Research article

Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $\zeta \in(1,2)$ in infinite dimensional Banach spaces

Muneerah Al Nuwairan ${ }^{1, *}$ and Ahmed Gamal Ibrahim ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
${ }^{2}$ Department of Mathematics, College of Sciences, Cairo University, Egypt

* Correspondence: Email: msalnuwairan@kfu.edu.sa.com.

Abstract

In this paper, we improved recent results on the existence of solutions for nonlinear fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order $\zeta \in(1,2)$. We also derived the exact relations between these fractional boundary value problems and the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that the continuity assumption on the nonlinear term of these equations is insufficient, give the derived expression for the solution, and present two results about the existence and uniqueness of the solution. We examined the case of impulsive impact and provide some sufficiency conditions for the existence and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of anti-periodic solution for the studied problems and considered the problem when the right-hand side was a multivalued function. Examples were given to illustrate the obtained results.

Keywords: AB fractional derivative; fractional differential inclusions; instantaneous impulses; solutions and anti-periodic solutions
Mathematics Subject Classification: 26A33, 34A08

1. Introduction

It has been recognized that the dynamics of complex real-world problems are better described using fractional calculus. Fractional calculus has many applications in engineering [1-7], in environmental, and biological studies [8-12]. As an extension to Newtonian derivatives, researchers have proposed different concepts of fractional derivatives and integrals, each of which generalizes the concept of differentiation and integration of integer order. The best known fractional operators are those of Riemann-Liouville and Caputo. These operators use a singular kernel. The problems arising
from the presence of singular kernel were overcome by introducing fractional operators with non singular kernels. Caputo et al. [13] proposed a definition based on the exponential function. Atangana and Baleanu [14] generalized the Caputo fractional operators using kernels based on the Mittag-Leffler function.

Although Atangana and Baleanu's derivative is not the left inverse of the corresponding Atangana and Baleanu's integral (Lemma 2.1 and Remark 2.1 below), there are many applications of Atangana and Baleanu's fractional derivative to differential equations [15-19]. Many researchers obtained results regarding the existence of solutions for fractional differential equations and inclusions involving Atangana and Baleanu derivative in finite dimensional spaces [20-24]. Recently, Al Nuwairan et al. [25] investigated the existence of solutions for non-local impulsive differential equations and inclusions with Atangana and Baleanu derivative of order $\zeta \in(0,1)$ in infinite dimensional spaces.

Impulsive differential equations and impulsive differential inclusions have been an object of interest with wide applications to physics, biology, engineering, medicine, industry, and technology. The impulsive differential equations provide appropriate models for processes that change their state rapidly and cannot be modeled using the ordinary differential equations. An example of such a process is the motion of an elastic ball bouncing vertically on a surface. The moments of the impulses are the times when the ball touches the surface and rapidly changes its velocity. For some applications of impulsive differential equations, we see [26,27]. Xu et al. [28] studied the exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses. For further results on the existence of solutions or mild solutions for impulsive differential equations and inclusions, we refer to [29-33].

Kaslik et al. [34] showed that unlike the integer order derivative, the fractional-order derivative of a periodic function cannot be a function with the same period. This implies the non-existence of periodic solutions for a wide class of fractional-order differential systems on bounded intervals. Thus, much attention has been devoted to the study of anti-periodic solutions or S-asymptotically w-periodic solution. Fractional differential equations with anti-periodic conditions have been applied to the study of blood flow, chemical engineering, underground water flow, and population dynamics. The antiperiodic solutions to various fractional differential equations and inclusions are investigated by several authors [35-40] and papers cited therein. Very recently, Abdeljawad et al. [41] proposed a higher-order extension of Atangana-Baleanu fractional operators. For more recent results on fractional differential equations, we refer the reader to [42-44].
Notation 1.1. Throughout this paper, we use the following notation:

- For $b>0$, let $J=[0, b] \subset \mathbb{R}$. Let m be a natural number, $0 \leq k \leq m, N_{k}=\{k, k+1, \ldots, m\}, 0=$ $\iota_{0}<\iota_{1} \leq<\iota_{2} \leq \iota_{3} \cdots<\iota_{m+1}=b$ be a partition of $J, J_{0}=\left[0, \iota_{1}\right]$, and $J_{k}=\left(\iota_{k}, \iota_{k+1}\right], k \in N_{1}$.
- E is a reflexive real Banach space, z_{0}, z_{1} are elements of E.
- $A C(J, E)$ is the Banach space of absolutely continuous functions from J to E.
- $H^{1}((a, b), E)$ is the Sobolev space $\left\{z \in L^{2}((a, b), E): z^{\prime} \in L^{2}((a, b), E)\right\}$.
- $P C(J, E)$ is the Banach space defined as
$P C(J, E)=\left\{z: J \rightarrow E, z \in H^{1}\left(J_{k}, E\right): z\left(\iota_{k}^{+}\right)\right.$and $z\left(\iota_{k}^{-}\right)$exist with $\left.\left.z\left(\iota_{k}\right)=z\left(l_{k}^{-}\right)\right\}, \forall k \in N_{1}\right\}$. The norm on $P C(J, E)$ is given by $\|z\|_{P C(J, E)}=\sup \{\|z(\iota)\|: \iota \in J\}$.
- $P C H^{1}(J, E)=\left\{z \in P C(J, E): z_{J_{j}} \in H^{1}\left(\left(\iota_{k}, \iota_{k+1}\right), E\right), \forall k \in N_{1}\right\}$.
- $P C H^{2}(J, E)=\left\{z \in P C(J, E): z_{\mid J_{k}}^{\prime} \in H^{1}\left(\left(\iota_{k}, \iota_{k+1}\right), E\right), \forall k \in N_{1}\right\}$.

The spaces $P C H^{1}(J, E)$ and $P C H^{2}(J, E)$ are Banach spaces endowed with the norms

$$
\|z\|_{P C H^{\prime}(J, E)}=\max \left\{\left\|z_{\left.\right|_{J_{k}}}\right\|_{H^{s}\left(J_{k}, E\right)}: k \in N_{1}\right\}, t=1,2 .
$$

Recently, it was shown in $[20,21,23]$ that the following fractional differential equation:

$$
\left\{\begin{array}{l}
A B C \tag{1.1}\\
D_{0, l}^{\zeta} z(\imath)=w(\iota), \iota \in J \\
z(0)=z_{0}, z(b)=z_{1}
\end{array}\right.
$$

is equivalent to the fractional integral equation:

$$
\begin{align*}
z(\iota)= & z_{0}+\frac{\iota\left(z_{1}-z_{0}\right)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} w(s) d s \\
& -\frac{\iota(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s \tag{1.2}
\end{align*}
$$

where $\zeta \in(1,2)$ and ${ }^{A B C} D_{0, i}^{\zeta}$ is the Atangana-Baleanu fractional derivative in the Caputo sense of order ζ with lower limit at $0, w: J \rightarrow \mathbb{R}$ is continuous function satisfying $w(0)=0$ and z_{0}, z_{1} are fixed points. We claim that the assumption of continuity of w is not enough as it does not assure that the function z in Eq (1.2) satisfies $z^{\prime} \in H^{1}((0, b))$. Thus, it does not guarantee that z has Atangana-Baleanu fractional derivative of order ζ. Without differentiability, z would not be a solution for Eq (1.1).

In this paper, we provide
(1) A more precise result regarding the relation between the fractional differential equation (1.1) and the fractional integral equation (1.2) in a real Banach space E (Lemma 3.1).
(2) Two results (Theorems 3.1 and 3.2) concerning the existence and uniqueness of solutions for the following boundary value problem containing Atangana-Baleanu fractional derivative

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, \iota}^{\zeta} z(\iota)=f(\iota, z(\iota)), \iota \in J, 1<\zeta<2, \tag{1.3}\\
z(0)=z_{0}, z(b)=z_{1},
\end{array}\right.
$$

where $f(0, z(0))=0$.
(3) A formula (given in Lemma 4.1) for the relation between the boundary value problem

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0,,}^{\zeta} z(\iota)=w(\iota), \iota \in J \\
z(a)=z_{0}, z^{\prime}(a)=z_{1}
\end{array}\right.
$$

and the integral equation

$$
z(\iota)=z_{0}+(\iota-a)\left[z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right]
$$

$$
\begin{aligned}
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{a} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{a}(a-s)^{\zeta-1} w(s) d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{l} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s, \quad \iota \in J .
\end{aligned}
$$

(4) A formula for the solutions to the following impulsive boundary value problem involving Atangana-Baleanu fractional derivative of order $\zeta \in(1,2)$:

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, \iota}^{\zeta} u(\iota)=f(\iota, z(\iota)), \iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\} \tag{1.4}\\
z(0)=z z_{0}, z^{\prime}(0)=z_{1}, \\
z\left(\iota_{i}^{+}\right)=z\left(\iota_{i}^{-}\right)+I_{i}\left(z\left(\iota_{i}^{-}\right)\right), i \in N_{1} \\
z^{\prime}\left(\iota_{i}^{+}\right)=z^{\prime}\left(\iota_{i}^{-}\right)+\bar{I}_{i}\left(z\left(l_{i}^{-}\right)\right), i \in N_{1}
\end{array}\right.
$$

where $f(0, z(0))=0$, and $I_{i}, \bar{I}_{i}: E \rightarrow E$ are continuous functions (Lemma 4.2). We also establish two results concerning the existence and uniqueness of the solution of (1.4) (Theorems 4.1 and 4.2).
(5) The sufficient conditions for the existence of anti-periodic solution to the following impulsive differential equation involving Atangana-Baleanu fractional derivative of order $\zeta \in(1,2)$

$$
\left\{\begin{array}{l}
A B C D_{0, z}^{\zeta} z(\iota)=f(\iota, z(\iota)), \iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\} \tag{1.5}\\
z(0)=-z(b), z^{\prime}(0)=-z^{\prime}(b) \\
z\left(l_{i}^{+}\right)=z\left(l_{i}^{-}\right)+I_{i}\left(z\left(\iota_{i}^{-}\right)\right), i \in N_{1} \\
z^{\prime}\left(l_{i}^{+}\right)=z^{\prime}\left(l_{i}^{-}\right)+\overline{I_{i}}\left(z\left(l_{i}^{-}\right)\right), i \in N_{1}
\end{array}\right.
$$

where $f(0, z(0))=0$, (Theorem 5.1).
(6) The sufficient conditions for the existence of solutions to the impulsive differential inclusion

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0,2}^{\zeta} z(\iota) \in F(\iota, z(\iota)), \iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\} \tag{1.6}\\
z(0)=z_{0}, z^{\prime}(0)=z_{1}, \\
z\left(\iota_{i}^{+}\right)=z\left(\iota_{i}^{-}\right)+I_{i}\left(z\left(\iota_{i}^{-}\right)\right), i \in N_{1} \\
z^{\prime}\left(\iota_{i}^{+}\right)=z^{\prime}\left(\iota_{i}^{-}\right)+\overline{I_{i}}\left(z\left(\iota_{i}^{-}\right)\right), i \in N_{1}
\end{array}\right.
$$

where F is a multi-valued function satisfying $F\left(0, z_{0}\right)=\{0\}$ (Theorem 6.1).
Remark 1.1. Previously, the authors in [29] had investigated problems (1.3) and (1.4) with the Atangana-Belearn derivative replaced with Caputo's. Also in [29,40] problems (1.5) and (1.6) were studied using Caputo derivative without impulses. Saha et al. [42] established the existence of solutions for problem (1.1) in finite dimensional spaces with the boundary conditions $z(0)=z_{0},{ }^{A B C} D_{0, z} z(b)=z_{1}$. Indeed, the vast majority of published research on the existence of solutions to differential equations involving Atangana-Baleanu fractional derivative are restricted to finite-dimensional spaces [20-24, 45, 46]. Up to the authors knowledge, there has been no published research on anti-periodic solutions.

The contribution of this paper can be summarized as follows:
(1) In Lemma 3.1, we obtained a precise relationship between the fractional differential Equation (1.1) and the corresponding integral Equation (1.2). We showed in detail that the continuity assumption on the nonlinear term, used earlier, e.g., Theorem 3.6 in [21] and Lemma 2 in [23], is insufficient and should be replaced with the requirement that w lies in the space $H^{1}((a, b), E)$.
(2) As to our knowledge, Theorem 5.1 showing the existence of an anti-periodic solution for the impulsive fractional differential equation (1.5), with Attange-Baleanu fractional derivative of order $\zeta \in(1,2)$, has not previously appeared in literature.
(3) To our knowledge, there has been no published results on the existence of solutions for impulsive differential equations containing Atangana-Baleanu fractional derivative of order $\zeta \in(1,2)$, or on the existence of anti-periodic solutions for differential equations containing Atangana-Baleanu fractional derivative.

