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1. Introduction

Separable algebras in tensor categories are a natural generalization of finite-dimensional (associative
unital) semisimple algebras over C. Let C be a tensor category, see e.g., [19, 51]. If C happens to be
in addition unitary i.e., C∗, see e.g., [6, 52], the main result of this note, Theorem 4.13, states that
every separable algebra is “unitarizable” i.e., it is isomorphic to a “unitarily” separable algebra, and
the converse holds trivially. For the precise notions, see Definitions 3.3, 4.1 and 4.2. By Theorem 4.13,
every statement involving separable algebras living in a tensor or multitensor C*-category has a
“unitary” counterpart.

On the one hand, unitarily separable algebras also appear in the literature under the name of
special C∗-Frobenius algebras [6] or Q-systems [45, 46, 48]. Their study was initially motivated by
the applications to operator algebras, in particular to the construction and classification of finite-index
subfactors [37,38,55,57,58]. See [20] for an introduction to the subject, [31] for an overview, and [4],
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and references therein, for recent classification results. Since [47], Q-systems also play a pivotal role
in the construction and classification of finite-index extensions of algebraic quantum field theories [33]
in arbitrary spacetime dimensions, and of one-dimensional conformal field theories in the (completely)
unitary vertex operator algebra framework [12, 39] as well, since [30]. Recently, Q-systems have been
employed in the study of “quantum symmetries” (tensor category actions, generalizing ordinary group
symmetries) of C∗-algebras [10, 11, 14, 21].

On the other hand, separable algebras have a priori no inbuilt unitarity. Together with an additional
commutativity assumption with respect to a given braiding, since [15], they are also often called
étale algebras. These objects, typically assuming connectedness, are studied in relation to Ocneanu’s
quantum subgroups [54]. See [26] for recent results and a detailed account on their classification
program. As for (commutative irreducible) Q-systems in the algebraic quantum field theory
framework, connected étale algebras can be used to describe (local irreducible) extensions of vertex
operator algebras [35], see also [13,40]. Notably, they describe all rational 2D conformal field theories
maximally extending a given tensor product of (isomorphic) chiral subtheories. See [22–25, 60] in the
Euclidean setting, [34, 41] in the full vertex operator algebra setting, [5, 7] for the algebraic quantum
field theory setting, and [3] for the Wightman quantum field theory setting. See also [42] for a proof of
functoriality of the [22] construction when varying the given chiral subtheory.

The proof of our main result, Theorem 4.13, strongly relies on Theorem 3.2 in [8]. In the
connected (i.e., haploid) case, the notions of separable algebra, Frobenius algebra, and isomorphic to
unitarily separable algebra (i.e., isomorphic to special C∗-Frobenius algebra = Q-system) all coincide
by Lemma 4.10 below and by Theorem 3.2, see also Remark 3.3, in [8]. In the non-connected case, we
first decompose a separable algebra A in C into indecomposable ones, Lemma 4.8, then unitarize the
category of right A-modules in C, Lemma 4.11. Last, we show that the unitarized category is equivalent
to the modules over a unitarily separable algebra in C to which A is isomorphic, Proposition 4.12. This
leads to Theorem 4.13.

We point out that the semisimplicity of C (or of the tensor or multitensor subcategory generated
by A) is implicitly used in Theorem 3.2 in [8]. Here, we need it to exploit the separability of A
via Proposition 4.3. Thus, a possible generalization of Theorem 4.13 to the case of non-semisimple
monoidal C∗-categories C should require a different idea, possibly “internal” to the C∗-algebra C(A, A),
on how to show directly that a separable algebra is isomorphic in C to a unitarily separable one.

