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1. Introduction

Let S be a subgroup of a group G. It is well-known that the operation paS qpbS q :“ pabqS is well-
defined on the collection of (left) cosets of S if and only if S is normal in G. In this statement, the term
“well-defined” means singlevalued. It was in 1934 that the French mathematician F. Marty considered
the operation � defined on the set of left cosets of an arbitrary subgroup S in G as

paS q� pbS q :“ tcS | c “ asb for some s P S u.

In this way he obtained a structure with a multivalued operation, which becomes singlevalued in the
case that S is normal in G. Marty isolated the fundamental axioms governing such structures in [33]
and called them hypergroups. The properties of hypergroups were studied further by Marty in [34,35].
Independently of Marty’s work, hypergroups appeared under the name “multigroups” in [12].
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An interesting feature of Marty’s axioms is that the axioms of group theory follow from them in the
singlevalued case (cf. [36, Section 4]). Conversely, any group satisfies Marty’s axioms. In this sense,
hypergroups generalise groups by allowing the operation to be multivalued.

Another path to follow in generalising first-order algebraic structures to the multivalued case may
be informally described as a syntactic replacement of the symbol for equality ““” with the
set-membership relation “P” to obtain, from known axioms and theorems, meaningful expressions in
the multivalued case.

Let us be more precise by considering the particular example of group theory. If H is a set equipped
with a multivalued operation �, then one can postulate that for some element e P H the following
statements hold:

@x@yppx P x � e^ x P e � x^ py P e � x_ y P x � eqq Ñ y “ xq, (1.1)

or
@xD!x´1

pe P x � x´1
^ e P x´1 � xq. (1.2)

Clearly, the two properties above are in analogy with the existence of a neutral element and inverses
usually postulated in group theory.

From this point of view, it is interesting to note that there are hypergroups (in the sense of Marty
mentioned above) where both the latter or the former property fail, and others in which (1.1) or both
properties hold (some of these examples will appear in Section 3 below). This and similar phenomena
produce a quite rich hierarchy of hypergroups, especially if compared with that of groups. The
number of isomorphism classes of finite structures also greatly increase: there are 8 isomorphism
classes of hypergroups with two elements, while there exist 3999 non-isomorphic hypergroups with
three elements (cf. [41]).

Observe further that a multivalued operation � on a set H induces two other multivalued
operations∗ on H:

x � y :“ tz P H | x P z � yu and y � x :“ tz P H | x P y � zu. (1.3)

Notice that if the operation ¨ of a group G is viewed as the multivalued operation x � y :“ tx ¨ yu
(x, y P G), then the above operations are clearly given by x � y “ tx ¨ y´1u and y � x “ ty´1 ¨ xu,
where x´1 and y´1 denote the unique inverses of x and y, respectively. Nevertheless, in the general
multivalued case, � and � are not necessarily related to the inverses, in the sense of (1.2) above, of
single elements (if they exist).

One of the first areas in which hypergroups found applications is geometry, notably initiated by the
observations of Prenowitz (whose work culminated with the book [42]).

In the work of Prenowitz, the transposition axiom, governing the interplay between a multivalued
operation � and the operations (1.3), becomes fundamental. The important notion of join space,
namely a commutative hypergroup satisfying the transposition axiom, was introduced by Prenowitz,
while transposition hypergroups were later considered by Jantosciak in [18], where the commutativity
assumption is dropped and the transposition axiom generalised accordingly. If a transposition

∗These were originally denoted by x{y and yzx in the literature, where the multivalued operation is usually denoted as a standard
product. However, we adopt the convention to employ the “box-type” notation for multivalued operations, while reserving the usual
binary operator symbols for standard operations.
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hypergroup has a neutral element e, in the sense of (1.1) above, then the validity of (1.2) follows (a
proof of this fact can be found in [36], but the result is known since much before the publication of
that article) and this type of hypergroups were called polygroups by Comer in [7].

As observed also in a more recent article [8] (see also [9, 44]), commutative polygroups provide
algebraic models for (axiomatic) projective geometries. On the other hand, as the work of Prenowitz
shows, for more general incidence geometries the existence of a neutral element and inverses would
often be too restrictive as, e.g., the join space of Euclidean geometry (cf. [42, Section 2.1]) does not
have a neutral element.

Applications of commutative polygroups however are not limited to geometry. The name “canonical
hypergroups” was previously coined by J. Mittas† to refer to commutative polygroups while he was
studying the additive reducts of Krasner hyperfields. The latter structures were introduced by M.
Krasner as a tool to approximate local fields of positive characteristic (and their absolute Galois group)
by those of characteristic 0 (see [25, 28, 30, 38]).

The author first met commutative polygroups during his PhD studies, mainly motivated by an
interest in the model theory of valued fields, where the above mentioned Krasner’s approximation
techniques turn out to play a significant role. In fact, the theory of commutative polygroups provides a
convenient algebraic framework for describing Flenner’s leading term structures (also known as
RV-structures, [15, 45]). In fact, while in Flenner’s original description RV-structures come equipped
with a ternary relation, if one interprets it as a (binary) multivalued operation, then one obtains a
Krasner hyperfield. The analogies with the singlevalued case (i.e., of fields) often provide smoother
exposition of the theory and simplifications in the proofs of known theorems (perhaps most notably
regarding quantifier elimination for Henselian valued fields of mixed characteristic). For more details,
the reader may consult the author’s doctoral dissertation [29] and references therein.

From a first-order perspective, a (binary) multivalued operation can only be described in the form
of a ternary relation (which explains Flenner’s approach to RV-structures), but this description does
not fully reflect the input-output nature of operations to which algebraists are usually accustomed.

The possibility of modifying the notion of first-order signatures by allowing “multivalued function
symbols” has been explored in a recently appeared preprint [10] and, although onerous to settle, seems
to produce some interesting results regarding the first-order theory of Krasner hyperfields. It is worth
noting that this mentioned generalisation of the notion of first-order signatures is an instance of a more
general category-theoretic and signature-independent approach to model theory (cf. [11]).

From this point of view, it seemed to us inevitable for category theory to play a more direct role in
the foundations of the theory of Krasner hyperfields and more generally of algebraic structures with
multivalued operations. In fact, relations are often described as arrows in category theory, thus offering
the possibility of restoring the directional nature of multivalued operations.

In the present paper, a characterisation theorem for commutative polygroups in purely category-
theoretic terms over the category Set is derived (Theorem 4.8).

Our result is based solely on the fact that Set is a regular category and employs the construction
of monoid objects in the category Rel formed by sets and relations, with respect to the monoidal
structure given by cartesian products (as e.g., in [21]). In particular, the statement of our theorem
yields definitions of commutative polygroups objects in any regular category and, in particular, in any
topos (cf. [22, §A1,A2,A3]). In this regard, we mention [13], where the understanding of commutative

†Since the word “canonical” has a different meaning in category theory, in this paper we shall adopt Comer’s terminology.
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polygroups from a topos theoretic perspective is also motivated.
Let us now list several authors, not mentioned above, which have considered commutative

polygroups in their work.

(i) T. Nakano in [40] considered commutative polygroups in relation to modular lattices.

(ii) M. Baker and N. Bowler in [3] (see also [6, 14]) considered commutative polygroups in relation
to matroid theory.

(iii) O. Viro in [46] considered commutative polygroups in relation to tropical geometry and, more
recently, J. Jun (see e.g., [23, 24]) and P. Jell et al. in [20] have resumed Viro’s work.

Furthermore, a very interesting preprint suggesting applications of commutative polygroups to the
study of complexity of linear programming has recently appeared (cf. [37]).

The work related to matroid theory also inspired Nakamura and Reyes to investigate in [39] the
most known categories formed by polygroups in great detail. On the one hand, their findings show that,
while polygroups generalise groups, their categories are not as well-behaved. For example, they lack
some binary coproducts and equalizers. Furthermore, in the commutative case, a monoidal structure
generalising the bilinear tensor product of abelian groups is missing, obstructing a generalisation of
the fact that rings are monoid objects in the category of abelian groups to their multivalued cousins
multirings and hyperrings. On the other hand, it is observed in [39] that these and other flaws of the
categories of polygroups can be overcome by considering categories of some slightly more general
structures, which they called mosaics.

We observe that our characterisation theorem for commutative polygroups is readily extended to
commutative mosaics. Thus, we take the opportunity to also consider the category of monoid objects
over the category of commutative mosaics (in Set) with respect to the closed symmetric monoidal
structure defined in [39] (where this same category of monoid objects have also been mentioned). In
particular, for commutative monoids, we focus on the full subcategory formed by simple objects which,
in turn, we observe to contain the category Kra of Krasner hyperfields (as a full subcategory).

Inevitably, the results of this part are based on some theorems in [39] which, at the moment we are
writing, is not yet published. Since we believe all the necessary proofs in the preprint version [39]
to be correct, while we give all the credit to the authors of [39] for those theorems, and we shall not
repeat their proofs, instead referring to the just mentioned preprint version of the article (which we are
confident will be eventually published).

Finally, at the end of the paper, we formulate a number of results relating the category Kra with
other classical mathematical structures already present in the literature, in the form of existence
theorems of faithully full functors into certain slice or coslice categories of Kra. We list below the
classical categories that we take into consideration in this context.