The paper is organized as follows. In the second section, we recall the basic facts and concepts needed for the following sections. In Section 3, we present two existence and uniqueness results for the solution to problem (1.3). Section 4 studies the existence and uniqueness of solutions to problem (1.4), and Section 5 is devoted to showing the existence of solutions to problem (1.5). In Section 6, we prove the existence of solutions for problem (1.6). Three examples are given in the last section to illustrate the obtained results.

2. Preliminaries and notations

Definition 2.1. $[14,19]$ Let $a<b$ be two real numbers, and $\zeta \in(0,1)$. The Atangana-Baleanu fractional derivative for a function $z \in H^{1}((a, b), E)$ in the Caputo sense and in the Riemann-Liouville sense of order ζ with lower limit at a are defined by

$$
{ }^{A B C} D_{a, z}^{\zeta} z(\iota)=\frac{M(\zeta)}{1-\zeta} \int_{a}^{\iota} z^{\prime}(x) E_{\zeta}\left(\frac{-\zeta(\iota-x)^{\zeta}}{1-\zeta}\right) d x, \quad \iota \in J
$$

and

$$
{ }^{A B R} D_{a, \iota}^{\zeta} z(\iota)=\frac{M(\zeta)}{1-\zeta} \frac{d}{d \iota} \int_{a}^{\iota} z(x) E_{\zeta}\left(\frac{-\zeta(\iota-x)^{\zeta}}{1-\zeta}\right) d x, \quad \iota \in J
$$

where $M(\zeta)>0$ is a normalized function satisfying $M(0)=M(1)=1$, and $E_{\zeta}=E_{\zeta, 1}$ is the MittagLeffler function given by:

$$
E_{\zeta, \beta}(\mu)=\sum_{k=0}^{\infty} \frac{\mu^{k}}{\Gamma(\zeta k+\beta)}, \beta \in \mathbb{R}, \mu \in \mathbb{C} .
$$

Definition 2.2. $[14,19]$ Let $a<b$ be two real numbers, and $\zeta \in(0,1)$. The Atangana-Baleanu fractional integral for a function $z \in H^{1}((a, b), E)$ of order ζ with lower limit at a is given by

$$
{ }^{A B} I_{a, \iota}^{\zeta} z(\iota)=\frac{1-\zeta}{M(\zeta)} z(\iota)+\frac{\zeta}{M(\zeta) \Gamma(\zeta)} \int_{a}^{\iota} z(x)(\iota-x)^{\zeta-1} d x, \iota \in J
$$

The following lemma was proved in $[14,19]$ for $E=\mathbb{R}$. It can be generalized to a Banach space E with little changes in the proof.

Lemma 2.1. Let $z \in H^{1}((a, b), E), \zeta \in(0,1)$ and $\iota \in J$.
i. ${ }^{A B R} D_{a, l}^{\zeta}\left({ }^{A B} I_{a, z}^{\zeta} z(\iota)\right)=z(\iota)$ and ${ }^{A B} I_{a, l}^{\zeta}\left({ }^{A B R} I_{a, a}^{\zeta} z(\iota)\right)=z(\iota)$.
ii. ${ }^{A B C} D_{a, t}^{\zeta}\left({ }^{A B} I_{a, t}^{\zeta} z(\iota)\right)=z(\iota)-z(a) E_{\zeta}\left(\frac{-\zeta(l-a)^{\zeta}}{1-\zeta}\right)$.
iii. $\left.{ }^{A B C} I_{a, l}^{\zeta},{ }^{A B C} I_{a, z}^{\zeta} z(\imath)\right)=z(\iota)-z(a)$.
iv. ${ }^{A B R} D_{a, z}^{\zeta} z(\iota)={ }^{A B C} D_{0, t}^{\zeta} z(\iota)+\frac{M(\zeta)}{1-\zeta} z(a) E_{\zeta}\left(\frac{-\zeta(l-a)^{\zeta}}{1-\zeta}\right)$.
v. ${ }^{A B R} D_{a, l}^{\zeta} c=c E_{\zeta}\left(\frac{-\zeta}{1-\zeta}(\iota-a)^{\zeta}\right),{ }^{A B C} D_{a, c}^{\zeta} c=0$, for a constant c.

Remark 2.1. Note that the second assertion of Lemma 2.1 implies that ${ }^{A B C} D_{a, l}^{\zeta}\left({ }^{A B} I_{a, l}^{\zeta} z(\imath)\right) \neq z(\iota)$, unless $z(a)=0$. Thus, we can not drop the assumption that $f(0, z(0))=0$ in problems (1.3)-(1.5) and that $F\left(0, z_{0}\right)=0$ in problem (1.6).

Definition 2.3. [14, 19] Let $\zeta \in(n, n+1), n \in \mathbb{N}$ and $z:[a, b] \rightarrow E$ with $z^{(n)} \in H^{1}((a, b), E)$. The left Atangana-Baleanu fractional derivative of z, in the Caputo sense and in the Riemann-Liouville sense of order ζ with lower limit at a are defined by

$$
\begin{aligned}
{ }^{A B C} D_{a, \iota}^{\zeta} z(\iota) & ={ }^{A B C} D_{a, \iota}^{\zeta-n} z^{(n)}(\iota) \\
& =\frac{M(\zeta-1)}{1-(\zeta-n)} \int_{a}^{\iota} z^{(n+1)}(x) E_{(\zeta-n)}\left(\frac{-(\zeta-n)(\iota-x)^{(\zeta-n)}}{1-(\zeta-n)}\right) d x,
\end{aligned}
$$

and

$$
\begin{aligned}
{ }^{A B R} D_{a, z}^{\zeta} z(\iota) & ={ }^{A B R} D_{a, l}^{\zeta-n} z^{(n)}(\iota) \\
& =\frac{M(\zeta-n)}{1-(\zeta-n)} \frac{d}{d \iota} \int_{a}^{\iota} z^{(n)}(x) E_{(\zeta-n)}\left(\frac{-(\zeta-n)(\iota-x)^{(\zeta-n)}}{1-(\zeta-n)}\right) d x .
\end{aligned}
$$

Definition 2.4. $[14,19]$ Let $\zeta \in(n, n+1), n \in \mathbb{N}$ and $z:[a, b] \rightarrow E$ with $z^{(n)} \in H^{1}((a, b), E)$. The left Atangana-Baleanu fractional integral for z, of order ζ with lower limit at a, is defined by

$$
{ }^{A B} I_{a, l}^{\zeta} z(\imath)=I_{a, l}^{n A B} I_{a, l}^{\zeta-n} z(\iota) .
$$

As in [20,22], one can prove the following lemma.
Lemma 2.2. Let $\zeta \in(1,2)$ and $z: J \rightarrow E$ with $z^{\prime} \in H^{1}((a, b), E)$. For any $\iota \in[a, b]$,
(1) ${ }^{A B R} D_{a, l}^{\zeta}\left({ }^{A B} I_{a, l}^{\zeta} z(\imath)\right)=z(l)$.
(2) ${ }^{A B C} D_{a, l}^{\zeta}\left({ }^{A B} I_{a, z}^{\zeta} z(\iota)\right)={ }^{A B C} D_{a, \iota}^{\zeta-1}\left(\frac{d}{d \iota}\left(I\left({ }^{A B} I_{0, l}^{\zeta-1} z(\iota)\right)\right)\right)={ }^{A B C} D_{a, l}^{\zeta-1}\left({ }^{A B} I_{0, \iota}^{\zeta-1} z(\iota)\right)$

$$
=z(\iota)-z(a) E_{\zeta-1}\left(\frac{-(\zeta-1)(l-a)^{\zeta-1}}{2-\zeta}\right) .
$$

(3) ${ }^{A B} I_{a, l}^{\zeta}\left({ }^{A B C} D_{a, z}^{\zeta} z(\iota)\right)=z(\iota)-c_{0}-c_{1}(\iota-a)$.

We end this section by listing some assumptions that are used later.
Assumptions 2.1. Let $f: J \times E \rightarrow E$ be a function, we assume the following:

- $\left(A_{1}\right):$ For any $\delta>0$ there is $L_{\delta}>0$ such that for any $x, y \in E$ with $\|x\| \leq \delta,\|y\| \leq \delta$ and any $s, \iota \in J$, we have

$$
\|f(\iota, x)-f(s, y)\| \leq|s-\iota|+L_{\delta}\|x-y\| .
$$

- $\left(A_{2}\right)$: There is $\sigma>0$ such that for any $x, y \in E$, we have

$$
\|f(\iota, x)-f(\iota, y)\| \leq \sigma\|x-y\|, \forall \iota \in J
$$

- (A_{3}) : For every $i \in N_{1}$, the functions $I_{i}, \bar{I}_{i}: E \rightarrow E$ are continuous, compact and there exist positive constants $h_{i}, \overline{h_{i}}(i=1,2, \ldots, m)$ such that

$$
\begin{equation*}
\left\|I_{i}(x)\right\| \leq h_{i}\|x\|, \forall x \in E . \text { and } \quad\left\|\overline{I_{i}}(x)\right\| \leq \overline{h_{i}}\|x\|, \forall x \in E . \tag{2.1}
\end{equation*}
$$

- $\left(A_{4}\right):$ For every $i \in N_{1}$, there exists positive constants δ_{i}, η_{i}, such that

$$
\begin{equation*}
\left\|I_{i}(x)-I_{i}(y)\right\| \leq \delta_{i}\|x-y\|, \forall x \in E, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\bar{I}_{i}(x)-\bar{I}_{i}(y)\right\| \leq \eta_{i}\|x-y\|, \forall x \in E . \tag{2.3}
\end{equation*}
$$

3. Existence solutions of problem (1.3)

In this section, we stat and prove the relationship between the fractional differential Equation (1.1) and the fractional integral Equation (1.2) in a reflexive Banach space E.
Lemma 3.1. Let $\zeta \in(1,2)$.
(1) If $w: J \rightarrow E$ is continuous and $z: J \rightarrow E$ is a solution to Eq (1.1), then z satisfies the integral equation (1.2).
(2) If $w \in H^{1}((0, b), E)$ with $w(0)=0$ and z satisfies Eq (1.2), then $z^{\prime} \in H^{1}((0, b), E)$ and z is a solution to Eq (1.1).

Proof.

(1) By applying ${ }^{A B} I_{0, t}^{\zeta}$ to both sides of Eq (1.1) and using the definition of ${ }^{A B} I_{0, t}^{\zeta}$, the third assertion of Lemma 2.2, and Definition (2.4), we obtain that for any $\iota \in[0, b]$

$$
\begin{align*}
z(\iota) & =c_{0}+\iota c_{1}+{ }^{A B} I_{0, \iota}^{\zeta} w(\iota) \\
& =c_{0}+\iota c_{1}+I_{0, l}\left({ }^{A B} I_{0, \iota}^{\zeta-1} w(\iota)\right) \\
& =c_{0}+\iota c_{1}+I_{0, l}\left[\frac{1-(\zeta-1)}{M(\zeta-1)} w(\iota)+\frac{\zeta-1}{M(\zeta-1)} I_{0, \iota}^{\zeta-1} w(\iota)\right] \\
& =c_{0}+\iota c_{1}+\int_{0}^{\iota} \frac{2-\zeta}{M(\zeta-1)} w(s) d s+\frac{\zeta-1}{M(\zeta-1)} I_{0, \iota}^{\zeta} w(\iota) \\
& =c_{0}+\iota c_{1}+\int_{0}^{\iota} \frac{2-\zeta}{M(\zeta-1)} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota} w(s)(\iota-s)^{\zeta-1} d s . \tag{3.1}
\end{align*}
$$

From the boundary conditions $z(0)=z_{0}$ and $z(b)=z_{1}$, it follows that $c_{0}=z_{0}$ and

$$
z_{1}=z_{0}+b c_{1}+\int_{0}^{b} \frac{2-\zeta}{M(\zeta-1)} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b} w(s)(b-s)^{\zeta-1} d s
$$

i.e.,

$$
\begin{equation*}
c_{1}=\frac{z_{1}}{b}-\frac{z_{0}}{b}-\int_{0}^{b} \frac{2-\zeta}{b M(\zeta-1)} w(s) d s-\frac{\zeta-1}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b} w(s)(b-s)^{\zeta-1} d s \tag{3.2}
\end{equation*}
$$

Substituting the values of c_{0} and c_{1} into (3.1), we obtain

$$
\begin{aligned}
z(\iota)= & \frac{\iota z_{1}+z_{0}(b-\iota)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} w(s) d s-\frac{\iota(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b} w(s)(b-s)^{\zeta-1} d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota} w(s)(\iota-s)^{\zeta-1} d s
\end{aligned}
$$

