2rst−2
√

2r−2
√

2r2−4rt+
√

2r2t−4st+
√

2r2 s−r2 st
2
√

2

=
3
√

2rst−r2 st−2
√

2r−2r2+
√

2r2(s+t)−4t(r+s)
2
√

2
.

Since, s + t − st
√

2
≤
√

2 and r + s − rs
√

2
≤
√

2 then,

≤ 3
√

2rst − r2st − 2
√

2r − 2r2 +
√

2r2(
√

2 − st
√

2
) − 4t(r + s)

= 3
√

2rst − 2r2st − 2
√

2r − 4t(r + s)

AIMS Mathematics Volume 9, Issue 5, 12259–12286.



12275

≤ 3
√

2rst − 2r2st − 2
√

2r − 4t(
√

2 + rs
√

2
)

=
√

2rst − 2r2st − 2
√

2r − 4
√

2t

= −2r2st +
√

2r(st − 2) − 4
√

2t ≤ 0.

So it is proven that ⊕(r,⊕(s, t)) ≤ ⊕(⊕(r, s),⊕(r, t)).

(iii) Analogously to the previous, for the left side value is obtained,

⊗(r,⊕(s, t)) = ⊗
(
r, s + t − st

√
2

)
=

r
(
s+t− st√

2

)
√

2
= rs
√

2
+ rt
√

2
− rst

2 ,

while the right side is obtained,

⊕(⊗(r, s),⊗(r, t)) = ⊕
(

rs
√

2
, rt
√

2

)
= rs
√

2
+ rt
√

2
=

(
rs√

2

)(
rt√

2

)
√

2
= rs
√

2
+ rt
√

2
− r2 st

2
√

2
.

The difference is,

[ rs
√

2
+ rt
√

2
− rst

2 ] − [ rs
√

2
+ rt
√

2
− r2 st

2
√

2
] = r2 st−

√
2rst

2
√

2
=

rst(r−
√

2)
2
√

2
≤ 0.

So it is clear that ⊗(r,⊕(s, t)) ≤ ⊕(⊗(r, s),⊗(r, t)).

(iv) Similarly, from left side we have,

⊕(r,⊗(s, t)) = ⊕(r, st
√

2
) = r + st

√
2
−

r st√
2
√

2
= r + st

√
2
− rst

2 ,

from right side,

⊗(⊕(r, s),⊕(r, t)) = ⊗
(
r + s − rs

√
2
, r + t − rt

√
2

)
=

(
r+s− rs√

2

)(
r+t− rt√

2

)
√

2

= r2
√

2
+ rt
√

2
− r2t

2 + rs
√

2
+ st
√

2
− rst

2 −
r2 s
2 −

rst
2 + r2 st

2
√

2
.

So the difference between left and right sides is,

[r + st
√

2
− rst

2 ] − [ r2
√

2
+ rt
√

2
− r2t

2 + rs
√

2
+ st
√

2
− rst

2 −
r2 s
2 −

rst
2 + r2 st

2
√

2
]

= r − r2
√

2
− rt
√

2
+ r2t

2 −
rs
√

2
+ r2 s

2 + rst
2 −

r2 st
2
√

2

=
r(
√

2−r)((2−st)−
√

2(s+t))
2
√

2
.

It is clear that r ≥ 0,
√

2 − r ≥ 0, then for (2 − st) −
√

2(s + t) will be investigated as follows,

(2 − st) −
√

2(s + t) = 2 − st −
√

2s −
√

2t

=
√

2(
√

2 − st
√

2
− s − t)

=
√

2
(√

2 −
(
s + t − st

√
2

))
.
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Because s+ t− st
√

2
≤
√

2 for s, t ∈ [0,
√

2], then obtained that information (2− st)−
√

2(s+ t) ≥ 0.

So it is proven that r(
√

2−r)((2−st)−
√

2(s+t))
2
√

2
≥ 0.

(v) To prove the similarity of left and right sides is as follows:
r( s+t

2 )
√

2
=

r(s+t)
2
√

2
=

rs√
2
+ rt√

2
2 = @(⊗(r, s),⊗(r, t)).

