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Abstract: Ensuring the reliability and trustworthiness of massive IoT-generated data processed in 

cloud-based systems is paramount for data integrity in IoT-Cloud platforms. The integration of 

Blockchain (BC) technology, particularly through BC-assisted data Edge Verification combined with 

a consensus system, utilizes BC's decentralized and immutable nature to secure data at the IoT 

network's edge. BC has garnered attention across diverse domains like smart agriculture, intellectual 

property, and finance, where its security features complement technologies such as SDN, AI, and IoT. 

The choice of a consensus algorithm in BC plays a crucial role and significantly impacts the overall 

effectiveness of BC solutions, with considerations including PBFT, PoW, PoS, and Ripple in recent 

years. In this study, I developed a Football Game Algorithm with Deep learning-based Data Edge 

Verification with a Consensus Approach (FGADL-DEVCA) for BC assisted IoT-cloud platforms. The 

major drive of the FGADL-DEVCA algorithm was to incorporate BC technology to enable security in 

the IoT cloud environment, and the DL model could be applied for fault detection efficiently. In the 

FGADL-DEVCA technique, the IoT devices encompassed considerable decentralized decision-

making abilities for reaching an agreement based on the performance of the intrablock transactions. 

Besides, the FGADL-DEVCA technique exploited deep autoencoder (DAE) for the recognition and 

classification of faults in the IoT-cloud platform. To boost the fault detection performance of the DAE 

approach, the FGADL-DEVCA technique applied FGA-based hyperparameter tuning. The 

experimental result analysis of the FGADL-DEVCA technique was performed concerning distinct 

metrics. The experimental values demonstrated the betterment of the FGADL-DEVCA approach with 

other existing methods concerning various aspects. 
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1. Introduction 

Conventional cloud computing (CC) is employed to attain demand-based resource distribution 

due to its higher scalability and flexibility. With the fast expansion of the Internet of Things (IoTs) over 

the past few years, the exponential development of data takes great real-time needs for the exchange, 

processing, and storage of data that are much higher than the carrying ability of standard CC [1].The 

IoT is a cutting-edge technology that can be created by several researchers. Despite having an extensive 

of proposals in the present study, the utilization of IoT is not flexible or simple. Among the numerous 

works to address the restrictions of IoT utilization, major developing solutions are dependent upon 

service-based techniques [2]. This method reflects some IoT nodes as smart objects, which could be 

offered widespread services across any network. When this technique is engaged, the developers can 

acquire the flexibility of considering the level of services and data than the devices and communication 

network. Therefore, it will efficiently overcome the problems of IoT utilization, being consistent, flexible, 

effective, and comparatively simple [3]. With the constant expansion of blockchain (BC) technology, it 

started to be progressively implemented in stocks and bonds in the financial domain. In transactions, 

persons introduce "smart contracts" via programs and methods, and implement BC technology to ensure 

the dependability and integrity of financial transactions [4].  

In the existing phase of development, BC technology has come into a time of fast development 

of technologies like artificial intelligence (AI), and big data has used modifications in Internet 

technology, and the IoT solution of the autonomous self-assembled network is steadily entered into all 

phases of social interactions [5]. The link between the IoTs and advanced technologies, namely big 

data and AI, is continuously developing. The major features of BC can be stated, such as computational 

logic, irreversibility of records, allocated database, transparency with pseudonymity, and peer-to-peer 

(P2P) communication, safeguarding access to new data after being accessible through the network. 

Employing BC can ensure that the data cannot be removed or updated unintentionally [6]. 

Confidentiality, security, and privacy to the IoT networks provide reliance, and BC is deliberated 

inherent security technology. This provides solutions to resolve several challenges that occur in 

conventional allocated database systems. The hack-proof form of BC offers security features for 

information generated by IoT devices [7]. Mining of the most extensively employed consensus technique, 

like PoW, is an energy consumption method [8]. Consensus methods have been employed by BC for 

validating transactions and providing data integrity [9]. Therefore, with an integration of the two, such 

as BC technology and microservice, it is possible to design and utilize robust independent and protective 

microservices. Although this sounds promising, safeguarding cyber security comes in the form of a real-

life difficulty [10]. Since the reliance on cyber connections is improving, the possible effect of 

cyberattacks must be significantly large such as shutting down the power grid for a whole blackout. 

