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1. Introduction

A fundamental concept in the realm of mathematical analysis and topology is the study of metric
spaces, which provide a framework for understanding the notion of distance between elements of a set.
Metric spaces are an essential part of modern mathematics and have found numerous applications in
various branches of science and engineering. Among the intriguing properties of metric spaces is their
ability to reveal deep insights into the behavior of mappings.

In this context, the exploration of fixed point results within the context of metric spaces has become
a significant area of interest for mathematicians. Fixed point theory deals with the study of self-maps on
metric spaces that leave certain points unchanged. These fixed points have far-reaching implications in
various fields, including analysis, functional analysis, and differential equations, making them a critical
subject of investigation.

In this paper, we will focus on fixed point theory on M-metric spaces. An M-metric space
is a generalization of the ordinary metric space, designed to capture more complex notions of
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distance and convergence. The study of fixed point results in M-metric spaces offers a rich and
challenging landscape for mathematicians, leading to the development of powerful theorems and
tools for understanding the behavior of mappings within these spaces. Through this exploration, we
will present a fundamental fixed point theorem for P-contraction mappings on M-metric spaces and
compare it with earlier results.

Asadi et al. [8] introduced the idea of the M-metric. The M-metric form of the Banach contraction
principle was then demonstrated. First, we recall the definition and some properties of it.

We will use the following notations in the rest of this paper:

µx,y = min{µ(x, x), µ(y, y)}
Mx,y = max{µ(x, x), µ(y, y)}.

Definition 1. [8] Consider a nonempty setM and a mapping µ :M×M→ [0,∞). Then µ is called
M-metric onM if, for all x, y, z ∈ M,

m1) µ(x, y) = µ(x, x) = µ(y, y)⇔ x = y,

m2) µx,y ≤ µ(x, y),

m3) µ(x, y) = µ(y, x),

m4) µ(x, y) − µx,y ≤
(
µ(x, z) − µx,z

)
+

(
µ(z, y) − µz,y

)
.

Then the couple (M, µ) is called M-metric space.

It is clear that every ordinary metric space and every partial metric space in the sense of
Matthews [14] is an M-metric space. The converse, however, may not be true as seen in the following
examples:

Example 1. LetM = [0,∞). Define two functions µ1, µ2 : M ×M → [0,∞) by µ1(x, y) =
x+y
2 and

µ2(x, y) = min{x, y}. Then, both µ1 and µ2 are M-metrics on M, however, they are neither ordinary
metric nor partial metric onM.

We can find further examples of M-metric space in [1,23,24]. Let (M, µ) be an M-metric space and
x ∈ M. Then the open ball centered at x ∈ M and radius ε > 0 in the M-metric space is defined as

B(x, ε) = {y ∈ M : µ(x, y) < µxy + ε}.

We call a subset U ofM open if and only if there is a real number ε > 0 such that B(x, ε) ⊂ U for
every x ∈ U. Then, the family τµ of all open subsets ofM is a topology onM, which is a T0 topology.

Definition 2. [8] Let (M, µ) be an M-metric space, {xn} ⊂ M be a sequence and x ∈ M. Then,

(1) {xn} is said to be M-convergent to x, denoting xn → x, if and only if

lim
n→∞

(µ(xn, x) − µxn x) = 0.

(2) {xn} is called M-Cauchy sequence if

lim
n,k→∞

(µ(xn, xk) − µxn,xk) and lim
n,k→∞

(Mxn,xk − µxn,xk)

exist and are finite.
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(3) (M, µ) is said to be M-complete if and only if every M-Cauchy sequence on this space M-converges
to a point x ∈ M such that

lim
n→∞

(µ(xn, x) − µxn x) = 0 and lim
n→∞

(Mxn,x − µxn,x) = 0.