• The category of formally real fields and order-preserving homomorphims of fields
(Proposition 5.1).

• The category of valued fields and value-preserving homomorphisms (Proposition 5.2).

• The category of lattice-ordered abelian groups and order-preserving homomorphisms of groups
(Proposition 5.5).
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• The category of two-sided incidence groups and incidence-preserving group homomorphisms
(Proposition 5.7).

Before ending this introductory section, let us briefly recap the organisation of the manuscript. In
Section 2, we overview some of the main properties of the catregory Rel formed by sets and relations,
which then generalise to the more general setting of regular categories, as we briefly explain later in
the same section. Some basic theory of monoid objects in general monoidal categories will also be
recalled. Section 3 combines some known facts in a new way and is devoted to the general theory of
structures with a multivalued operation, with a particular focus on polygroups. Section 4 is devoted to
the study of monoid objects in Rel and contains our characterisation result for commutative polygroups.
Lastly, Section 5 focuses on the category Kra and its slice and coslice categories as explained above.

2. Category theoretic preliminaries and terminology

Many references for category theory may be cited which cover the necessary background. Among
these, besides the classic [31], we found [2, 22, 27] especially useful.

We shall assume little familiarity with the basic concepts of category, functor, natural
transformation, and monoidal categories, which we will not explicitly define. As for basic notations,
for a category C, we write A P ObpCq to mean that A is an object in C and, for any ordered pair pA, Bq
of objects in C, we denote the set of arrows f : A ÝÑ B in C by CpA, Bq. For the composition of
arrows the symbol ˝ will be employed, while the identity C-arrow of A P ObpCq will be written as
1A : A ÝÑ A. The component at an object A of a natural transformation η will be denoted by ηA.

2.1. The category of sets and relations

Let A, B and C be sets and consider two binary relations R Ď Aˆ B and S Ď BˆC. The formula

S ˝ R :“ tpa, cq | Db P B : pa, bq P R and pb, cq P S u Ď AˆC.

defines a relation between A and C, called the composition of R and S . With this composition, sets
and binary relations form a category Rel, where identities are given by the graphs of the corresponding
identity functions in Set.

It is well-known that the category-theoretic product of two sets in Rel coincides with their coproduct
in Rel, i.e., the disjoint union. In addition, the empty setH is both initial and terminal in Rel.

On the other hand, it is well-known that the cartesian productˆ (i.e., the category-theoretic product
in Set) together with any fixed singleton set t‹u (i.e., a terminal object in Set) yield a symmetric
monoidal structure on the category Rel.

The opposite relation of R is defined as follows:

R: :“ tpb, aq P Bˆ A | pa, bq P Ru.

To any relation R Ď A ˆ B it bijectively corresponds the multivalued function fR : A ÝÑ ℘pBq
mapping a P A to the set of all b P B such that pa, bq P R. We leave the straightforward proof of the
following statement to the reader.

Lemma 2.1. Let R Ď A ˆ B be a relation from A to B and f : A ÝÑ ℘pBq the corresponding
multivalued function. Then the following equivalences hold:
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(i) R ˝ R: Ď 1B if and only if f is singlevalued, i.e., f paq is a singleton for all a P A.

(ii) 1A Ď R: ˝ R if and only if f is everywhere defined, i.e., f paq ‰ H for all a P A.

As we already mentioned in the introduction, multivalued operations � : H ˆ H ÝÑ ℘pHq
correspond bijectively to relations o� Ď pH ˆ Hq ˆ H, that is, arrows H ˆ H ÝÑ H in the symmetric
monoidal category pRel,ˆ, t‹uq.

2.2. Monoid objects in monoidal categories

Fix a monoidal category pC,b, Iq, where b and I denote the monoidal product bifunctor and unit,
respectively. Let further α, µ and ν denote the associator, the left unitor and the right unitor, respectively
and take an object M in C. We call any C-arrow M b M ÝÑ M a categorial‡ operation on M in C.

We say that a categorial operation o : MbM ÝÑ M on M is associative if and only if the following
diagram is commutative in C.

pM b Mq b M M b M

M

M b pM b Mq M b M

αM

ob1M

o

1Mbo

o

(2.1)

A monoid object in C is an object M together with a categorial operation o : M b M ÝÑ M which
is associative as well as a C-arrow e : I ÝÑ M such that the following diagram is commutative in C.

I b M M b M M b I

M

eb1M

µM
o

1Mbe

νM

(2.2)

The C-arrow e is said to be neutral for the operation o on M.
The category MonpCq is defined as having monoid objects M,N . . . in C as objects and, as arrows,

all the C-arrows f : M ÝÑ N in C making commutative the following diagrams in C.

M b M N b N

M N

fb f

oM oN

f

I

M N

eM
eN

f

(2.3)

If C is symmetric monoidal, then for A, B P ObpCq we denote by βA,B : A b B ÝÑ B b A the
braiding isomorphism whose inverse is βB,A.

‡Our choice for terminology here follows a remark made in the second page of the Preface in [17].
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A categorial operation o : M b M ÝÑ M on an object M in the symmetric monoidal category C is
commutative if and only if the following diagram commutes in C:

M b M

M

M b M

o

βM,M

o

(2.4)

A commutative monoid object in C is a monoid object pM, o, eq in C such that o is commutative. We
denote by CMonpCq the full subcategory of MonpCq formed by commutative monoid objects in C.

Example 2.2. MonpSet,ˆ,Jq (resp. CMonpSet,ˆ,Jq), whereˆ denotes the cartesian product and J
any fixed singleton set, is the familiar category formed by monoids (resp. commutative monoids) and
their homomorphisms.

2.3. Group objects in cartesian categories

Let us fix a category C. Recall the following:

• an object J in C is terminal if it satisfies the universal property of terminal objects:

for all objects X in C, there is a unique arrow !X : X ÝÑ J.

• An object K in C is initial if it satisfies the universal property of initial objects:

for all objects X in C, there is a unique arrow !X : K ÝÑ X.

• A pullback in C of a pair of arrows f : A ÝÑ C and g : B ÝÑ C with the same target in C is
an object P :“ A ˆC B together with two arrows p1 : P ÝÑ A and p2 : P ÝÑ B in C (called
projections) satisfying the universal property of pullbacks:

f ˝ p1 “ g ˝ p2 and for all objects X and arrows x1 : X ÝÑ A, x2 : X ÝÑ B in C such
that f ˝ x1 “ g ˝ x2, there is a unique arrow h : X ÝÑ P making the following diagram
commutative:

A

X P C

B

f

h

x1

x2

p1

p2

g

Example 2.3. Consider the category Set of sets and functions. Then any singleton set t‹u is terminal,
while H is the unique initial object in Set. The pullback of f : A ÝÑ C and g : B ÝÑ C in Set is
explicitly given by the following set:

AˆC B :“ tpa, bq P Aˆ B | f paq “ gpbqu

together with the projections p1 : pa, bq ÞÑ a and p2 : pa, bq ÞÑ b.
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Following [22], we shall call C locally cartesian whenever it has pullbacks of all pairs of arrows
having the same target object in C.

If X is an object in C, then the slice category C{X has C-arrows f : A ÝÑ X, with A P ObpCq, as
objects, while a C-arrow a : A ÝÑ B is an arrow

A B

X X

f g

in C{X if and only if the following triangular diagram is commutative in C:

A

X

B

a

f

g

The coslice category XzC can be defined as pCop{Xqop. It has C-arrows X ÝÑ A, with A P ObpCq
as objects, while each triangular and commutative diagram in C

A

X

B

a

f

g

defines an arrow a : f ÝÑ g in XzC.
Note that, for any C-arrow f : A ÝÑ X, there is a unique C{X-arrow a : f ÝÑ 1X since the

condition 1X ˝ a “ f forces a to be equal to f in C. This means that 1X is a terminal object in the slice
category C{X. Dually, 1X is initial in the coslice category XzC.

A locally cartesian category with a terminal object is called cartesian (or finitely complete, see
e.g., [22, Lemma 1.2.1]).

If C is a cartesian category with J being a fixed terminal object, then for two arrows f1 : X ÝÑ A
and f2 : X ÝÑ B in C, the pairing p f , gq : X ÝÑ A ˆ B :“ A ˆJ B is defined as the unique arrow
X ÝÑ A ˆ B induced from f1 and f2 by the universal property of pullbacks and terminal objects
(more precisely, by the universal property of products). It is standard practice to denote the pairing
p1A, 1Aq : A ÝÑ Aˆ A by ∆ (or ∆A) and call arrows of this form diagonal arrows.

Example 2.4. For sets A, B and X, the pairing p f , gq : X ÝÑ Aˆ B of two functions f : X ÝÑ A and
g : X ÝÑ B in Set is given by the assignment x ÞÑ p f pxq, gpxqq, for x P A.

Remark 2.5. In general monoidal categories, the existence of pairing arrows is not guaranteed. An
example showing this is the category Ab formed by abelian groups and homomorphisms, where the
monoidal structure is given by the tensor product of abelian groups.
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Assume that a category C has binary products ˆ and a terminal object J (this clearly holds if C is
cartesian, but this assumption is not necessary). Then, pC,ˆ,Jq is a symmetric monoidal category. We
will sometimes refer to this structure as the cartesian monoidal structure on C.