(2) Assume that $w \in H^{1}((0, b), E)$ with $w(0)=0$, and that Eq (1.2) holds. Clearly $z(0)=z_{0}$ and $z(b)=z_{1}$. Moreover,

$$
\begin{equation*}
z(\iota)=c_{0}+\iota c_{1}+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota} w(s)(\iota-s)^{\zeta-1} d s \tag{3.3}
\end{equation*}
$$

where $c_{0}=z_{0}$ and c_{1} is given by (3.2). Since $\zeta>1, \mathrm{Eq}$ (3.3) gives us that

$$
\begin{equation*}
z^{\prime}(\iota)=c_{1}+\frac{2-\zeta}{M(\zeta-1)} w(\iota)+\frac{\zeta-1}{M(\zeta-1)} I_{0, \iota}^{\zeta-1} w(\iota) \text {, for a.e. } \iota \in J, \tag{3.4}
\end{equation*}
$$

where $I_{0, l}^{\zeta-1}$ is the Riemann-Liouville fractional integral of order $\zeta-1$. Since $w \in H^{1}(J, E)$, $\zeta-1 \in(0,1)$, and E is reflexive, w has a Bochner integrable derivative w^{\prime} almost everywhere, and

$$
w(s)=w(0)+\int_{0}^{s} w^{\prime}(x) d x, \quad \forall s \in w
$$

This implies that

$$
I_{0, \iota}^{\zeta-1} w(\iota)=\frac{1}{\Gamma(\zeta-1)} \int_{0}^{\iota}(\iota-s)^{\zeta-2} w(s) d s=\frac{1}{\Gamma(\zeta-1)} \int_{0}^{\iota}(\iota-s)^{\zeta-2}\left[\int_{0}^{s} w^{\prime}(x) d x\right] d s
$$

i.e., $I_{0, \iota}^{\zeta-1} w(\iota)$ is the primitive of a Bochner integrable function, hence is absolutely continuous. Thus Eq (3.4) is valid for every $\iota \in J$. Moreover,

$$
z^{(2)}(\iota)=\frac{2-\zeta}{M(\zeta-1)} w^{\prime}(\iota)+\frac{\zeta-1}{M(\zeta-1)} \frac{d}{d \iota}\left(I^{\zeta-1} w(\iota)\right)
$$

giving us that $z^{\prime} \in H^{1}((0, b), E)$. Equation (3.2) implies

$$
z(\iota)=c_{0}+\iota c_{1}+{ }^{A B} I_{0, \iota}^{\zeta} w(\iota), \iota \in J
$$

Finally, by the second assertion of Lemma 2.2,
${ }^{A B C} D_{0, \iota}^{\zeta} z(\iota)={ }^{A B C} D_{0, \iota}^{\zeta}{ }^{A B} I_{0, \iota}^{\zeta} w(\iota)=w(\iota)-w(0) E_{\zeta-1}\left(\frac{-(\zeta-1) \iota^{\zeta-1}}{2-\zeta}\right)=w(\iota), \iota \in J$.

Remark 3.1. Note that
(1) The first assertion of Lemma 3.1 has been proved in Lemma 2 in [23] for the case where $E=\mathbb{R}$.
(2) The solution formula of problem (1.1) does not follow from the first assertion of Lemma 3.1, nor from Lemma 2 in [23].
(3) The assumption $w(0)=0$ cannot be omitted in the second assertion of Lemma 3.1 since

$$
{ }^{A B C} D_{0, l}^{\zeta}{ }^{A B} I_{0, l}^{\zeta} w(\iota)=w(\iota)-w(0) E_{\zeta-1}\left(\frac{-(\zeta-1) \zeta^{\zeta-1}}{2-\zeta}\right) \neq w(\iota) .
$$

(4) If w is continuous and not in $H^{1}((0, b), E)$, then Eq (3.4) does not imply the existence of $z^{(2)}$. Therefore, without the assumption $w \in H^{1}((0, b), E)$, there is no guarantee that ${ }^{A B C} D_{0, t}^{\zeta} z(\iota)$ exists.
(5) Lemma 3.1 gives a more accurate statement of Lemma 2 in [23] and generalizes it to the infinite dimensional case.

The results in Lemma 3.1 can be summarized as follows.
Lemma 3.2. Let $w \in H^{1}((0, b), E)$ with $w(0)=0$. A function $z: J \rightarrow E$ is a solution of problem (1.1) if and only if

$$
\begin{align*}
z(\iota)= & z_{0}+\frac{\iota\left(z_{1}-z_{0}\right)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} w(s) d s-\frac{\iota(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s . \tag{3.5}
\end{align*}
$$

Theorem 3.1. Let $f: J \times E \rightarrow E$ be a function. If $\left(A_{1}\right)$ holds, then problem (1.3) has a unique solution provided that $f\left(0, z_{0}\right)=0$ and there is $r>0$ such that

$$
\begin{equation*}
\left\|z_{0}\right\|+\left\|z_{1}\right\|+2\left(b+r L_{r}+\|f(0,0)\|\right)\left[\frac{b(2-\zeta)}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right]<r . \tag{3.6}
\end{equation*}
$$

Proof. Define $T: C(J, E) \rightarrow C(J, E)$ by

$$
\begin{align*}
T(z)(\iota)= & z_{0}+\frac{\iota\left(z_{1}-z_{0}\right)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} f(s, z(s)) d s \\
& -\frac{\iota(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} f(s, z(s)) d s+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} f(s, z(s)) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} f(s, z(s)) d s . \tag{3.7}
\end{align*}
$$

Using the Schauder fixed point theorem, we will show that T has a unique fixed point. Set $B_{0}=\{z \in$ $\left.C(J, E):\|z\|_{C(J, E)} \leq r\right\}$.

- Step 1: $T\left(B_{0}\right) \subseteq B_{0}$. Let $z \in B_{0}$. It follows that from $\left(A_{1}\right)$

$$
\|f(\iota, z(\iota))\| \leq\|f(\iota, z(\iota))-f(0,0)\|+\|f(0,0)\|
$$

$$
\begin{align*}
& \leq b+L_{r}\|z(\iota)\|+\|f(0,0)\| \\
& \leq b+r L_{r}+\|f(0,0)\|, \forall \iota \in J . \tag{3.8}
\end{align*}
$$

From (3.6)-(3.8), one has

$$
\begin{aligned}
\|T(z)(\iota)\| \leq & \left\|z_{0}\left(1-\frac{\iota}{b}\right)+\frac{\iota}{b} z_{1}\right\| \\
& +2\left(b+r L_{r}+\|f(0,0)\|\right)\left[\frac{b(2-\zeta)}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right] \\
\leq & \left\|z_{0}\right\|+\left\|z_{1}\right\| \\
& +2\left(b+r L_{r}+\|f(0,0)\|\right)\left[\frac{b(2-\zeta)}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right] \\
< & r,
\end{aligned}
$$

showing that $T\left(B_{0}\right) \subseteq B_{0}$.

- Step 2: $T\left(B_{0}\right)$ is equicontinuous. Let $z \in B_{0}$ and $\iota, \iota+\lambda \in J$. Using (3.7), we obtain

$$
\begin{aligned}
\|T(z)(\iota+\lambda)-T(z)(\iota)\| \leq & \left\|\frac{\lambda\left(z_{1}-z_{0}\right)}{b}\right\|+\frac{\lambda(2-\zeta)\left(b+r L_{r}+\|f(0,0)\|\right)}{M(\zeta-1)} \\
& +\frac{\lambda(\zeta-1)\left(b+r L_{r}+\|f(0,0)\|\right) b^{\zeta}}{\zeta M(\zeta-1) \Gamma(\zeta)}+\frac{\lambda(2-\zeta)\left(b+r L_{r}+\|f(0,0)\|\right)}{M(\zeta-1)} \\
& \left.+\frac{(\zeta-1)\left(b+r L_{r}+\|f(0,0)\|\right)}{M(\zeta-1) \Gamma(\zeta)}\left[\int_{0}^{\iota+\lambda}(\iota+\lambda-s)^{\zeta-1}-(\iota-s)^{\zeta-1}\right) d s\right] .
\end{aligned}
$$

Since $\zeta-1>0,\|T(z)(\iota+\lambda)-T(z)(\iota)\| \rightarrow 0$ when $\lambda \rightarrow 0$, independently of z, proving the assertion.

- Step 3: For $n \geq 1$, let $B_{n}=\overline{\operatorname{conv}} T\left(B_{n-1}\right)$, and $B=\cap_{n \geq 0} B_{n}$.

Let B, B_{n} be as defined above, then the set B is a non empty compact subset of $C(J, E)$. It follows from Step 1, that $B_{n} \subseteq B_{n-1}, n \geq 1$. By Cantor intersection property [47], it is enough to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \chi_{C(J, E)}\left(B_{n}\right)=0 \tag{3.9}
\end{equation*}
$$

where $\chi_{C(J, E)}$ is the Hausdorff measure of noncompactness on $C(J, E)$ [48].
Let $n \geq 1$ be a fixed natural number and $\varepsilon>0$. By Lemma 3 in [49], there exists a sequence $\left(z_{k}\right)$, $k \geq 1$ in B_{n-1} such that

$$
\begin{equation*}
\chi_{C(J, E)}\left(B_{n}\right)=\chi_{C(J, E)} T\left(B_{n-1}\right) \leq 2 \chi_{C(J, E)}\left\{T\left(z_{k}\right): k \geq 1\right\}+\varepsilon . \tag{3.10}
\end{equation*}
$$

Since B_{n} is equicontinuous, inequality (3.10) becomes

$$
\begin{equation*}
\chi_{C(J, E)}\left(B_{n}\right) \leq 2 \max _{\iota \in J} \chi_{E}\left\{T\left(z_{k}\right)(\iota): k \geq 1\right\}+\varepsilon . \tag{3.11}
\end{equation*}
$$

Let $\iota \in J$ be fixed. In view of (3.8)

$$
\left\|f\left(\iota, z_{m}(\iota)\right)-f\left(\iota, z_{n}(\iota)\right)\right\| \leq L_{r}\left\|z_{m}(\iota)-z_{n}(\iota)\right\|, \forall n, m \in \mathbb{N} .
$$

It follows that

$$
\begin{equation*}
\chi_{E}\left\{f\left(\iota, z_{k}(\iota)\right): k \geq 1\right\} \leq L_{r} \chi_{E}\left\{z_{k}(\iota): k \geq 1\right\} . \tag{3.12}
\end{equation*}
$$

We also have that

$$
\begin{align*}
T\left(z_{k}\right)(\iota)= & z_{0}+\frac{\iota\left(z_{1}-z_{0}\right)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} f\left(s, z_{k}(s)\right) d s \\
& -\frac{(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} f\left(s, z_{k}(s)\right) d s+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} f\left(s, z_{k}(s)\right) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} f\left(s, z_{k}(s)\right) d s \tag{3.13}
\end{align*}
$$

Since $\zeta>1$, Eqs (3.12) and (3.13) give

$$
\begin{align*}
\chi\left\{T\left(z_{k}\right)(\iota): k \geq 1\right\} & \leq \int_{0}^{b} \chi_{E}\left\{z_{k}(s): k \geq 1\right\} d s\left[\frac{2(2-\zeta) L_{r}}{M(\zeta-1)}+\frac{2 b^{\zeta-1}(\zeta-1) L_{r}}{M(\zeta-1) \Gamma(\zeta)}\right] \\
& \left.\leq b\left[\frac{2(2-\zeta) L_{r}}{M(\zeta-1)}+\frac{2 b^{\zeta-1}(\zeta-1) L_{r}}{M(\zeta-1) \Gamma(\zeta)}\right] \chi_{C(J, E}\right)\left(B_{n-1}\right) \tag{3.14}
\end{align*}
$$

Using (3.11) and (3.14), we obtain that

$$
\left.\chi_{C(J, E)}\left(B_{n}\right) \leq 4 b L_{r}\left[\frac{2-\zeta}{M(\zeta-1)}+\frac{b^{\zeta-1}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)}\right] \chi_{C(J, E}\right)\left(B_{n-1}\right), \forall n \in \mathbb{N} .
$$

This inequality yields that

$$
\begin{equation*}
\chi_{C(J, E)}\left(B_{n}\right) \leq \chi_{C(T, E)}\left(B_{0}\right) 4 b L_{r}\left[\frac{2-\zeta}{M(\zeta-1)}+\frac{b^{\zeta-1}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)}\right]^{n-1} \tag{3.15}
\end{equation*}
$$

The inequality in (3.6) implies that $4 b L_{r}\left[\frac{(2-\zeta)}{M(\zeta-1)}+\frac{b^{\zeta}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)}\right]<1$, and thus, (3.15) implies (3.9).