Remark 1. Let (M, µ) be an M-metric space. The function ν defined by

ν(x, y) = µ(x, y) − 2µx,y + Mx,y

is an ordinary metric onM. Further, we know that a sequence {xn} is an M-Cauchy sequence in (M, µ)
if and only if it is a Cauchy sequence in the metric space (M, ν). Also, (M, µ) is M-complete if and
only if (M, ν) is complete.

Lemma 1. [8] Assume that xn → x and yn → y as n→ ∞ in an M-metric space (M, µ). Then,

lim
n→∞

(
µ(xn, yn) − µxnyn

)
= µ(x, y) − µxy.

Asadi et al. [8] proved the following fixed point theorem.

Theorem 1. Let (M, µ) be an M-complete M-metric space andT :M→M be a contraction mapping
with respect to µ, that is, there exists k ∈ [0, 1) such that

µ(T x,T y) ≤ kµ(x, y) (1.1)

for all x, y ∈ M. Then, T has a unique fixed point.

Following Asadi et al., several investigations on fixed point theory in this space have been
conducted, as well as publications outlining the topological structure and some basic aspects of the
M-metric space [6, 7, 15, 17].

In this paper, we will introduce the concepts of P-contraction and P-contractivity in M-metric space
in order to gain a new perspective on fixed point theory in this space. It will be obvious that every
contraction mapping is a P-contraction, but since an example is needed to show that the converse is not
true, we will provide a proper example. Then, using the two concepts we introduced, we will present
some fixed point theorems that will generalize some theorems obtained previously in the literature.
Finally, since there are not many applications of fixed point theorems obtained in M-metric space in
the literature, we will present an existence and uniqueness theorem for a second-order (p, q)-difference
Langevin equation in order to demonstrate the applicability of these theorems. For more information
about P-contraction in the literature, we suggest to readers the papers [3–5, 16].

2. Main results

The existence theorem of fixed point for P-contractive mappings on M-metric space will be
presented in this section.

Definition 3. Let (M, µ) be an M-metric space and T :M→M be a mapping. Then, T is said to be
a P-contraction mapping, if there exists L ∈ [0, 1) such that

µ(T x,T y) ≤ L
[
µ(x, y) + |µ(x,T x) − µ(y,T y)|

]
(2.1)
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for all x, y ∈ M. T is said to be a P-contractive mapping, if it satisfies

µ(T x,T y) < µ(x, y) + |µ(x,T x) − µ(y,T y)| (2.2)

for all x, y ∈ M with µ(x, y) > 0. T is said to have 0-property if

µ(x, x) = 0⇔ µ(T x,T x) = 0

holds for all x ∈ M.

Remark 2. It is clear that every contraction mapping is also a P-contraction on an M-metric space.
But the converse may not be true as shown in the following example.

Example 2. LetM = [0, 1] ∪ [2, 3] with

µ(x, y) =


1 + |x − y| , x , y

0 , x = y
,

then (M, µ) is an M-metric space. Define T :M→M by

T x =


1 , x ∈ [0, 1]

0 , x ∈ [2, 3]
.

Then, T is not contraction, since

µ(T 1,T 2) = µ(1, 0) = 2 = µ(1, 2).

However it is a P-contraction with L = 1
2 . In order to show this, we will consider the following cases:

Case 1. If x, y ∈ [0, 1], then

µ(T x,T y) = µ(1, 1) = 0 ≤
1
2

[
µ(x, y) + |µ(x,T x) − µ(y,T y)|

]
.

Case 2. If x, y ∈ [2, 3], then

µ(T x,T y) = µ(0, 0) = 0 ≤
1
2

[
µ(x, y) + |µ(x,T x) − µ(y,T y)|

]
.

