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1. Introduction

The concept of fixed point theory has seen diverse extensions beyond the classical idea of a metric
space. One notable variation is the b-metric space, also known as a metric type space according to
certain authors. Bakhtin [1] introduced and extensively investigated this space, and it has been
extensively employed by Czerwik in subsequent study [2]. Furthermore, Czerwik extended the
classical Banach contraction principle in the context of a b-metric space that is complete. Following
this, a collection of papers has been devoted to refining fixed point results for both single and
multi-valued operators in b-metric space, taking into account diverse topological properties.
Interested readers can explore some of these contributions in [3–12] and related references.
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Bhaskar and Lakshmikantham [13] were the pioneers who introduced coupled fixed points to
specific maps in partially ordered metric space. Their findings were employed to investigate
solutions’ existence and uniqueness for boundary value problems. Subsequently, Lakshmikantham
and Ćirić [14] extended this work by introducing coupled coincidence, which is coupled common
fixed point results for nonlinear contractive maps with mixed monotone properties in partially ordered
metric space that is complete, thereby generalizing the findings from [13]. Since then, various authors
have further generalized and improved the fixed point results in both partially ordered metric spaces
and partially ordered b-metric spaces. Significant contributions have been made by the authors of
papers [15–36]. Recent studies by Mituku et al. [37] and Rao et al. [38–42] have yielded results
related to fixed points, coincidence points and coupled coincidence points of self-maps that adhere to
generalized weak contractions in partially ordered b-metric spaces, taking into account necessary
topological properties. The Banach fixed point theorem plays an essential role in the fields of
optimization and inverse problems some of such works can be seen in [43–45].

This study was designed to demonstrate various types of results, including those on fixed points,
coincidence points, coupled coincidence points and coupled common fixed points of the maps that
fulfill the (ϕ, ψ)-weak contraction condition with auxiliary functions within a partially ordered b-metric
space that is complete. These outcomes expand and generalize the findings from [13,14,37] and several
analogous results found in the literature, as presented in [38,46]. To reinforce the validity of the results,
the paper includes illustrative examples.

2. Preliminaries

The forthcoming results often rely on the following definitions.

Definition 1. [38] A function ω: L ×L → [0,+∞), with L , ∅ is termed as a b-metric, if it adheres
to the specified properties for o1,o2,o3 ∈L and s ≥ 1 ∈ R:

(a) ω(o1,o2) = 0 if and only if o1 = o2.
(b) ω(o1,o2) = ω(o2,o1).
(c) ω(o1,o2) ≤ s (ω(o1,o3) + ω(o3,o2)).

Subsequently, the triple (L, ω, s) is referred to as a b-metric space. If the pair (L,⪯) continues as a
partially ordered set (p.o.s), then (L, ω, s,⪯) is termed a partially ordered b-metric space (p.o.m.s).

Definition 2. [46] A sequence {on} in a b-metric space (L, ω, s) adheres to the following conditions:

(1) It converges to o if limn→+∞ ω(on,o) = 0, denoted as limn→+∞on = o,
(2) It is considered a Cauchy sequence in L when limn,m→+∞ ω(on,om) = 0.

Completeness of (L, ω, s) is affirmed when all Cauchy sequences within it converge.

Definition 3. In cases in which the metricω achieves completeness, the term complete partially ordered
b-metric space (c.m.s) is applied to characterize the structure (L, ω, s,⪯).

Definition 4. [46] Suppose that U and g are two self mappings defined on a partially ordered set
(L,⪯). In this scenario, the following holds:
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(1) A map U is considered monotone non-decreasing, if for every pair o and a in L such that o ⪯ a,
the condition U(o) ⪯ U(a) is satisfied.

(2) When g(o) = U(o) or g(o) = U(o) = o for o ∈L, then o is referred to as being a coincidence
point or a common fixed point of g and U.

(3) g and U are considered commuting if g(U(o)) = U(g(o)),∀o ∈L holds.
(4) The mappings U and g are known to be compatible, if limn→+∞ ω(Ugon, gUon) = 0 whenever a

sequence {on} ∈L satisfies that limn→+∞Uon = limn→+∞ gon = o, for some o ∈L.
(5) If g(U(o)) = U(g(o)) whenever U(o) = g(o) then the maps g, U are referred to be weakly

compatible.
(6) U is referred to as monotonically g non-decreasing if for all o, a ∈ L, the condition g(o) ⪯ g(a)

implies that U(o) ⪯ U(a).
(7) A set L , ∅ is well-ordered if either o ⪯ a or a ⪯ o for every pair o, a ∈L.

Definition 5. [14,15] Take a partially ordered set (L,⪯), and let us assume that there are two mappings
U: L ×L →L and g: L →L. In this scenario, the following holds:

(1) A map U is considered to exhibit a mixed g-monotone property, if it is increasing and decreasing
g-monotone in its first and second arguments. In formal terms, for all o, a ∈L,

o1,o2 ∈L, go1 ⪯ go2 ⇒ U(o1, a) ⪯ U(o2, a)

and
a1, a2 ∈L, ga1 ⪯ ga2 ⇒ U(o, a1) ⪰ U(o, a2).

In the specific scenario in which g = I, I is an identity mapping, U is described as having the
mixed monotone property.

(2) (o, a) ∈ L ×L with U(o, a) = g(o) and U(a,o) = g(a) is referred to as a coupled coincidence
point for U and g. It is important to emphasize that if g = I, then (o, a) is denoted as a coupled
fixed point of U.

(3) If
U(o,o) = g(o) = o,

then o ∈L is designated as a common fixed point for U, g.
(4) If

U(g(o), g(a)) = g(U(o, a))

for all o, a ∈L, then U, g are commutative.
(5) U and g are termed compatible, if

lim
n→+∞

ω(g(U(on, an)),U(gon, gan)) = 0

and
lim

n→+∞
ω(g(U(an,on)),U(gan, gon)) = 0,

whenever the sequences {on} and {an} in L satisfy

lim
n→+∞

U(on, an) = lim
n→+∞

g(on) = o
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and
lim

n→+∞
U(an,on) = lim

n→+∞
g(an) = a

for some o, a ∈L.

The upcoming lemma is regularly utilized in our results within a b-metric space to verify the
convergence of the sequences.

Lemma 6. [15] Consider a b-metric space (L, ω, s,⪯) with s ≥ 1. Assuming that the sequences {on}

and {an} b-converge to o and a respectively, then

1
s2ω(o, a) ≤ lim

n→+∞
inf ω(on, an) ≤ lim

n→+∞
supω(on, an) ≤ s2ω(o, a).

In particular, when o = a, the limit as n approaches infinity of ω(on, an) is zero. Also, for every d ∈L,
the subsequent inequalities are applicable:

1
s
ω(o, d) ≤ lim inf

n→+∞
ω(on, d) ≤ lim sup

n→+∞
ω(on, d) ≤ sω(o, d).

The subsequent distance functions are utilized consistently in the present work.

(i) A continuous, non-decreasing self-map ϕ over [0,+∞) is referred to as an alternating distance
function if it satisfies the condition ϕ(t) = 0 if and only if t = 0. Refer to all such functions as Φ.

(ii) Ψ represents the collection of self-maps ψ over [0,+∞) with the characteristics that ψ is lower
semi-continuous and ψ(t) = 0 if and only if t = 0.