A (commutative) monoid object pG, o, eq in pC,ˆ,Jq is called an (abelian) group object in C if there
exists a C-arrow inv : G ÝÑ G, called group-inversion, making the following diagram commutative
in C:

G

G ˆG G G ˆG

p1G , invq pinv ,1Gq
e

o o

(INV)

where, as it is common practice, the arrow e : J ÝÑ G is identified with the arrow e˝!X : G ÝÑ G.
The full subcategory of MonpC,ˆ,Jq formed by group objects in C (resp. abelian group objects in

C) is denoted by GrppCq (resp. AbpCq).

Example 2.6. GrppSetq and AbpSetq are the categories formed by groups and abelian groups and
group-homomorphisms, respectively.

2.4. Regular categories and relations

We fix again a category C. Recall the following:

‚ An arrow f : A ÝÑ B in C is monic if the implication

f ˝ g1 “ f ˝ g2 ùñ g1 “ g2

holds, for any pair of parallel C-arrows gk : A1 ÝÑ A (k “ 1, 2).

If C is locally cartesian, then a C-arrow f : A ÝÑ B is monic if and only if the following diagram
satisfies the universal property of pullbacks in C:

A A

A B

1A

1A f

f

By a subobject of A P ObpCq we mean the C{A-isomorphism class of an object in C{A which
is monic as an arrow in C. We write SubpAq for the full subcategory of C{A whose objects are the
subobjects of A.

By definition of C{A, for subobjects X,Y of A, if there is a C-arrow j1 : X ÝÑ Y such that i “ j ˝ j1,
where i : X ÝÑ A and j : Y ÝÑ A are the monic C-arrows given by definition of SubpAq, then it
follows that j1 is monic and unique in C. This shows that SubpAq is a partial order for any object in
any category C. We shall call inclusion and denote by Ď (or ĎA) the order relation of SubpAq. If C is
locally cartesian, then SubpAq is cartesian because the terminal object of C{A, 1A : A ÝÑ A is trivially

AIMS Mathematics Volume 9, Issue 5, 11247–11277.
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monic and thus yields a terminal object in SubpAq, for any A P ObpCq. In this case, we shall call
intersections, denoted by [, the products in the cartesian category SubpAq. Note that

X Ď Y ðñ X [ Y “ X.

Example 2.7. All of the above in the category Set yield to the corresponding well-known notions,
usually denoted by the rounded symbols X and Ď.

Definition 2.8. A relation from A to B in a category C with binary products is defined as a subobject
of the product Aˆ B in C.

Among relations between sets, equivalence relations often play a fundamental role. The notion of
equivalence can be internalised in a wide class of categories, leading to the concept of congruence.

Definition 2.9. Let f : R ÝÑ A and g : R ÝÑ A be a parallel pair of arrows in a locally cartesian
category C, such that p f , gq : R ÝÑ AˆA is monic in C (this happens e.g., if f or g is a monic C-arrow
itself). We say that p f , gq is a congruence on A in C if the following three conditions hold:

(R) There exists a C-arrow r : A ÝÑ R such that f ˝ r “ g ˝ r “ 1A.

(S) There exists a C-arrow s : R ÝÑ R such that f ˝ s “ g and g ˝ s “ f .

(T) There exists a C-arrow t : RˆA R ÝÑ R in C such that f ˝ t “ f ˝ p1 and g ˝ t “ g ˝ p2, where
pRˆA R, p1, p2q is the pullback in C defined by the following diagram:

P R

R A

p1

p2 f

g

Observe that if f : A ÝÑ B is an arrow in a locally cartesian category C, then the projections
pp1, p2q of the pullback A ˆB A of f and itself is always a congruence on A in C. This congruence is
called the kernel pair of f . In particular, for an object A in a cartesian category C, the following two
congruences always exist:

(TC) the trivial congruence on A is obtained as the kernel pair of the terminal arrow !A, or, equivalently,
as the terminal object in SubpAˆ Aq, i.e., 1AˆA.

(DC) the discrete congruence is obtained as the kernel pair of the identity arrow 1A, that is, ∆A.

Recall that a coequalizer in C of a pair of parallel arrows f , g : A ÝÑ B in C is an object Q together
with an arrow q : B ÝÑ Q satisfying the universal property of coequalizers:

q ˝ f “ q ˝ g, and for all objects X and arrows x : B ÝÑ X in C such that x ˝ f “ x ˝ g, there
is a unique arrow h : Q ÝÑ X such that h ˝ q “ x.
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Definition 2.10. Let p f , gq : R ÝÑ AˆA be a congruence on an object A in a locally cartesian category
C. An object Q in C is a quotient (object) of A in C, associated to the congruence p f , gq if there is a
C-arrow q : A ÝÑ Q which is a coequalizer of f and g in C.

If C is cartesian, with terminal object J, then an object S in C is called simple (in C) if it admits
precisely two quotients (up to isomorphisms) in C, namely J and S (corresponding to the trivial and
the discrete congruence, respectively).

Example 2.11. A congruence p f , gq on a set A in Set is the same as an equivalence relation R Ď Aˆ A,
where f “ p1 ˝ i and g “ p2 ˝ i with i : R ÝÑ A ˆ A being the canonical inclusion map and
p1, p2 : Aˆ A ÝÑ A the product projections. The usual quotient map q : A ÝÑ A{R yields a bijection
(i.e., a Set-isomorphism):

A{R » AˆA{R A “ tpa, a1q P Aˆ A | qpaq “ qpa1qu.

Thus, the equivalence relation R is the kernel pair pq, qq. Clearly, the only simple objects in Set are
singletons.

Example 2.12. Simple objects in the category CRng formed by commutative rings and their
homomorphisms are fields. This well-known fact follows from the (also well-known) bijective
correspondence between congruences in CRng on a commutative ring A and the ideals of A.

Back to arbitrary relations, the following notion is needed.

Definition 2.13. A category C has images if to each arrow f : A ÝÑ B in C there corresponds a
uniquely determined subobject m : Im f ÝÑ B of the target B of f , which is moreover characterized
as the least (with respect to ĎB) subobject of B such that there is a C-arrow x : A ÝÑ Im f through
which f factors (i.e., f “ m ˝ x).

If a category C has images, then an arrow f : A ÝÑ B in C is called a cover if Im f and B are
isomorphic in C. That is, covers are stable under pullbacks.

We can now define regular categories.

Definition 2.14. A cartesian category C is regular if it has images and, moreover, for each pullback
square

X ˆB A X

A B

p1

p2 x

f

if f is a cover, then p1 is also a cover.

Fact 2.15 ( [22, Proposition 1.3.4]). For an arrow f : A ÝÑ B in a regular category C, the following
are equivalent:

(i) f : A ÝÑ B is a cover.

(ii) f : A ÝÑ B is the coequalizer of two parallel C-arrows gk : A1 ÝÑ A (k “ 1, 2).
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Definition 2.16 ( [22]). Let C be a cartesian category with images. If f : R ÝÑ A and g : R ÝÑ B
are C-arrows and their pairing p f , gq : R ÝÑ A ˆ B is monic in C, then we say that the corresponding
relation between A and B is tabulated by f and g or that p f , gq is a tabulation of R.

We give a proof of the following well-known fact for the sake of completeness.

Lemma 2.17. If C is a locally cartesian category with images, then for all relations r : R ÝÑ A ˆ B
there are C-arrows f : R ÝÑ A and g : R ÝÑ B which tabulate r.

Proof. First set T :“ Im r and consider the corresponding factorization of r:

R T Aˆ B.r1 i

Since r and i are monic by assumption, so must be r1. Now, set

f 1 :“ p1 ˝ i : T ÝÑ A and g1 :“ p2 ˝ i : T ÝÑ B,

where p1 and p2 are the product projections of AˆB. The universal property of products guarantees that
p1 and p2 are monic, thus so are f 1 and g1, as well as f :“ f 1 ˝ r1 : R ÝÑ A and g :“ g1 ˝ r1 : R ÝÑ B.
It follows that the pairing p f , gq : R ÝÑ A ˆ B is a relation from A to B and it follows that it defines
the same subobject of Aˆ B as r does, i.e., r is tabulated by f and g. �

Definition 2.18. Let C be a cartesian category with images and take two relations r : R ÝÑ Aˆ B and
r1 : R1 ÝÑ BˆC. Further, let p f , gq and p f 1, g1q tabulate r and r1, respectively. If

R1 ˆB R R1

R B

p1

p2 f 1

g

is a pullback square, then the relation between A and C tabulated by f ˝ p2 and g1 ˝ p1 is called the
composition of the relation r1 with the relation r and is denoted by r1 ˝ r (or R1 ˝ R).

Fact 2.19 ( [22, Lemma 3.1.1 and subsequent remarks]). Let C be a cartesian category with images.
The above defined composition is associative if and only if C is regular. Moreover, for all relations
R from A to B, the discrete congruences ∆A “ p1A, 1Aq and ∆B “ p1B, 1Bq satisfy R ˝ ∆A “ R and
∆B ˝ R “ R.