Case 3. If x ∈ [0, 1] and y ∈ [2, 3], then we have

µ(T x,T y) = µ(1, 0) = 2

and

µ(x, y) + |µ(x,T x) − µ(y,T y)| = 1 + |x − y| + |µ(x, 1) − µ(y, 0)|

=


1 + y − x + |1 − x − y| , x , 1

2y + 1 , x = 1
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=


2y , x , 1

2y + 1 , x = 1

and so
µ(T x,T y) = 2 =

1
2

4 ≤
1
2

2y ≤
1
2

[
µ(x, y) + |µ(x,T x) − µ(y,T y)|

]
.

Here we will provide a further example to support our definiton. This time, we will present an
example showing that P-contractive mappings may not be P-contraction mapping in an M-metric space
that is not an ordinary metric space.

Example 3. LetM = C+[0, 1] be the family of all continuous and non-negative real vaued functions
defined on [0, 1], and define

µ( f , g) = sup {| f (t) − g(t)| : t ∈ [0, 1]} + min { f (0), g(0)} ,

for f , g ∈ M. Then (M, µ) is an M-metric space, however it is not an ordinary metric space. Consider
the subset

M∗ = { f ∈ M : 0 = f (0) ≤ f (t) ≤ f (1) = 1}

and define a mapping T : M∗ → M∗, by T f (t) = t f (t) for t ∈ [0, 1]. Then T is not P-contraction.
Indeed, consider the sequences of functions { fn} and {gn} inM∗ defined as fn(t) = t2n and gn(t) = tn. In
this case, we have

µ(T fn,T gn) = sup {|T fn(t) − T gn(t)| : t ∈ [0, 1]} + min {T fn(0),T gn(0)}
= sup

{∣∣∣t2n+1 − tn+1
∣∣∣ : t ∈ [0, 1]

}
=

(
n + 1

2n + 1

) n+1
n ( n

2n + 1

)
→

1
4

as n→ ∞,

µ( fn, gn) = sup {| fn(t) − gn(t)| : t ∈ [0, 1]} + min { fn(0), gn(0)}
= sup

{∣∣∣t2n − tn
∣∣∣ : t ∈ [0, 1]

}
=

1
4
,

µ( fn,T fn) = sup {| fn(t) − T fn(t)| : t ∈ [0, 1]} + min { fn(0),T fn(0)}
= sup

{∣∣∣t2n − t2n+1
∣∣∣ : t ∈ [0, 1]

}
=

(
2n

2n + 1

)2n (
1

2n + 1

)
→ 0 as n→ ∞,

and

µ(gn,T gn) = sup {|gn(t) − T gn(t)| : t ∈ [0, 1]} + min {gn(0),T gn(0)}
= sup

{∣∣∣tn − tn+1
∣∣∣ : t ∈ [0, 1]

}
AIMS Mathematics Volume 9, Issue 4, 9770–9784.
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=

( n
n + 1

)n
(

1
n + 1

)
→ 0 as n→ ∞.

Therefore, we have

lim
n→∞

µ(T fn,T gn)
µ( fn, gn) + |µ( fn,T fn) − µ(gn,T gn)|

= 1.

This shows that we cannot find a constant L ∈ [0, 1) satisfying inequality (2.1). On the other hand, we
have, for all f , g ∈ M∗,

µ(T f ,T g) = sup {|T f (t) − T g(t)| : t ∈ [0, 1]} + min {T f (0),T g(0)}
= sup {|t f (t) − tg(t)| : t ∈ [0, 1]}
< sup {| f (t) − g(t)| : t ∈ [0, 1]}
= sup {| f (t) − g(t)| : t ∈ [0, 1]} + min { f (0), g(0)}
= µ( f , g)
≤ µ( f , g) + |µ( f ,T f ) − µ(g,T g)| .

Hence T is P-contractive.

Now we are ready to present our main result.

Theorem 2. Let (M, µ) be an M-complete M-metric space and T : M → M be a P-contraction
mapping. Then, T has a unique fixed point.