3. Results

For a self-map U over a partially ordered b-metric space (L, ω, s,⪯) let

G(o, a) = max
{
ω(a,Ua) [1 + ω(o,Uo)]

1 + ω(o, a)
,
ω(o,Uo) ω(a,Ua)

1 + ω(o, a)
,
ω(o,Ua) + ω(a,Uo)

2s
, ω(o, a)

}
(3.1)

and

H(o, a) = max
{
ω(a,Ua) [1 + ω(o,Uo)]

1 + ω(o, a)
, ω(o, a)

}
. (3.2)

Then, for ϕ ∈ Φ and ψ ∈ Ψ, U is called a (ϕ, ψ)-generalized contraction, if it adheres to the following
condition:

ϕ(sω(Uo,Ua)) ≤ ϕ(G(o, a)) − ψ(H(o, a)). (3.3)

From here, we begin with the below theorem regarding fixed points in a b-metric space that is ordered.

Theorem 7. A non-decreasing self-map U on a c.m.s (L, ω, s,⪯) is continuous and satisfies the
conditions of a (ϕ, ψ)-generalized contraction with respect to ⪯. If there exists o0 ∈ L with
o0 ⪯ Uo0, then U admits a fixed point in L.
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Proof. If a particular o0 ∈ L satisfies that Uo0 = o0, the proof is concluded. Assuming that o0 ≺

Uo0, we form a sequence {on} ⊂ L through recursive definitions, where on+1 = Uon for n ≥ 0. By
leveraging the non-decreasing characteristic of U, we infer, through an inductive argument, that

o0 ≺ Uo0 = o1 ⪯ · · · ⪯ on ⪯ Uon = on+1 ⪯ · · · . (3.4)

If there exists n0 ∈ N such that on0 = on0+1 as indicated by (3.4), it implies that on0 serves as a
fixed point for U and therefore, no further proof is necessary. Let us consider the scenario in which
on , on+1,∀n ≥ 1 holds. Applying the condition (3.3), we can conclude that

ϕ(ω(on,on+1)) = ϕ(ω(Uon−1,Uon)) ≤ ϕ(sω(Uon−1,Uon))
≤ ϕ(G(on−1,on)) − ψ(H(on−1,on)).

(3.5)

From (3.5), we acquire

ω(on,on+1) = ω(Uon−1,Uon) ≤
1
s

G(on−1,on), (3.6)

where

G(on−1,on) =max{
ω(on,Uon) [1 + ω(on−1,Uon−1)]

1 + ω(on−1,on)
,
ω(on−1,Uon−1) ω(on,Uon)

1 + ω(on−1,on)
ω(on−1,Uon) + ω(on,Uon−1)

2s
, ω(on−1,on)}

=max{ω(on,on+1),
ω(on−1,on) ω(on,on+1)

1 + ω(on−1,on)
,
ω(on−1,on+1) + ω(on,on)

2s
,

ω(on−1,on)}

≤max{ω(on,on+1),
ω(on−1,on) + ω(on,on+1)

2
, ω(on−1,on)}

≤max{ω(on,on+1), ω(on−1,on)}.

(3.7)

If
max{ω(on,on+1), ω(on−1,on)} = ω(on,on+1)

for some n ≥ 1, then from (3.6), it follows that

ω(on,on+1) ≤
1
s
ω(on,on+1),

which leads to a contradiction. Consequently,

max{ω(on,on+1), ω(on−1,on)} = ω(on−1,on)

for n ≥ 1. So, we infer from (3.6) that

ω(on,on+1) ≤
1
s
ω(on−1,on).

Given that 1
s ∈ (0, 1), it follows, according to [1, 3, 4, 7], that the sequence {on} is a Cauchy sequence.
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Therefore, on → v in L by its completeness.
Additionally, the continuity of U results in

Uv = U( lim
n→+∞

on) = lim
n→+∞

Uon = lim
n→+∞

on+1 = v. (3.8)

Consequently, v constitutes a fixed point of U within the set L. □

By easing the conditions for continuity on a mapping U as per Theorem 7, the subsequent result is
obtained.

Theorem 8. Assume that a non-decreasing self-maping U on a c.m.s (L, ω, s,⪯), where ω is
continuous in each variable satisfying the conditions of a (ϕ, ψ)-generalized contraction with respect
to ⪯ and there exists o0 ∈ L such that o0 ⪯ Uo0. If L satisfies the condition that, for every
non-decreasing sequence {on} in L such thaton → v ∈ L, then on ⪯ v,∀n ≥ 1, i.e., v = supn∈Non,

then U possesses a fixed point in L.

Proof. We form a non-decreasing Cauchy sequence {on}within L that converges to v ∈L by applying
Theorem 7. Therefore, based on the provided hypotheses, it follows that on ⪯ v for every n ∈ N,
leading to the conclusion that v = supn∈Non.

Subsequently, we demonstrate that v serves as a fixed point of U in L. Let us assume the contrary,
i.e., Uv , v; then,

G(on, v) =max{
ω(v,Uv) [1 + ω(on,Uon)]

1 + ω(on, v)
,
ω(on,Uon) ω(v,Uv)

1 + ω(on, v)
,

ω(on,Uv) + ω(v,Uon)
2s

, ω(on, v)}
(3.9)

and

H(on, v) = max{
ω(v,Uv) [1 + ω(on,Uon)]

1 + ω(on, v)
, ω(on, v)}. (3.10)

Taking the limit as n → ∞ in (3.9) and (3.10), and by using the continuity in each variable of ω, we
obtain

lim
n→+∞

G(on, v) = max{ω(v,Uv), 0,
ω(v,Uv)

s
, 0} = ω(v,Uv) (3.11)

and
lim

n→+∞
H(on, v) = max{ω(v,Uv), 0} = ω(v,Uv). (3.12)

Considering on ⪯ v, for all n, we can derive from condition (3.3) that

ϕ(ω(on+1,Uv)) = ϕ(ω(Uon,Uv) ≤ ϕ(sω(Uon,Uv) ≤ ϕ(G(on, v)) − ψ(H(on, v)). (3.13)

Allowing n to tend to infinity and employing (3.11) and (3.12), we obtain

ϕ(ω(v,Uv)) ≤ ϕ(ω(v,Uv)) − ψ(ω(v,Uv)) < ϕ(ω(v,Uv)), (3.14)

which is absurd, unless Uv = v, indicating that U possesses a fixed point v in L. □
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We will now present a condition that is adequate to guarantee the existence of a unique fixed point
in Theorems 7 and 8.

For any o, a ∈L, there exists some w ∈L that is comparable to both o, a. (3.15)

Theorem 9. Consider a non-decreasing self-mapping U on a c.m.s (L, ω, s,⪯) that satisfies the
conditions of a (ϕ, ψ)-generalized contraction with respect to ⪯ and there exists o0 ∈ L such that
o0 ⪯ Uo0. If L satisfies the condition (3.15) in Theorem 7 (or Theorem 8), then U has a unique fixed
point in L.

Proof. We infer the existence of a nonempty set of fixed points for U based on Theorem 7 (or
Theorem 8). Assuming that o∗, a∗ are two fixed points for U, we assert that o∗ = a∗.