(vi) Likewise with point (v), it is obtained,

⊕(r,@(s, t)) = ⊕
(
r, s+t

2

)
= r + s+t

2 −
r( s+t

2 )
√

2
=

(
r+s− rs√

2

)
+

(
r+t− rt√

2

)
2 = @(⊕(r, s),⊕(r, t)),

(vii) The left side value is,

@(r,⊕(s, t)) =
r+

(
s+t− st√

2

)
2 =

r+s+t− st√
2

2 = 2
√

2r+2
√

2s+2
√

2t−2st
4
√

2
,

while its right side is obtained,

⊕(@(r, s),@(r, t)) =
(

r+s
2

)
+

(
r+t
2

)
−

( r+s
2 )( r+t

2 )
√

2

= 2r+s+t
2 −

(
r2+rt+rs+st

4
√

2

)
= 4

√
2r+2

√
2s+2

√
2t−r2−rt−rs−st

4
√

2
.

So the difference between left side and right side is,[
2
√

2r+2
√

2s+2
√

2t−2st
4
√

2

]
−

[
4
√

2r+2
√

2s+2
√

2t−r2−rt−rs−st
4
√

2

]
= −st−2

√
2r+r2+rt+rs
4
√

2

=
r(r+s+t−2

√
2)−st

4
√

2
.

Remember that s + t − st
√

2
≤
√

2

≤
r
(
r+
√

2+ st√
2
−2
√

2
)
−st

4
√

2

≤
(r−
√

2)
(
r+ st√

2

)
4
√

2
≤ 0.

It is obtained that @(r,⊕(s, t)) ≤ ⊕(@(r, s),@(r, t)).

(viii) From left side,

@(r,⊗(s, t)) =
r+ st√

2
2 =

√
2r+st
2
√

2
.

From right side,

⊗(@(r, s),@(r, t)) =
( r+s

2 )( r+t
2 )

√
2

= r2+rt+rs+st
4
√

2
.

Then the difference is,[ √
2r+st
2
√

2

]
−

[
r2+rt+rs+st

4
√

2

]
AIMS Mathematics Volume 9, Issue 5, 12259–12286.
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= 2
√

2r+st−r2−rt−rs
4
√

2

=
r(
√

2−r)+
√

2r+st−rt−rs
4
√

2
.

Remember that s + t − st
√

2
≤
√

2 and st ≥ st
√

2
,

≥
r(
√

2−r)+
√

2r+(s+t−
√

2)−rt−rs
4
√

2

≥
r(
√

2−r)+(1−r)(s+t−
√

2)
4
√

2
≥ 0.

It is obtained that the value of the left side is greather than equal to the right side for radius, so
@(r,⊗(s, t)) ≥ ⊗(@(r, s),@(r, t)).

(ix) The same as point (v) is obtained,

@(r,@(s, t)) = @(r, s+t
2 ) =

r+ s+t
2

2 =
r+s
2 + r+t

2
2 = @(@(r, s),@(r, t)).

Thus, it is proven for the distributive relation between the operators ⊗,⊕ and @. �

The distributive properties of CIFS have been shown in previous research [24], but the radius
operations are only limited to min and max. Furthermore, the distributive properties in algebraic
addition, product, and arithmetic mean in CIFS will be shown along with additional operators on
radius.

Theorem 4.5. (Distributive Law) LetAr,Bs and Ct are CIFSs, φ ∈ {+, ◦,@} and r, s, t ∈ [0,
√

2] then,

(i) Ar ◦⊗ (Bs +⊕ Ct) ⊂ (Ar ◦⊗ Bs) +⊕ (Ar ◦⊗ Ct).

(ii) Ar ◦⊗ (Bs@⊕Ct) ⊂ρ (Ar ◦⊗ Bs)@⊕(Ar ◦⊗ Ct).

(iii) Ar ◦⊗ (Bs@⊗Ct) ⊂ρ (Ar ◦⊗ Bs)@⊗(Ar ◦⊗ Ct).

(iv) Ar ◦⊕ (Bs +⊕ Ct) ⊂ρ (Ar ◦⊕ Bs) +⊕ (Ar ◦⊕ Ct).

(v) Ar ◦⊕ (Bs@⊕Ct) ⊂ρ (Ar ◦⊕ Bs)@⊕(Ar ◦⊕ Ct).