Proof. Assume that x0 ∈ M and define the sequence {xn} by xn = T nx0. Then we have

µ(xn, xn) = µ(T xn−1,T xn−1)
≤ L

[
µ(xn−1, xn−1) + |µ(xn−1,T xn−1) − µ(xn−1,T xn−1)|

]
= Lµ(xn−1, xn−1)

for all n ∈ N, and so we have
µ(xn, xn) ≤ Lnµ(x0, x0).

This shows that
lim µ(xn, xn) = 0. (2.3)

On the other hand we have

µ(xn+1, xn) = µ(T xn,T xn−1)
≤ L

[
µ(xn, xn−1) + |µ(xn,T xn) − µ(xn−1,T xn−1)|

]
= L

[
µ(xn, xn−1) + |µ(xn, xn+1) − µ(xn−1, xn)|

]
(2.4)

for all n ∈ N. Now, we will consider two cases:
Case 1. Assume there exists k ∈ N such that µ(xk, xk+1) ≥ µ(xk−1, xk). Then by (2.4) we have

µ(xk, xk+1) ≤ Lµ(xk, xk+1).
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This shows that µ(xk, xk+1) = 0 (otherwise the last inequality is a contradiction) and also µ(xk−1, xk) = 0.
Hence by triangular inequality of µ, we have

µ(xk−1, xk+1) − µxk−1,xk+1 ≤
(
µ(xk−1, xk) − µxk−1,xk

)
+

(
µ(xk, xk+1) − µxk ,xk+1

)
= −

[
µxk−1,xk + µxk ,xk+1

]
. (2.5)

The last inequality is possible only if µxk−1,xk = 0 = µxk ,xk+1 or equivalently

min{µ(xk−1, xk−1), µ(xk, xk)} = 0 = min{µ(xk, xk), µ(xk+1, xk+1)}. (2.6)

Now if µ(xk−1, xk−1) = 0, then by (2.1) we have

µ(xk, xk) = µ(T xk−1,T xk−1)
≤ L

[
µ(xk−1, xk−1) + |µ(xk−1,T xk−1) − µ(xk−1,T xk−1)|

]
= 0

and so xk = xk−1, that is, xk−1 is a fixed point of T .
If µ(xk+1, xk+1) = 0, then again by (2.1) we have

µ(xk, xk) = µ(T xk−1,T xk−1)
≤ L

[
µ(xk−1, xk−1) + |µ(xk−1,T xk−1) − µ(xk−1,T xk−1)|

]
= Lµ(xk−1, xk−1)
≤ µ(xk−1, xk−1)

and so by (2.6) we have µ(xk, xk) = 0. Therefore, xk = xk+1, that is, xk is a fixed point of T .
If µ(xk, xk) = 0, then again by (2.1) we have

µ(xk+1, xk+1) = µ(T xk,T xk)
≤ L

[
µ(xk, xk) + |µ(xk,T xk) − µ(xk,T xk)|

]
= 0

and so xk = xk+1, that is, xk is a fixed point of T .
Case 2. Assume that µ(xn, xn+1) < µ(xn−1, xn) for all n ∈ N. Then from (2.4), we have

µ(xn, xn+1) ≤
2L

1 + L
µ(xn−1, xn)

for all n ∈ N. Since 2L
1+L < 1, this shows that

lim µ(xn, xn+1) = 0. (2.7)

Now, we show that {xn} is M-Cauchy sequence. For this, it is enough to show that {xn} is a Cauchy
sequence in (M, ν). First note that from (2.3) and (2.7) we have

lim µ(xn, xn) = 0 = lim µ(xn, xn+1)
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and so we have
lim

n,µ→∞
µxn,xµ = 0 = lim

n,µ→∞
Mxn,xµ .

Assume that {xn} is not Cauchy sequence in (M, ν). Then there exist ε > 0 and subsequences {xnk} and
{xmk} such that nk > mk > k and ν(xnk , xmk) ≥ ε. Now, for mk we can choose the smallest nk satisfying
nk > mk and ν(xnk , xmk) ≥ ε. Hence ν(xnk−1, xmk) < ε. Hence we have

ε ≤ ν(xnk , xmk) ≤ ν(xnk , xnk−1) + ν(xnk−1, xmk) < ν(xnk , xnk−1) + ε.