If o∗ , a∗, according to the given assumptions, we obtain

ϕ(ω(Uo∗,Ua∗)) ≤ ϕ(sω(Uo∗,Ua∗)) ≤ ϕ(G(o∗, a∗)) − ψ(H(o∗, a∗)). (3.16)

Consequently, we acquire

ω(o∗, a∗) = ω(Uo∗,Ua∗) ≤
1
s

G(o∗, a∗), (3.17)

where

G(o∗, a∗) =max{
ω(a∗,Ua∗) [1 + ω(o∗,Uo∗)]

1 + ω(o∗, a∗)
,
ω(o∗,Uo∗) ω(a∗,Ua∗)

1 + ω(o∗, a∗)
,

ω(o∗,Ua∗) + ω(a∗,Uo∗)
2s

, ω(o∗, a∗)}

=max{
ω(a∗, a∗) [1 + ω(o∗,o∗)]

1 + ω(o∗, a∗)
,
ω(o∗,o∗) ω(a∗, a∗)

1 + ω(o∗, a∗)
,

ω(o∗, a∗) + ω(a∗,o∗)
2s

, ω(o∗, a∗)}

=max{0, 0,
ω(o∗, a∗)

s
, ω(o∗, a∗)}

=ω(o∗, a∗).

(3.18)

Therefore from (3.17), we derive that

ω(o∗, a∗) ≤
1
s
ω(o∗, a∗) < ω(o∗, a∗). (3.19)

This results in a contradiction. Thus, we conclude that o∗ = a∗, completing the proof. □

Consider a p.o.m.s (L, ω, s,⪯) with s > 1 and let U, g: L →L be two mappings. Define:

Gg(o, a) =max{
ω(ga,Ua) [1 + ω(go,Uo)]

1 + ω(go, ga)
,
ω(go,Uo) ω(ga,Ua)

1 + ω(go, ga)
,

ω(go,Ua) + ω(ga,Uo)
2s

, ω(go, ga)}
(3.20)

and
Hg(o, a) = max{

ω(ga,Ua) [1 + ω(go,Uo)]
1 + ω(go, ga)

, ω(go, ga)}. (3.21)
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Definition 10. A function U: L → L, where (L, ω, s,⪯) is a p.o.m.s satisfying the following
condition is termed as a (ϕ, ψ)-generalized contraction by a self-mapping g over L:

ϕ(sω(Uo,Ua)) ≤ ϕ(Gg(o, a)) − ψ(Hg(o, a)), (3.22)

where ϕ ∈ Φ, ψ ∈ Ψ, o, a ∈ L with go ⪯ ga and where Gg(o, a) and Hg(o, a) are expressed as
per (3.20) and (3.21), respectively.

Theorem 11. The mappings U and g in Definition 10 possess a coincidence point over a c.m.s.
(L, ω, s,⪯) if there is an element o0 ∈ L such that go0 ⪯ Uo0 when U, g are continuous,
UL ⊆ gL and U is compatible with g and a monotone g-non-decreasing mapping.

Proof. Utilizing the proof technique outlined in [18, Theorem 2.2], we construct two sequences {on}

and {an} in L such that
an = Uon = gon+1, ∀ n ≥ 0, (3.23)

for which
go0 ⪯ go1 ⪯ · · · ⪯ gon ⪯ gon+1 ⪯ · · · . (3.24)

Again from [18], we can assume that an , an+1 for all n , 0. For this case we have to show that

ω(an, an+1) ≤ λω(an−1, an) (3.25)

for all n ≥ 1, where λ ∈ [0, 1
s ].

Now, employing (3.22) and utilizing (3.23) and (3.24), we obtain that

ϕ(sω(an, an+1)) = ϕ(sω(Uon,Uon+1))
≤ ϕ(Gg(on,on+1)) − ψ(Hg(on,on+1)),

(3.26)

where

Gg(on,on+1) =max{
ω(gon+1,Uon+1) [1 + ω(gon,Uon)]

1 + ω(gon, gon+1)
,

ω(gon,Uon) ω(gon+1,Uon+1)
1 + ω(gon, gon+1)

,

ω(gon,Uon+1) + ω(gon+1,Uon)
2s

, ω(gon, gon+1)}

=max{
ω(an, an+1) [1 + ω(an−1, an)]

1 + ω(an−1, an)
,
ω(an−1, an) ω(an, an+1)

1 + ω(an−1, an)
,

ω(an−1, an+1) + ω(an, an)
2s

, ω(an−1, an)}

≤max{ω(an, an+1),
ω(an−1, an) + ω(an, an+1)

2
, ω(an−1, an)}

≤max{ω(an−1, an), ω(an, an+1)}

(3.27)

and

Hg(on,on+1) = max{
ω(gon+1,Uon+1) [1 + ω(gon,Uon)]

1 + ω(gon, gon+1)
, ω(gon, gon+1)}

= max{
ω(an, an+1) [1 + ω(an−1, an)]

1 + ω(an−1, an)
, ω(an−1, an)}

= max{ω(an−1, an), ω(an, an+1)}.

(3.28)
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Consequently, based on (3.26)–(3.28), we obtain

ϕ(sω(an, an+1)) ≤ ϕ(max{ω(an−1, an), ω(an, an+1)}) − ψ(max{ω(an−1, an), ω(an, an+1)}). (3.29)

For n ∈ N, 0 < ω(an−1, an) ≤ ω(an, an+1); then, (3.29) becomes

ϕ(sω(an, an+1)) ≤ ϕ(ω(an, an+1)) − ψ(ω(an, an+1)) < ϕ(ω(an, an+1)),

or equivalently
sω(an, an+1) ≤ ω(an, an+1).

This is a contradiction. Hence from (3.29) we obtain that

sω(an, an+1) ≤ ω(an−1, an). (3.30)

Therefore, (3.25) is valid, where λ = 1
s ∈ [0, 1

s ]. because s > 1, it follows that 0 ≤ λ = 1
s < 1. Now

combining (3.25) and Lemma 3.1 of [8], we deduce that

{an} = {Uon} = {gon+1}

forms a convergent Cauchy sequence in L which converges to some v ∈ L due to the completeness
of (L, ω). i.e.,

lim
n→+∞

Uon = lim
n→+∞

gon+1 = v.

Hence, considering the compatibility of U and g, we conclude that

lim
n→+∞

ω(gUon,Ugon) = 0. (3.31)

Furthermore, utilizing the continuity properties of both U and g, we acquire

lim
n→+∞

gUon = gv, lim
n→+∞

Ugon = Uv. (3.32)

Moreover, by employing the triangle inequality and utilizing Eqs (3.31) and (3.32), we derive

1
s
ω(Uv, gv) ≤ ω(Uv,U(gon)) + sω(U(gon), g(Uon)) + sω(g(Uon), gv). (3.33)

In conclusion, as n→ +∞ in (3.33), we obtain that ω(Uv, gv) = 0. Therefore, v is a coincidence point
of U and g. Hence, we have the result. □

By relaxing the continuity requirements imposed on g and U as stated in Theorem 11, we arrive at
the following result:

Theorem 12. Consider an increasing sequence {gon} ⊂L of Theorem 11 such that

(i) lim
n→+∞

gon = go in gL;

(ii) gL is a closed subset of L;

(iii) gon ⪯ go and go ⪯ g(go) for n ∈ N.
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Hence, a coincidence point exists for weakly compatible mappings U, g if go0 ⪯ Uo0 for o0 ∈ L.
Additionally, at coincidence points U, g are commutative; then a common fixed point in L exists for
U and g.

Proof. The sequence
{an} = {Uon} = {gon+1}

forms a Cauchy sequence, as established in the proof of Theorem 11. Because of the closed nature of
gL, we have

lim
n→+∞

Uon = lim
n→+∞

gon+1 = gv for v ∈L.

Therefore, based on the given assumptions, it follows that gon ⪯ gv, for all n ≥ 1. The subsequent step
establishes that v serves as a coincidence point for both U and g.