2. Preliminaries

A C∗-category is a generalization of a C∗-algebra of operators acting between different Hilbert
spaces instead of one. The objects X,Y,Z, . . . of C can be thought of as the Hilbert spaces,
the morphisms f , g, h, . . . of C as the bounded linear operators. Formally, it is a C-linear category
C ( [19, 49]) equipped with an involutive contravariant anti-linear endofunctor ∗ : C → C (sometimes
called dagger or adjoint) and a family of norms ‖ · ‖ on morphisms such that

• the endofunctor ∗ is the identity on objects (we use f ∗ ∈ C(Y, X) to denote the image of the
morphism f ∈ C(X,Y)),
• the hom space C(X,Y) is a Banach space for every X,Y ∈ C,
• ‖g f ‖ ≤ ‖g‖‖ f ‖, ‖ f ∗ f ‖ = ‖ f ‖2, f ∗ f ≥ 0, for every f ∈ C(X,Y), g ∈ C(Y,Z).

In particular, a C∗-category with one object is a unital C∗-algebra (see [28]).
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In the following, we use 1X to denote the identity morphism in C(X, X). For a morphism f ∈ C(X,Y)
we will occasionally write f : X → Y if the environment category C is clear from the context.

A morphism f in a C∗-category is called unitary (resp. self-adjoint) if f ∗ = f −1 (resp. f ∗ = f ). Let
C and D be two C∗-categories. A ∗-functor from C to D is a linear functor such that F( f ∗) = F( f )∗

for every morphism f .
A multitensor C∗-category is an abelian rigid ( [17, 48]) monoidal category (C,⊗ : C × C → C, 1)

equipped a C∗-category structure satisfying the following conditions:

• the tensor unit 1 of C is semisimple, i.e., C(1, 1) is finite-dimensional,
• ⊗ is a bilinear functor and ( f ⊗ g)∗ = f ∗ ⊗ g∗ for every morphisms f , g,
• the associator and the left/right unitor constraints are unitary.

If C(1, 1) ' C, i.e., if 1 is simple, then C is called a tensor C∗-category. By Proposition 8.16 in [27],
every multitensor C∗-category C is semisimple and locally finite. Moreover, by Mac Lane’s coherence
theorem, C is equivalent to a strict multitensor C∗-category, i.e., where the associator and the left/right
unitors are identities (see [6, 19]). From now on, unless otherwise specified, we use C to denote a
(strict) multitensor C∗-category.

Remark 2.1. The tensor unit 1 of C is a direct sum of simple objects ⊕n
i=11i. Note that C ' ⊕i jCi j,

where Ci j := 1i ⊗C⊗1 j (see Remark 4.3.4 in [19]). Let τ be the linear functional on C(1, 1) defined by

τ

∑
i

ai11i

 :=
∑

i

ai.

Let X ∈ C. We have X ' ⊕i jXi j and X ' ⊕i jX ji, where Xi j := 1i ⊗ X ⊗ 1 j and X, Xi j denote the
dual (or conjugate) objects of X, Xi j respectively. Namely, for every i, j ∈ {1, . . . , n}, there exists (see
below) a solution (γi j ∈ C(1 j, Xi j ⊗ Xi j), γi j ∈ C(1i, Xi j ⊗ Xi j)) of the conjugate equations

(γ ∗i j ⊗ 1Xi j)(1Xi j ⊗ γi j) = 1Xi j , (γ∗i j ⊗ 1Xi j
)(1Xi j

⊗ γi j) = 1Xi j
,

which is unique up to unitaries, and such that

τ
(
γ∗i j(1Xi j

⊗ f )γi j

)
= τ

(
γ ∗i j( f ⊗ 1Xi j

)γi j

)
(2.1)

for every f ∈ C(Xi j, Xi j). The scalar dimension of Xi j ( [27, 48]) is then dXi j = τ(γ∗i jγi j) = τ(γ ∗i jγi j).
For the convenience of the reader, we sketch proof of this well-known fact when i , j (the case

where i = j can be proved similarly). Let {Zs}s be a set of representatives of simple objects in Ci j.
Since dimC(1 j,Z s ⊗ Zs) = dimC(1i,Zs ⊗ Z s) = 1, we can choose a solution of the conjugate equations
(γs, γs) such that τ(γ∗sγs) = τ(γ ∗s γs), i.e., ‖γs‖ = ‖γs‖ (as in Definition 3.4 in [48]). For non-simple
Xi j ∈ Ci j, let {us,k}k (resp. {us,k}k) be a basis of C(Zs, Xi j) (resp. C(Z s, Xi j)) such that u∗s,lus,k = δk,l1Zs