(vi) Ar ◦⊕ (Bs@⊗Ct) ⊃ρ (Ar ◦⊕ Bs)@⊗(Ar ◦⊕ Ct).

(vii) Ar ◦@ (Bs@⊗Ct) =ν (Ar ◦@ Bs)@⊗(Ar ◦@ Ct).

(viii) Ar ◦@ (Bs@⊕Ct) =ν (Ar ◦@ Bs)@⊕(Ar ◦@ Ct).

(ix) Ar ◦φ (Bs +@ Ct) ⊂ν (Ar ◦φ Bs) +@ (Ar ◦φ Ct).

(x) Ar ◦φ (Bs@@Ct) = (Ar ◦φ Bs)@@(Ar ◦φ Ct).

(xi) Ar +⊗ (Bs ◦⊗ Ct) ⊃ (Ar +⊗ Bs) ◦⊗ (Ar +⊗ Ct).

(xii) Ar +⊗ (Bs@⊕Ct) ⊂ρ (Ar +⊗ Bs)@⊕(Ar +⊗ Ct).

(xiii) Ar +⊗ (Bs@⊗Ct) ⊃ρ (Ar +⊗ Bs)@⊗(Ar +⊗ Ct).

(xiv) Ar +⊕ (Bs ◦⊗ Ct) ⊃ (Ar +⊕ Bs) ◦⊗ (Ar +⊕ Ct).

AIMS Mathematics Volume 9, Issue 5, 12259–12286.



12278

(xv) Ar +⊕ (Bs ◦⊗ Ct) ⊃ (Ar +⊕ Bs) ◦⊗ (Ar +⊕ Ct).

(xvi) Ar +⊕ (Bs@⊕Ct) ⊂ρ (Ar +⊕ Bs)@⊕(Ar +⊕ Ct).

(xvii) Ar +⊕ (Bs@⊗Ct) ⊃ρ (Ar +⊕ Bs)@⊗(Ar +⊕ Ct).

(xviii) Ar +@ (Bs@⊗Ct) =ν (Ar +@ Bs)@⊗(Ar +@ Ct).

(xix) Ar +@ (Bs@⊕Ct) =ν (Ar +@ Bs)@⊕(Ar +@ Ct).

(xx) Ar +ψ (Bs@@Ct) = (Ar +ψ Bs)@@(Ar +ψ Ct).

(xxi) Ar +ψ (Bs ◦@ Ct) ⊃ν (Ar +ψ Bs) ◦@ (Ar +ψ Ct).

(xxii) Ar@⊗(Bs +⊕ Ct) ⊂ (Ar@⊗Bs) +⊕ (Ar@⊗Ct).

(xxiii) Ar@⊗(Bs ◦⊗ Ct) ⊃ (Ar@⊗Bs) ◦⊗ (Ar@⊗Ct).

(xxiv) Ar@⊕(Bs +⊕ Ct) ⊂ (Ar@⊕Bs) +⊕ (Ar@⊕Ct).

(xxv) Ar@⊕(Bs ◦⊗ Ct) ⊃ (Ar@⊕Bs) ◦⊗ (Ar@⊕Ct).

(xxvi) Ar@ψ(Bs +@ Ct) ⊂ν (Ar@ψBs) +@ (Ar@ψCt).

(xxvii) Ar@ψ(Bs ◦@ Ct) ⊂ν (Ar@ψBs) ◦@ (Ar@ψCt).

Proof. The proof of this theorem can be demonstrated by utilizing Theorem in Atanassov [24] and
Theorem 4.4. �

Remark 4. The proof that has been carried out in Theorems 4.3 and 4.5 can also be applied to IFS
(r = 0). If the radius is 0, then just ignore the radius relation in the relation operator. As an example of
the distributive property points 2 and 7, if r = s = t = 0 thenAr◦⊗ (Bs@⊕Ct) ⊂ (Ar◦⊗Bs)@⊕(Ar◦⊗Ct)
andAr ◦@ (Bs@⊗Ct) = (Ar ◦@ Bs)@⊗(Ar ◦@ Ct).