According to (3.22), it follows that

ϕ(sω(Uon,Uo)) ≤ ϕ(Gg(on,o)) − ψ(Hg(on,o)), (3.34)

where

Gg(on, v) =max{
ω(gv,Uv) [1 + ω(gon,Uon)]

1 + ω(gon, gv)
,
ω(gon,Uon) ω(gv,Uv)

1 + ω(gon, gv)
,

ω(gon,Uv) + ω(gv,Uon)
2s

, ω(gon, gv)}

→max{ω(gv,Uv), 0,
ω(gv,Uv)

2s
, 0}

=ω(gv,Uv) as n→ +∞

and

Hg(on, v) = max{
ω(gv,Uv) [1 + ω(gon,Uon)]

1 + ω(gon, gv)
, ω(gon, gv)}

→ max{ω(gv,Uv), 0}
= ω(gv,Uv) as n→ +∞.

Consequently, (3.34) transforms into the following:

ϕ(s lim
n→+∞

ω(Uon,Uo)) ≤ ϕ(ω(gv,Uv)) − ψ(ω(gv,Uv)) < ϕ(ω(gv,Uv)). (3.35)

As a result, we obtain

lim
n→+∞

ω(Uon,Uo) <
1
s
ω(gv,Uv). (3.36)

Moreover, through the triangular inequality, we can express the following:

1
s
ω(gv,Uv) ≤ ω(gv,Uon) + ω(Uon,Uv). (3.37)

Subsequently, if gv , Uv, a contradiction arises from (3.36) and (3.37). Therefore, gv = Uv.
Assuming that gv = Uv = ρ, which indicates the commutative propertyof U and g at ρ, we have that
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Uρ = U(gv) = g(Uv) = gρ. Given that gv = g(gv) = gρ, applying (3.34) with gv = Uv and gρ = Uρ

yields

ϕ(sω(Uv,Uρ)) ≤ ϕ(Gg(v, ρ)) − ψ(Hg(v, ρ)) < ϕ(ω(Uv,Uρ)),

or equivalently,
sω(Uv,Uρ) ≤ ω(Uv,Uρ),

which results in a contradiction, if Uv , Uρ. Therefore, it follows that Uv = Uρ = ρ. Consequently,
Uv = gρ = ρ, showing that ρ is a common fixed point for both U and g. □

Definition 13. A mapping U: L ×L →L, where (L, ω, s,⪯) is a c.m.s with respect to the function
g: L →L is denoted as a (ϕ, ψ)-generalized contractive mapping if

ϕ(skω(U(o, a),U(ρ, d))) ≤ ϕ(Gg(o, a, ρ, d)) − ψ(Hg(o, a, ρ, d)), (3.38)

where k > 2, go ⪯ gρ, for o, a, ρ, d ∈L and

Gg(o, a, ρ, d) =max{
ω(gρ,U(ρ, d)) [1 + ω(go,U(o, a))]

1 + ω(go, gρ)
,
ω(go,U(o, a)) ω(gρ,U(ρ, d))

1 + ω(go, gρ)
,

ω(go,U(ρ, d)) + ω(gρ,U(o, a))
2s

, ω(go, gρ)}

and
Hg(o, a, ρ, d) = max{

ω(gρ,U(ρ, d)) [1 + ω(go,U(o, a))]
1 + ω(go, gρ)

, ω(go, gρ)}.

Theorem 14. A coupled coincidence point for the mappings U, g exists in Definition 13 over a c.m.s
(L, ω, s,⪯) when there exists (o0, a0) ∈L ×L with fo0 ⪯ U(o0, a0), ga0 ⪰ U(a0,o0), U(L ×L) ⊆
g(L), U and commutes with g and has a mixed g-monotone property.

Proof. Based on the given assumptions and by following the argument presented in the proof of [18,
Theorem 2.2], we form two sequences {on}, {an} within the space L such that

gon+1 = U(on, an), gan+1 = U(an,on) for all n ≥ 0.

Specifically, the sequences {gon} and {gan} are, respectively, non-decreasing and non-increasing in L.
Substituting o = on, a = an, ρ = on+1 and d = an+1 into (3.38), we obtain

ϕ(skω(gon+1, gon+2)) = ϕ(skω(U(on, an),U(on+1, an+1)))
≤ ϕ(Gg(on, an,on+1, an+1)) − ψ(Hg(on, an,on+1, an+1)),

(3.39)

where
Gg(on, an,on+1, an+1) ≤ max{ω(gon, gon+1), ω(gon+1, gon+2)} (3.40)

and
Hg(on, an,on+1, an+1) = max{ω(gon, gon+1), ω(gon+1, gon+2)}. (3.41)

Therefore from (3.39), we have

ϕ(skω(gon+1, gon+2)) ≤ϕ(max{ω(gon, gon+1), ω(gon+1, gon+2)})
− ψ(max{ω(gon, gon+1), ω(gon+1, gon+2)}).

(3.42)

AIMS Mathematics Volume 9, Issue 5, 10832–10857.



10843

Similarly by taking o = an+1, a = on+1, ρ = on and d = on in (3.38), we get

ϕ(skω(gan+1, gan+2)) ≤ϕ(max{ω(gan, gan+1), ω(gan+1, gan+2)})
− ψ(max{ω(gan, gan+1), ω(gan+1, gan+2)}).

(3.43)

Given the relation,
max{ϕ(d1), ϕ(d2)} = ϕ{max{d1, d2}}

for all d1, d2 ∈ [0,+∞), the combination of (3.42) and (3.43) yields

ϕ(skΥn) ≤ϕ(max{ω(gon, gon+1), ω(gon+1, gon+2), ω(gan, gan+1), ω(gan+1, gan+2)})
− ψ(max{ω(gon, gon+1), ω(gon+1, gon+2), ω(gan, gan+1), ω(gan+1, gan+2)}),

(3.44)

where
Υn = max{ω(gon+1, gon+2), ω(gan+1, gan+2)}. (3.45)

Let us denote the following

Kn = max{ω(gon, gon+1), ω(gon+1, gon+2), ω(gan, gan+1), ω(gan+1, gan+2)}. (3.46)

As a result, by considering (3.42) to (3.45), we get

skΥn ≤ Kn. (3.47)

Subsequently, we establish that
Υn ≤ λΥn−1 (3.48)

for all n ≥ 1, with λ = 1
sk ∈ [0, 1).

Assume that if Kn = Υn, then according to (3.47), we derive skΥn ≤ Υn, which gives that Υn = 0
because s > 1. Consequently, (3.48) is satisfied. Alternatively, if

Kn = max{ω(gon, gon+1), ω(gan, gan+1)}

denoted as Kn = Υn−1, then (3.47) implies (3.48).
Now, based on (3.47), we can conclude that Υn ≤ λ

nΥ0, leading to

ω(gon+1, gon+2) ≤ λnΥ0 and ω(gan+1, gan+2) ≤ λnΥ0. (3.49)

Consequently, in accordance with Lemma 3.1 from [8], the sequences {gon} and {gan} are Cauchy
sequences in L. Thus, by implementing the remaining procedures detailed in [16, Theorem 2.2], we
can demonstrate coincidence point existence for U and g in L. □

Corollary 15. Consider a c.m.s (L, ω, s,⪯) where s > 1. A continuous mapping U: L ×L →L for
a mixed monotone property. Assume the existence of ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ(skω(U(o, a),U(ρ, d))) ≤ ϕ(Gg(o, a, ρ, d)) − ψ(Hg(o, a, ρ, d))
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for all o, a, ρ, d ∈L satisfying that o ⪯ ρ and a ⪰ d, with k > 2 and

Gg(o, a, ρ, d) =max{
ω(ρ,U(ρ, d)) [1 + ω(o,U(o, a))]

1 + ω(o, ρ)
,
ω(o,U(o, a)) ω(ρ,U(ρ, d))

1 + ω(o, ρ)
,

ω(o,U(ρ, d)) + ω(ρ,U(o, a))
2s

, ω(o, ρ)}

and

Hg(o, a, ρ, d) = max{
ω(ρ,U(ρ, d)) [1 + ω(o,U(o, a))]

1 + ω(o, ρ)
, ω(o, ρ)}.