I develop a Football Game Algorithm with DL-based Data Edge Verification with a Consensus 

Approach (FGADL-DEVCA) for a BC-assisted IoT-cloud platform. The major drive of the FGADL-

DEVCA approach is to incorporate BC technology to enable security in the IoT cloud environment, 

and the DL model can be applied for fault detection efficiently. 

▪ The FGADL-DEVCA technique utilizes deep autoencoder (DAE) for fault recognition 

and classification in the IoT-cloud platform. 
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▪ FGA-based hyperparameter tuning is applied to enhance the fault detection performance 

of the DAE approach within the FGADL-DEVCA technique. 

▪ An experimental evaluation of the FGADL-DEVCA approach is conducted, assessing its 

performance across distinct metrics 

The remaining sections of the article are arranged as follows: Section 2 offers the literature review, 

and Section 3 represents the proposed method. Then, section 4 elaborates on the results evaluation, 

and section 5 completes the work. 

2. Literature survey 

Vaiyapuri et al. [11] designed an innovative BC-based Data Edge Verification with a Consensus 

Algorithm for ML (BDEVCA-ML) methodology. This method combines the benefits of BC, IoT, and 

ML algorithms for improving the IoT platform. The deep BiGRU (DBi-GRU) algorithm was employed 

for detecting fault. At last, the African vulture optimizer algorithm (AVOA) method was employed for 

the boost parameter tuning of the DBi-GRU architecture. In [12], a method named Score Grouping- 

practical Byzantine fault tolerance (SG-PBFT), a protective and effective dispersed consensus method 

for applications of BC in the IoV, was developed. The SG-PBFT consensus method enhances the 

standard PBFT consensus technique by enhancing the PBFT consensus method as well as employing 

a score group method for attaining greater consensus proficiency. Fan et al. [13] presented a two-layer 

BC-based architecture, and an innovative Dynamic Random BFT (DR-BFT) consensus method was 

developed. Next, the method obtains consensus under the data with a binary consensus sub-method 

that can be a substitute for Ben-Or and Michael’s Random Consensus. The architecture also develops 

an increased minimum technique. 

In [14], a BC-based data integrity verification method was developed. According to this technique, 

a comprehensive BC-assisted data integrity verification method without a reliable third party was 

established with data verification and data update stages. An innovative developed model was built 

under Hyperledger Sawtooth and experimental assessment against 2 recent models in a simulation 

cloud–based platform. Du et al. [15] projected a 2-stage trading method. Primarily, a smart contract-

based identical method was introduced to form the renting connections between the DSOs and ECNs 

with the target of increasing social services. Secondarily, a social welfare improved double auction 

(SWIDA) technique was introduced for the development of the rental connection between the DSOs 

and UTs. In [16], -BC-based protected ES deployment architecture named ETS_GA was designed that 

is dependent on the elite-preserving GA (EGA). The early issue of standard GA was successfully 

resolved by employing niche sharing (NS) and tabu search (TS). BC-assisted privacy safeguard 

techniques were further utilized in the engaged servers. 

Poongodi et al. [17] presented an efficient batch authentication and key exchange method. 

Additionally, 3 categories of techniques have been developed, namely MAC-based, ID-assisted, and 

PKI. The neuro-fuzzy interpretation algorithm could be exploited for predicting VANET security 

grades. In addition, I made an effort from a BC viewpoint integrated with MEC. In [18], a lightweight 

architecture-based evolutionary consensus algorithm called the Proof of Evolutionary Model (PoEM) 

technique was projected. PoEM repeatedly trains an ML method for attaining a consensus. Besides 

IoT platforms’ dynamics, an innovative method was developed to control nodes combining and leaving 

dynamically. 