(resp. u ∗s,lus,k = δk,l1Z s
). Let

γi j :=
∑

s

∑
k

(us,k ⊗ us,k)γs, γi j :=
∑

s

∑
k

(us,k ⊗ us,k)γs,

as before Lemma 3.7 in [48], or before Lemma 8.23 in [27], then (γi j, γi j) is a solution of the conjugate
equations that satisfies the Eq (2.1). Indeed,

τ
(
γ∗i j(1Xi j

⊗ us,ku∗s,l)γi j

)
= δk,lτ(γ∗sγs) = δk,lτ(γ ∗s γs) = τ

(
γ ∗i j(us,ku∗s,l ⊗ 1Xi j

)γi j

)
.
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Let (ω ∈ C(1, Xi j ⊗ Xi j), ω ∈ C(1, Xi j ⊗ Xi j)) be a solution of the conjugate equations that satisfies the
Eq (2.1). Then, there exists an invertible morphism h ∈ C(Xi j, Xi j) such that ω = (1Xi j

⊗ h)γi j and ω =

((h∗)−1 ⊗ 1Xi j
)γi j. By choosing a different basis of C(Zs, Xi j), we may assume that h =

∑
s
∑

k as,kus,ku∗s,k,
where as,k > 0. Then, the condition that (ω,ω) fulfills the Eq (2.1) implies that h = 1Xi j . In other
words, the solution of the conjugate equations that satisfies the Eq (2.1) is unique up to unitaries (see
Lemmas 3.3 and 3.7 in [48], and cf. Lemma 8.35 in [27], for more details).

Let γX := ⊕i jγi j and γX := ⊕i jγi j. Note that these are not the standard solutions of the conjugate
equations defined in [27], where the Perron-Frobenius data of the matrix dimension enter as numerical
prefactors for each i, j (see Definitions 8.25 and 8.29 therein), unless the tensor unit is simple (as in
Section 3 of [48]) and they coincide with the standard solutions of [48]. In particular, the “loop” or
“bubble” morphisms γ∗XγX and γ ∗XγX will neither be scalar in C(1, 1), nor equal, nor will (γX, γX) be
spherical (resp. minimal) in the sense of Theorem 8.39 (resp. Theorem 8.44) in [27].

With the (γX, γX) defined above, we have(
γ∗Y ⊗ 1X

) (
1Y ⊗ g ⊗ 1X

) (
1Y ⊗ γX

)
=

(
1X ⊗ γ

∗

Y
) (

1X ⊗ g ⊗ 1Y
) (
γX ⊗ 1Y

)
and

τ
(
γ∗X(1X ⊗ hg)γX

)
= τ

(
γ ∗X(hg ⊗ 1X)γX

)
= τ

(
γ∗Y(1Y ⊗ gh)γY

)
for every g ∈ C(X,Y), h ∈ C(Y, X), and X,Y ∈ C. Moreover, if a solution of the conjugate equations
(ω ∈ C(1, X ⊗ X), ω ∈ C(1, X ⊗ X)) fulfills

τ
(
ω∗(1X ⊗ g

)
ω) = τ

(
ω ∗(g ⊗ 1X)ω

)
, ∀g ∈ C(X, X),

then there exists a unitary u ∈ C(X, X) (or u ∈ C(X, X)) such that ω = (1X ⊗ u)γX and ω = (u ⊗ 1X)γX

(or ω = (u ⊗ 1X)γX and ω = (1X ⊗ u)γX).
Based on these observations, it is not hard to check that C endowed with the pivotal duality

{(X, γX, γX)}X∈C is a pivotal category (see, e.g., Section 1.7 in [61] for the definition of pivotal category).