Under those conditions, U possesses a coupled fixed point in L if (o0, a0) ∈ L × L satisfies that
o0 ⪯ U(o0, a0) and a0 ⪰ U(a0,o0).

Proof. Put g = IL in Theorem 14. □

Corollary 16. Consider a c.m.s (L, ω, s,⪯) where s > 1 and U: L × L → L be a continuous
mapping possessing a mixed monotone property. Suppose the existence of ψ ∈ Ψ such that

ω(U(o, a),U(ρ, d)) ≤
1
sk Gg(o, a, ρ, d) −

1
skψ(Hg(o, a, ρ, d)) (3.50)

for all o, a, ρ, d ∈L with o ⪯ ρ, a ⪰ d and k > 2, where

Gg(o, a, ρ, d) =max{
ω(ρ,U(ρ, d)) [1 + ω(o,U(o, a))]

1 + ω(o, ρ)
,
ω(o,U(o, a)) ω(ρ,U(ρ, d))

1 + ω(o, ρ)
,

ω(o,U(ρ, d)) + ω(ρ,U(o, a))
2s

, ω(o, ρ)}
(3.51)

and

Hg(o, a, ρ, d) = max{
ω(ρ,U(ρ, d)) [1 + ω(o,U(o, a))]

1 + ω(o, ρ)
, ω(o, ρ)}. (3.52)

If for some (o0, a0) ∈ L ×L such that o0 ⪯ U(o0, a0) and a0 ⪰ U(a0,o0), then U in L possesses a
coupled fixed point.

Theorem 17. A coupled common fixed point for U and g is unique in Theorem 14, if for all (y, b) ∈
L × L, (U(y, b),U(b, y)) is comparable to both (U(o, a),U(a,o)) and (U(r, s),U(s, r)) for some
(y, b) ∈L ×L.

Proof. By virtue of Theorem 14, a coupled coincidence point in L for U and g is established. To prove
the uniqueness, let us take two coupled coincidence points (o, a) and (r, s), so that

U(o, a) = go, U(a,o) = ga, U(r, s) = gr and U(s, r) = gs.

Our objective is to demonstrate that go = gr and ga = gs.
Given the provided conditions, (U(y, b),U(b, y)) is comparable to (U(o, a),U(a,o)) and to

(U(r, s),U(s, r)) for (y, b) ∈L ×L. Assume that

(U(o, a),U(a,o)) ≤ (U(y, b),U(b, y)) and (U(r, s),U(s, r)) ≤ (U(y, b),U(b, y)).
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Define y0 = y and b0 = b and select (y1, b1) ∈L ×L as follows:

gy1 = U(y0, b0), gb1 = U(b0, y0), (n ≥ 1).

Construct the sequences {gyn} and {gbn} in L inductively by implementing the above process using the
following equations;

gyn+1 = U(yn, bn), gbn+1 = U(bn, yn), (n ≥ 0).

In a similar manner, introduce the sequences {gon}, {gan}, {grn} and {gsn} in L according to the previous
definitions, with the initial values o0 = o, a0 = a, r0 = r, and s0 = s. Additionally, it is apparent that

gon → U(o, a), gan → U(a,o), grn → U(r, s), gsn → U(s, r), (n ≥ 1).

Given that
(U(o, a),U(a,o)) = (go, ga) = (go1, ga1)

is comparable to
(U(y, b),U(b, y)) = (gy, gb) = (gy1, gb1),

it follows that (go1, ga1) ≤ (gy1, gb1). Therefore, through induction, we can deduce that

(gon, gan) ≤ (gyn, gbn), (n ≥ 0).

Hence, according to (3.38), we obtain

ϕ(ω(go, gyn+1)) ≤ ϕ(skω(go, gyn+1)) = ϕ(skω(U(o, a),U(yn, bn)))
≤ ϕ(Gg(o, a, yn, bn)) − ψ(Hg(o, a, yn, bn)),

(3.53)

where

Gg(o, a, yn, bn) =max{
ω(gyn,U(yn, bn)) [1 + ω(go,U(o, a))]

1 + ω(go, gyn)
,

ω(go,U(o, a)) ω(gyn,U(yn, bn))
1 + ω(go, gyn)

,

ω(go,U(yn, bn)) + ω(gyn,U(o, a))
2s

, ω(go, gyn)}

=max{0, 0,
ω(go, gyn)

s
, ω(go, gyn)}

=ω(go, gyn)

and

Hg(o, a, yn, bn) = max{
ω(gyn,U(yn, bn)) [1 + ω(go,U(o, a))]

1 + ω(go, gyn)
, ω(go, gyn)}

= ω(go, gyn).

Hence, according to (3.38), we obtain

ϕ(ω(go, gyn+1)) ≤ ϕ(ω(go, gyn)) − ψ(ω(go, gyn)). (3.54)
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By an analogous procedure, we find that

ϕ(ω(ga, gbn+1)) ≤ ϕ(ω(ga, gbn)) − ψ(ω(ga, gbn)). (3.55)

Combining (3.54) and (3.55), we obtain

ϕ(max{ω(go, gyn+1), ω(ga, gbn+1)}) ≤ϕ(max{ω(go, gyn), ω(ga, gbn)})
− ψ(max{ω(go, gyn), ω(ga, gbn)})

<ϕ(max{ω(go, gyn), ω(ga, gbn)}).
(3.56)

Therefore, utilizing the property of ϕ, we deduce the following:

max{ω(go, gyn+1), ω(ga, gbn+1)} < max{ω(go, gyn), ω(ga, gbn)},

which demonstrates that max{ω(go, gyn), ω(ga, gbn)} is a decreasing sequence; then,

lim
n→+∞

max{ω(go, gyn), ω(ga, gbn)} = γ, γ ≥ 0.

By the limiting case in (3.56), we get

ϕ(γ) ≤ ϕ(γ) − ψ(γ),

this suggests that if ψ(γ) = 0, then it follows that γ = 0. As a result,

lim
n→+∞

max{ω(go, gyn), ω(ga, gbn)} = 0.

Consequently, we get
lim

n→+∞
ω(go, gyn) = 0 and lim

n→+∞
d(ga, gbn) = 0. (3.57)

By a similar argument, we acquire

lim
n→+∞

ω(gr, gyn) = 0 and lim
n→+∞

ω(gs, gbn) = 0. (3.58)

Thus, utilizing (3.57) and (3.58), we conclude that go = gr and ga = gs. Given that go = U(o, a)
and ga = U(a,o), then the fact that U and g are commutative results in

g(go) = g(U(o, a)) = U(go, ga) and g(ga) = g(U(a,o)) = U(ga, go). (3.59)

Let go = c∗ and ga = e∗; then, (3.59) becomes

g(c∗) = U(c∗, e∗) and g(e∗) = U(e∗, c∗). (3.60)

This establishes that U, g have a coupled coincidence point of (c∗, e∗). Consequently, g(c∗) = gr and
g(e∗) = gs, indicating that g(c∗) = c∗ and g(e∗) = e∗. Therefore, we can deduce from (3.60) that

c
∗ = g(c∗) = U(c∗, e∗) and e∗ = g(e∗) = U(e∗, c∗).