Chen et al. [19] present a novel consortium blockchain framework for MCS, featuring the 

development of a Credit-based Proof-of-Work (C-PoW) model for enhanced reliability. It also 

introduces a scalable Deep Reinforcement Learning-based Computation Offloading (DRCO) method 
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to handle computation-intensive tasks in the C-PoW context. In [20], an innovative Deep 

Reinforcement Learning (DRL) framework designed to offload computation-intensive Proof-of-Work 

(PoW) tasks onto edge servers within a blockchain-based Mobile Crowd Sensing (MCS) system is 

introduced. The objective of this framework is to establish an optimal offloading policy for PoW tasks, 

specifically addressing the complexities and dynamics inherent in the MCS environment. 

3. The proposed model 

In this study, an FGADL-DEVCA approach for a BC-assisted IoT-cloud platform is introduced. 

The major driver of the FGADL-DEVCA approach is to incorporate BC technology to enable security 

in the IoT cloud environment, and the DL model can be applied for fault detection efficiently. In the 

FGADL-DEVCA technique, the IoT devices encompass considerable decentralized decision-making 

abilities for reaching an agreement based on the performance of the intrablock transactions. Figure 1 

illustrates the flow of the presented FGADL-DEVCA approach. 

 

Figure 1. Overall flow of the FGADL-DEVCA approach. 
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3.1. Blockchain technology 

In 2009, BC technology was presented by Satoshi Nakamoto over the establishment of the 

primary decentralization of digital exchange [21]. Currently, Bitcoin has gained important attention 

from both trade experts and researchers for its ability to transform a huge array of uses over the 

formation of decentralization and safe methods. 

BC technology can be employed to find inadequacies and enhance data safety over mysterious 

and reliable transactions. Transactions noted on a BC are included in a decentralized archive by time 

stamps, averting any single right from authorizing actions in privacy. This consensus-driven technique 

aids in guaranteeing the reliability and safety of the BC, as some effort to change the archives would 

need to be organized through a mainstream of the system to accomplish. A BC includes a sequence of 

interrelated blocks; each holds the highest of manifold transactions and an exclusive cryptographic 

hash. These hashes have been produced utilizing difficult mathematical procedures that are employed 

to classify and confirm the reality of every block. Every block contains header data like the preceding 

block's hash, a time stamp, block number, other meta-data, and a body having the transaction logged 

on the system. 

3.2. Fault detection using DAE 

In this work, the FGADL-DEVCA technique exploits DAE for the recognition and classification 

of faults in the IoT-cloud platform. The technique utilizes autoencoders (AE), which is common in 

deep learning (DL) [22]. An AE is nothing but an unsupervised NNs-based feature extractor model 

that acquires the finest possible features to imitate its outcome assuming some input. One of the major 

attractive features is its probability of delivering a nonlinear and effective generalized PCA. It attains 

this outcome through backpropagation (BP) by inputting equal values of the target. To restate, it 

attempts to address how to forecast the presence as much as possible. The AE architecture contains 3 

layers such as an output layer, a hidden layer (HL), and an input layer. The HL sizes are smaller than 

the input. Figure 2 represents the framework of the DAE model. 

 

Figure 2. Architecture of DAE. 



8873 

AIMS Mathematics  Volume 9, Issue 4, 8868–8884. 

In the presented model, we use a deep AE. Unlike some traditional AEs, deep AEs contain 2 

typical deep belief networks, such as decoding and encoding, with 4 or 5 shallow layers each. DL is 

beneficial to AEs by a stacked AE, in which numerous HL construct depth and imitate vital thoughts. 

As an outcome of this improved depth, computing costs and quantity of instruction data needed will 

be reduced and accurateness will be enhanced. The result of one HL aids as an input to a future, which 

is a more innovative stage. The 1st-order features are frequently learned from unrefined data by 1st 

layer of a stacked AE. The 2nd-order features depend on movements in the occurrence of 1st-order 

behaviors that are normally absorbed by the 2nd layer. Successive layers construct our thoughtful 

highest-order features. 