3. Algebras and modules in multitensor C∗-categories

We recall below the natural generalization of the notion of finite-dimensional unital associative
algebra (in the tensor category of finite-dimensional complex vector spaces Vecf.d.,C). Let C be a strict
multitensor C∗-category.

Definition 3.1. An algebra in C is a triple (A,m, ι), where A is an object in C, m ∈ C(A ⊗ A, A) is
the “multiplication” morphism, ι ∈ C(1, A) is the “unit” morphism, fulfilling the associativity and unit
laws

m(m ⊗ 1A) = m(1A ⊗ m), m(ι ⊗ 1A) = 1A = m(1A ⊗ ι).

Definition 3.2. Two algebras (A,m, ι) and (A′,m′, ι′) in C are said to be isomorphic if there is an
invertible (not necessarily unitary) morphism t ∈ C(A, A′) such that tm = m′(t ⊗ t) and tι = ι′.
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Definition 3.3. An algebra (A,m, ι) in C is called a C∗-Frobenius algebra if m∗ is a left (or equivalently
right) A-module morphism such that

(m ⊗ 1A)(1A ⊗ m∗) = m∗m = (1A ⊗ m)(m∗ ⊗ 1A). (3.1)

An algebra (A,m, ι) in C is called special if the multiplication is a coisometry*

mm∗ = 1A.

Definition 3.4. Forgetting the C∗ structure, an algebra (A,m, ι) in C endowed with a coalgebra structure
(A,∆ ∈ C(A, A⊗A), ε ∈ C(A, 1)) (not necessarily ∆ = m∗, ε = ι∗) fulfilling the coassociativity and counit
laws, is called a Frobenius algebra if the analogue of (3.1) holds with m∗ replaced by ∆ (see [1,22,62]).

The following crucial results proven in [6,22,48] assuming C(1, 1) ' C, see in particular Chapter 3
in [6], also hold for multitensor C∗-categories, cf. Section 2.2 in [32].

Proposition 3.5. Let (A,m, ι) be an algebra in C.

• If (A,m, ι) is special, then it is a C∗-Frobenius algebra.
• If (A,m, ι) is a C∗-Frobenius algebra, then it is isomorphic to a special one.

Example 3.6. Recall, e.g., from Section 2 in [1] and Section 2.1 in [53], that a C∗-Frobenius algebra
in Hilbf.d.,C, the tensor C∗-category of finite-dimensional Hilbert spaces, is just an ordinary finite-
dimensional C∗-algebra with a Frobenius structure. Forgetting the C∗ structure, a Frobenius algebra
in the tensor category Vecf.d.,C of finite-dimensional vector spaces is a finite-dimensional Frobenius
algebra.

We shall use module categories (and their unitary version, C∗-module categories recalled below)
over multitensor C∗-categories. See [56] or Chapter 7 in [19] for the definitions of module category
over a monoidal category C and module functor.

Definition 3.7. A left C∗-module category over a multitensor C∗-category C is a left C-module
category (M,� : C ×M→M) which is also a C∗-category, such that

• � is bilinear and ( f � g)∗ = f ∗ � g∗ for every morphisms f ∈ C, g ∈M,
• the associator and the unitor constraints are unitary.

Right C∗-module categories and C∗-bimodule categories are defined similarly.

Typical examples of left (resp. right) C-module categories (not necessarily C∗) come from
considering right (resp. left) modules over an algebra (A,m, ι) in C. We use RModC(A) (resp.
LModC(A)) to denote the category of right (resp. left) A-modules in C.

Definition 3.8. Let (A,m, ι) be a special C∗-Frobenius algebra in C. As for algebras, a right A-module
(X, r ∈ C(X ⊗ A, X)) in C is called special if

rr∗ = 1X.

We denote by sRModC(A) the category of special right A-modules in C. The definition for left A-
modules is analogous.

*or, in a different convention, a scalar multiple of a coisometry, cf. [2,6,29,50,53]. Also, note that we do neither ask ι∗ι to be 11, nor
a multiple of 11, and that the latter condition is automatic if the tensor unit 1 is simple.
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By the arguments of Chapter 3 in [6], cf. Section 2.2 in [32], we have

Proposition 3.9. Let (A,m, ι) be a special C∗-Frobenius algebra in C. Then sRModC(A) is a left C∗-
module category over C, where the involution and norms are inherited from C.