Thus, U, g have (c∗, e∗) which is a coupled common fixed point.
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Assuming uniqueness, consider another pair (u∗,m∗) as a coupled common fixed point for both U

and g. This implies that

u
∗ = gu∗ = U(u∗,m∗) and m∗ = gm∗ = U(m∗, u∗).

Given that (u∗,m∗) is a coupled common fixed point of U and g, it follows that gu∗ = go = c∗ and,
gm∗ = ga = e∗. Consequently,

u
∗ = gu∗ = gc∗ = c∗ and m∗ = gm∗ = ge∗ = e∗.

Hence, we have the proof. □

Theorem 18. Under the additional conditions of Theorem 17, when go0 and ga0 are comparable, a
common fixed point which is unique exists in L for U and g.

Proof. Following Theorem 17, the existence of a coupled common fixed point (o, a) which is a unique
for U and g in L is established. To prove that o = a, consider the hypothesis that go0 and ga0 are
comparable, assuming, without loss of generality, that go0 ⪯ ga0. Through induction, it is inferred that
gon ⪯ gan holds for all n ≥ 0, where {gon} and {gan} are sequences derived from Theorem 14.

Now, employing Lemma 6, we obtain

ϕ(sk−2ω(o, a)) = ϕ(sk 1
s2ω(o, a)) ≤ lim

n→+∞
sup ϕ(skω(on+1, an+1))

= lim
n→+∞

sup ϕ(skω(U(on, an),U(an,on)))

≤ lim
n→+∞

sup ϕ(Gg(on, an, an,on)) − lim
n→+∞

inf ψ(Hg(on, an, an,on))

≤ ϕ(ω(o, a)) − lim
n→+∞

inf ψ(Hg(on, an, an,on))

< ϕ(ω(o, a)).

This contradiction suggests that o = a. Hence, we have the proof. □

Remark 19. The condition outlined is based on the known fact that a b-metric space transforms into a
metric space for s = 1. Consequently, drawing upon Jachymski’s [36] findings, the specified condition
unfolds;

ϕ(ω(U(o, a),U(ρ, d))) ≤ ϕ(max{ω(go, gρ), ω(ga, gd)}) − ψ(max{ω(go, gρ), ω(ga, gd)})

is equivalent to
ω(U(o, a),U(ρ, d)) ≤ φ(max{ω(go, gρ), ω(ga, gd)}).

In this scenario, considering that ϕ ∈ Φ, ψ ∈ Ψ and a self-map φ over [0,+∞) exists as a continuous
function with φ(t) < t,∀t > 0 and φ(t) = 0 under the circumstance that t = 0, it can be concluded that
our findings provide a broader and more extensive perspective than the results presented in [13,14,37],
along with other similar outcomes.

Corollary 20. A non-decreasing self-map U over a c.m.s. (L, ω, s,⪯) is continuous and o0 ⪯ Uo0

for o0 ∈L. Then U possesses a fixed point in L if for (o, a) ∈L ×L,

ϕ(sω(Uo,Ua)) ≤ ϕ(G(o, a)) − ψ(G(o, a)),

where G(o, a), ϕ and ψ are the same as in Theorem 7.
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Proof. Choose H(o, a) = G(o, a) in the contraction condition (3.3) of Theorem 7. □

Note 1. Additionally, given that the requirements of Theorem 8 are fulfilled by L, it establishes the
presence of a fixed point for the mapping U. Also, under the condition (3.15) satisfied by L, the
uniqueness of the fixed point is ensured.

Note 2. By adapting the proofs provided in Theorems 11 and 12, one can establish a coincidence
point for U and g within L. Similarly, leveraging Theorems 14, 17 and 18, one can derive a coupled
coincidence point which is unique, along with a unique common fixed point for U and g within both
L×L and L. These results are contingent upon the fulfillment of a generalized contraction condition
in Corollary 20, where Gg(o, a), Gg(o, a, ρ, d), and the conditions imposed on ϕ and ψ remain consistent
with the previously defined formulations.

Corollary 21. A non-decreasing self-map U over a c.m.s. (L, ω, s,⪯) is continuous. Assume that
there is a constant k ∈ [0, 1), and for each pair of elements o, a ∈L with o ⪯ a,

ω(Uo,Ua) ≤
k
s

max{
ω(a,Ua) [1 + ω(o,Uo)]

1 + ω(o, a)
,
ω(o,Uo) ω(a,Ua)

1 + ω(o, a)
,

ω(o,Ua) + ω(a,Uo)
2s

, ω(o, a)}.

If there exists o0 ∈L with o0 ⪯ Uo0, then U has a fixed point in L.

Proof. Define ϕ(t) = t and ψ(t) = (1 − k)t, for all t ∈ (0,+∞) in accordance with Corollary 20. □

Note 3. By relaxing the continuity constraints for the mapping U as described in Corollary 21, it is
possible to acquire a fixed point of U by considering a decreasing sequence {on} ⊂L in Theorem 8.

We demonstrate the practical relevance of the obtained results for diverse scenarios, including
situations in which a metric ω exhibits both continuity and discontinuity within a space L.

Example 22. A metric ω: L × L → L is defined as below and ≤ is a usual order on L, where
L = {1, 2, 3, 4, 5, 6} given the following:

ω(o, a) = ω(a,o) = 0, if o, a = 1, 2, 3, 4, 5, 6 and o = a,

ω(o, a) = ω(a,o) = 3, i f o, a = 1, 2, 3, 4, 5 and o , a,

ω(o, a) = ω(a,o) = 12, i f o = 1, 2, 3, 4 and a = 6,
ω(o, a) = ω(a,o) = 20, i f o = 5 and a = 6.

Define a map U: L → L by U1 = U2 = U3 = U4 = U5 = 1,U6 = 2 and set ϕ(t) = t
2 , ψ(t) = t

4 ,
∀t ∈ [0,+∞). Then U possesses a fixed point in L.

Proof. It is clear that when s = 2, (L, ω, s,⪯) forms a c.m.s. Let us examine the various scenarios for
elements o and a within L.
Case 1. Assume that o and a are elements of the set {1, 2, 3, 4, 5}, with o < a. Consequently,

ω(Uo,Ua) = ω(1, 1) = 0.

Thus,
ϕ(2ω(Uo,Ua)) = 0 ≤ ϕ(G(o, a)) − ψ(G(o, a)).
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Case 2. Assume that o is any one of {1, 2, 3, 4, 5} and a = 6. In this scenario, ω(Uo,Ua) = ω(1, 2) =
3, G(6, 5) = 20 and G(o, 6) = 12, for o ∈ {1, 2, 3, 4}. As a result, we have

ϕ(2ω(Uo,Ua)) ≤
G(o, a)

4
= ϕ(G(o, a)) − ψ(G(o, a)).

Therefore, the condition established in Corollary 20 is satisfied. Additionally, the other prerequisites
outlined in Corollary 20 are met. Consequently, U possesses a fixed point in L since Corollary 20 is
applicable for U, ϕ, ψ and the space (L, ω, s,⪯). □

Example 23. A metric ω: L ×L →L is specified on the set

L = {0, 1,
1
2
,

1
3
,

1
4
, . . . ,

1
n
, . . .}

with the standard order ≤ in the following manner:

ω(o, a) =


0, f or o = a,

1, f or o , a ∈ {0, 1},
|o − a|, f or o, a ∈ {0, 1

2n ,
1

2m : n , m ≥ 1},
2, otherwise.