The input layer is the 1st layer that obtains input Xi and utilizes many HLs to encode and decode 

it. The encoder procedure compacts the aspects to make them lesser than input data, and the procedure 

of the decoder reinstates these aspects in a converse way to commence the last outcome at the deepest 

layer. The LSTM and convolution (Conv) layer are united with an AE to produce a strong DDoS attack 

classifier. LSTM is mainly capable of classifying procedures like time sequences and learning from 

knowledge. After the completion of encoding, dependent on the outcome of the HL, the resultant layer 

has been decoded and rebuilt based on Eq (2) to generate a result of a similar dimension as the layer 

of input. 

The main intention of the AE part is to draw input 𝑥 ∈ [0,1]𝑑 to hidden symbol 𝑦 ∈ [0,1]𝑑′, 

whereas the mapping is executed by the function as follows: 

𝑦𝑖 = 𝑠(𝑊𝑥𝑖 + 𝑏)         (1) 

Through 

𝑧𝑖 = 𝑠(𝑊′𝑦𝑖 + 𝑏′)         (2) 

This symbol of concealment has been mapped backward into a renovation of the similar form as 

input 𝑥 , whereas, 𝑠  signifies a nonlinear sigmoid function. The primary and second parts are the 

encoder and decoder, respectively. These parameters decrease the normal renovation error. This 

technique contains one Conv layer, one dense layer, one input layer, one max-pooling layer, and dual 

LSTM layers in output. 

3.3. Hyperparameter tuning using FGA 

Finally, the FGADL-DEVCA technique applies FGA-based hyperparameter tuning. FGA is a 

novel meta-heuristic that can be applied initially to resolve continuous global optimization complexity 

[23]. Recently, it could be attempted to employ this method for roaming salesman problems as well as 

vehicle routing problems, though it is not capable of achieving better solutions. This could be 

recommended and stimulates the performance of football players who try to determine the better places 

during a match. Alternatively, the FGA applies various approaches to create a balance between 

incorporation of intensification and diversification. The FGA method utilizes the combined 

intelligence of humans and various techniques to utilize animal swarm intelligence. Alternatively, as 

stated in this process and similar to a football team whose goal is to score an objective, this aim can be 

used for attaining a good potential solution to the problem. Thus, to employ this method in an optimizer 

problem, generating a comprehensive simulation among each module of an optimized issue in a 

football game is required, as given below. 
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▪ The football players, time, and pitch with the developed method were the possible 

complexity space, the quantity of period to execute the procedure, and the original 

population of difficulties. 

▪ The early populations that the method needs to function are the similar team players who 

can be aggressive and desire to score as many goals as possible. 

▪  It can be supposed that all opposing players in the game have similar local optimal points 

with search space. Hence, the players of this group are not considered to be members of 

the 1st-team and do not attempt to score objectives. 

When a player’s position is intended for an identical quality response of most members, the aim 

is that all players can acquire the soccer ball, the ball moves between players, and reaches the member 

with the better position. A highly significant fact in football matches is that a method can be used, and 

a coach may change members who are not as good as other members in this game. Otherwise, the 

member of the team with poor performance could be eliminated from the team, and because the coach 

makes best decisions, a better outcome could be achieved. This tactic remains to achieve the optimum 

goal or point until the closure of the game which can be the period of the entire process. 

3.3.1. The general movement of players 

In a football game, when the players are not under the instructions of their coach, the player is 

walking in the area without having a goal or they can move towards the ball. Certainly, in these two 

conditions, all players can have an objective to find a better position to score. In this game, one highly 

significant position, which other players request, is always the place of the players who have the ball. 

Hence, the additional goal of players is to be closer to the player with the ball (𝑋𝑏𝑎𝑙𝑙
𝑡 ), receive the ball, 

and have a good position for their teams. Consequently, equation (1) represents the place of the 

members in repetition 𝑡.  In this equation, 𝛽 ∈ [0.1]  and 𝜀 ∈ [−1,1]  are both arbitrary variables 

that follow a uniform distribution. 𝛼 > 0  is a parameter fixed by the user, which obtains values 

dependent on problems to be procedure determined. 𝛼 is the main value for a global or local search 

of the method due to reduced values, so the process searches nearby and the robustness of the method 

increases in intensification, whereas raising the approach prefers diversification or a global search. 