- Step 4: The function $T_{\mid B}: B \rightarrow B$ is continuous. Assume that $z_{n} \rightarrow z$ in B. Note that for $n \geq 1$ and $\iota \in J$, we have

$$
\begin{aligned}
T\left(z_{n}\right)(\iota)= & z_{0}+\frac{\iota\left(z_{1}-z_{0}\right)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} f\left(s, z_{n}(s)\right) d s, \\
& -\frac{\iota(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} f\left(s, z_{n}(s)\right) d s+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} f\left(s, z_{n}(s)\right) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} f\left(s, z_{n}(s)\right) d s .
\end{aligned}
$$

Using $\left(A_{1}\right), \zeta>1$, the inequality (3.8), and the Lebesgue dominated convergence theorem, we obtain that $T\left(z_{n}\right) \rightarrow T(z)$.

It follows from Steps (1) to (4) and Schauder's fixed point theorem that there is $z \in B$ such that $z=T(z)$. That is,

$$
\begin{aligned}
z(\iota)= & z_{0}+\frac{\iota\left(z_{1}-z_{0}\right)}{b}-\frac{\iota(2-\zeta)}{b M(\zeta-1)} \int_{0}^{b} w(s) d s \\
& -\frac{\iota(\zeta-1)}{b M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) B s+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s,
\end{aligned}
$$

where $w(\iota)=f(\iota, z(\iota)), \iota \in J$.
Next, we show that this function z is a solution for problem (1.3). By Lemma 3.1, it is sufficient to show that $w \in H^{1}(J, E)$. Since $\zeta>1$, then

$$
z^{\prime}(t)=\frac{2-\zeta}{M(\zeta-1)} w(t)+\frac{\zeta-1}{M(\zeta-1)} I_{0, t}^{\zeta-1} w(t), t \in J .
$$

From $\left(A_{1}\right), w$ is absolutely continuous, and since E is reflexive, the function $t \rightarrow I_{0, t}^{\zeta-1} w(t)$ is absolutely continuous. Hence $w \in H^{1}(J, E)$.

To show the uniqueness of the solution, let $z, v \in C(J, E)$ be two solutions for problem (1.3) and $\iota \in J$. Since z, v are solutions, it follows from $\left(A_{1}\right)$ that

$$
\begin{aligned}
\|T(z)(\iota)-T(v)(\iota)\| \leq & \left.\frac{(2-\zeta)}{M(\zeta-1)} \int_{0}^{b} \| f(s, z(s))-f(s, v(s))\right) \| \\
& +\frac{b^{\zeta-1}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}\|f(s, z(s))-f(s, v(s))\| d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{l}\|f(s, z(s))-f(s, v(s))\| d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1}\|f(s, z(s))-f(s, v(s))\| d s \\
\leq & \left.\left.\frac{L_{r}(2-\zeta)}{M(\zeta-1)} \int_{0}^{b} \| z(s)\right)-v(s)\left\|d s+\frac{L_{r} b^{\zeta-1}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}\right\| z(s)\right)-v(s) \| d s \\
& \left.\left.+\frac{L_{r}(2-\zeta)}{M(\zeta-1)} \int_{0}^{\iota} \| z(s)\right)-v(s)\left\|d s+\frac{L_{r}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1}\right\| z(s)\right)-v(s) \| d s .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|z(\imath)-v(\iota)\| & \leq \frac{L_{r}(2-\zeta) b}{M(\zeta-1)}\|z-v\|+\frac{L_{r} b^{\zeta}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)}\|z-v\|+\frac{L_{r}(2-\zeta) b}{M(\zeta-1)}\|z-v\|+\frac{L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\|z-v\| \\
& \leq\|z-v\|\left[\frac{2 L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{2 L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right]
\end{aligned}
$$

Since ι is arbitrary, it follows that

$$
\|z-v\|_{C(J, E)} \leq\|z-v\|_{C(J, E)}\left[\frac{2 L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{2 L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right]
$$

Inequality (3.6) implies $\frac{2 L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{2 L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\xi)}<1$, consequently, $\|z-v\|_{C(J, E)}=0$, and $z=v$.

In the following, another existence and uniqueness result for solutions of problem (1.3) is obtained. Replacing the assumption $\left(A_{1}\right)$ by $\left(A_{2}\right)$ simplifies the inequality (3.6) enabling us to use the Banach fixed point theorem for contraction mappings instead of the Schauder fixed point.

Theorem 3.2. Let $f: J \times E \rightarrow E$. If $\left(A_{2}\right)$ is satisfied, then problem (1.3) has a unique solution provided that $f\left(0, z_{0}\right)=0$ and

$$
\begin{equation*}
\frac{2 b \sigma(2-\zeta)}{M(\zeta-1)}+\frac{2 b^{\zeta}(\zeta-1) \sigma}{M(\zeta-1) \Gamma(\zeta)}<1 \tag{3.16}
\end{equation*}
$$

Proof. Consider the function $T: C(J, E) \rightarrow C(J, E)$ defined by (3.7). Let $z, v \in C(J, E)$. For any $\iota \in J$,

$$
\begin{aligned}
\|T(z)(\iota)-T(v)(\iota)\| \leq & \frac{(2-\zeta)}{M(\zeta-1)} \int_{0}^{b}\|f(s, z(s))-f(s, z(s))\| d s \\
& +\frac{b^{\zeta-1}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}\|f(s, z(s))-f(s, z(s))\| d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{l}\|f(s, z(s))-f(s, z(s))\| d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1}\|f(s, z(s))-f(s, z(s))\| d s
\end{aligned}
$$

Since $\zeta>1$, this inequality together with (A2) imply that

$$
\begin{aligned}
\|T(z)(\imath)-T(v)(\iota)\| & \left.\left.\leq \frac{2 \sigma(2-\zeta)}{M(\zeta-1)} \int_{0}^{b} \| z(s)-v(s)\right)\left\|d s+\frac{2 b^{\zeta-1}(\zeta-1) \sigma}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}\right\| z(s)-v(s)\right) \| d s \\
& \leq\left[\frac{2 b \sigma(2-\zeta)}{M(\zeta-1)}+\frac{2 b^{\zeta}(\zeta-1) \sigma}{M(\zeta-1) \Gamma(\zeta)}\right]\|z-v\| d s .
\end{aligned}
$$

Thus,

$$
\|T(z)-T(v)\| \leq\left[\frac{2 b \sigma(2-\zeta)}{M(\zeta-1)}+\frac{2 b^{\zeta}(\zeta-1) \sigma}{M(\zeta-1) \Gamma(\zeta)}\right]\|z-v\|
$$

Using (3.16), we obtain that T is contraction, and hence has a unique fixed point.

4. Existence of solutions for problem (1.4)

The following lemmas will be used for deriving an existence result for solutions of problem (1.4).

Lemma 4.1.

(1) If $w: J \rightarrow E$ is continuous, $a \in[0, b), z: J \rightarrow E$ be such that $z^{\prime} \in H^{1}((0, b), E)$ and

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, l}^{\zeta} z(\imath)=w(\imath), \iota \in J, \tag{4.1}\\
z(a)=z_{0}, z^{\prime}(a)=z_{1},
\end{array}\right.
$$

then for any $\iota \in J$,

$$
z(\iota)=z_{0}+(\iota-a)\left[z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right]
$$

$$
\begin{align*}
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{a} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{a}(a-s)^{\zeta-1} w(s) d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{l} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{l}(\iota-s)^{\zeta-1} w(s) d s . \tag{4.2}
\end{align*}
$$

(2) If $a \in[0, b), w: J \rightarrow E$ be continuous with $w(0)=0$ and $z: J \rightarrow E$ are such that (4.2) holds, then $z^{\prime} \in H^{1}((0, b), E)$ and z is a solution for (4.1).

Proof.

(1) Apply ${ }^{A B} I_{0, \iota}^{\zeta}$ on both side of the equation ${ }^{A B C} D_{0, t}^{\zeta} z(\iota)=w(\iota) ; \iota \in[0, b]$. As in the proof of first assertion of Lemma 3.1, we obtain for any $\iota \in[0, b]$

$$
z(\iota)=c_{0}+\iota c_{1}+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s
$$

Using the boundary conditions $z(a)=z_{0}, z^{\prime}(a)=z_{1}$, we obtain

$$
\begin{equation*}
c_{0}=z_{0}-a c_{1}-\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{a} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{a}(a-s)^{\zeta-1} w(s) d s \tag{4.3}
\end{equation*}
$$

and

$$
z_{1}=c_{1}+\frac{2-\zeta}{M(\zeta-1)} w(a)+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s
$$

This gives that

$$
\begin{equation*}
c_{1}=z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4), we obtain

$$
\begin{align*}
c_{0}= & z_{0}-a\left[z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right] \\
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{a} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{a}(a-s)^{\zeta-1} w(s) d s \tag{4.5}
\end{align*}
$$

Substituting the values of c_{0} and c_{1} into $z(\imath)$, we obtain

$$
\begin{aligned}
z(\iota)= & z_{0}-a\left[z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right] \\
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{a} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{a}(a-s)^{\zeta-1} w(s) d s \\
& +\iota\left[z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right] \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s
\end{aligned}
$$

$$
\begin{aligned}
= & z_{0}+(\iota-a)\left[z_{1}-\frac{2-\zeta}{M(\zeta-1)} w(a)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right] \\
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{a} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{a}(a-s)^{\zeta-1} w(s) d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s
\end{aligned}
$$

Hence, Eq (4.2) is verified.
(2) Suppose that $w: J \rightarrow E$ be continuous function with $w(a)=0$ and Eq (4.2) holds. Clearly $z(a)=z_{0}$ and $z^{\prime}(a)=z_{1}$. As in the proof of second assertion of Lemma 3.1, we can show that $z^{\prime} \in H^{1}((0, b), E)$. For any $\iota \in[a, b]$, we have

$$
\begin{aligned}
{ }^{A B C} D_{0, \iota}^{\zeta} z(\iota)= & { }^{A B C} D_{0, \iota}^{\zeta-1} z^{\prime}(\iota) \\
= & { }^{A B C} D_{0, \iota}^{\zeta-1}\left(z_{1}-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{a}(a-s)^{\zeta-2} w(s) d s\right. \\
& \left.+\frac{2-\zeta}{M(\zeta-1)} w(\iota)+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{\iota}(\iota-s)^{\zeta-2} w(s) d s\right)(\iota) \\
= & { }^{A B C} D_{0, \iota}^{\zeta-1}\left(\frac{2-\zeta}{M(\zeta-1)} w(\iota)+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{\iota}(\iota-s)^{\zeta-2} w(s) d s\right)(\iota) \\
= & { }^{A B C} D_{0, \iota}^{\zeta-1}\left({ }^{A B} I_{0, \iota}^{1-\zeta} w(\iota)\right)=w(\iota)-w(0) E_{1-\zeta}\left(\frac{-(1-\zeta) \iota{ }^{(1-\zeta)}}{2-\zeta}\right) \\
= & w(\iota) .
\end{aligned}
$$

Remark 4.1. Following the same method, used in the above proof, a generalization of Theorem 4 in [21] can be derived for any Banach space.

Lemma 4.2. If $w \in P C H^{1}(J, E)$ with $w(0)=0$ and $z: J \rightarrow E$ be a function satisfying

$$
\begin{align*}
z(\iota)= & z_{0}+\iota z_{1}+\sum_{i=1}^{k} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\sum_{i=1}^{k}\left(\iota-\iota_{i}\right) \overline{I_{i}}\left(z\left(\iota_{i}^{-}\right)\right)+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s, \text { where } \iota \in J_{k}, k \in N_{0} \tag{4.6}
\end{align*}
$$

then $z \in \operatorname{PCH}^{2}(J, E)$ and satisfies the impulsive fractional differential equation:

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, t}^{\zeta} z(\iota)=w(\iota), \iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\} \tag{4.7}\\
z(0)=z_{0}, z^{\prime}(0)=z_{1}, \\
z\left(\iota_{i}^{+}\right)=z\left(\iota_{i}^{-}\right)+I_{i}\left(z\left(\iota_{i}\right)\right), \quad i \in N_{1}, \\
z^{\prime}\left(\iota_{i}^{+}\right)=z^{\prime}\left(\iota_{i}^{-}\right)+\overline{I_{i}}\left(z\left(\iota_{i}\right)\right), \quad i \in N_{1}
\end{array}\right.
$$

Note that for $k=0$, in Eq (4.6), the sum $\sum_{i=1}^{k}$ is an empty sum and conventionally, equals zero.