Definition 2.20. If C is a regular category, then we denote by RelpCq the category formed by the
objects in C, having relations as arrows with composition and identities defined in Fact 2.19 above.

Example 2.21. Clearly, Set is a regular category. In addition, the category Rel considered in the
Subection 2.1 is RelpSetq.

To a relation R from A to B in a regular category C there corresponds a relation R: :“ βA,B ˝ R from
B to A, where βA,B denotes the braiding isomorphism of the cartesian (symmetric) monoidal structure
of C. Following up on Lemma 2.1, we give the following definition.
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Definition 2.22. Let C be a regular category. For a RelpCq-arrow R : A ÝÑ B we say that

(1) R is singlevalued if R ˝ R: Ď 1B,

(2) R is everywhere defined if 1A Ď R: ˝ R,

(3) R is a map if it is both singlevalued and everywhere defined.

In [22, Proposition 3.1.3] it is shown that, in a regular category C, each map R : A ÝÑ B in
RelpCq is tabulated by 1A and some C-arrow f : A ÝÑ B (the RelpCq-arrow p1A, f q is called the graph
of f ). We shall often identify the maps in RelpCq with the C-arrows of which they are graph (this
identification produces no harm by [22, Theorem 3.2.10]).

In addition, as a consequence of the just mentioned observations, one obtains that R : A ÝÑ B is
an isomorphism in RelpCq if and only if R: ˝ R “ 1A and R ˝ R: “ 1B and, therefore, R: “ R´1. In
particular, all RelpCq-isomorphisms are maps.

Finally, we remark that, as in the case of Set, binary products and terminal objects in C define a
symmetric monoidal structure on RelpCq. On the other hand, as we have seen for the case of Set, this
monoidal structure on RelpCq does not have to coincide with the cartesian monoidal
structure of RelpCq.

3. Structures with multivalued operations

Let H be a set and ℘pHq its power set. A multivalued operation � on H is a function which
associates to every pair px, yq P H ˆ H an element of ℘pHq, denoted by x � y. If � is a multivalued
operation on H, then for x, y P H and X,Y Ď H we set

X � Y :“
ď

px,yqPXˆY

x � y,

X � y :“ X � tyu, and x � Y :“ txu� Y .
To any multivalued operation � on H there correspond three multivalued operations:

‚ the multivalued operation twin§ of �, defined for x, y P H by the formula

x �t y :“ y � x,

‚ the multivalued operation left reciprocal of �, defined for x, y P H by the formula

y � x :“ tz P H | x P y � zu,

and

‚ the multivalued operation right reciprocal of �, defined for x, y P H by the formula

x � y :“ tz P H | x P z � yu.
§The term dual is also adopted in the literature.
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3.1. Mosaics and polygroups

Definition 3.1. We shall call magma any set equipped with a multivalued operation. A magma pM,�q
is called commutative if � and �t coincide.

Definition 3.2. Let pM,�q, pM1,�1q be magmata. A function f : M ÝÑ M1 is called a homomorphism
(of magmata) if it satisfies:

(Hom) f px � yq Ď f pxq�1 f pyq, for all x, y P M.

A homomorphism f : M ÝÑ M1 is called strong if it satisfies the following property stronger
than (Hom):

(sHom) f px � yq “ f pxq�1 f pyq, for all x, y P M.

An isomorphism (of magmata) M » M1 is a bijective homomorphism f : M ÝÑ M1 whose inverse
f´1 is a homomorphism M1 ÝÑ M.

Remark 3.3. It is not difficult to verify that isomorphisms are precisely bijective strong
homomorphisms. On the other hand, examples of bijective homomorphisms which are not strong and
strong homomorphisms which are not bijective are straightforward to construct as well (see e.g.,
Example 3.18).

Definition 3.4. An element e in a magma pM,�q is called neutral if e � x “ x � e “ txu holds, for all
x P M. A magma pM,�q with a neutral element e P M for � is called unital magma.

Remark 3.5. If a neutral element e exists in a magma pM,�q, then it is unique. To see this, the standard
argument applies.

Definition 3.6. A homomorphism f : M ÝÑ M1 between two unital magmata M and M1 with neutral
elements e and e1, respectively, is called unitary if f peq “ e1. We denote the category formed by unital
magmata and unitary (strong) homomorphisms by uMag (uMagstr).

Definition 3.7. Let pM,�q be a magma and ρ : M ÝÑ M an endofunction. We say that pM,�q is
ρ-reversible if the following property holds:

(RE) z P x � y implies both x P z � ρpyq and y P ρpxq� z, for all x, y, z P M.

Definition 3.8 ( [39, Definition 2.3]). A (commutative) unital magma pM,�q with a neutral element e
which is moreover ρ-reversible with respect to some endofunction ρ : M ÝÑ M is called a
(commutative) mosaic. By a (strong) homomorphism of mosaics we mean a unitary (strong)
homomorphism of the underlying unital magmata. We introduce the following notation:

‚ Msc denotes the category formed by mosaics and their homomorphisms.

‚ CMsc denotes the category formed by commutative mosaics and their homomorphisms.

‚ Mscstr denotes the category formed by mosaics and their strong homomorphisms.

‚ CMscstr denotes the category formed by commutative mosaics and their strong homomorphisms.

The following is also observed in [39, page 7]. We make a slightly more precise statement and write
a short proof for completeness.
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Lemma 3.9 ( [39]). Let pM,�, e, ρq be a mosaic. Then ρ is a unitary isomorphism of magmata

ρ : pM,�, eq „
ÝÑ pM,�t, eq (3.1)

satisfying the following property:

(RINV) e P px � ρpxqq X pρpxq� xq, for all x P M.

In addition, the equivalences

z P x � y ðñ x P z � ρpyq ðñ y P ρpxq� z

hold, for all x, y, z P M.

Proof. Indeed, x P px�eqXpe� xq and ρ-reversibility imply e P pρpxq� xqXpx�ρpxqq. Conversely, if
e P py� xqXpx�yq for some y P M, then by ρ-reversibility we may deduce that y P e�ρpxq “ tρpxqu
and hence y “ ρpxq. It follows that ρpeq “ e and that ρ is an involution. In addition, the validity of the
following equivalences is readily verified, for all x, y, z P M:

ρpzq P ρpxq�t ρpyq ðñ ρpzq P ρpyq� ρpxq

ðñ ρpyq P ρpzq� ρpρpxqq “ ρpxq� x

ðñ x P ρpρpzqq� ρpyq “ z � ρpyq

ðñ z P z � ρpρpyqq “ x � y.

This shows that ρ is a strong homomorphism of magmata pM,�q ÝÑ pM,�tq and thus an
isomorphism. The rest of the assertions follow as well. �

Definition 3.10. For an element x in a unital magma pM,�, eq, we call any y P M such that
e P px � yq X py � xq an inverse of x. If in pM,�, eq all elements have a unique inverse, then we
denote by x´1 the inverse of any x P M and call pM,�, eq an invertible magma.

The following is an immediate consequence of Lemma 3.9.

Corollary 3.11. Any mosaic pM,�, e, ρq is an invertible magma, where x´1 “ ρpxq, for all x P M.

Lemma 3.12. Let pM,�, eq and pM1,�1, e1q be invertible magmata and f : M ÝÑ M1 a unitary
homomorphism. Then f px´1q “ f pxq´1, for all x P M.

Proof. The standard argument as, e.g., in [26, Remark 2.6], applies. �

Definition 3.13 ( [7]). A (commutative) polygroup pP,�, eq is an invertible (commutative) magma
which is reversible with respect to the endofunction x ÞÑ x´1 and where � is associative, that is, the
following property is valid:

(ASC) px � yq� z “ x � py � zq, for all x, y, z P P (where the equality is as subsets of P).

Remark 3.14. It follows from Corollary 3.11 above that polygroups are precisely associative mosaics.

Definition 3.15. By a (strong) homomorphism of polygroups we mean a (strong) homomorphism of
the underlying mosaics.
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We now observe that in invertible unital magmata, reversibility can be viewed as an associativity
“localised at the neutral element”. In this sense, mosaics can be viewed as “locally associative invertible
magmata” (see also [43, Remark 3.15]).

Lemma 3.16. Let pM,�, eq be an invertible unital magma. The following statements are equivalent:

(i) pM,�, eq is ρ-reversible, with ρpxq :“ x´1 for all x P M.

(ii) For all x, y, z P M, the following equivalence holds:

e P px � yq� z ðñ e P x � py � zq.

Proof. From e P px � yq� z we deduce that z´1 P x � y. If (i) is valid, then we obtain that x´1 P y � z
and e P x � py � zq follows. The converse implication is derived similarly.

Assuming (ii), for all x, y, z P M we obtain that

z P x � y ðñ e P px � yq� z´1
ðñ e P x � py � z´1

q ðñ x´1
P y � z´1

ðñ x P z � y´1,

where we used Lemma 3.9. It follows that pM,�, eq is ρ-reversible with ρpxq “ x´1 for all x P M. �

Corollary 3.17. Let pP,�, eq be a unital magma satisfying (ASC) and ρ : M ÝÑ M an endofunction.
The following statements are equivalent:

(i) pP,�, eq is ρ-reversible, i.e., pP,�, e, ρq is a polygroup.