Slowly reducing this parameter, the method is modified from a global search at the beginning of the 

technique to a local search. 

𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 + 𝛼𝑖𝜀 + 𝛽(𝑋𝑏𝑎𝑙𝑙
𝑡 − 𝑋𝑖

𝑡−1)       (3) 

Besides, in phase 𝑡, it demonstrates that the players have the ball. However, the passing of the 

ball between players is normally random, and a member or player of the team in a good position can 

likely acquire the ball. Thus, an equation for the variables that consider 𝛼 can be given in Eq (4). 

From this equation, 𝜃 ∈ (0.1] and 𝛼0 can be the constant quantity and initial parameter that were 

chosen arbitrarily. 

𝛼𝑖 = 𝛼0𝜃𝑡          (4) 

3.3.2. Coaching 

Football is a common game where the trainer is very significant since he or she can attain a worthy 
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outcome by utilizing correct strategies as well as varying players. Therefore, a team trainer plays an 

important part in training as well as guiding players to be more active. Otherwise, the players finish 

their performance based on memory, such as coach's memory (CM), and at all times ensures 

performance and their placements as the best positions on the field. Therefore, it is extremely good to 

assign a few early populace dimensions in techniques as Coach Memory Size (CMS). This technique 

is capable of keeping essential answers. The main reason for utilizing this memory is that the technique 

employs two strategies similar to natural versions. The method is proposed to attain the chief goal of 

recording aims in football as well as get optimal probable answers in this method. 

Attack strategy: The objective of a football game is to score goals. The normal way to do this is 

for midfielders and defenders to move near the opponent’s goal and defeat them to have better chances 

of scoring. Nowadays, opposing players with developed techniques have similar solutions; therefore, 

the objective is to transport lesser solutions in models closer to results that play the character of a local 

optimizer. This kind of optimization is recognized so that modification of their purpose is lesser than 

a definite charge of Hyper Radius Limitation Value (HRLV); based on Eq (3), this value slowly reduces. 

It must be highly well-known that for every associate of the populace, hyper distance (HD) is the space 

for an optimal position, and few followers of the populace with a cost greater than HRLV the next 

strategy that is well-known as a hyper radius penalty (HRP) plan. 

𝐻𝑅𝐿𝑉𝑇 = 𝐻𝑅𝐿𝑉𝑚𝑖𝑛 + 𝛾(𝐻𝑅𝐿𝑉𝑡−1 − 𝐻𝑅𝐿𝑉𝑚𝑖𝑛).     (5) 

where 𝛾 ∈ (0.1) is the decreased constant of HRLV. 

Substitution Approach: This plan is an additional way to advance and enhance the group's score, 

so that players do not keep playing and are substituted by other players that assist the team for a high 

score. In this model, this kind of performance is also measured, and in iteration, the worst results are 

taken from the issue, and the method substitutes them with improved solutions to the issue. The times 

the change was completed is known as the fitness limitation value (FLV), which substitutes the results 

that provide values poorer than this value in every iteration. Thus, the quality of the solution can be 

predicted to increase at the time of performance, and this value is theoretically adjustable to the model's 

iterations, and its value develops (this value is higher in large problems and lower in small problems). 

It employs FLV values, and this plan is known as the efficient fitness penalty (FP) technique. 

𝐹𝐿𝑉𝑡 = 𝐹𝐿𝑉𝑚𝑖𝑛 + 𝜆(𝐹𝐿𝑉𝑡−1 − 𝐹𝐿𝑉𝑚𝑖𝑛).     (6) 

At this point, 𝜆 has the same role as Eq (6). In point, the training part is similar to the local search 

segment of the model. The novel positions for players that are out of bounds are found after applying 

plans by utilizing accidental movements from adjacent optimal positions to their prior position (Eq (7)). 