5. Proposed modified negation operators on CIFS

In the original paper [24], Atanssov defined the negation operators on CIFS as redefined from IFS
which only affectsM and N , but not radius. Next, we will define a type negation operator based on
the radius condition.

Definition 5.1. Let Ar is CIFS and r ∈ [0,
√

2] then, modified negation operator based on radius are
the following:

¬2(Ar) = {〈x,MAr (x),NAr (x);
√

2 − r〉|x ∈ X},

¬3(Ar) = {〈x,NAr (x),MAr (x);
√

2 − r〉|x ∈ X}.

It is clear that the negation operator defined earlier in [24] is type-1 negation i.e.
¬1(Ar) = {〈x,NAr (x),MAr (x); r〉}. The type-2 and type-3 negation operators satisfy the complement
axioms, boundary conditions, monotonic descent, continuity, and involution properties. These
changes are based on operations on the radius giving rise to some properties that apply to the
definition.
Theorem 5.1. The following equalities are valid for CIFSsAr ,
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(i) ¬1(¬1(Ar)) = Ar likewise for ¬2 and ¬3.

(ii) ¬1(¬2(Ar)) = ¬3(Ar).

(iii) ¬2(¬1(Ar)) = ¬3(Ar).

(iv) Ar ⊆ρ ¬2(Ar)⇔ r ≤
√

2
2 .

(v) Ar ⊇ρ ¬2(Ar)⇔ r ≥
√

2
2 .

Proof. For points (i) until (iii), it is clearly proven by Definition 5.1. For the rest, it is sufficient to
prove if r ≤

√
2 − r then r ≤

√
2

2 and vice versa. �

Theorem 5.2. (De’Morgan Law) The following equalities are valid for CIFSs Ar and Bs for φ ∈
{∩,∪,+, ◦,@} and ∝∈ {max,min,⊕,⊗,@},

(i) ¬1(Ar@∝Bs) = ¬1(Ar)@∝¬1(Bs).

(ii) ¬2(Arφ@Bs) = ¬2(Ar)φ@¬2(Bs).

(iii) ¬1
[
¬1(Arφ∝Bs)

]
= Arφ∝Bs.

(iv) ¬2
[
¬1(Ar ∩max /min Bs)

]
= ¬3(Ar) ∪min /max ¬3(Bs).

(v) ¬2
[
¬1(Ar ∪max /min Bs)

]
= ¬3(Ar) ∩min /max ¬3(Bs).

(vi) ¬2
[
¬1(Ar +max /min Bs)

]
= ¬3(Ar) ◦min /max ¬3(Bs).

(vii) ¬2
[
¬1(Ar ◦max /min Bs)

]
= ¬3(Ar) +min /max ¬3(Bs).

(viii) ¬2
[
¬1(Ar@max /minBs)

]
= ¬3(Ar)@min /max¬3(Bs).

(ix) ¬2 [¬1(Ar@@Bs)] = ¬3(Ar)@@¬3(Bs)

Proof. It is clearly proven by Definitions 2.5 and 5.1. �

Next will be defined another modal operators “necessity” and “possibility”. The previously defined
modal operators [24] only affect membership or non-membership functions, not radius. This is the
reason why the modal operators “necessity” and “possibility” also affect the radius (denoted �2 and
♦2) as follows:
Definition 5.2. LetAr is CIFS, then modified modal operator based form radius are the following:

�2Ar = {〈x,MA(x), 1 −MA(x);
√

2 − r〉|x ∈ X},

♦2Ar = {〈x, 1 − NA(x),NA(x);
√

2 − r〉|x ∈ X}.

Similar to the negation operator, the modal operators “necessity” and “possibility” [24] are
symbolized by �1 and ♦1. Some properties derived from these modal operators are presented in next
the theorem:
Theorem 5.3. The following equalities are valid for CIFSAr ,

(i) �1Ar ⊆ν Ar.
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(ii) Ar ⊆ν ♦1Ar.

(iii) ♦1(�1Ar) = �1Ar.

(iv) �1(♦1Ar) = ♦1Ar.

(v) �1(�1...(�1(�1Ar))) = �1Ar.

(vi) ♦1(♦1...(♦1(♦1Ar))) = ♦1Ar.