Proof. For any $\iota \in J_{0}$,

$$
\begin{equation*}
z(\iota)=z_{0}+\iota z_{1}+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota} w(s)(\iota-s)^{\zeta-1} d s \tag{4.8}
\end{equation*}
$$

Clearly, $z(0)=z_{0}, z^{\prime}(0)=z_{1}$. Since $w \in P C H^{1}(J, E)$ and $w(0)=0$, it follows by the second statement of Lemma 4.1, that z is a solution for the fractional differential equation:

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, l}^{\zeta} z(\iota)=w(\iota), \iota \in J_{0} \\
z(0)=z_{0}, z^{\prime}(0)=z_{1}
\end{array}\right.
$$

Let us define a function v on $J_{1}=\left(\iota_{1}, \iota_{2}\right]$ by:

$$
\begin{align*}
v(\iota)= & z\left(\iota_{1}^{-}\right)+I_{1}\left(z\left(\iota_{1}^{-}\right)\right) \\
& +\left(\iota-\iota_{1}\right)\left[z^{\prime}\left(\iota_{1}^{-}\right)+\overline{I_{1}}\left(z\left(\iota_{1}\right)\right)-\frac{2-\zeta}{M(\zeta-1)} w\left(\iota_{1}\right)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{\iota_{1}}\left(\iota_{1}-s\right)^{\zeta-2} w(s) d s\right] \\
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota_{1}} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota_{1}}\left(\iota_{1}-s\right)^{\zeta-1} w(s) d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s . \tag{4.9}
\end{align*}
$$

From the second assertion of Lemma 4.1, v is a solution for the fractional differential equation:

$$
\left\{\begin{array}{l}
A B C D_{0, l}^{\zeta} z(\iota)=w(\iota), \iota \in J_{1} \tag{4.10}\\
z\left(\iota_{1}^{+}\right)=z\left(l_{1}^{-}\right)+I_{1}\left(z\left(l_{\imath}^{-}\right)\right), \\
z^{\prime}\left(\iota_{1}^{+}\right)=z^{(1)}\left(l_{1}^{-}\right)+\overline{I_{1}}\left(z\left(l_{1}^{-}\right)\right)
\end{array}\right.
$$

Let $\iota \in J_{1}$. We show that, $v(\iota)=z(\iota)$. From Eq (4.8), it follows that

$$
z\left(\iota_{1}^{-}\right)=z_{0}+\iota_{1} z_{1}+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota_{1}} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota_{1}}\left(\iota_{1}-s\right)^{\zeta-1} w(s) d s
$$

and

$$
z^{\prime}\left(\iota_{1}^{-}\right)=z_{1}+\frac{2-\zeta}{M(\zeta-1)} w\left(\iota_{1}\right)+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{\iota_{1}}\left(\iota_{1}-s\right)^{\zeta-2} w(s) d s
$$

By substituting the values of $z\left(\iota_{1}^{-}\right)$and $z^{\prime}\left(l_{1}^{-}\right)$into Eq (4.9), we obtain

$$
\begin{aligned}
v(\iota)= & z_{0}+\iota_{1} z_{1}+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota_{1}} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota_{1}} w(s)\left(\iota_{1}-s\right)^{\zeta-1} d s \\
& +I_{1}\left(z\left(\iota_{1}^{-}\right)\right)+\left(\iota-\iota_{1}\right)\left[z_{1}+\frac{2-\zeta}{M(\zeta-1)} w\left(\iota_{1}\right)\right. \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{\iota_{1}}\left(\iota_{1}-s\right)^{\zeta-2} w(s) d s+\overline{I_{1}}\left(z\left(\iota_{1}^{-}\right)\right)-\frac{2-\zeta}{M(\zeta-1)} w\left(\iota_{1}\right) \\
& \left.-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{\iota_{1}}(a-s)^{\zeta-2} w(s) d s\right]
\end{aligned}
$$

$$
\begin{align*}
& -\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota_{1}} w(s) d s-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota_{1}}(a-s)^{\zeta-1} w(s) d s \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s \\
= & z_{0}+\iota z_{1}+I_{1}\left(z\left(l_{1}^{-}\right)\right)+\left(\iota-\iota_{1}\right) \overline{I_{1}\left(z\left(\iota_{1}^{-}\right)\right)+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s} \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s . \tag{4.11}
\end{align*}
$$

Therefore, $v(\iota)=z(\iota), \forall \iota \in J_{1}$. Since

$$
z\left(\iota_{1}^{+}\right)-z\left(\iota_{1}^{-}\right)=I_{1}\left(z\left(\iota_{1}^{-}\right)\right), \text {and } z^{\prime}\left(\iota_{1}^{+}\right)-z^{\prime}\left(\iota_{1}^{-}\right)=\overline{I_{1}}\left(z\left(\iota_{1}^{-}\right)\right),
$$

then z is a solution for the fractional differential equation (4.10). By repeating the above steps for $J_{k} ; k \in N_{2}$, the proof follows.

Definition 4.1. A function $z \in P C H^{2}(J, E)$ is said to be a solution for problem (1.4) if it has left Atangana-Baleanu fractional derivative of order ζ on each $J_{k}, k \in N_{1}$ and satisfies Eq (4.6).

In the following theorem, we provide an existence result for problem (1.4).
Theorem 4.1. Let $f: J \times E \rightarrow E$ with $f\left(0, z_{0}\right)=0$ and $I_{i}, \bar{I}_{i}: E \rightarrow E\left(i \in N_{1}\right)$ be functions. If both Assumptions $\left(A_{1}\right)$ and $\left(A_{3}\right)$ are satisfied, then problem (1.4) has a unique solution provided that $f\left(0, z_{0}\right)=0$, and there is $r>0$ such that

$$
\begin{equation*}
\left\|z_{0}\right\|+b\left(\left\|z_{1}\right\|+r h m(1+b)+\left(b+r L_{r}+\|f(0,0)\|\right)\left[\frac{(2-\zeta) b}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta+1)}\right]<r\right. \tag{4.12}
\end{equation*}
$$

where $h=\max \left\{\sum_{i=1}^{m} h_{i}, \sum_{i=1}^{m} \overline{h_{i}}\right\}$.
Proof. Using Schauder's fixed point theorem, we show that the function $R: P C(J, E) \rightarrow P C(J, E)$ given by

$$
\begin{align*}
R(z)(\iota)= & z_{0}+\iota z_{1}+\sum_{i=1}^{k} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\sum_{i=1}^{k}\left(\iota-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} f(s, z(s)) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} f(s, z(s)) d s, \text { where } \iota \in J_{k}, k \in N_{0}, \tag{4.13}
\end{align*}
$$

has a fixed point. Set $B_{0}=\left\{z \in P C(J, E):\|z\|_{P C(J, E)} \leq r\right\}$. The remainder of the proof is similar to the steps used in proving Theorem (3.1), so we give it in outline.

- Step 1: Let $z \in B_{0}$ and $\iota \in J_{k}, k=0,1,2, . ., m$. Using (2.1), (3.8), (4.12), and (4.13), we obtain that for $\iota \in J_{k}, k=1,2, \ldots, m$,

$$
\begin{aligned}
\|R(z)(\iota)\| & \leq\left\|z_{0}\right\|+b\left\|z_{1}\right\|+r m h(1+b)+\left(b+r L_{r}+\|f(0,0)\|\right)\left[\frac{(2-\zeta) b}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta+1)}\right] \\
& <r
\end{aligned}
$$

from which we deduce that $R\left(B_{0}\right) \subseteq B_{0}$.

- Step 2: Let $Z=R\left(B_{0}\right)$. We claim that Z is equicontinuous on every $J_{k}, k \in N_{0}=\{0,1,2, \ldots, m\}$. Let $k \in N_{0}$ be fixed, $z \in B_{0}$ and $\iota, \iota+\lambda \in J_{k}$. Using (4.13), we get

$$
\begin{aligned}
\|R(z)(\iota+\lambda)-R(z)(\iota)\| \leq & \lambda\left(\left\|z_{1}\right\|+\frac{2-\zeta}{M(\zeta-1)}\left\|f\left(0, z_{0}\right)\right\|\right)+\frac{\lambda(2-\zeta)}{M(\zeta-1)}\left(b+r L_{r}+\|f(0,0)\|\right) \\
& +\frac{(\zeta-1)\left(b+r L_{r}+\|f(0,0)\|\right)}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}\left[(\iota+\lambda-s)^{\zeta-1}-(\iota-s)^{\zeta-1}\right] d s .
\end{aligned}
$$

Since $\zeta-1>0$, we have $\|R(z)(\iota+\lambda)-R(z)(\iota)\| \rightarrow 0$ as $\lambda \rightarrow 0$, independently of z.

- Step 3: We show that $B=\cap_{n \geq 1} B_{n}$ is non-empty and compact in $P C(J, E)$, where $B_{n}=\overline{\operatorname{conv}}\left(R\left(B_{n-1}\right)\right), \forall n \geq 1$. By Step 1 , it follows that $B_{n}, n \geq 1$ is a decreasing sequence of non-empty, closed convex and bounded subsets of $P C(J, E)$, and hence it is sufficient to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \chi_{P C(J, E)}\left(B_{n}\right)=0, \tag{4.14}
\end{equation*}
$$

where $\chi_{P C(J, E)}$ is the Hausdorff measure of noncompactness on $P C(J, E)$.
Let $n \geq 1$ be a fixed natural number and $\varepsilon>0$. In view of Lemma 3 in [49], there exists a sequence $\left(z_{k}\right), k \geq 1$ in B_{n-1} such that

$$
\begin{aligned}
\chi_{P C(J, E)}\left(B_{n}\right) & =\chi_{P C(J, E)} R\left(B_{n-1}\right) \leq 2 \chi_{P C(J, E)}\left\{R\left(z_{k}\right): k \geq 1\right\}+\varepsilon \\
& =\max _{i=0,1, \ldots, m} \chi_{i}\left\{R\left(z_{k}\right)_{\bar{J}_{i}}: k \geq 1\right\}+\varepsilon,
\end{aligned}
$$

where χ_{i} is the Hausdorff measure of noncompactness on $C\left(\overline{J_{i}}, E\right)$. Since $R\left(B_{n-1}\right)$ is equicontinuous, the above inequality becomes

$$
\begin{equation*}
\chi_{P C(J, E)}\left(B_{n}\right) \leq 2 \max _{i=0,1, \ldots, m} \sup _{l \in \bar{J}_{i}} \chi\left\{R\left(z_{k}\right)(\iota): k \geq 1\right\}+\varepsilon, \tag{4.15}
\end{equation*}
$$

where χ is the the Hausdorff measure of noncompactness on E. Since $I_{i}, \bar{I}_{i}, i=0, \ldots, m$, are compact, we have

$$
\sum_{i=1}^{m} \chi\left\{I_{i}\left(z_{k}\left(\iota_{i}^{-}\right)\right): k \geq 1\right\}=\sum_{i=1}^{m} \chi\left\{\left(\iota-\iota_{i}\right)\left(\bar{I}_{i}\left(z_{k}\left(\iota_{i}^{-}\right)\right): k \geq 1\right\}=0 .\right.
$$

Thus, as in (3.12)

$$
\chi\left\{R\left(z_{k}\right)(\iota): k \geq 1\right\} \leq \chi_{C(J, E)}\left(B_{n-1}\right) L_{r}\left(\frac{2-\zeta}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right)
$$

from which,

$$
\left.\chi_{P C(J, E}\right)\left(B_{n}\right) \leq \chi_{P C(J, E)}\left(B_{0}\right)\left[L_{r}\left(\frac{2-\zeta}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right)\right]^{n-1}
$$

Inequality (4.12) insures that $L_{r}\left(\frac{2-\zeta}{M(\zeta-1)}+\frac{(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right)<1$, and Eq (4.14) follows.

- Step 4: The function $R_{\mid B}: B \rightarrow B$ is continuous. Let $z_{n} \rightarrow z$ in B and $y_{n}=R\left(z_{n}\right)$. The proof follows from the continuity of both $I_{i}, \bar{I}_{i} ; i=0,1,2, . ., m$, by following the same arguments in Step 4 of the proof of Theorem (3.1).

As a result of Steps (1) to (4) and Schauder's fixed point theorem, there is $z \in B \subseteq P C(J, E)$ such that $z=R(z)$.