More generally, given a right A-module (X, r ∈ C(X ⊗ A, X)), then (X, r′ := h−1r(h⊗1A)) is a special
right A-module, where h :=

√
rr∗, and h−1 is a right A-module isomorphism from (X, r) to (X, r′).

Moreover, RModC(A) is a left C∗-module category over C with the following C∗-structure

• f ∈ RModC(A)(X,Y) 7→ h2
X f ∗h−2

Y ∈ RModC(A)(Y, X),
• ||| f ||| :=

∥∥∥h−1
Y f hX

∥∥∥, f ∈ RModC(A)(X,Y),

where hX :=
√

rXr∗X and hY :=
√

rYr∗Y are defined respectively from the right A-module actions of X
and Y. The embedding sRModC(A) ↪−→ RModC(A) is an equivalence of left C∗-module categories.

4. Separable algebras are unitarizable

In this section, we prove our main theorem.

Definition 4.1. An algebra (A,m, ι) in C is called separable if the multiplication m ∈ C(A⊗A, A) splits
as a morphism of A-A-bimodules in C, i.e., if there is an A-A-bimodule morphism f ∈ C(A, A⊗A) such
that m f = 1A.

Clearly, every (not necessarily special) C∗-Frobenius algebra in C is separable. Indeed, by
Proposition 3.5, it is isomorphic to a special algebra in C (Definition 3.3), namely mm∗ = 1A holds
up to isomorphism of algebras, hence it is separable.

Moreover, a special C∗-Frobenius algebra, which is also called a Q-system after [46] (see also [6,
8, 11, 48, 50] and references therein), can be viewed as a “unitarily” separable algebra. The following
definition is motivated by this fact.

Definition 4.2. A (Frobenius) algebra in C is unitarizable if it is (not necessarily unitarily) isomorphic
to a special C∗-Frobenius algebra in C.

Our main result (Theorem 4.13) states that every separable algebra in C is unitarizable.
By the proof of Proposition 7.8.30 in [19], cf. Section 3 in [56], Section 2.3 in [15], Section 2.4

in [36], Section 4 in [43], the following characterization of separability for algebras in (not necessarily
C∗) multitensor categories holds.

Proposition 4.3. Let (A,mA, ιA), (B,mB, ιB) be separable algebras in C. Then the categories
RModC(A), LModC(A), and BiModC(A|B) (A-B-bimodules in C) are semisimple.

In particular, an algebra (C,mC, ιC) in C is separable if and only if BiModC(C|C) is semisimple.

Let (A,m, ι) be an algebra in C, (X, r) ∈ RModC(A), and (Y, l) ∈ LModC(A). We recall, e.g. from
Section 7.8 in [19] tensor product of X and Y over A is the object X⊗A Y ∈ C defined as the co-equalizer
of the diagram

X ⊗ A ⊗ Y
r⊗1Y //

1X⊗l
// X ⊗ Y // X ⊗A Y.

The following result follows from Proposition 7.11.1 in [19].
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Proposition 4.4. Let (A,mA, ιA), (B,mB, ιB) be algebras in C such that RModC(A), RModC(B) are
semisimple. Then, the category FunC|(RModC(A),RModC(B)) of left C-module functors is equivalent
to BiModC(A|B).

The equivalence is given by

X 7→ − ⊗A X : BiModC(A|B)→ FunC| (RModC(A),RModC(B)).

Definition 4.5. A separable algebra (A,mA, ιA) in C is called indecomposable if RModC(A) is an
indecomposable left C-module category, i.e., if it is not equivalent to a direct sum of non-zero left
C-module categories.

Definition 4.6. An algebra (A,mA, ιA) is called connected (or haploid) if dim(C(1, A)) = 1, i.e., if A is
a simple object in RModC(A).