(vii) r ≥
√

2
2 ⇔ �2Ar ⊆ Ar and r <

√
2

2 ⇔ �2Ar ⊃ Ar.

(viii) r ≤
√

2
2 ⇔ Ar ⊆ ♦2Ar and r <

√
2

2 ⇔ Ar ⊃ ♦2Ar.

(ix) ♦2(�2Ar) = �1Ar.

(x) �2(♦2Ar¬)¬ = ♦1Ar.

(xi) �2(�2Ar¬)¬ = �1Ar.

(xii) ♦2(♦2Ar) = ♦1Ar.

(xiii) �2(�2(�2Ar)) = �2Ar.

(xiv) ♦2(♦2(♦2Ar)) = ♦2Ar.

(xv) �2(�2...(�2Ar))︸             ︷︷             ︸
n factor

=

�1Ar , for n even number,
�2Ar , for n odd number.

(xvi) ♦2(♦2...(♦2Ar))︸            ︷︷            ︸
n factor

=

♦1Ar , for n even number,
♦2Ar , for n odd number.

Proof. This proof will be carried out at each point,

(i) It is clear that the difference between �1Ar and Ar lies in the value of N�1Ar ≤ NAr , so it holds
�1Ar ⊆ρ Ar.

(ii) Same with point (i), the difference is in the valueM♦1Ar ≥ MAr so it happensAr ⊆ρ ♦1Ar.

(iii) It is clear by Definition 5.2,

♦1(�1Ar) = ♦1{〈x,MA(x), 1 −MA(x), r〉}
= {〈x, 1 − (1 −MA(x)), 1 −MA(x), r〉}
= {〈x,MA(x), 1 −MA(x), r〉}
= �1Ar.

(iv) Same with point (iii),

�1(♦1Ar) = �{〈x, 1 − NA(x),NA(x), r〉}
= {〈x, 1 − NA(x), 1 − (1 − NA(x)), r〉}
= {〈x, 1 − NA(x),NA(x), r〉}
= ♦1Ar.
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(v) Let start for n = 1, it’s clear. For n = 2, 3, 4, ... it will be,

�1(�1Ar) = �1{〈x,MAr (x), 1 −MAr (x), r〉}
= {〈x,MAr (x), 1 −MAr (x), r〉}
= �1Ar,

recursively get,

�1(�1...(�1(�1Ar))) = �1(�1...(�1Ar)) = ... = (�1(�1Ar)) = �1Ar.

(vi) Same with point (v) and get,

♦1(♦1...(♦1(♦1Ar))) = ♦1(♦1...(♦1Ar)) = ... = (♦1(♦1Ar)) = ♦1Ar.

(vii) From left side, if r ≥
√

2
2 then value in �2Ar is

√
2−r ≤

√
2

2 and the value inAr ≥
√

2
2 . In addition,

membership and non-membership grades are obtained �2Ar = 〈x,MAr (x), 1 −MAr (x);
√

2 − r〉.
The fact thatNAr (x) = 1−MAr −HAr , thenNAr ≤ 1−MAr (x) so proved that �2Ar ⊆ Ar. From
right side, if �2Ar ⊆ Ar then,

√
2

2 ≤ r. Same method for �2Ar ⊃ Ar iff r <
√

2
2 .

(viii) From left side, if r ≤
√

2
2 then value in ♦2Ar is

√
2− r ≥

√
2

2 and the value inAr ≤
√

2
2 . In addition,

membership and non-membership grades are obtained ♦2Ar = 〈x, 1 − NAr (x),NAr (x);
√

2 − r〉.
The fact thatMAr (x) = 1−NAr −HAr , thenMAr ≤ 1−NAr (x) so proved thatAr ⊆ ♦2Ar. From
right side, ifAr ⊆ ♦2Ar then r ≤

√
2

2 same method forAr ⊃ ♦2Ar iff r >
√

2
2 .

(ix) Using the modified two negation combination on the modal operator according to Definition 5.2,

♦2(�2Ar) = ♦2{〈x,MA(x), 1 −MA(x),
√

2 − r〉}

= {〈x, 1 − (1 −MA(x)), 1 −MA(x),
√

2 − (
√

2 − r)〉}
= {〈x,MA(x), 1 −MA(x), r〉}
= �1Ar.