(ii) pM,�, eq is an invertible unital magma and ρpxq “ x´1, for all x P M.

We list below some well-known examples of polygroups and mosaics. We choose the most common
names for them as they already appear in the literature (cf. e.g. [3, 6, 23, 30])

Example 3.18. (1) Any group pG, ¨, eq is a polygroup with respect to the multivalued operation
defined by x � y :“ tx ¨ yu, for all x, y P G.

(2) Let K denote a set with two elements: 0 and 1. Set 0 ‘ x “ x � 0 :“ txu for all x P K and
1 � 1 :“ K. Then pK,‘, 0q is a polygroup called the Krasner polygroup. We observe that the
identity map t0, 1u ÝÑ t0, 1u can be viewed as a bijective homomorphism Z{2Z ÝÑ K which is
not strong.

(3) Let S denote a set with three elements: 0, 1, and ´1. Set 0 ‘ x “ x ‘ 0 :“ txu for all x P S,
1 ‘ 1 :“ t1u, ´1 ‘´1 :“ t´1u and 1 ‘´1 “ ´1 ‘ 1 “ S. Then pS,‘, 0q is a polygroup, called
the sign polygroup.

(4) Let P denote the set of complex numbers with modulus 1 with the addition of the number 0.
Set 0 ‘ z “ z ‘ 0 :“ tzu for all z P P, z ‘´z “ ´z ‘ z “ t´z, 0, zu for all z P Pzt0u and

z1 ‘ z2 :“
"

az1 ` bz2

|az1 ` bz2|
: a, b P R

*

for all z1, z2 P Pzt0u. Then pP,‘, 0q is a polygroup, called the phase polygroup. We observe that
the map S ÝÑ P given by the assignments 0 ÞÑ 0 and ˘1 ÞÑ ˘1 is a strong homomorphism
which is not bijective.
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(5) Let Γ be a totally ordered set and set T pΓq :“ Γ Y t8u, where 8 is a symbol for an element
not in Γ to which we extend the order so that 8 ą γ, for all γ P Γ. Set γ ‘8 “ 8 ‘ γ :“uγu,
for all γ P T pΓq and for γ, δ P Γ

γ ‘ δ :“

#

tmintγ, δuu if γ ‰ δ,

tε P T pΓq | ε ě γu otherwise.

Then pT pΓq,‘,8q is a polygroup, called the (generalized) tropical polygroup.

(6) Let F denote a set with three elements 0,1, and ´1. Set 0 ‘ x “ x ‘ 0 “ txu for all x P F and
x ‘ x “ H for all x P Fzt0u and 1 ‘´1 “ t0u. Then F is a commutative mosaic, which is not a
(commutative) polygroup.

In the following proposition we collect a number of well-known properties of polygroups. In
particular, we note that properties (i) and (ii) below show that all polygroups are hypergroups as
defined by Marty (mentioned in the Introduction). Property (iii) offers yet another interpretation of the
reversibility axiom, in the case of polygroups.

Proposition 3.19 (see e.g. [18, 36]). Let pP,�q be a polygroup. Then the following statements hold:

(i) x � P “ P � x “ P, for all x P P.

(ii) x � y ‰ H, for all x, y P P.

(iii) x � y “ x � y´1 and x � y “ x´1 � y, for all x, y P P.

Proof. (i) The inclusion x � P Ď P is immediate. Conversely, note that, since e P x � x´1, for any
a P P we have that

a P px � x´1
q� a “ x � px´1 � aq Ď x � P.

The equality P � x “ P is deduced similarly.

(ii) By contradiction, if x � y “ H, then using (i),

e P P “ P � y “ pP � xq� y “ P � px � yq “ H.

(iii) By definition, z P x � y means x P z � y, which is equivalent to z P x � y´1 by reversibility.
The equality x � y “ x´1 � y is derived similarly.

�

3.2. Partial multirings and hyperfields

The following facts have all been noted in [39] (article [5] also contains some closely related
observations).

Fact 3.20 ( [39, Theorem 1.1, Corollary 4.2]).

(i) The forgetful functor U‚ : uMag ÝÑ Set‚ creates all limits and all coproducts in uMag. In
particular, uMag is complete and cocomplete¶.

¶Here, Set‚ denotes the familiar category of pointed sets, and U‚ maps a unital magma with neutral element e to the underlying set,
pointed on e.
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(ii) The categories Msc, CMsc, Mscstr, and CMscstr are closed under limits and colimits in uMag.
In particular, they are complete and cocomplete.

(iii) Both the categories CMsc and CMscstr are regular.

(iv) The category formed by commutative polygroups and their (resp. strong) homomorphisms is
closed under products and coequalizers in CMsc (resp. CMscstr).

(v) The category formed by commutative polygroups and their (strong) homomorphisms does not
have all binary coproducts.

(vi) The category formed by commutative polygroups and their (strong) homomorphisms does not
have all equalizers.

All of the above is relevant for the study of structures, called multirings (cf. e.g. [16, 32]), which
generalise rings by letting the additive abelian groups be commutative polygroups. In our setting, it is
convenient to consider a slight generalisation of these structures.

Definition 3.21 ( [25, 32]). A (commutative) partial multiring with unity is a structure pA,‘, ¨, 0, 1q
which satisfies the following axioms:

(PM1) pA,‘, 0q is a commutative mosaic (with the additive notation, we will denote the inverse
of x P A with respect to ‘ as x´).

(PM2) pA, ¨, 1q is a (commutative) monoid.

(PM3) a0 “ 0a “ 0, for all a P A, and both of the following inclusions

apx ‘ yq Ď ax ‘ ay and px ‘ yqa Ď xa ‘ ya

hold, for all a, x, y P A.

A commutative partial multiring with unity pH,‘, ¨, 0, 1q is called a partial hyperfield if pHzt0u, ¨, 1q
is an abelian group.

In the following, we shall refer to partial multirings with unity simply as partial multirings. We note
that multirings are precisely partial multirings with associative additive mosaic (i.e., with an additive
commutative polygroup) and such that 0 ‰ 1, while partial hyperfields with associative additive mosaic
are Krasner hyperfields (mentioned in the Introduction, see [25]).

Remark 3.22. Terminologies such as “additive hyperrings with unity and inclusive distributivity” can
be found in the literature to refer to multirings. Usually, these more precise terminologies are employed
when several types of structures with two multivalued operations are considered at the same time
(cf. [19] and references therein). We shall not elaborate more on this aspect.

Examples of hyperfields and multirings may be found e.g. in [4, 14, 30, 32]. The polygroups K,
S, and P from Example 3.18 are all hyperfields with respect to the multiplication induced by that of
complex numbers. In an analogous manner, the commutative mosaic F from Example 3.18(6) becomes
a partial hyperfield.
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Example 3.23. A singleton set O :“ tau is a partial multiring with respect to the multivalued operation
a ‘ a :“ tau and the multiplication a ¨ a :“ a. In this case, of course, we have that a is the neutral
element in both the additive and the multiplicative structure at the same time. On the other hand, notice
that O is not a partial hyperfield.

Definition 3.24. A (strong) homomorphism of partial multirings pA,‘, ¨, 0, 1q ÝÑ pA1,‘1, ¨1, 01, 11q is
defined to be a function f : A ÝÑ A1 that is both a (strong) homomorphism of the additive mosaics
and a homomorphism of the multiplicative monoids. We denote by pMrg (pMrgstr) the category of
partial multirings and their (strong) homomorphisms.

Remark 3.25. pMrg and pMrgstr are cartesian categories. Indeed, given partial multirings
pA,‘, ¨, 0, 1q, pA1,‘1, ¨1, 01, 11q, and B, the pullback of two (strong) homomorphisms f : A ÝÑ B and
g : A1 ÝÑ B is given by the commutative mosaic pAˆB A1,‘pb, p0, 01qq, where

px, x1q‘pb py, y1q :“ tpz, z1q P AˆB A1 | z P x ‘ y and z1 P x1 ‘1 y1u

endowed with the component-wise multiplication induced by ¨ and ¨1. Note further that the canonical
projection maps are, by definition, strong homomorphisms. On the other hand, the partial multiring O
from Example 3.23 is obviously a terminal object in both pMrg and pMrgstr.

Definition 3.26. Let pA,‘, ¨, 0, 1q be a partial multiring. A subset I of A is called a left (resp. right)
ideal if it satisfies:

(ID1) a ‘ b Ď I, for all a, b P I.

(ID2) If a P I and x P A, then ax P I (resp. xa P I).

If I Ď A is both a left and a right ideal of A, then it is called an ideal.

The following results are proved in [23] for a restricted class of multirings (called Krasner
hyperrings). We observe that all the proofs can easily be adapted to the case of partial multirings (the
reader may directly verify this claim by looking at the proofs in [23, Section 3]). For simplicity, we
shall often identify any congruence p f , gq : R ÝÑ A ˆ A on a partial multiring A, with the object R.
This shall produce no harm since SubpAˆ Aq is a poset-category.