Lemma 4.7. Let C ' ⊕i jCi j be the decomposition as in Remark 2.1. Then (A,mA, ιA) is a connected
algebra in C if and only if there exists exactly one j ∈ {1, . . . , n} such that A = A j j is a connected
algebra contained in the tensor C∗-category C j j with tensor unit 1 j.

Proof. Recall 1 = ⊕n
i=11i. By connectedness, there is only one j such that C(1 j, A) , 0, and

dim(C(1 j, A)) = 1. Moreover, every Akl must be zero unless k = l = j. �

The following result is well-known, we sketch the proof for the reader’s convenience.

Lemma 4.8. Let (A,m, ι) be a separable algebra in C. Then A is a direct sum of indecomposable
separable algebras.

Proof. Note that RModC(A) is indecomposable if and only if the identity functor id = −⊗A A associated
with the trivial bimodule A is a simple object in FunC|(RModC(A),RModC(A)). By Proposition 4.4,

BiModC(A|A)(A, A) ' FunC|(RModC(A),RModC(A))(id, id).

Assume that dim(BiModC(A|A)(A, A)) > 1. Recall from Proposition 4.3 that BiModC(A|A) is
semisimple. Let p be a non-trivial idempotent in BiModC(A|A)(A, A), i.e., 1A − p , 0, p2 = p,
and let B be the image of p. Then B is a separable algebra with multiplication and unit given
by vm(w ⊗ w) and vι, where v : A → B and w : B → A are A-A-bimodule morphisms such
that vw = 1B and wv = p. Note that f : B → B is a B-B-bimodule morphism with the
previous algebra structure on B if and only if w f v : A → A is an A-A-bimodule morphism.
Thus dim(BiModC(B|B)(B, B)) < dim(BiModC(A|A)(A, A)). This implies that A is a direct sum of
indecomposable separable algebras. �

Remark 4.9. If, in addition, the category C is braided and the separable algebra (A,m, ι) is commutative
in the sense of Definition 1.1 in [40], cf. Definition 4.20 in [6], then BiModC(A|A) and RModC(A) can
be identified. Hence, by the previous proof, A is a direct sum of connected separable algebras, cf.
Remark 3.2 in [15].

Lemma 4.10. Let (A,m, ι) be a connected separable algebra in C. Then A can be promoted to a
Frobenius algebra.
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Proof. By Lemma 4.7, we may assume that C is a tensor C∗-category. Recall the conventions in
Remark 2.1. A is a right A-module with right A-action given by

A ⊗ A
1A⊗A⊗γA
−−−−−−→ A ⊗ A ⊗ A ⊗ A

1A⊗m⊗1A
−−−−−−→ A ⊗ A ⊗ A

γ∗A⊗1A
−−−−→ A.

Let f : A→ A be the non-zero right A-module morphism defined by

f := A
1A⊗γA
−−−−→ A ⊗ A ⊗ A

(ι∗m)⊗1A
−−−−−−→ A.

Since RModC(A) is semisimple by Proposition 4.3, A is a simple right A-module by connectedness,
and dA = dA (where dA is the scalar dimension [27] of A in C, or equivalently the dimension [48] in C j j,
cf. Lemma 4.7), f is invertible in C. Hence, by Lemma 3.7 in [22], A can be promoted to a Frobenius
algebra. �

Let (M,�) be a left C-module category. Then M is said to be enriched in C if the functor C 7→
M(C � X,Y) : C → Vecf.d.,C is representable for every X,Y ∈ M, i.e., there exists an object [X,Y] ∈ C
such that

M(− � X,Y) ' C(−, [X,Y]).

The object [X,Y] is called the internal hom from X to Y . In particular, [X,−] : M → C is the right
adjoint of the functor − � X : C→M.

If M = RModC(A), where A is a separable algebra in C, then M is enriched in C. More explicitly,

the internal hom [X,Y] is given by X ⊗A Y . We refer the reader to Section 7 in [19] or Section 2 in [44]
for basic facts about internal homs.