Since ν(xnk , xnk−1)→ 0, we have
lim
k→∞

ν(xnk , xmk) = ε.

Again, since
ν(xnk , xmk) ≤ ν(xnk , xnk−1) + ν(xnk−1, xmk−1) + ν(xmk−1, xmk)

and
ν(xnk−1, xmk−1) ≤ ν(xnk−1, xnk) + ν(xnk , xmk) + ν(xmk , xmk−1)

we have by letting k → ∞ in these inequalities

lim
k→∞

ν(xnk−1, xmk−1) = ε.

Therefore we have

lim
k→∞

µ(xnk , xmk) = lim
k→∞

(
µ(xnk , xmk) − 2µxnk ,xmk

+ Mxnk ,xmk

)
= lim

k→∞
ν(xnk , xmk) = ε

and in a similar way we can get
lim
k→∞

µ(xnk−1, xmk−1) = ε.

Now by (2.1) and (2.7) we have

ε = lim
k→∞

µ(xnk , xmk)

≤ lim
k→∞

L
[
µ(xnk−1, xmk−1) +

∣∣∣ν(xnk−1, xnk) − ν(xmk−1, xmk)
∣∣∣]

= Lε,

which is a contradiction. Hence, {xn} is a Cauchy sequence in (M, ν) and so it an M-Cauchy sequence
in the M-complete M-metric space (M, µ). Therefore, there exists z ∈ M such that

lim
n→∞

(µ(xn, z) − µxnz) = 0

and
lim
n→∞

(Mxn,z − µxn,z) = 0.

Since limn→∞ µxnz = 0 we have limn→∞ µ(xn, z) = 0 and limn→∞ Mxn,z = 0. Therefore, we have µ(z, z) =

0. Now, we want to show that z is a fixed point of T . From (2.1), we have

µ(T z,T z) ≤ L
[
µ(z, z) + |µ(z,T z) − µ(z,T z)|

]
= 0
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and so µ(T z,T z) = 0. On the other hand, from (2.1), we have

µ(xn,T z) ≤ L
[
µ(xn−1, z) + |µ(xn−1, xn) − µ(z,T z)|

]
and letting n→ ∞ and using Lemma 1, we get (note that µ(z, z) = 0 and lim µ(xn, xn) = 0)

µ(z,T z) = µ(z,T z) − µz,T z

= lim
n→∞

(
µ(xn,T z) − µxn,T z

)
= lim

n→∞
µ(xn,T z) − lim

n→∞
µxn,T z

= lim
n→∞

µ(xn,T z)

≤ lim
n→∞

L
[
µ(xn−1, z) + |µ(xn−1, xn) − µ(z,T z)|

]
= Lµ(z,T z).

This is possible only if µ(z,T z) = 0. Therefore we have

µ(z,T z) = µ(T z,T z) = µ(z, z)

and so z = T z.
Now, let w also be a fixed point of T . Then from (2.1), we have

µ(w,w) = µ(Tw,Tw)
≤ L

[
µ(w,w) + |µ(w,Tw) − µ(w,Tw)|

]
= Lµ(w,w),

which shows that µ(w,w) = 0. Hence we have

µ(z,w) = µ(T z,Tw)
≤ L

[
µ(z,w) + |µ(z,T z) − µ(w,Tw)|

]
= L

[
µ(z,w) + |µ(z, z) − µ(w,w)|

]
= Lµ(z,w).

Therefore, we have µ(z,w) = 0 = µ(z, z) = µ(w,w), hence z = w. �

Remark 2 and Example 2 show that Theorem 2 is a proper generalization of Theorem 1. Here we
provide a further example.