Proposition 3.27 ( [23]). Let A be a partial multiring and I an ideal of A. Then the relation

x ”I y ðñ x ‘ I “ y ‘ I

is a congruence on A in both pMrg and pMrgstr.
Conversely, if R is a congruence on a partial multiring A and we denote by IR the R-equivalence

class of 0 P A, then IR is an ideal of A and ”I and R coincide as relations on A.

Proof. See [23, Section 3]. �

Proposition 3.28 ( [23]). Let A be a partial multiring. The kernel of a homomorphism f out of A:

ker f :“ tx P A | f pxq “ 0u

is an ideal of A. Conversely, any ideal I of A is the kernel of a strong homomorphism out of A whose
target is given by the set of ”I-classes A{I :“ A{”I equipped with the partial multiring structure
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pA{I,‘I , ¨I , r0sI , r1sIq defined on two ”I-classes rxsI , rysI P A{I (where x, y P A) by the following
formulae:

rxsI ‘I rysI :“ trzsI P A{I | z P x ‘ yu,

rxsI ¨I rysI :“ rx ¨ ysI .

Proof. See [23, Section 3]. �

We note now that if a congruence p f , gq : R ÝÑ AˆA on a partial multiring A in pMrg is such that
both f and g are strong homomorphisms, then it follows from Definition 2.9 that p f , gq is a congruence
on A in pMrgstr as well. Thus, the above propositions have the following consequence.

Corollary 3.29. Let A be a partial multiring. Any congruence R on A in pMrg is the kernel pair of
the strong homomorphism q : A ÝÑ A{IR given by the canonical map x ÞÑ rxsIR . In particular, R
is a congruence on A in pMrgstr as well. Moreover, A{IR is a quotient object of A in both pMrg and
pMrgstr, associated to the congruence R.

Next, we observe the following analogue of a basic result in commutative ring theory.

Lemma 3.30 (cf. [26, Corollary 2.13]). A commutative partial multiring A is a partial hyperfield if
and only if the only ideals of A are t0u and A.

Proof. It suffices to note that
xA :“ txa P A | a P Au

is an ideal in any commutative partial multiring A, for all x P A. Indeed, (ID2) holds by definition,
while (ID1) is readily deduced from the distributivity assumption (PM3). The assertion follows by
further noticing that (as in the classical case of rings and fields) the following equivalences hold for all
x P A:

xA “ t0u ðñ x “ 0, and
xA “ A ðñ x has a multiplicative inverse in A. �

In [39], the following fact is proved. We refer to [39] for any notion which we have not explicitly
defined.

Fact 3.31 ( [39, Theorems 4.9, 4.11, and 4.16]). The category CMsc admits a closed symmetric
monoidal structure given by a bifunctor b and the commutative mosaic F (cf. Example 3.18(6)). For
all commutative mosaics M,M1, the object M b M1 represents the functor of bimorphisms.

In addition, there exists a fully faithful functor F from the category of multirings into the category
MonpCMsc,b,Fq whose essential image is formed by those monoid objects in CMsc which are
associative mosaics.

Remark 3.32. It is clearly and extensively explained in [39] why it is necessary to consider the monoidal
structure on CMsc (rather than directly on the polygroup’s categories).

Let us observe:

Proposition 3.33. MonpCMsc,b,Fq “ pMrgstr and MonpCMscstr,b,Fq “ pMrgstr.
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Proof. The statement follows by noticing first that axiom (PM3) is equivalent to the following
statement:

(PM3’) For every a P A, the assignments x ÞÑ ax and x ÞÑ xa define homomorphisms of mosaics:

pA,‘, 0q ÝÑ pA,‘, 0q.

Then statement (PM3’) is equivalent to the product operation being a homomorphism of mosaics A ˆ
A ÝÑ A, where A ˆ A denotes the product mosaic (cf. Remark 3.25). On the other hand, since F is
freely generated by 1, there is a unique arrow e : F ÝÑ A in CMsc which is induced by the image ep1q
of 1 P F in A. In addition, the commutativity of the diagram (2.2), in this case, is clearly equivalent to
ep1q being the neutral element for the multiplication.

The assertion that the arrows in these categories coincide follows after noticing that the
commutativity of the diagrams (2.3) for an arrow f : A ÝÑ A1 in CMsc is equivalent to f being a
homomorphism of monoids (cf. [39, Theorem 4.16]). �

We deduce the final result of this section from the previous proposition by Corollary 3.29 and
Lemma 3.30.

Corollary 3.34. Partial hyperfields are precisely the simple objects in MonpCMsc,b,Fq.

Remark 3.35. It is evident that for a partial hyperfield pH,‘, ¨, 0, 1q, the assignment x ÞÑ a´1x yields
the inverse of each homomorphism x ÞÑ ax. In particular, these homomorphisms are automatically
strong in this case (for Krasner hyperfields, this fact was already noted e.g. in [32] and [16]).

4. Monoid objects in Rel

To any multivalued operation � on a set M we have associated a relation o� Ď pMˆMqˆM which
we interpret as a categorial operation on M in Rel. We note in addition that o� is everywhere defined
if and only if x � y ‰ H, for all x, y P M.

Notation. In the following, Reled denotes the category of sets and everywhere defined relations. By
extension, for any regular category C, the category ReledpCq is defined by requiring its arrows to be
everywhere defined relations in C.

Remark 4.1. It is not difficult to verify that the monoidal structure of pRelpCq,ˆ, t‹uq induces a
monoidal structure on ReledpCq, for any regular category C.

Proposition 4.2. Let pP,�, e, ρq be a (commutative) polygroup and let o� Ď pP ˆ Pq ˆ P denote the
categorial operation in Rel associated to �. Then pP, o�, teuq is a (commutative) monoid object in the
monoidal category pReled,ˆ, t‹uq.

In addition, if pP,�, e, ρq is commutative, then ρ is an automorphism in MonpReled,ˆ, t‹uq.

Proof. An Reled-arrow t‹u ÝÑ H is the same thing as a non-empty subset of H and the Reled-arrow
corresponding to teu clearly makes the diagram (2.2) commutative in Reled. On the other hand, it
is immediate to verify that the diagrams (2.1) and (2.4) for o� commute in Reled if and only if � is
associative and commutative, respectively.
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The last assertion follows from Lemma 3.9, and Corollary 3.11 which imply that ρ “ ρ´1 (being
necessarily the inverse function in P) and the commutativity of the diagrams (2.3) for ρ : P ÝÑ P is
equivalent to ρ being a unitary strong homomorphism of magmata. �

It had already been pointed out in [21] that, while an arrow e : t‹u ÝÑ H in Set is, in fact, an
element of H, such an arrow in Rel may be identified with a subset

E :“ tx P H | p‹, xq P eu Ď H.

Example 4.3 (Example 4 in [21]). Let C be a category with more than one object and such that the
collections of arrows are sets. Then pM, ˝, 1q is a monoid object in pRel,ˆ, t‹uq, where

M :“
ď

A,BPObpCq

CpA, Bq,

˝ denotes the composition of arrows in C, and

1 :“ t1A | A P ObpCqu.

Note that to any C-arrow f : A ÝÑ B in M there corresponds (functionally) a left neutral element,
i.e., 1A, and a right neutral element, i.e., 1B.

In this section, we shall prove (see Proposition 4.5 below) that neutral but non-singleton subsets do
not occur if one restricts to Reled.

For a monoid object pM, o, Eq in pRel,ˆ, t‹uq, the commutativity of the left part of diagram (2.2)
for o Ď pH ˆ Hq ˆ H can be spelled out as follows:

(LU) For all x P H, there is e`x P E such that pe`x, x; xq P o and, at the same time, for all e P E and
y P H if pe, x; yq P o, then y “ x,

which (following [21]) we call the left unit axiom.
On the other hand, the right part of diagram (2.2) for o Ď pH ˆ Hq ˆ H is equivalent to the

following property:

(RU) For all x P H, there is er
x P E such that px, er

x; xq P o and, at the same time, for all e P E and
y P H if px, e; yq P o, then y “ x,

which we call the right unit axiom.
In a later analysis, one can prove (see [21, Proposition 1]) that both of the assignments x ÞÑ e`x

and x ÞÑ er
x are necessarily functional (i.e., everywhere defined and singlevalued) and thus the final

observation in Example 4.3 above reflects a fact which holds in full generality.
Let us now isolate for later reference the following consequence of (LU) and (RU).

Lemma 4.4. Let pH, o, Eq be a monoid object in pRel,ˆ, t‹uq and � the multivalued operation
associated to o. Then for any e P E and all x P H we have that |x � e|, |e � x| ď 1.

Proof. Indeed, y P e � x (resp. y P x � e) means that pe, x; yq P o (resp. px, e; yq P o) and thus y “ x
follows by the left (resp. right) unit axiom. �
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We now prove, as promised, that if pH, o, Eq is a monoid object in pReled,ˆ, t‹uq, then the set E is
a singleton.

Proposition 4.5. Let pH, o, Eq be a monoid object in pReled,ˆ, t‹uq. Then the assignments x ÞÑ e`x and
x ÞÑ er

x yield the same constant function. In particular, E is a singleton.