Lemma 4.11. Let (A,mA, ιA) be an indecomposable separable algebra in C. Then there exists a
connected special C∗-Frobenius algebra (B,mB, ιB) in C such that RModC(A) and RModC(B) are
equivalent as left C-module categories.

In particular, RModC(A) is equivalent to a left C∗-module category over C.

Proof. Let X be a non-zero simple object in RModC(A). By Proposition 4.3 and by the proof of
Theorem 3.1 in [56] (cf. Theorem 2.1.7 in [44]), the internal hom [X, X] in RModC(A) is a connected
(by the simplicity of X) algebra in C such that RModC(A) and RModC([X, X]) are equivalent. Note
that RModC(A) and RModC([X, X]) are both semisimple. Since

FunC|(RModC([X, X]),RModC([X, X])) ' FunC|(RModC(A),RModC(A)),

from Propositions 4.3 and 4.4 it follows that A separable implies that [X, X] is separable. By
Lemma 4.10, [X, X] can be promoted to a connected Frobenius algebra. Then, [X, X] is isomorphic
to a special C∗-Frobenius algebra B in C by Lemma 4.7 and by Theorem 3.2, cf. Remark 3.3, in [8].
We conclude that RModC(A) is equivalent to RModC(B). The latter is a left C∗-module category over
C by Proposition 3.9. �

The following result is of independent interest and it should be compared with Lemma 2.18 in [29]
for M = RModC(A), and Theorem A.1 in [53].
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Proposition 4.12. Let (M,�) be an indecomposable left C∗-module over C which is enriched in C.
For every non-zero object X in M, the internal hom [X, X] is isomorphic (up to rescaling) to a special
C∗-Frobenius algebra in C.

Proof. By Proposition 2.3 in [59], we may choose the right adjoint [X,−] : M → C of the ∗-functor
− � X : C → M to be a ∗-functor. For every C ∈ C and Y ∈ M, we treat C(C, [X,Y]) as the Hilbert
space with inner product given by

〈 f1| f2〉 := τ
(
γ∗C(1C ⊗ f ∗1 f2)γC

)
,

where γC and τ are defined in Remark 2.1. Fix a faithful tracial state Tr on M(X, X). We treat M(C �
X,Y) as the Hilbert space with inner product defined by

〈g1|g2〉 := Tr
((

(γ∗C ⊗ 1X)(1C � g∗1)
) (

(1C � g2)(γC ⊗ 1X)
))
.

By the enrichment assumption, C(−, [X,−]) and M(− � X,−) are equivalent bilinear ∗-functors Cop ×

M → Hilbf.d.,C, i.e., C( f , [1X, g])∗ = C( f ∗, [1X, g∗]) and M( f � 1X, g)∗ = M( f ∗ � 1X, g∗) for every
f ∈ C(C2,C1) and g ∈ M(Y1,Y2). By considering the polar decomposition of natural isomorphisms,
we may assume that the natural isomorphism C(−, [X,−]) ' M(− � X,−) is componentwise unitary,
i.e., C(C, [X,Y]) 'M(C � X,Y) is unitary for every C ∈ C and Y ∈M.

Note that [X,−] is a left C-module functor with the C-module structure αC,Y : C⊗[X,Y]
∼
−→ [X,C�Y]

defined by the following natural isomorphism

C(B,C ⊗ [X,Y])
∼
−→ C(C ⊗ B, [X,Y])

∼
−→M((C ⊗ B) � X,Y)

∼
−→M(C � (B � X),Y)

∼
−→M(B � X,C � Y)

∼
−→ C(B, [X,C � Y]),

(4.1)

where the first and fourth morphisms are induced by the solution of conjugate equation (γC, γC) and
the third morphism is induced by the module structure of M (see Section 7.12 in [19]). By the fact that
the natural isomorphism C(−, [X,−]) ' M(− � X,−) is componentwise unitary, it is not hard to check
the the natural isomorphism (4.1) is unitary. Thus, αC,Y is unitary.