Example 4. LetM = N × N ⊆ R2 with

µ(m, n) = |m1 − n1| + min{m2, n2},

where m = (m1,m2), n = (n1, n2), then (M, µ) is an M-complete M-metric space. Define T :M→M
by

Tm = T (m1,m2) =


(1, 0) , m1 ∈ {0, 1, 2}

(0, 0) , otherwise
.
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9779

Now, we claim that T is P-contraction mapping with L = 1
2 , that is, we have

µ(Tm,T n) ≤
1
2

[
µ(m, n) + |µ(m,Tm) − µ(n,T n)|

]
(2.8)

for all m = (m1,m2), n = (n1, n2) ∈ M. It is clear that (2.8) holds for both m1, n1 ∈ {0, 1, 2} and
m1, n1 < {0, 1, 2}, which in both cases the left-hand side of (2.8) is zero. Now assume m1 ∈ {0, 1, 2} and
n1 < {0, 1, 2}, then we have

µ(Tm,T n) = µ((1, 0), (0, 0)) = 1,
µ(m, n) = |m1 − n1| + min{m2, n2} = n1 − m1 + min{m2, n2},

µ(m,Tm) = µ((m1,m2), (1, 0)) = |m1 − 1| ,
µ(n,T n) = µ((n1, n2), (0, 0)) = n1

and hence

µ(m, n) + |µ(m,Tm) − µ(n,T n)| = n1 − m1 + min{m2, n2} + ||m1 − 1| − n1|

= 2n1 − m1 − |m1 − 1| + min{m2, n2}

≥ 2n1 − 3.

Therefore we have

µ(Tm,T n) = 1 ≤ n1 −
3
2

=
1
2

(2n1 − 3) ≤
1
2

[
µ(m, n) + |µ(m,Tm) − µ(n,T n)|

]
.

This shows that T is a P-contraction mapping, and hence by Theorem 2 it has a unique fixed point. On
the other hand, for m = (2, 0) and n = (3, 1) we have

µ(Tm,T n) = 1 = µ(m, n),

and hence T is not a contraction mapping. Therefore Theorem 1 cannot be applied to this example.

Now, we present a fixed point theorem for P-contractive mappings.

Theorem 3. Let (M, µ) be an M-metric space and T : M → M be a P-contractive mapping having
0-property. Consider the function f :M→ R defined by f (x) = µ(x,T x). If there exists x0 ∈ M such
that f (x0) ≤ f (T x0), then T has a unique fixed point.

Proof. Let x0 be point as mentioned. In this case, if µ(x0,T x0) > 0, then by the P-contractivity of T ,
we have

f (T x0) = µ(T x0,TT x0)
< µ(x0,T x0) + |µ(x0,T x0) − µ(T x0,TT x0)|
= f (x0) + | f (x0) − f (T x0)|
= f (x0) + f (T x0) − f (x0)
= f (T x0),

which is a contradiction. Hence, we have µ(x0,T x0) = 0. Therefore we get µx0,T x0 = 0, and so by the
0-property of T , we have x0 = T x0. The uniqueness of fixed point is easily seen by the P-contractivity
of T . �
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Remark 3. If the function f (x) = µ(x,T x) attains its minimum, then there exists x0 ∈ M such that
f (x0) = inf f (M). In this case we have f (x0) ≤ f (T x0) and so by Theorem 3, x0 is the unique fixed
point of T .

Theorem 4. Let (M, µ) be a compact M-metric space and T : M →M be a P-contractive mapping
having 0-property. If the function f (x) = µ(x,T x) is lower semicontinuous, then T has a unique fixed
point inM.