To show the uniqueness of the solution, let z and v be two solutions for problem (1.4). For $\iota \in J_{0}$, we have

$$
\begin{aligned}
\|z(\imath)-v(\imath)\| & \leq \frac{L_{r}(2-\zeta) b}{M(\zeta-1)} \sup _{s \in J_{0}}\|z(s)-v(s)\|+\frac{L_{r} b^{\zeta}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \sup _{s \in J_{0}}\|z(s)-v(s)\| \\
& \leq \sup _{s \in J_{0}}\|z(s)-v(s)\|\left[\frac{L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right] .
\end{aligned}
$$

Thus,

$$
\sup _{s \in J_{0}}\|z(s)-v(s)\| \leq \sup _{s \in J_{0}}\|z(s)-v(s)\|\left[\frac{L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right] .
$$

The inequality (4.12) gives

$$
\frac{L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}<1
$$

Thus, $\sup _{s \in J_{0}}\|z(s)-v(s)\|=0$, and hence $z(s)=v(s), \forall s \in J_{0}$.
Assume that $\iota \in J_{1}$. Because $z\left(\iota_{1}^{-}\right)=v\left(\iota_{1}^{-}\right)$, it yields that,

$$
\begin{aligned}
\|z(\imath)-v(\imath)\| \leq & \left\|I_{1}\left(z\left(\iota_{1}^{-}\right)\right)-I_{1}\left(v\left(\iota_{1}^{-}\right)\right)\right\|+\left(\iota-\iota_{1}\right)\left\|\overline{I_{1}}\left(z\left(\iota_{1}^{-}\right)\right)-\overline{I_{1}}\left(v\left(\iota_{1}^{-}\right)\right)\right\| \\
& +\frac{L_{r}(2-\zeta) b}{M(\zeta-1)} \sup _{s \in J_{0}}\|z(s)-v(s)\|+\frac{L_{r} b^{\zeta}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \sup _{s \in J_{0}}\|z(s)-v(s)\| \\
= & \frac{L_{r}(2-\zeta) b}{M(\zeta-1)} \sup _{s \in J_{0}}\|z(s)-v(s)\|+\frac{L_{r} b^{\zeta}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)} \sup _{s \in J_{0}}\|z(s)-v(s)\| \\
\leq & \sup _{s \in J_{0}}\|z(s)-v(s)\|\left[\frac{L_{r}(2-\zeta) b}{M(\zeta-1)}+\frac{L_{r}(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta)}\right] .
\end{aligned}
$$

As above, we obtain that $z(\iota)=v(\iota), \forall \iota \in J_{1}$. By continuing in the same manner, we show that $z=v$.

Next, we show that replacing the Assumptions $\left(A_{1}\right)$, and $\left(A_{3}\right)$ in Theorem 4.1 by $\left(A_{2}\right)$, and $\left(A_{4}\right)$ simplifies (4.12). In fact this enable us to apply Banach fixed point theorem for contraction mappings instead of Schauder fixed point.

Theorem 4.2. Let $f: J \times E \rightarrow E$ such that $f\left(0, z_{0}\right)=0$ and $I_{i}, \bar{I}_{i}: E \rightarrow E\left(i \in N_{1}\right)$ be functions. If Assumptions $\left(A_{2}\right)$ and $\left(A_{4}\right)$ are satisfied, then problem (1.4) has a unique solution provided that

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\delta_{i}+b \eta_{i}\right)+\frac{\sigma(2-\zeta) b}{M(\zeta-1)}+\frac{\sigma(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta+1)}<1 \tag{4.16}
\end{equation*}
$$

Proof. Let $R: P C(J, E) \rightarrow P C(J, E)$, be function given by $\mathrm{Eq}(4.13)$, and $z, v \in P C(J, E)$. For each $\iota \in J_{k} ; k \in N_{1}$, we have

$$
\left.\|R(z)(\iota)-R(v)(\iota)\| \leq\left[\sum_{i=1}^{m} \delta_{i}+b \eta_{i}\right)+\frac{\sigma(2-\zeta) b}{M(\zeta-1)}+\frac{\sigma(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta+1)}\right]\|z-v\|_{P C(J, E)}
$$

Thus, R is contraction. By applying Banach fixed point theorem, we obtain that R has a unique fixed point, and such point is a solution for problem (1.4).

5. Existence of solutions for problem (1.5)

To obtain the sufficient conditions for the existence of anti-periodic solution for problem (1.5), we consider the following problem:

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, \iota^{\zeta}}^{\zeta} z(\iota)=w(\iota), \iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\} \tag{5.1}\\
z(0)=-z(b), z^{\prime}(0)=-z^{\prime}(b), \\
z\left(\iota_{i}^{+}\right)=z\left(\iota_{i}^{-}\right)+I_{i}\left(z\left(\iota_{i}\right)\right), i \in N_{1}, \\
z^{\prime}\left(\iota_{i}^{+}\right)=z^{\prime}\left(\iota_{i}^{-}\right)+\overline{I_{i}}\left(z\left(\iota_{i}\right)\right), i \in N_{1}
\end{array}\right.
$$

Note that problem (5.1) can be obtained from (4.7) by setting $z_{0}=-z(b)$ and $z_{1}=-z^{\prime}(b)$. Therefore, the solution of (5.1) is given by Eq (4.6) after substituting the values of z_{0} and z_{1}.
Lemma 5.1. Let $w \in P C H^{1}(J, E)$ with $w(0)=0$. The solution function of problem (5.1) is given by Eq (4.6), where z_{0}, z_{1} are given as follows:

$$
\begin{align*}
z_{0}= & \frac{b(2-\zeta)}{4 M(\zeta-1)} w(b)+\frac{b(\zeta-1)}{4 M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{b}(b-s)^{\zeta-2} w(s) d s \\
& -\frac{1}{2} \sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{1}{4} \sum_{i=1}^{m}\left(b-2 \iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right) \\
& -\frac{1}{2} \frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} w(s) d s-\frac{1}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s, \tag{5.2}
\end{align*}
$$

and

$$
\begin{equation*}
z_{1}=\frac{-1}{2}\left[\sum_{i=1}^{m} \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\frac{2-\zeta}{M(\zeta-1)} w(b)+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{b}(b-s)^{\zeta-2} w(s) d s\right] . \tag{5.3}
\end{equation*}
$$

Proof. Using Eq (4.6) and the boundary conditions $z(0)=-z(b), z^{\prime}(0)=-z^{\prime}(b)$, we obtain

$$
z_{1}=-z_{1}-\sum_{i=1}^{m} \bar{I}_{i}\left(z\left(l_{i}^{-}\right)\right)-\frac{2-\zeta}{M(\zeta-1)} w(b)-\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{b}(b-s)^{\zeta-2} w(s) d s
$$

So, Eq (5.3) is verified. Moreover,

$$
z_{0}=-\left[z_{0}+b z_{1}+\sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\sum_{i=1}^{m}\left(b-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)\right.
$$

$$
\left.+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s\right]
$$

i.e.,

$$
\begin{aligned}
z_{0}= & \frac{-1}{2}\left[b z_{1}+\sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\sum_{i=1}^{m}\left(b-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)\right. \\
& \left.+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} w(s) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s\right] .
\end{aligned}
$$

This equation along with Eq (5.3) lead to

$$
\begin{aligned}
z_{0}= & \frac{b(2-\zeta)}{4 M(\zeta-1)} w(b)+\frac{b(\zeta-1)}{4 M(\zeta-1) \Gamma(\zeta-1)} \int_{0}^{b}(b-s)^{\zeta-2} w(s) d s \\
& -\frac{1}{2} \sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{1}{4} \sum_{i=1}^{m}\left(b-2 \iota_{i}\right) \overline{I_{i}}\left(z\left(l_{i}^{-}\right)\right) \\
& \left.-\frac{1}{2} \frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} w(s) d s-\frac{1}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s\right] .
\end{aligned}
$$

By substituting the values of z_{0} and z_{1} into Eq (4.6), we obtain the following
Corollary 5.1. Let $w \in P C H^{1}(J, E)$ with $w(0)=0$. The solution of system in (5.1) is given by:

$$
\begin{align*}
z(\iota)= & \left(\frac{b}{4}-\frac{\iota}{2}\right) \frac{2-\zeta}{M(\zeta-1)} w(b)+\left(\frac{b}{4}-\frac{\iota}{2}\right) \int_{0}^{b}(b-s)^{\zeta-2} w(s) d s-\frac{1}{2} \frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} w(s) d s \\
& -\frac{1}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} w(s) d s-\frac{1}{2} \sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{b}{4} \sum_{i=1}^{m} \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{1}{2} \sum_{i=1}^{m}\left(\iota-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right) \\
& +\sum_{i=1}^{k} I_{i}\left(z\left(l_{i}^{-}\right)\right)+\sum_{i=1}^{k}\left(\iota-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} w(s) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} w(s) d s, \text { where } \iota \in J_{k}, k \in N_{0} \tag{5.4}
\end{align*}
$$

As a result of Corollary 5.1, we state the following definition.
Definition 5.1. A function $z \in P C H^{2}(J, E)$ is said to be a solution for problem (1.5) if it has left Atangana-Baleanu fractional derivative of order ζ on each J_{k}, where $k \in N_{0}$, and satisfies the integral equation:

$$
\begin{aligned}
z(\iota)= & \left(\frac{b}{4}-\frac{\iota}{2}\right) \frac{2-\zeta}{M(\zeta-1)} f(b, z(b))+\left(\frac{b}{4}-\frac{\iota}{2}\right) \int_{0}^{b}(b-s)^{\zeta-2} f(s, z(s)) d s-\frac{1}{2} \frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} f(s, z(s)) d s \\
& -\frac{1}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} f(s, z(s)) d s-\frac{1}{2} \sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{b}{4} \sum_{i=1}^{m} \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{1}{2} \sum_{i=1}^{m}\left(\iota-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right) \\
& +\sum_{i=1}^{k} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\sum_{i=1}^{k}\left(\iota-\iota_{i}\right) \overline{I_{i}}\left(z\left(\iota_{i}^{-}\right)\right)+\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} f(s, z(s)) d s \\
& +\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} f(s, z(s)) d s, \text { where } \iota \in J_{k}, k \in N_{0} . \tag{5.5}
\end{align*}
$$

Theorem 5.1. Under the assumptions of Theorem 4.2, problem (1.5) has a unique solution provided that

$$
\begin{equation*}
\left[\frac{\sigma b}{2}+\frac{\sigma b^{\zeta}}{2(\zeta-1)}+\frac{2 \sigma b(2-\zeta)}{M(\zeta-1)}+\frac{3 \sigma b^{\zeta}}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta+1)} \frac{3}{2} \sum_{i=1}^{m} \delta_{i}+\frac{7 b}{4} \sum_{i=1}^{m} \eta_{i}\right]<1 \tag{5.6}
\end{equation*}
$$

Proof. Consider the function $\mathcal{R}: P C(J, E) \rightarrow P C(J, E)$ defined as:

$$
\begin{align*}
\mathcal{R}(z)(\iota)= & \left(\frac{b}{4}-\frac{\iota}{2}\right) \frac{2-\zeta}{M(\zeta-1)} f(b, z(b))+\left(\frac{b}{4}-\frac{\iota}{2}\right) \int_{0}^{b}(b-s)^{\zeta-2} f(s, z(s)) d s \\
& -\frac{1}{2} \frac{2-\zeta}{M(\zeta-1)} \int_{0}^{b} f(s, z(s)) d s-\frac{1}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{b}(b-s)^{\zeta-1} f(s, z(s)) d s \\
& -\frac{1}{2} \sum_{i=1}^{m} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{b}{4} \sum_{i=1}^{m} \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right)-\frac{1}{2} \sum_{i=1}^{m}\left(\iota-\iota_{i}\right) \bar{I}_{i}\left(z\left(\iota_{i}^{-}\right)\right) \\
& +\sum_{i=1}^{k} I_{i}\left(z\left(\iota_{i}^{-}\right)\right)+\sum_{i=1}^{k}\left(\iota-\iota_{i}\right) \overline{I_{i}}\left(z\left(\iota_{i}^{-}\right)\right) \\
& +\frac{2-\zeta}{M(\zeta-1)} \int_{0}^{\iota} f(s, z(s)) d s+\frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta)} \int_{0}^{\iota}(\iota-s)^{\zeta-1} f(s, z(s)) d s, \tag{5.7}
\end{align*}
$$

where $\iota \in J_{k}, k \in N_{0}$.
Let $z, v \in P C(J, E), \iota \in J_{k}, k \in N_{1}$. By the assumptions $\left(A_{2}\right),\left(A_{4}\right)$, and above equality, we have

$$
\begin{aligned}
\|\mathcal{R}(z)(\imath)-\mathcal{R}(v)(\imath)\| \leq & {\left[\frac{\sigma b}{2}+\frac{\sigma b^{\zeta}}{2(\zeta-1)}+\frac{\sigma b}{2} \frac{2-\zeta}{M(\zeta-1)}+\frac{\sigma b^{\zeta}}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta+1)}\right.} \\
& \left.+\frac{3}{2} \sum_{i=1}^{m} \delta_{i}+\frac{b}{4} \sum_{i=1}^{m} \eta_{i}+\frac{3 b}{2} \sum_{i=1}^{m} \eta_{i}+\frac{\sigma b(2-\zeta)}{M(\zeta-1)}+\frac{\sigma b^{\zeta}(\zeta-1)}{M(\zeta-1) \Gamma(\zeta+1)}\right]\|z-v\| \\
= & {\left[\frac{\sigma b}{2}+\frac{\sigma b^{\zeta}}{2(\zeta-1)}+\frac{2 \sigma b(2-\zeta)}{M(\zeta-1)}+\frac{3 \sigma b^{\zeta}}{2} \frac{\zeta-1}{M(\zeta-1) \Gamma(\zeta+1)}\right.} \\
& \left.+\frac{3}{2} \sum_{i=1}^{m} \delta_{i}+\frac{7 b}{4} \sum_{i=1}^{m} \eta_{i}\right]\|z-v\| .
\end{aligned}
$$

This equation along with (5.6) shows that \mathcal{R} is a contraction. Therefore, problem (1.5) has a unique solution.