Proof. We denote by � the multivalued operation corresponding to the relation o Ď pH ˆ Hq ˆ H.
From Lemma 2.1 (2) and Lemma 4.4 we deduce that |x � e| “ |e � x| “ 1 for all x P H and all e P E.
Fix e1, e2 P E and x P H. Since e1 � e2 “ tuu for some u P H, using the associativity of �, we obtain
that

H ‰ u � x “ pe1 � e2q� x “ e1 � pe2 � xq “ e1 � x “ txu Q x

and it follows from [21, Proposition 1] that u “ e`x. Similarly, we have that

H ‰ x � u “ x � pe1 � e2q “ px � e1q� e2 “ x � e2 “ txu Q x

and it follows as above that u “ er
x P E. Thus, e`x “ u “ er

x, for all x P H, that is, the assignments
x ÞÑ e`x and x ÞÑ er

x yield the same function x ÞÑ ex.
Now, if x, y P H and ex, ey P E are the (left and right) neutral elements corresponding to x and

y, respectively, then again ex � ey “ tuu for some u P H and, using the assumption on o and the
associativity of � as before, we obtain that

H ‰ u � y Ď pex � eyq� y “ ex � pey � yq “ ex � y “ tyu Q y.

Hence, u “ ey follows again from [21, Proposition 1]. Similarly, we have that

H ‰ x � u Ď x � pex � eyq “ px � exq� ey “ x � ey “ txu Q x

so that u “ ex follows as above. We have thus proved that ex “ ey, that is, the assignment x ÞÑ ex

yields a constant function. �

Corollary 4.6. A singleton set with the structure of the trivial monoid is both terminal and initial in
the category MonpReled,ˆ, t‹uq.

For the sake of completeness, let us remark that the restriction to Reled is sufficient to deduce that
the neutral set is a singleton, but it is not necessary as the following example shows.

Example 4.7. Let M :“ te, xu be a set with two elements. Define on M a multivalued operation �
by setting e � e “ teu, x � e “ e � x “ txu, and x � x “ H. Further, let o be the categorial
operation corresponding to �. It is straightforward to verify that pX, o�, teuq is a monoid object in
Rel. In addition, note that, while e is neutral in M for �, we have that pM,�, eq is not invertible, since
e´1 “ e, while e R H “ x � x and thus x has no inverse in M.

4.1. Commutative polygroup objects

We have seen in Proposition 4.2 that if pP,�, eq is a polygroup, then pP, o�, teuq is a monoid object
in Reled. The converse of this statement however clearly does not hold. Indeed, any monoid object
M in Set is a monoid object in Rel as well ( [21, Example 2]). On the other hand, clearly such M is
reversible if and only if it is a group (cf. Lemma 3.9).

The next theorem characterises the monoid objects in Reled which do correspond to polygroups.
We fix a terminal object J in Set, i.e., a singleton, for the rest of the section.
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Theorem 4.8. Let P be a set, o Ď pP ˆ Pq ˆ P a categorial operation on P in Reled with associated
multivalued operation �, E a subset of P » J ˆ P, and ρ : P ÝÑ P an arrow in Set. The following
statements are equivalent:

(i) E is a map in Reled, i.e., E “ teu (for some e P E) and, moreover, pP,�, e, ρq is a commutative
polygroup.

(ii) pP, o, Eq is a commutative monoid object in Reled and the graph p1P, ρq of ρ is an isomorphism
in MonpReled,ˆ,Jq satisfying, in addition, the following property:

(INV) E Ď o ˝ p1P, ρq and for any monic Rel-arrow J : P ÝÑ P, tabulated by the Set-arrows
j : P ÝÑ P and j1 : P ÝÑ P, we have that

E Ď o ˝ p j, j1q ùñ p j, j1q Ď p1P, ρq .

Proof. We begin by showing that (ii) implies (i). As in Lemma 4.5, the requirement that pP, o, Eq is a
monoid object in Reled implies that E “ teu. It follows that E is a map in Reled and that pP,�, eq is a
unital magma. Associativity and commutativity for � are equivalent to associativity and
commutativity for o�, respectively (as we mentioned in the proof of Proposition 4.2). Thus,
pP,�, e, ρq is a commutative polygroup by Corollary 3.17 which shows that pP,�, eq is ρ-reversible.
Indeed, property (ii) in Corollary 3.17 clearly follows from property (INV) and the other assumptions
on the endofunction ρ.

For the converse implication, assume (i). We may employ Proposition 4.2 to deduce that
pP, o, E :“ teuq is a commutative monoid object in Reled and, in particular, that E is a map in Reled.
Now, Lemma 3.9 together with the fact that � and �t coincide by assumption show that
ρ-reversibility for pP,�, e, ρq implies that (the graph of) ρ is an automorphism of P in
MonpReled,ˆ,Jq satisfying, moreover, property (INV). �

Definition 4.9 (Commutative polygroup objects in regular categories). Let C be a regular category and
equip RelpCq with the symmetric monoidal structure induced by products ˆ and a (fixed) terminal
object J in C. An object P together with ReledpCq-arrows o : P ˆ P ÝÑ P and E : J ÝÑ P,
as well as a C-arrow ρ : P ÝÑ P is called a commutative polygroup object over C if and only if it
satisfies statement (ii) of Theorem 4.8, where Set, Reled, and Ď are replaced by C, ReledpCq, and Ď,
respectively.

Remark 4.10. Let C be a regular category. Since maps in RelpCq are comparable by Ď if and only if
they are equal, it follows from property (INV) that for a fixed commutative polygroup object pP, o, E, ρq
the C-arrow ρ is uniquely determined by the rest of the structure. Indeed, if pP, o, E, ρq and pP, o, E, ρ1q
are both polygroup objects over C, then property (INV) applied to both pP, o, E, ρq and pP, o, E, ρ1q
implies, e.g., that p1P, ρ

1q Ď p1P, ρq, and thus ρ “ ρ1.

Remark 4.11. With some extra effort, non-commutative polygroup objects may also be defined over
regular categories following an analogous path. However, this would certainly require a convenient
way to handle twin multivalued operations (cf. Lemma 3.9).

Remark 4.12. Commutative polygroup objects have been defined via a detour from a regular category
C through its category of relations RelpCq. Since C and RelpCq have the same collection of objects,
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the arrows of a category of commutative polygroup objects can be defined according to whether one
wants these to be arrows or relations in C.

For the case of the category formed by commutative polygroups and their homomorphisms
considered in Section 3, the former choice is made (i.e., any arrow is a Set-arrow), as opposed to a
Rel-arrow.

On the other hand, we note that categories formed by commutative polygroups and multivalued
homomorphisms (equivalently, Rel-arrows) have also been considered in the literature, see e.g. [5,
Definition 2.14 and 2.17]. In the just mentioned reference, a great variety of distinct possibilities for
the defining properties of such morphisms can be found for both of the above described choices and
each yielding to a distinct category having commutative polygroups as objects.

5. The category of Krasner hyperfields and other categories

For the results in this section, we shall denote by Kra (Krastr) the category formed by Krasner
hyperfields and (strong) multiring-homomorphisms between them. By the results at the end of
Section 3, Kra (Krastr) is the full subcategory of simple objects in MonpCMsc,b,Fq
(MonpCMscstr,b,Fq) whose additive mosaics are associative.

There are a number of theorems in the literature which relate Krasner hyperfields to classical
objects. We state below some of these results in the form of existence theorems of certain fully
faithful functors‖ into certain slice (or coslice) categories of Kra and Krastr by certain well-known
Krasner hyperfields. Most proofs can be recovered from the literature and we give the appropriate
citations below while limiting ourself to necessary verifications only. Our hope is that more
statements of this form will be discovered to hold where slice or coslice categories of Kra, Krastr,
MonpCMsc,b,Fq, or MonpCMscstr,b,Fq are taken over other hyperfields, partial hyperfields, or
partial multirings.

For the definitions of real hyperfields and their positive cones as well as valued hyperfields and their
value groups, mentioned below, we refer to, e.g., [26].

Proposition 5.1 ( [26]). There is a fully faithful functor F from the category of formally real fields
into the slice category Kra{S. The latter slice category is the category of real hyperfields and
homomorphisms f : H1 ÝÑ H2 such that f pH`

1 q Ď H`

2 , where H`

k denotes the positive cone of Hk for
k “ 1, 2. The essential image of the functor F is formed by real hyperfields with singlevalued
addition.

Proof. See [26, Remark 3.2]. �

Proposition 5.2 ( [28]). Let Γ be an ordered abelian group. There is a fully faithful functor from the
category of valued fields pK, vq with value group vK being an ordered subgroup of Γ into the slice
category Kra{T pΓq. The latter slice category is the category of valued hyperfields and
homomorphisms f : pH1, v1q ÝÑ pH2, v2q such that v1 ˝ f “ v2. The essential image of the functor F
is formed by valued hyperfields with singlevalued addition.

In addition, the system
`

RVγpKq
˘

vKQγě0 of Flenner’s leading term structures associated to any
valued field pK, vq naturally forms a diagram in Kra{T pΓq, and pK, vq is a cone over this diagram in
Kra{T pΓq, while the completion of pK, vq by Cauchy sequences is its limit cone.