Define U: L →L under the conditions that U0 = 0,U 1
n =

1
12n ,∀n ≥ 1 and ϕ(t) = t, ψ(t) = 4t

5 , 0 ≤ t <
∞. Then U possesses a fixed point in L.

Proof. Clearly, when s = 12
5 , the space (L, ω, s,⪯) forms a c.m.s. Additionally, as defined, the metric

ω is a b-metric space which is discontinuous. When examining o, a ∈ L where o < a, the following
situations arise:
Case 1. If o = 0 and a = 1

n ,∀n ≥ 1, then,

ω(Uo,Ua) = ω(0,
1

12n
) =

1
12n

and G(o, a) =
1
n

or G(o, a) = {1, 2}.

Therefore, we have

ϕ

(
12
5
ω(Uo,Ua)

)
≤

G(o, a)
5

= ϕ(G(o, a)) − ψ(G(o, a)).

Case 2. If o = 1
m and a = 1

n with m > n ≥ 1, then,

ω(Uo,Ua) = ω(
1

12m
,

1
12n

) and G(o, a) ≥
1
n
−

1
m

or G(o, a) = 2.

Therefore,

ϕ

(
12
5
ω(Uo,Ua)

)
≤

G(o, a)
5

= ϕ(G(o, a)) − ψ(G(o, a)).

Thus, the conditions specified in Corollary 20, including condition the defined condition, along with
the fulfillment of the remaining assumptions, are met. Consequently, there exists a fixed point for U
within the space L. □
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Example 24. Consider L such that it consists of all continuous functions on [a, b], denoted by L =

C[a, b]. A b-metric ω on L defined as

ω(θ1, θ2) = sup
t∈[a,b]
{|θ1(t) − θ2(t)|2}

for any θ1, θ2 ∈ L with the partial order ⪯ defined with θ1 ⪯ θ2, if a ≤ θ1(t) ≤ θ2(t) ≤ b, where
0 ≤ a < b and t ∈ [a, b]. Define U: L →L under the conditions that Uθ = θ

5 , θ ∈L and the distance
functions ϕ(t) = t, ψ(t) = t

3 , 0 ≤ t < ∞. Thus, U possesses a unique fixed point in L.

Proof. Given the specified assumptions, it is evident that (L, ω, s,⪯) forms a c.m.s. with s = 2,
satisfying the conditions stated in Corollary 20 and Note 1. Moreover, for all θ1, θ2 ∈L, the function

min(θ1, θ2)(t) = min{θ1(t), θ2(t)}

is continuous, satisfying the assumptions of Corollary 20 and Note 1. Thus in L, U possesses a unique
fixed point θ = 0. □

4. Application

We examine the presence of a unique solution to a nonlinear quadratic integral [15], considering its
applicability in light of the coupled fixed point defined in Corollary 16 outlined in this paper.

Let us examine the following integral equation of a quadratic and nonlinear nature:

x(t) = δ(t) + α
∫ 1

0
k1(t, q)g1(q, x(q))dq

∫ 1

0
k2(t, q)g2(q, x(q))dq, t ∈ I = [0, 1], α ≥ 0. (4.1)

Denote Γ that consists of self-maps γ over [0,+∞) to satisfy the following conditions:

(i) (γ(t))q ≤ γ(tq),∀ q ≥ 1 and γ is non-decreasing.
(ii) ∃ ϕ ∈ Φ with γ(t) = t − ϕ(t),∀t ∈ [0,∞).

For example, γ1(t) = rt, 0 ≤ r < 1 and γ2(t) = t
t+1 are in Γ [15].

We will examine the equation given by (4.1) as subject to the following:

(c1) The functions gi: I × R → R, with gi(t,o) ≥ 0 are continuous and ξi ∈ L1(I) are two functions
such that gi(t,o) ≤ ξi(t) for i = 1, 2.

(c2) g1(t,o) exhibits monotonic non-decreasing behavior in o, while g2(t, a) demonstrates monotonic
descending characteristics in a for every o, a ∈ R and t ∈ I.

(c3) The function δ: I→ R is continuous.
(c4) The functions denoted by ki: I × I → R, i = 1, 2 exhibit continuity in I at every t for each q ∈ I

and measurability in q ∈ I for each t ∈ I under the given conditions∫ 1

0
ki(t, q)ξi(q)dq ≤ K, i = 1, 2 and ki(t,o) ≥ 0.

(c5) For any o, a ∈ R with o ≥ a a function γ ∈ Γ and the constants 0 ≤ Li < 1, (i = 1, 2) exist such
that

|gi(t,o) − gi(t, a)| ≤ Liγ(o − a), (i = 1, 2).
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(c6) There are functions l1, l2 ∈ C(I) with

l1(t) ≤ δ(t) + α
∫ 1

0
k1(t, q)g1(q, l1(q))dq

∫ 1

0
k2(t, q)g2(q, l2(q))dq

≤ δ(t) + λ
∫ 1

0
k1(t, q)g1(q, l2(q))dq

∫ 1

0
k2(t, q)g2(q, l1(q))dq

≤ l2(t).

(c7) max{L1
q,L2

q}αqK2q ≤ 1
24q−3 .

Let us consider the space L = C(I) with I = [0, 1], which denotes the set of continuous maps
equipped with a metric.

d(o, a) = sup
t∈I
|o(t) − a(t)| for o, a ∈ C(I).

It is evident that the space can be endowed with a partial order defined by

o, a ∈ C(I),o ≤ a ⇐⇒ o(t) ≤ a(t), ∀t ∈ I.

For q ≥ 1, a metric ω defined as below,

ω(o, a) = (d(o, a)q) = (sup
t∈I
|o(t) − a(t)|)q = sup

t∈I
|o(t) − a(t)|q for o, a ∈ C(I),

forms a complete b-metric space for s = 2q−1 according to [16].
Additionally, L ×L = C(I) × C(I) forms a p.o.s with the specified order relation, as follows

(o, a), (ρ, d) ∈L ×L, (o, a) ≤ (ρ, d) ⇐⇒ o ≤ ρ and a ≥ d.

Moreover, for all o, a ∈ L and any t ∈ I, max{o(t), a(t)} serves as both an upper and lower bound for
o, a in L. Consequently, for any

(o, a), (ρ, d) ∈L ×L, (max{o, ρ},min{a, d}) ∈L ×L

is comparable to both (o, a) and (ρ, d).

Theorem 25. Given the conditions (c1)–(c7), the integral Eq (4.1) admits a unique solution within the
set C(I).

Proof. Define a mapping U: L ×L →L as follows:

U(o, a)(t) = δ(t) + α
∫ 1

0
k1(t, q)g1(q,o(q))dq

∫ 1

0
k2(t, q)g2(q, a(q))dq for t ∈ I.