6. Existence of solutions for problem(1.6)

Definition 6.1. Let Λ and Δ be two normed spaces. A multi-valued function $G: \Lambda \rightarrow 2^{E}$ with non-empty closed, bounded and convex values is called ρ-Lipschitz if

$$
h(G(x)-G(y)) \leq \rho\|x-y\|_{\Lambda}, \forall x, y \in \Lambda,
$$

where h is the Hausdorff distance.
For information about the multi-valued functions, we refer the reader to [50].
Lemma 6.1. ([51], Theorem 7) Let $\left(\Omega, \sum, \mu\right)$ be a σ - finite measure space and (T, d) be a metric space. If $G: T \rightarrow 2^{L^{p}\left(\Omega, \mathbb{R}^{n}\right)}, p \in[1, \infty)$ is a ρ-Lipschitz multi-valued function with non-empty, closed, convex, bounded and decomposable values, then there is single-valued function $f: T \rightarrow 2^{L^{p}\left(\Omega, \mathbb{R}^{n}\right)}$ such that $f(t) \in G(t)$, a.e, and $\|f(z)-f(v)\| \leq \xi_{G} \rho\|z-v\|_{L^{p}\left(\Omega, \mathbb{R}^{n}\right)}, \forall z, v \in T$, where ξ_{G} is a positive real number.

In the following theorem, we provide sufficient conditions for the existence of solutions of problem (1.6).

Theorem 6.1. Let $F: J \times L^{2}(J, \mathbb{R}) \rightarrow 2^{L^{2}(J, \mathbb{R})}$ be an ρ-Lipschitz multi-valued function with non-empty, closed, convex, bounded and decomposable values, and $I_{i}, \bar{I}_{i}: L^{2}(J, \mathbb{R}) \rightarrow L^{2}(J, \mathbb{R}), i \in N_{1}$ be functions such that

$$
\left\|I_{i}(x)-I_{i}(y)\right\| \leq \delta_{i}\|x-y\|, \forall x \in L^{2}(J, \mathbb{R}), \forall i \in N_{1}
$$

and

$$
\left\|\bar{I}_{i}(x)-\bar{I}_{i}(y)\right\| \leq \eta_{i}\|x-y\|, \forall x \in L^{2}(J, \mathbb{R}), \forall i \in N_{1},
$$

where δ_{i}, η_{i}, are positive real numbers, then problem (1.6) has a solution provided that $F\left(0, z_{0}\right)=\{0\}$ and

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\delta_{i}+\eta_{i}\right)+\frac{\xi_{F} \rho(2-\zeta) b}{M(\zeta-1)}+\frac{\sigma(\zeta-1) b^{\zeta}}{M(\zeta-1) \Gamma(\zeta+1)}<1 \tag{6.1}
\end{equation*}
$$

Proof. Let $E=L^{2}(J, \mathbb{R})$. The set $T=J \times E$ is a complete metric space, where $d\left(\left(\iota_{1}, x_{1}\right),\left(\iota_{2}, x_{2}\right)\right)=$ $\left|\iota_{1}-\iota_{2}\right|+\left\|x_{1}-x_{2}\right\|_{E}$. By Lemma 6.1, there exists $f: J \times E \rightarrow E$ satisfying $f(\iota, x) \in F(\iota, x)$, a.e., and

$$
\|f(\iota, x)-f(s, y)\| \leq \xi_{F} \rho\left(|\iota-s|+\|x-y\|_{E}\right), \forall(\iota, x),(s, y) \in T
$$

By applying Theorem (4.2), the following fractional boundary problem

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0,,}^{\zeta} z(\iota)=f(\iota, z(\iota)), \iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\} \\
z(0)=z_{0}, z^{\prime}(0)=z_{1}, \\
z\left(\iota_{i}^{+}\right)=z\left(\iota_{i}^{-}\right)+K_{i}\left(z\left(l_{\iota^{-}}^{-}\right)\right), i=1,2, \ldots, m \\
z^{\prime}\left(\iota_{i}^{+}\right)=z^{\prime}\left(\iota_{i}^{-}\right)+\overline{K_{i}}\left(z\left(\iota_{i}^{-}\right)\right), i=1,2, \ldots, m
\end{array}\right.
$$

has a solution. Since $f(\iota, x) \in F(\iota, x)$ a.e, we have ${ }^{A B C} D_{0, \iota}^{\zeta} z(\iota) \in F(\iota, z(\iota))$ a.e. for $\iota \in J-\left\{\iota_{1}, \iota_{2}, \ldots, \iota_{m}\right\}$ which completes the proof.

Example 6.1. Let $E=L^{2}[0, \pi], \zeta \in(1,2), J=[0,1]$ and $z_{0}:[0, \pi] \rightarrow \mathbb{R}$ be the zero function. Define $f: J \times E \rightarrow E$ by

$$
\begin{equation*}
f(w, \varsigma)(\eta)=\frac{\sin w}{\sqrt{\pi}}+\lambda \varsigma^{2}(\eta) ; w \in J, \varsigma \in E, \eta \in[0, \pi] \tag{6.2}
\end{equation*}
$$

where $\lambda>0$. Thus, $f\left(0, z_{0}\right)(\eta)=0 ; \forall \eta \in[0, \pi]$. For any $\varsigma_{1}, \varsigma_{2} \in E=L^{2}[0, \pi]$ and any $w_{1}, w_{2} \in J$, we have

$$
\begin{aligned}
\left\|f\left(w_{1}, \varsigma_{1}\right)-f\left(w_{2}, \varsigma_{2}\right)\right\|_{L^{2}[0, \pi]} & =\left(\int_{0}^{\pi} \frac{1}{\sqrt{\pi}}\left|\left(\sin w_{1}-\sin w_{2}\right)+\lambda^{2}\left(\varsigma_{1}^{2}(\eta)-\varsigma_{2}^{2}(\eta)\right)\right|^{2} d \eta\right)^{\frac{1}{2}} \\
& \leq\left(\int_{0}^{\pi} \frac{1}{\sqrt{\pi}}\left|\sin w_{1}-\sin w_{2}\right|^{2} d \eta\right)^{\frac{1}{2}}+\lambda\left(\int_{0}^{\pi}\left|\varsigma_{1}^{2}(\eta)-\varsigma_{2}^{2}(\eta)\right|^{2} d \eta\right)^{\frac{1}{2}} \\
& \left.\left.\leq\left|\sin w_{1}-\sin w_{2}\right|+\lambda\left(\int_{0}^{\pi} \mid\left(\varsigma_{1}(\eta)\right)+\varsigma_{2}(\eta)\right)\left(\varsigma_{1}(\eta)\right)-\varsigma_{2}(\eta)\right)\left.\right|^{2} d \eta\right)^{\frac{1}{2}} \\
& \leq\left|w_{1}-w_{2}\right|+\lambda\left|<\varsigma_{1}+\varsigma_{2}, \varsigma_{1}-\varsigma_{2}>\right| \\
& \leq\left|w_{1}-w_{2}\right|+\lambda\left\|\varsigma_{1}+\varsigma_{2}\right\|\left\|\varsigma_{1}-\varsigma_{2}\right\| \\
& \leq\left|w_{1}-w_{2}\right|+\lambda\left(\left\|\varsigma_{1}\right\|+\left\|\varsigma_{2}\right\|\right)\left\|\varsigma_{1}-\varsigma_{2}\right\| .
\end{aligned}
$$

Thus, $\left(A_{1}\right)$ is satisfied with $L_{\delta}=2 \lambda \delta$. By applying Theorem 3.1, we have that if there is $r>0$ such that

$$
\begin{equation*}
\left\|z_{1}\right\|+2\left(1+2 \lambda r^{2}\right)\left[\frac{(2-\zeta)}{M(\zeta-1)}+\frac{(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)}\right]<r \tag{6.3}
\end{equation*}
$$

then there is a unique function $z:[0,1] \rightarrow L^{2}[0, \pi]$ satisfying the boundary value problem

$$
\left\{\begin{array}{l}
A B C \tag{6.4}\\
D_{0, l}^{\zeta} z(\imath)(s)=\frac{\sin \iota}{\sqrt{\pi}}+\varsigma^{2}(s), \quad \iota \in J, \varsigma \in E, s \in[0, \pi] \\
z(0)=z_{0}, z(1)=z_{1}
\end{array}\right.
$$

(see relation (3.6)).
The inequality (6.3) is equivalent to

$$
\begin{equation*}
4 \lambda \omega r^{2}-r+\left\|z_{1}\right\|+2 \omega<0 \tag{6.5}
\end{equation*}
$$

where $\omega=\frac{(2-\zeta)}{M(\zeta-1)}+\frac{(\zeta-1)}{M(\zeta-1) \Gamma(\zeta)}$.
If $16 \lambda \omega\left(\left\|z_{1}\right\|+2 \omega\right)<1$, then the equation $4 \omega \lambda r^{2}-r+\left\|z_{1}\right\|+2 \omega=0$ has two positive solutions, namely

$$
r_{1}=\frac{1-\sqrt{1-16 \lambda \omega\left(\left\|z_{1}\right\|+2 \omega\right)}}{8 \omega} \text { and } r_{2}=\frac{1+\sqrt{1-16 \lambda \omega\left(\left\|z_{1}\right\|+2 \omega\right)}}{8 \omega}
$$

Therefore, (6.5) will be satisfied for $r \in\left(r_{1}, r_{2}\right)$. Thus, inequality (6.3) has a solution provided the following inequality

$$
\begin{equation*}
16 \lambda \omega\left(\left\|z_{1}\right\|+2 \omega\right)<1 \tag{6.6}
\end{equation*}
$$

holds. The last inequality will hold if we choose λ sufficiently small.

Example 6.2. Let $E=L^{2}[0, \pi], \zeta \in(1,2), J=[0,1]$. Define $f: J \times E \rightarrow E$ by:

$$
\begin{equation*}
f(w, \varsigma)(\eta):=\frac{\sin w}{\sqrt{\pi}}+\sigma \sin \varsigma(\eta) ; w \in J, \varsigma \in E, \eta \in[0, \pi] \tag{6.7}
\end{equation*}
$$

where, $\sigma>0$. Let $z_{0}:[0, \pi] \rightarrow \mathbb{R}$, be the zero function and $z_{1} \in L^{2}[0, \pi]$ be a fixed function. Note that $f\left(0, z_{0}\right)(\eta)=0, \forall \eta \in[0, \pi]$. For every $\varsigma_{1}, \varsigma_{2} \in E=L^{2}[0, \pi]$ and every $w_{1}, w_{2} \in J$, we have

$$
\begin{aligned}
\left\|f\left(w, \varsigma_{1}\right)-f\left(w, \varsigma_{2}\right)\right\|_{L^{2}[0, \pi]} & =\sigma\left(\int_{0}^{\pi}\left|\sin \varsigma_{1}(\eta)-\sin \varsigma_{2}(\eta)\right|^{2} d \eta\right)^{\frac{1}{2}} \\
& \leq \sigma\left(\int_{0}^{\pi}\left|\varsigma_{1}(\eta)-\varsigma_{2}(\eta)\right|^{2} d \eta\right)^{\frac{1}{2}}=\sigma\left\|\varsigma_{1}-\varsigma_{2}\right\|_{L^{2}[0, \pi]} \\
& \leq \sigma\left\|\varsigma_{1}-\varsigma_{2}\right\|_{L^{2}[0, \pi]} .
\end{aligned}
$$

Thus, $\left(A_{2}\right)$ is satisfied. By applying Theorem 3.2, there is a unique $z:[0,1] \rightarrow L^{2}[0, \pi]$ such that $z^{\prime} \in H^{1}\left((0,1), L^{2}[0, \pi]\right)$ and z satisfies the boundary value problem:

$$
\left\{\begin{array}{l}
{ }^{A B C} D_{0, t}^{\zeta} z(\iota)(\eta)=\frac{\sin \iota}{\sqrt{\pi}}+v \sin (z(\iota) \eta), \iota \in[0,1], \eta \in[0, \pi] \tag{6.8}\\
z(0)=z_{0}, z(1)=z_{1}
\end{array}\right.
$$

provided the following condition is satisfied

$$
\begin{equation*}
\frac{2 \sigma(2-\zeta)}{M(\zeta-1)}+\frac{2(\zeta-1) \sigma}{M(\zeta-1) \Gamma(\zeta)}<1 \tag{6.9}
\end{equation*}
$$