Proof. By Theorem 2.5.4 of [2], f attains its minimum. Then, from Theorem 3 and Remark 3, T has
a unique fixed point. �

3. Application

In this section, to show the applicability of both Theorem 1 and also Theorem 2 we deal with
an existence and uniqueness theorem for a second-order (p, q)-difference Langevin equation with
boundary conditions of the formDp,q

(
Dp,q + γ

)
x(t) = f (t, x(t)) , t ∈ [0, 1],

x(0) = α, Dp,qx(0) = β,
(3.1)

where f : [0, 1] × R → R is continuous, 0 < q < p ≤ 1, and γ, α, β are given constants. First, let
us review basic definitions and theorems about (p, q)-calculus which can be found in [22]. The (p, q)-
derivative and (p, q)-integral of a function g are defined by the formulas, for constants 0 < q < p ≤ 1,

Dp,qg(t) =


g(pt) − g(qt)

(p − q)t
, t , 0,

lim
t→0

Dp,qg(t), t = 0,

and ∫ t

0
g(s)dp,qs = (p − q)t

∞∑
n=0

qn

pn+1 g
(

qn

pn+1 t
)

provided the right hand side converges.
The (p, q)-integration by parts is given by∫ b

a
g(pt)Dp,qh(t)dp,qt = g(t)h(t)|ba −

∫ b

a
h(qt)Dp,qg(t)dp,qt, (3.2)

Dp,q

(∫ t

0
g(s)dp,qs

)
= g(t), (3.3)

∫ t

0
Dp,qg(s)dp,qs = g(t) − g(0), (3.4)

∫ t

a
Dp,qg(s)dp,qs = g(t) − g(a) for a ∈ (0, t). (3.5)
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We can find more informations about q-calculus, (p, q)-calculus and their relations between fixed
point theory in [9–13, 18–21].

Assuming f (t, x(t)) = 0 for each t ∈ [p, 1], it can be seen that (3.1) is equivalent to the integral
equation defined by

x(t) = α + (β + γα) t − γ
∫ t

0
x(s)dp,qs +

∫ t
p

0
(t − pqs) f (s, x(s))dp,qs. (3.6)

Assume that C[0, 1] is the space of all real valued continuous functions defined on [0, 1]. Define an
operator T : C[0, 1]→ C[0, 1] by

T u(t) = α + (β + γα) t − γ
∫ t

0
u(s)dp,qs +

∫ t
p

0
(t − pqs) f (s, u(s))dp,qs.

Hence, if u is a fixed point of T , then it is a solution of the integral equation (3.6) and so identically,
we can say that it is a solution of (p, q)-difference Langevin equation (3.1).

Here, we will consider the space X = C[0, 1]. Define an M-metric on X as

µ(u, v) = max
{

sup
t∈[0,1]

|u(t)| , sup
t∈[0,1]

|v(t)|
}

+ sup
t∈[0,1]

{|u(t) − v(t)|}

for u, v ∈ X. In this case, (X, µ) is an M-complete M-metric space.
Now consider the following assumptions:

(A1) f : [0, 1] × [0,∞)→ [0,∞) continuous and f (t, x) = 0 for each t ∈ [p, 1],
(A2) α(1 + γ) + β = 0,
(A3) there exists L1 ≥ 0 such that f (t, x) ≤ L1x for all x ∈ [0,∞),
(A4) there exists L2 ≥ 0 such that | f (t, x) − f (t, y)| ≤ L2 |x − y| for all x, y ∈ [0,∞).

Theorem 5. In addition to (A1)–(A4), suppose that

|γ| + max {L1, L2}
p + q − qp2

p2(p + q)
< 1,

then the (p, q)-difference Langevin equation (3.1) has a unique solution.