𝑋𝑛𝑒𝑤 = 𝑋𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝑏𝑒𝑠𝑡 + 𝛼𝑗𝜀       (7) 

The fitness choice is a significant aspect controlling the solution of the FGA system. The 

hyperparameter choice contains the encoded performance for evaluating the effectiveness of candidate 

results. During this case, the FGA assumes accuracy as the main condition to design the fitness function 

(FF) that is expressed as:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)        (8) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (9) 
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whereas, 𝐹𝑃 and 𝑇𝑃 stand for the false and true positive values, respectively. 

4. Experimental validation 

In this section, the performance validation of the FGADL-DEVCA approach is examined in detail. 

In Table 1 and Figure 3, a comparison precision rate (PR) outcome of the FGADL-DEVCA system 

can be investigated in detail [11]. This acquired outcome shows that the FGADL-DEVCA method 

exhibited better performance with maximum PR values. It is shown that the RF and DA-WRF models 

demonstrate worse performance. Although the DA-WRF and PSODA-WRF models accomplish closer 

outcomes, the FGADL-DEVCA method attains superior performance with maximum PR values of 

99.84%, 99.50%, 99.84%, 99.89%, and 99.68%, under CPUHog, MemoryOF, Scanning, IOHog, and 

DoS classes, respectively. 

Table 1. PR analysis of FGADL-DEVCA approach with recent models under various classes. 

Precision Rate (%) 

Classes FGADL-DEVCA BDEVCA-ML  PSODA-WRF  DA-WRF  Random Forest  

CPUHog 99.84 99.69 98.73 97.20 95.99 

MemoryOF 99.50 99.35 98.22 97.11 95.67 

Scanning 99.84 99.72 98.44 97.30 96.18 

IOHog 99.89 99.74 98.86 97.69 96.14 

DOS 99.68 99.53 98.02 96.53 95.37 

 

Figure 3. PR analysis of FGADL-DEVCA model for various classes. 

A wide-ranging comparison recall rate (RR) analysis of the FGADL-DEVCA system is examined 
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in Table 2 and Figure 4. These outcomes show that the FGADL-DEVCA technique has better 

performance with higher RR values. It is represented that the RF and DA-WRF systems demonstrate 

poorer performance. While the DA-WRF and PSODA-WRF methods achieve remarkable results, the 

FGADL-DEVCA algorithm gets superior performance with greater RR values of 99.78%, 99.51%, 

99.78%, 99.87%, and 99.63% under CPUHog, MemoryOF, Scanning, IOHog, and DoS classes. 

Table 2. RR analysis of the FGADL-DEVCA technique with recent models having various classes.  

Recall Rate (%) 

Classes FGADL-DEVCA BDEVCA-ML  PSODA-WRF  DA-WRF  Random Forest  

CPUHog 99.78 99.63 98.62 97.70 96.46 

MemoryOF 99.51 99.37 97.99 96.35 95.30 

Scanning 99.78 99.65 98.55 97.49 96.53 

IOHog 99.87 99.74 98.17 97.01 95.64 

DOS 99.63 99.49 97.91 96.82 95.46 

 

Figure 4. RR analysis of the FGADL-DEVCA model for various classes. 

An extensive comparison accuracy rate (AR) outcome of the FGADL-DEVCA system can be 

determined in Table 3 and Figure 5. These achieved outcomes show that the FGADL-DEVCA 

algorithm exhibits increased performance with maximal AR values. It is displayed that the RF and 

DA-WRF systems show poorer performance. Though the DA-WRF and PSODA-WRF methods gain 

significant outcomes, the FGADL-DEVCA methodology obtains excellent performance with 

improved AR values of 99.89%, 99.71%, 99.91%, 99.78%, and 99.77% under CPUHog, MemoryOF, 

Scanning, IOHog, and DoS classes, respectively.  
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Table 3. AR analysis of the FGADL-DEVCA approach with recent models under various classes. 