The last inequality holds by choosing σ sufficiently small.
Example 6.3. Let E, ζ, J, f as be in Example 6.2, $\iota_{0}=0, \iota_{1}=\frac{1}{2}$ and $\iota_{2}=1$. Define $I_{1}(x)=\lambda \operatorname{Pro}_{K}(x)$, $\bar{I}_{1}(x)=\lambda \operatorname{Pro}_{Z}(x), \forall x \in E$, where $\lambda>0, K$ and Z are convex and compact subset of $L^{2}[0, \pi]$ and $\lambda>0$. Then, $\left(A_{2}\right)$ is satisfied. Also, (2.2) and (2.3) are verified with $\delta_{1}=\eta_{1}=\lambda$. By applying Theorem 4.2, the problem

$$
\left\{\begin{array}{l}
\left({ }^{A B C} D_{0, t}^{\zeta} z(\iota)\right)(\eta)=\frac{\sin \iota}{\sqrt{\pi}}+v \sin (z(\iota) \eta), \iota \in[0,1]-\left\{0, \frac{1}{2}\right\}, \eta \in[0, \pi], \tag{6.10}\\
z(0)=z_{0}, z^{\prime}(0)=z_{1}, \\
z\left(l_{1}^{+}\right)=z\left(\iota_{1}^{-}\right)+I_{1}\left(z\left(\iota_{1}^{-}\right)\right), \\
z^{\prime}\left(\iota_{1}^{+}\right)=z^{\prime}\left(\iota_{1}^{-}\right)+\overline{I_{1}}\left(z\left(\iota_{1}^{-}\right)\right),
\end{array}\right.
$$

has a solution provided that

$$
\begin{equation*}
2 \lambda+\frac{\sigma(2-\zeta)}{M(\zeta-1)}+\frac{\sigma(\zeta-1)}{M(\zeta-1) \Gamma(\zeta+1)}<1 \tag{6.11}
\end{equation*}
$$

This inequality will hold by choosing σ and λ sufficiently small.
In a similar manner, many examples of the application of Theorems 5.1 and 6.1 can be provided.

7. Discussion and conclusions

The relationships between some boundary value problems involving the Atangana-Baleanu fractional derivative $(A B)$ of order $\zeta \in(1,2)$ and the corresponding fractional integral equations were obtained in infinite dimensional Banach spaces with or without impulses. We showed that the continuity assumption on the nonlinear term is insufficient and must be replaced by membership in the space $H^{1}((a, b), E)$. The sufficient conditions for the existence of solutions for differential equations and inclusions involving $A B$ fractional derivative in the presences of instantaneous impulses in infinite dimensional Banach spaces were established. Additionally, the sufficient conditions for the existence and uniqueness of solutions and anti-periodic solutions for differential equations and inclusions containing $A B$ fractional derivative of order $\zeta \in(1,2)$ in the presences of instantaneous impulses in infinite dimensional Banach spaces were obtained.

The major contributions of this work can be summarized as follows:
(1) A modified formula for relationship between the solution of problem (1.1) and the corresponding integral equation (1.2) is derived.
(2) A new class of boundary value for differential equations and inclusions containing AB derivative with instantaneous impulses in infinite dimensional Banach spaces were formulated with and without impulsive effects.
(3) The existence/uniqueness of solutions and anti-periodic solutions for the considered problems and the corresponding inclusions were proved.

We provide methods to deal with differential equations and differential inclusions in infinite dimensional Banach spaces. i.e., to extend the results in [19-24, 45, 46] to infinite dimensional spaces. The methods used in this paper can help researchers to generalize many of the results cited above in the presence of impulsive effects, infinite dimensional Banach spaces, and when the right hand side of the equation is a multi-valued function. We suggest the following topics for future research

- Study the existence of S-asymptotically w-periodic solutions for problems (1.3) and (1.4).
- Extend the recent work by Saha et al. [42] to infinite dimensional Branch spaces.
- Generalize the present work to the case where the Atangana and Baleanu's derivative is replaced by the Atangana and Baleanu's derivative with respect to another function.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors acknowledge the Deanship of Scientific Research at King Faisal University for the financial support.

Fund

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. GRANT3812].

Conflict of interest

The authors declare no conflicts of interest.

References

1. V. E. Tarasov, Applications in physics, part A, In: Handbook of fractional calculus with applications, De Gruyter, 4 (2019). https://doi.org/10.1515/9783110571707
2. D. Baleanu, A. M. Lopes, Applications in engineering, life and social sciences, part A, In: Handbook of fractional calculus with applications, De Gruyter, 7 (2019). https://doi.org/10.1515/9783110571905
3. B. F. Martínez-Salgado, R. Rosas-Sampayo, A. Torres-Hernández, C. Fuentes, Application of fractional calculus to oil industry, In: Fractal analysis applications in physics, engineering and technology, 2017. https://doi.org/10.5772/intechopen. 68571
4. G. U. Varieschi, Applications of fractional calculus to Newtonian Mechanics, J. Appl. Math. Phys., 6 (2018), 1247-1257. https://doi.org/10.4236/jamp.2018.66105
5. J. F. Douglas, Some applications of fractional calculus to polymer science, In: Advances in chemical physics, 102 (1997). https://doi.org/10.1002/9780470141618.ch3
6. M. Al Nuwairan, Bifurcation and analytical solutions of the space-fractional stochastic schrödinger equation with white noise, Fractal Fract., 7 (2023), 157. https://doi.org/10.3390/fractalfract7020157
7. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Elsevier, 2006.
8. A. Aldhafeeri, M. Al Nuwairan, Bifurcation of some novel wave solutions for modified nonlinear Schrödinger equation with time M-fractional derivative, Mathematics, 11 (2023), 1219. https://doi.org/10.3390/math1 1051219
9. M. Almulhim, M. Al Nuwairan, Bifurcation of traveling wave solution of Sakovich equation with beta fractional derivative, Fractal Fract., 7 (2023), 372. https://doi.org/10.3390/fractalfract7050372
10. M. Arfan, K. Shah, T. Abdeljawad, N. Mlaiki, A. Ullah, A Caputo power law model predicting the spread of the COVID-19 outbreak in Pakistan, Alex. Eng. J., 60 (2021), 447-456. https://doi.org/10.1016/j.aej.2020.09.011
11. S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256
12. A. I. K. Butt, M. Imran, S. Batool, M. Al Nuwairan, Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15 (2023), 380. https://doi.org/10.3390/sym15020380
13. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85.
14. A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A
15. K. A. Abro, A. Atangana, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Math. Meth. Appl. Sci., 43 (2020), 9681-9691. https://doi.org/10.1002/mma. 6638
16. B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A, 542 (2020), 123516. https://doi.org/10.1016/j.physa.2019.123516
17. M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379-2389. https://doi.org/10.1016/j.aej.2020.02.033
18. D. Baleanu, M. Inc, A. Yusuf, A. Aliyu, Optimal system, nonlinear self-adjointness and conservation law for generalized shallow water wave equation, Open Phys., 16 (2018), 364-370. https://doi.org/10.1515/phys-2018-0049
19. T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098-1107. http://dx.doi.org/10.22436/jnsa.010.03.20
20. T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5
21. M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 37. https://doi.org/10.1186/s13662-020-03196-6
22. F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton Fract., 117 (2018), 16-20. https://doi.org/10.1016/j.chaos.2018.10.006
23. Asma, S. Shabbir, K. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative, Adv. Differ. Equ., 2021 (2021), 395. https://doi.org/10.1186/s13662-021-03551-1
24. A. Devi, A. Kumar, Existence and uniqueness results for integro fractional differential equations with Atangana-Baleanu fractional derivative, J. Math. Ext., 15 (2021).
25. M. Al Nuwairan, A. G. Ibrahim, Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces, AIMS Mathematics, 8 (2023), 11752-11780. https://doi.org/10.3934/math. 2023595
26. X. Liu, G. Ballinger, Boundedness for impulsive delay differential equations and applications in populations growth models, Nonlinear Anal. Theor., 53 (2003), 1041-1062. https://doi.org/10.1016/S0362-546X(03)00041-5
27. K. Church, Applications of impulsive differential equations to the control of malaria outbreaks and introduction to impulse extension equations: A general framework to study the validity of ordinary differential equation models with discontinuities in state, University of Ottawa, 2014. https://doi.org/10.20381/RUOR-6771
28. H. F. Xu, Q. X. Zhu, W. X. Zheng, Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses, IEEE Trans. Autom. Control, 2023. https://doi.org/10.1109/TAC.2023.3335005
29. A. G. Ibrahim, Differential equations and inclusions of fractional order with impulse effect in Banach spaces, Bull. Malays. Math. Sci. Soc., 43 (2020), 69-109. https://doi.org/10.1007/s40840-018-0665-2
30. J. R. Wang, A. G. Ibrahim, D. O'Regan, Nonemptyness and compactness of the solution set for fractional evolution inclusions with non-instantaneous impulses, Electron. J. Differ. Eq., 2019 (2019), 1-17.
31. J. R. Wang, A. G. Ibrahim, D. O’Regan, A. A. Elmandouh, Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses of order $\alpha \in(1,2)$, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 593-605. https://doi.org/10.1515/ijnsns-2019-0179
32. R. Agarwal, S. Hristova, D. O'Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119. https://doi.org/10.1016/j.jfranklin.2017.02.002
33. K. Liu, Stability analysis for (w, c)-periodic non-instantaneous impulsive differential equations, AIMS Mathematics, 7 (2022), 1758-1774. https://doi.org/10.3934/math. 2022101
34. E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal. Real World Appl., 13 (2012), 1489-1497. https://doi.org/10.1016/j.nonrwa.2011.11.013
35. Y. Alruwaily, S. Aljoudi, L. Almaghamsi, A. Ben Makhlouf, N. Alghamdi, Existence and uniqueness results for different orders coupled system of fractional integro-differential equations with anti-periodic nonlocal integral boundary conditions, Symmetry, 15 (2023), 182. https://doi.org/10.3390/sym15010182
36. R. P. Agarwal, B. Ahmad, A. Alsaedi, Fractional-order differential equations with antiperiodic boundary conditions: A survey, Bound. Value Probl., 2017 (2017), 173. https://doi.org/10.1186/s13661-017-0902-x
37. B. Ahmad, Y. Alruwaily, A. Alsaedi, J. J. Nieto, Fractional integro-differential equations with dual anti-periodic boundary conditions, Differ. Integral Equ., 33 (2020), 181-206. https://doi.org/10.57262/die/1584756018
38. B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347. https://doi.org/10.1155/2009/625347
39. A. G. Ibrahim, Fractional differential inclusions with anti-periodic boundary conditions in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 65 (2014), 1-32. https://doi.org/10.14232/ejqtde.2014.1.65
40. J. R. Wang, A. G. Ibrahim, M. Feckan, Differential inclusions of arbitrary fractional order with anti-periodic conditions in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 34 (2016), 1-22. https://doi.org/10.14232/ejqtde.2016.1.34
41. T. Abdeljawad, S. T. M. Thabet, T. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 49. https://doi.org/10.1186/s13661-023-01736-z
42. K. K. Saha, N. Sukavanam, S. Pan, Existence and uniqueness of solutions to fractional differential equations with fractional boundary conditions, Alex. Eng. J., 72 (2023), 147-155. https://doi.org/10.1016/j.aej.2023.03.076
43. K. Diethelm, V. Kiryakova, Y. Luchko, J. A. Tenreiro Machado, V. E. Tarasov, Trends, directions for further research, and some open problems of fractional calculus, Nonlinear Dyn., 107 (2022), 3245-3270. https://doi.org/10.1007/s11071-021-07158-9
44. W. Saleh, A. Lakhdari, A. Kilicman, A. Frioui, B. Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended (s, m)-prequasiinvex mixed partial derivatives, Alex. Eng. J., 72 (2023), 261-267. https://doi.org/10.1016/j.aej.2023.03.080
45. M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana-Baleanu fractional derivative: Analysis and applications, Chaos Soliton Fract., 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013
46. S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palermo II Ser., 71 (2022), 647-663. https://doi.org/10.1007/s12215-021-00622-w
47. T. Cardinali, P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlinear Anal. Theor., 75 (2012), 871-879. https://doi.org/10.1016/j.na.2011.09.023
48. M. I. Kamenskii, V. V. Obukhowskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, 2001. https://doi.org/10.1515/9783110870893
49. D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Israel J. Math. 108 (1998), 109-138. https://doi.org/10.1007/BF02783044
50. S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, In: Mathematics and its applications, New York: Springer, 1997.
51. C. Rom, On Lipschitz selections of multifunctions with decomposable values, Bulletin Polish Acad. Sci. Math., 57 (2009), 121-127.
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