(x) Same using combination from Definition 5.2,

�2(♦2Ar) = ♦2{〈x, 1 − NA(x),NA(x),
√

2 − r〉}

= {〈x, 1 − NA(x), 1 − (1 − NA(x)),
√

2 − (
√

2 − r)〉}
= {〈x, 1 − NA(x),NA(x), r〉}
= ♦1Ar.

(xi) Equivalent with the previous,

�2(�2Ar) = �2(〈x,MA(x), 1 −MA(x);
√

2 − r〉)

= 〈x,MA(x), 1 −MA(x);
√

2 − (
√

2 − r)〉
= �1Ar.
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(xii) Equivalent with the previous,

♦2(♦2Ar) = ♦2(〈x, 1 − NA(x),NA(x);
√

2 − r〉)

= 〈x, 1 − NA(x),NA(x);
√

2 − (
√

2 − r)〉
= ♦1Ar.

(xiii) From point (xi),

�2(�2(�2Ar)) = �2(�2Ar)
= �2(〈x,MA(x), 1 −MA; r〉)

= (〈x,MA(x), 1 −MA;
√

2 − r〉)
= �2Ar.

(xiv) From point (xii),

♦2(♦2(♦2Ar))) = ♦2(♦2Ar)
= ♦2(〈x, 1 − NA(x),NA; r〉)

= (〈x, 1 − NA(x),NA;
√

2 − r〉)
= ♦2Ar.

(xv) From points (xi) and (xiii), it’s clear to proved that,

�2(�2...(�2Ar))︸             ︷︷             ︸
n f actor

=

�1Ar , for n even number,
�2Ar , for n odd number.

(xvi) From points (xii) and (xiv), it’s clear to proved that,

♦2(♦2...(♦2Ar))︸            ︷︷            ︸
n f actor

=

♦1Ar , for n even number,
♦2Ar , for n odd number.

�

Remark 5. Similarly with Remark 4, we can also apply the negation operators to IFS. Let A0 =

{〈x,MAr (x),NAr (x); 0〉|x ∈ X} andA√2 = {〈x,MAr (x),NAr (x);
√

2〉|x ∈ X} then,

¬1(Ar) = ¬A, for any IFSA,

¬2(Ar) = A√2, and

¬3(Ar) = ¬1(A√2).

Likewise for modal operators, so it is obtained

�1Ar = �A;�2Ar = A√2, and

♦1Ar = ♦A; ♦2Ar = A√2.

Analogously for Theorems 5.1 and 5.3 just ignore the radius relation in the relation operator.
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6. Conclusions and discussion

This research builds on Atanassov’s work on theoretical CIFS, focusing on defining alternative
operations for radius beyond minimum and maximum functions. These operations, namely Radius
Algebraic Product (RAP) and Radius Algebraic Sum (RAS), leverage the properties of t-norm and t-
conorm. Additionally, we introduce the arithmetic mean operator as a radius operator, distinct from
traditional t-norm or t-conorm categories. These three operators share structural and characteristic
similarities with algebraic product t-norm and probabilistic t-conorm, including algebraic properties,
idempotence, nilpotence, and zero divisor elements.

Following their definition, we integrate these operations with those defined by Atanassov, extending
them to generalize intersection and union based on t-norm (conorm). We explore various properties,
from commutativity to associativity and distributivity, to assess the consistency of these operations.
Furthermore, we propose alternative negation and modal operators beyond those defined by Atanassov,
and examine related theorems.

This work contributes to the literature on CIFS theory, providing valuable tools for researchers.
However, it also suggests avenues for further exploration, particularly in the realm of decision-making
processes. Future research should delve into the multiplicative characteristics of CIFS operators,
which serve as the foundation for developing aggregation operators such as Weighted Averaging
(WA), Ordered WA (OWA), Weighted Geometric (WG), or Ordered WG (OWG). Flexibility in radius
selection is crucial for decision-making agility. Moreover, the introduction of additional radius
operators prompts innovation in MCDM methods such as TOPSIS, AHP, ELECTRE, DEMATEL, etc.
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