‖We recall that a fully faithful functor is a functor whose arrow assignments are all bijections.
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Proof. See [28, 30]. Flenner’s leading term structures were originally defined in [15]. �

Before stating the next result, let us briefly introduce some necessary concepts.

Definition 5.3. A lattice-ordered abelian group (or commutative l-group) is a lattice pL,^,_q where a
commutative group operation ¨ is defined on L such that for all x, y, a P L the following equalities hold:

apx^ yq “ ax^ ay and apx_ yq “ ax_ ay. (5.1)

A homomorphism of l-groups is a group homomorphism f : L ÝÑ L1 which is a lattice
homomorphism as well, i.e., for all x, y P L, the following equalities hold:

f px^ yq “ f pxq ^1 f pyq and f px_ yq “ f pxq _1 f pyq. (5.2)

Remark 5.4 ( [1, Proposition 1.1.6]). The underlying lattice of an l-group is distributive, thus, in
particular, it is a modular lattice. For the notions of distributive and modular lattices we refer to
e.g., [1].

Proposition 5.5 ( [40]). There is a fully faithful functor F from the category formed by commutative
l-groups with a top element and their homomorphisms into the coslice category KzKra. The essential
image is made by those objects K ÝÑ H in KzKra where

x ď y ðñ y P x ‘ x

defines a lattice order ď on H such that for all x, y P H the following equality holds:

x ‘ y “ tz P L | x^ y “ x^ z “ z^ yu. (5.3)

Proof. In [40, Theorem 1], Nakano observed that the multivalued operation ‘ defined by (5.3) on a
lattice pL,^,_q is associative if and only if L is modular. Furthermore, by definition, we have that

x ‘ x “ ty P L | y ě xu.

In particular, it follows that 0 P L is neutral for ‘ if and only if 0 ě x for all x P L, i.e., 0 is a top
element for L and each x P L is its own unique inverse in the (evidently commutative) mosaic pL,‘, 0q.
Thus, Nakano’s result and Remark 5.4 above yield that if L is the underlying lattice of a commutative
l-group, then pL,‘, 0q is a commutative polygroup.

Furthermore, property (5.1) of commutative l-groups implies that, for any l-group L, the group
operation ¨ is distributive on the multivalued operation ‘, i.e., for all x, y, a P L, the following equality
holds:

apx ‘ yq “ ax ‘ ay.

We deduce, moreover, that if 0 is a top element in a commutative l-group L and a P L, then a ¨ 0 must
be a top element as well. Thus, a ¨ 0 “ 0 ¨ a “ 0 follows from the uniqueness of the top element in L.

We have proved that pL,‘, ¨, 0, 1q is a Krasner hyperfield. Since 0 is a top element in L we
immediately obtain that

0, 1 P tx P L | x ě 1u “ 1 ‘ 1.
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Hence, the obvious map K ÝÑ L is a homomorphism of hyperfields, defining the object assignment
of the functor F.

Now, we claim that if f : L ÝÑ L1 is a homomorphism of l-groups, then the same map is a
homomorphism of the corresponding hyperfield. Indeed, if z P x ‘ y holds in the hyperfield
pL,‘, ¨, 0, 1q defined above, then we deduce

f pxq ^ f pyq “ f px^ yq “ f px^ zq “ f pxq ^ f pzq, and
f pxq ^ f pyq “ f px^ yq “ f pz^ yq “ f pzq ^ f pyq,

that is, f pzq P f pxq‘ f pyq. It follows that F is fully faithful.
The validity of the rest of the assertions is now immediate to verify. �

For the next result we need to introduce some terminology as well.

Definition 5.6. By a projective geometry we mean a set P with a family L of subsets of P satisfying
the following three properties:

(Pr1) Two distinct points p, q P P determine a unique line ` “ `pp, qq such that p, q P `.

(Pr2) If a line ` intersects two sides of a triangle, not on a vertex, then ` also intersects the third
side of that triangle, that is, for all distinct p, q P P, all s P Pz`pp, qq, all q1 P `pp, qqztpu, and all
s1 P `pp, sqztpu, the lines `pq, sq and `pq1, s1q are incident.

(Pr3) Any line in L contains at least three distinct points in P.

A map f : pP,Lq Ñ pP,Lq between projective geometries is called incidence-preserving if for all
p P P and ` P L the following equivalence holds:

p P ` ðñ f ppq P f p`q.

A (two-sided) incidence group is defined as a projective geometry pP,Lq, equipped with a group
operation ¨, defined on P, and satisfying the following property:

(IG) For all p P P the functions P ÝÑ P induced by the assignments x ÞÑ p ¨ x and x ÞÑ x ¨ p are
incidence-preserving.

By a homomorphism of incidence groups we shall mean an incidence-preserving group
homomorphism.

Proposition 5.7 ( [9]). There is a fully faithful functor F from the coslice category KzKrastr into
the category of incidence groups and their homomorphisms. The essential image is made by those
incidence-groups whose lines contain at least four distinct points.

Proof. The object assignment of the functor is defined [9, Proposition 3.5] by mapping the target
hyperfield of a strong homomorphism K ÝÑ H to its multiplicative group P :“ Hzt0u and setting the
line determined by distinct p, q P P to be pp ‘ qq Y tp, qu. It is also proved there that in the projective
geometries obtained in this way, lines contain at least four distinct points.

If f : H ÝÑ H1 is a strong homomorphism of hyperfields, then we define Fp f q to be its restriction
to Hzt0u, which yields a group homomorphism Fp f q : P ÝÑ P1. We claim that, as a map between
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projective geometries, Fp f q is incidence-preserving. If p P P and ` P L, then, by assumption, there
are distinct x, y P Pztpu such that ` “ px ‘ yq Y tx, yu. Since f is a strong homomorphism we obtain
that

p P ` ðñ p P x ‘ y ðñ f ppq P f pxq‘ f pyq Ď f pxq‘ f pyq Y t f pxq, f pyqu “ f p`q.

Conversely, if p R `, then we deduce from the above equivalences that f ppq R f pxq‘ f pyq. In addition,
if f ppq “ f pxq, then f pyq ‰ f pxq follows. In this case, since in P1 lines have at least four points, we
may find distinct

z11, z
1
2 P f pxq‘ f pyq “ f px ‘ yq.

In particular, it follows that z11, z
1
2 P f pHq. We further deduce that the line λ :“ pz11 ‘ z12q Y tz

1
1, z

1
2u

contains f pxq “ f ppq and f pyq. Since, at this point, p R f´1pz11q X f´1pz12q holds, we deduce from
f pxq “ f ppq, f pyq P z11 ‘ z12 that p, x, y P z1 ‘ z2, for some zk P f´1pz1kq ‰ H (k “ 1, 2), which
contradicts the initial assumption p R ` “ `px, yq. Similarly, one shows that the assumption
f ppq “ f pyq yields to a contradiction. We conclude that Fp f q is a homomorphism of incidence
groups.

On the other hand, if f : Hzt0u ÝÑ Hzt0u is a homomorphism of incidence groups, then its
obvious extension f : H ÝÑ H1 is a strong homomorphism of hyperfields and thus yields an arrow
in KzKrastr. In fact, from the arguments employed above, if follows that, if x, y P Hzt0u are distinct,
then the following equivalence

z P x ‘ y ðñ f pzq P f pxq‘ f pyq Y t f pxq, f pyqu

holds, for all z P H. Since any hyperfield H corresponding to an object in KzKrastr must satisfy
x ‘ 0 “ txu and x ‘ x “ t0, xu for all x P H, it follows that the arrow-assignment of the functor F
defined above is also invertible, completing the proof of the proposition. �

Remark 5.8. Since homomorphisms of hyperfields are defined to be homomorphisms of multirings,
we also obtain fully faithful functors into the corresponding slice or coslice categories of
MonpCMsc,b,Fq.
Remark 5.9. It is not clear whether slicing or coslicing by the phase hyperfield P is related to any
known category. As we mentioned above, we leave the investigation of this and similar problems open
for future research.

6. Conclusions

Extending classical algebraic theories and results by allowing operations to be multivalued often
poses nontrivial challenges. At the time in which this article is being written, among all multivalued
algebraic structures, Krasner hyperfields seem to have attracted the attention of the mathematical
community more than others and this fact motivated the focus on commutative polygroups (i.e.,
canonical hypergroups).

We should remark that the results on the category MonpCMsc,b,Fq of partial multirings do not
directly generalise to regular categories. For that, Theorem 4.8 should be extended to a characterisation
of (commutative) mosaics over Set. We believe that such a result can be achieved, but we leave the
investigation for future research.
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We furthermore highlight that, in view of [22, Corollary 2.3.5], topoi are regular categories and thus
we have a definition of commutative polygroup objects in any topos. This represents a step forward
with respect to the program of investigating commutative polygroups from a topos theoretic perspective
(as motivated in [13]).

Finally, the problems described in [5], where commutative polygroups appear as the additive
structure of hypermodules, regarding the possibilities of generalising homological algebra to the
multivalued case, may also be closely related to the results of this paper.
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