The evaluation evY : [X,Y]�X → Y is obtained as the image of 1[X,Y] under the natural isomorphism
C([X,Y], [X,Y]) ' M([X,Y] � X,Y). Let evY = hYuY be the polar decomposition of evY , where hY :=√

evY ev∗Y . Since αC,Y is the unique morphism such that the following diagram commutes

(C ⊗ [X,Y]) � X
αC,Y��

∼ // C � ([X,Y] � X)
1C�evY��

[X,C � Y] � X
evC�Y // C � Y,

by the uniqueness of the polar decomposition, we have 1C � hY = hC�Y . In particular, hY : Y → Y is
a left C-module natural isomorphism of the identity functor IdM to itself. Since M is indecomposable,
there exist λ > 0 such that hY = λ1Y for every Y . Since the multiplication of m : [X, X]⊗[X, X]→ [X, X]
is defined by

[X, X] ⊗ [X, X]
α[X,X],X
−−−−−→ [X, [X, X] � X]

[1X ,evX]
−−−−−→ [X, X],

(see Section 3.2 in [56]) we have mm∗ = λ21[X,X]. Hence [X, X] can be rescaled to a special C∗-
Frobenius algebra. �
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Summing up, we can state and prove our main result.

Theorem 4.13. An algebra in a multitensor C∗-category C is isomorphic to a special C∗-Frobenius
algebra if and only if it is separable.

Proof. By Lemma 4.8, we only need to show that every indecomposable separable algebra (A,mA, ιA)
in C is isomorphic to a special C∗-Frobenius algebra. Recall that RModC(A) is equivalent to a left C∗-
module category over C, denoted by M, by Lemma 4.11. Let F : RModC(A)→M be the equivalence
of left C-module categories. The algebra A seen as an object of RModC(A) equals [A, A], see e.g.,
Remark 3.5 in [56], hence it is isomorphic to [F(A), F(A)]. The latter is isomorphic to a special C∗-
Frobenius algebra by Proposition 4.12, hence A is, and the proof is complete. �

For fusion C∗-categories C, the following is stated as Corollary 3.8 in [8], as a consequence of
Theorem 3.2 therein.

Corollary 4.14. Let M be a finite semisimple left module category over a multi-fusion C∗-category C.
Then M is equivalent to RModC(A) for a special C∗-Frobenius algebra A.

Therefore, every finite semisimple left module category M over a multi-fusion C∗-category C admits
a unique unitary structure (up to unitary module equivalence).

Proof. By Corollary 7.10.5 in [19], M is equivalent to RModC(B), where B is an algebra in C. Since M
is semisimple, BiModC(B|B) ' FunC|(RModC(B),RModC(B)) is semisimple by Theorem 2.18 in [18].
Then B is separable by Proposition 4.3, and RModC(B) is equivalent to RModC(A) for a special C∗-
Frobenius algebra A by Theorem 4.13. The uniqueness statement follows from Corollary 9 in [59], see
also Theorem 1 and Remark 4 therein. �

We conclude with an application of Theorem 4.13 which justifies Remark 4.2 in [32]. The
idempotent completion of a locally idempotent complete bicategory B, introduced in Definition A.5.1
in [16], is the bicategory whose objects are separable algebras in B, whose 1-morphisms are bimodules,
and whose 2-morphisms are bimodule maps. By Proposition A.5.4 in [16], there exists a canonical
fully faithful bifunctor from B into its idempotent completion. B is called idempotent complete if
this bifunctor is a biequivalence. By combining the straightforward generalization of Theorem 4.13 to
algebras in (rigid) semisimple C∗-bicategories and Lemma 4.1 in [32], we have the following result.

Corollary 4.15. The rigid C∗-bicategory of finite direct sums of II1 factors, finite Connes’ bimodules
and intertwiners is idempotent complete.

This result is also stated with a different but equivalent terminology in [11]. By Theorem 4.13,
at least for (rigid) semisimple C∗-bicategories, the terminology of Q-system completion used in
Definition 3.34 in [11] coincides with the previously mentioned idempotent completion of [16].
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