Therefore, the well-definiteness of U is ensured by the given hypotheses. To demonstrate the mixed
monotone property of U, consider the case in which o1 ≤ o2 and t ∈ I

U(o1, a)(t) −U(o2, a)(t) =δ(t) + α
∫ 1

0
k1(t, q)g1(q,o1(q))dq

∫ 1

0
k2(t, q)g2(q, a(q))dq

− δ(t) − α
∫ 1

0
k1(t, q)g1(q,o2(q))dq

∫ 1

0
k2(t, q)g2(q, a(q))dq

=α

∫ 1

0
k1(t, q)[g1(q,o1(q)) − g1(q,o2(q))]dq

∫ 1

0
k2(t, q)g2(q, a(q))ds

≤0.
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Similarly, we establish that
U(o, a1)(t) ≤ U(o, a2)(t)

holds true if a1 ≤ a2 and t ∈ I. Thus, U possesses the mixed monotone property. Furthermore, for
(o, a) ≤ (ρ, d), which implies that o ≤ ρ and a ≥ d, we obtain

d|U(o, a)(t) −U(ρ, d)(t)| ≤|α
∫ 1

0
k1(t, q)g1(q,o(q))dq

∫ 1

0
k2(t, q)[g2(q, a(q)) − g2(q, d(q))]dq

+ α

∫ 1

0
k2(t, q)g2(q, d(q))dq

∫ 1

0
k1(t, q)[g1(q,o(q)) − g1(q, ρ(q))]dq|

≤α

∫ 1

0
k1(t, q)g1(q,o(q))dq

∫ 1

0
k2(t, q)|g2(q, a(q)) − g2(q, d(q))|dq

+α

∫ 1

0
k2(t, q)g2(q, d(q))dq

∫ 1

0
k1(t, q)|g1(q,o(q)) − g1(q, ρ(q))|dq

≤α

∫ 1

0
k1(t, q)l1(q)dq

∫ 1

0
Λ2(t, q)L2γ[a(q) − d(q)]dq

+ α

∫ 1

0
k2(t, q)l2(q)dq

∫ 1

0
k1(t, q)L1γ[ρ(q) − o(q)]dq.

Given that γ is an increasing function and under the conditions o ≤ ρ, a ≥ d, we can conclude that

γ(ρ(q) − o(q)) ≤ γ(sup
t∈I
|o(q) − ρ(q)|) = γ(d(o, ρ))

and
γ(a(q) − d(q)) ≤ γ(sup

t∈I
|a(q) − d(q)|) = γ(d(a, d)).

Thus,

|U(o, a(t)) −U(ρ, d)(t)| ≤ αK
∫ 1

0
k2(t, q)L2γ(d(a, d))dq + αK

∫ 1

0
k1(t, q)L1γ(d(ρ,o))dq

≤ αK2 max{L1,L2}[γ(d(ρ,o)) + γ(d(a, d))].

Therefore,

ω(U(o, a),U(ρ, d)) = sup
t∈I
|U(o, a)(t) −U(ρ, d)(t)|q

≤ {αK2 max{L1,L2}[γ(d(ρ,o)) + γ(d(a, d))]}q

= αqK2q max{L1
q,L2

q}[γ(d(ρ,o)) + γ(d(a, d))]q,

and for q > 1, we have that (m + n)q ≤ 2q−1(mq + nq) for m, n ∈ (0,∞); then,

ω(U(o, a),U(ρ, d)) ≤ 2q−1αqK2qmax{L1
q,L2

q}[(γ(d(ρ,o)))q + (γ(d(a, d)))q]
≤ 2q−1αqK2qmax{L1

q,L2
q}[γ(d(ρ,o)) + γ(d(a, d))]

≤ 2qαqK2qmax{L1
q,L2

q}[γGg(o, a, ρ, d)]
≤ 2qαqK2qmax{L1

q,L2
q}[Gg(o, a, ρ, d) − ψ(Hg(o, a, ρ, d))]

≤
1

23q−k Gg(o, a, ρ, d) −
1

23q−kψ(Hg(o, a, ρ, d)),
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this implies that the mapping U fulfills the contraction condition (3.50) specified in Corollary 16.
Lastly, consider the functions l1, l2 as indicated in assumption (c6). By (c6), we obtain

l1 ≤ U(l1, l2) ≤ U(l2, l1) ≤ l2.

Therefore, based on Theorem 17, the mapping U possesses a unique coupled fixed point (c∗, e∗) ∈
L×L. Given l1 ≤ l2, according to Theorem 18, we conclude that c∗ = e∗, suggesting that c∗ = U(c∗, c∗).
Consequently, c∗ ∈ C(I) stands as the unique solution to (4.1). □

5. Conclusions

This study has established results related to the fixed point of a mapping that adheres to the
conditions of a rational contraction with auxiliary functions, demonstrating its uniqueness.
Furthermore, we extend these findings to obtain coupled fixed points for two mappings within an
ordered metric space. The results presented here generalize and extend existing comparable findings
in the literature. Numerical examples have been provided to illustrate and support the outcomes.
Moreover, these results have the potential for further generalization and extension in various ordered
metric spaces, given the necessary topological conditions.

Additionally, the aforementioned findings can be extended and generalized by incorporating the
idea of wt-distance in a metric type space [47], cone b-metric spaces over Banach algebras [48] and
(ϕ, ψ)-weak contractions as presented in [49].
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8. M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces,
Fixed Point Theory Appl., 2010 (2010), 978121. https://doi.org/10.1155/2010/978121

9. W. A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014.
https://doi.org/10.1007/978-3-319-10927-5

10. W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric
type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330.
https://doi.org/10.3934/math.2023468

11. A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via Aν-α-contractions
with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS
Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363

12. M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to
satellite web coupling problem in S -metric spaces, AIMS Math., 8 (2023), 4407–4441.
https://doi.org/10.3934/math.2023220

13. T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and
applications, Nonlinear Anal., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017
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21. D. Dorić, Common fixed point for generalized (ψ, ϕ)-weak contractions, Appl. Math. Lett., 22
(2009), 1896–1900. https://doi.org/10.1016/j.aml.2009.08.001

22. E. Graily, S. M. Vaezpour, R. Saadati, Y. J. Cho, Generalization of fixed point theorems in
ordered metric spaces concerning generalized distance, Fixed Point Theory Appl., 2011 (2011),
30. https://doi.org/10.1186/1687-1812-2011-30

23. H. Huang, S. Radenović, J. Vujaković, On some recent coincidence and immediate
consequences in partially ordered b-metric spaces, Fixed Point Theory Appl., 2015 (2015), 63.
https://doi.org/10.1186/s13663-015-0308-3

24. O. Popescu, Fixed points for (ψ, φ)-weak contractions, Appl. Math. Lett., 24 (2011), 1–4.
https://doi.org/10.1016/j.aml.2010.06.024

25. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of
almost generalized (ψ, ϕ)s-contractive mappings in ordered b-metric spaces, Fixed Point Theory
Appl., 2013 (2013), 159. https://doi.org/10.1186/1687-1812-2013-159

26. J. R. Roshan, V. Parvaneh, I. Altun, Some coincidence point results in ordered b-metric spaces
and applications in a system of integral equations, Appl. Math. Comput., 226 (2014), 725–737.
https://doi.org/10.1016/j.amc.2013.10.043

27. N. Seshagiri Rao, K. Kalyani, Generalized contractions to coupled fixed point theorems
in partially ordered metric spaces, J. Sib. Fed. Univ. Math. Phys., 13 (2020), 492–502.
https://doi.org/10.17516/1997-1397-2020-13-4-492-502

28. N. S. Rao, K. Kalyani, K. Khatri, Contractive mapping theorems in partially ordered metric spaces,
Cubo, 22 (2020), 203–214. https://doi.org/10.4067/s0719-06462020000200203

29. N. S. Rao, K. Kalyani, Generalized fixed point results of rational type contractions in partially
ordered metric spaces, BMC Res. Notes, 14 (2021), 390. https://doi.org/10.1186/s13104-021-
05801-7
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