Proof. Consider the M-metric space (X, µ) mentioned above. Then T is a self mapping of X because
of (A1) and (A2). Also from (A2)–(A4) we have, for all u, v ∈ X

µ1 : = max
{

sup
t∈[0,1]

T u(t), sup
t∈[0,1]

T v(t)
}

= max


supt∈[0,1]

{
α + (β + γα) t − γ

∫ t

0
u(s)dp,qs +

∫ t
p

0
(t − pqs) f (s, u(s))dp,qs

}
,

supt∈[0,1]

{
α + (β + γα) t − γ

∫ t

0
v(s)dp,qs +

∫ t
p

0
(t − pqs) f (s, v(s))dp,qs

}


≤ max

 α + (β + γα) + |γ| supt∈[0,1] u(t) + supt∈[0,1]

∫ t
p

0
(t − pqs) f (s, u(s))dp,qs,

α + (β + γα) + |γ| supt∈[0,1] v(t) + supt∈[0,1]

∫ t
p

0
(t − pqs) f (s, v(s))dp,qs
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≤ max

 |γ| supt∈[0,1] u(t) + L1 supt∈[0,1] u(t) supt∈[0,1]

∫ t
p

0
(t − pqs)dp,qs,

|γ| supt∈[0,1] v(t) + L1 supt∈[0,1] v(t) supt∈[0,1]

∫ t
p

0
(t − pqs)dp,qs


=

(
|γ| + L1

p + q − qp2

p2(p + q)

)
max

{
sup

t∈[0,1]
u(t), sup

t∈[0,1]
v(t)

}
and

µ2 : = sup
t∈[0,1]

{|T u(t) − T v(t)|}

= sup
t∈[0,1]


∣∣∣∣∣∣∣ γ

∫ t

0
u(s)dp,qs −

∫ t
p

0
(t − pqs) f (s, u(s))dp,qs

−γ
∫ t

0
v(s)dp,qs +

∫ t
p

0
(t − pqs) f (s, v(s))dp,qs

∣∣∣∣∣∣∣


= sup
t∈[0,1]


∣∣∣∣∣∣γ

∫ t

0
[u(s) − v(s)] dp,qs +

∫ t
p

0
(t − pqs)

[
f (s, v(s)) − f (s, u(s))

]
dp,qs

∣∣∣∣∣∣


≤ sup
s∈[0,1]

{|u(s) − v(s)|} sup
t∈[0,1]


∣∣∣∣∣∣γ

∫ t

0
dp,qs + L2

∫ t
p

0
(t − pqs)dp,qs

∣∣∣∣∣∣


≤

(
|γ| + L2

p + q − qp2

p2(p + q)

)
sup

s∈[0,1]
{|u(s) − v(s)|} .

Hence, we have

µ(T u,T v) = µ1 + µ2

≤

(
|γ| + L1

p + q − qp2

p2(p + q)

)
max

{
sup

t∈[0,1]
u(t), sup

t∈[0,1]
v(t)

}
+

(
|γ| + L2

p + q − qp2

p2(p + q)

)
sup

s∈[0,1]
{|u(s) − v(s)|}

≤ λ

{
max

{
sup

t∈[0,1]
u(t), sup

t∈[0,1]
v(t)

}
+ sup

t∈[0,1]
{|u(t) − v(t)|}

}
= λµ(u, v),

where

λ = max
{
|γ| + L1

p + q − qp2

p2(p + q)
, |γ| + L2

p + q − qp2

p2(p + q)

}
= |γ| + max {L1, L2}

p + q − qp2

p2(p + q)
< 1.

Therefore, by Theorem 1 (and also Theorem 2) T has a unique fixed point in X. That is, the (p, q)-
difference Langevin equation (3.1) has a unique solution. �

4. Conclusions

We introduced the notion of P-contractive mappings on M-metric spaces. Next, we presented a few
fixed-point outcomes for these mappings. We also provided a few examples to support our theoretical
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findings. Finally, we give an existence and uniqueness theorem for a second-order (p, q)-difference
Langevin equation. This study yields novel results that advance fixed-point theory and applications.
The introduced P-contractiveness can be used to prove new theoretical conclusions for future research,
and the theoretical results can be applied to produce the existence and uniqueness results for specific
types of equations, including fractional order integral and differential equations.
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