Accuracy Rate (%) 

Classes FGADL-DEVCA BDEVCA-ML  PSODA-WRF  DA-WRF  Random Forest  

CPUHog 99.89 99.76 98.55 96.92 95.20 

MemoryOF 99.71 99.54 98.15 97.15 96.13 

Scanning 99.91 99.78 98.21 96.61 95.39 

IOHog 99.78 99.65 98.36 96.65 95.16 

DOS 99.77 99.62 98.17 97.06 95.95 

 

Figure 5. AR analysis of the FGADL-DEVCA system for various classes. 

A comprehensive comparison F-score rate (FR) outcome of the FGADL-DEVCA system is 

measured in a detailed manner in Table 4 and Figure 6. These simulation values show that the FGADL-

DEVCA method has greater performance with maximum FR values. It is displayed that the RF and 

DA-WRF techniques demonstrate low performance. While the DA-WRF and PSODA-WRF systems 

gain closer results, the FGADL-DEVCA algorithm gets better performance with the highest FR values 

of 99.60%, 99.65%, 99.71%, 99.74%, and 99.77% under CPUHog, MemoryOF, Scanning, IOHog, 

and DoS classes. 

In Table 5 and Figure 7, a comparative fault detection accuracy (FAD) result of the FGADL-

DEVCA system is provided. These simulation results specify that the FGADL-DEVCA technique gets 

superior performance under all fault probabilities (FP). With an FP of 0.05%, the FGADL-DEVCA 

methodology attains an increased FPA of 99.67% but the BDEVCA-ML, PSODA-WRF, NFD, ETX-

TD, and DFD models gained decreased FPA of 99.23%, 98.02%, 96.81%, 96.39%, and 94.22%, 

respectively. Also, with FP of 0.20%, the FGADL-DEVCA method gets an increased FPA of 95.76% 

although the BDEVCA-ML, PSODA-WRF, NFD, ETX-TD, and DFD algorithms acquire diminished 
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FPA of 95.31%, 92.45%, 90.42%, 87.31%, and 83.26%, respectively. Besides, with FP of 0.35%, the 

FGADL-DEVCA system gets an increased FPA of 91.57%, but the BDEVCA-ML, PSODA-WRF, 

NFD, ETX-TD, and DFD algorithms obtain lessened FPAs of 91.11%, 89.09%, 84.61%, 80.57%, and 

74.90%, respectively. Finally, with an FP of 0.50%, the FGADL-DEVCA system obtains a raised FPA 

of 87.62%; however, the BDEVCA-ML, PSODA-WRF, NFD, ETX-TD, and DFD approaches obtain 

reduced FPAs of 87.18%, 83.27%, 81.49%, 75.01%, and 65.94%, respectively. 

Table 4. FR analysis of the FGADL-DEVCA approach with recent models under various classes. 

F-Score Rate (%) 

Classes FGADL-DEVCA BDEVCA-ML  PSODA-WRF  DA-WRF  Random Forest  

CPUHog 99.60 99.45 97.76 96.57 95.18 

MemoryOF 99.65 99.49 97.92 96.61 95.62 

Scanning 99.71 99.58 98.06 96.67 95.08 

IOHog 99.74 99.60 97.99 97.04 96.01 

DOS 99.77 99.60 97.88 96.75 95.82 

 

Figure 6. FR outcome of the FGADL-DEVCA methodology under various classes. 
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Figure 7. FAD outcome of FGADL-DEVCA technique under varying FP. 

Table 5. FAD outcome of FGADL-DEVCA technique with existing approaches under varying FP. 

Fault Detection Accuracy (%) 

Fault 

Probability 

FGADL-

DEVCA 
BDEVCA-ML 

PSODA-

WRF  
NFD  

ETX-

TD  
DFD  

0.00 100 100 100 100 100 100 

0.05 99.67 99.23 98.02 96.81 96.39 94.22 

0.10 99.57 99.22 98.56 95.57 92.48 89.10 

0.15 96.72 96.26 94.36 92.49 89.90 83.69 

0.20 95.76 95.31 92.45 90.42 87.31 83.26 

0.25 94.50 94.08 91.68 88.42 86.67 80.70 

0.30 93.22 92.75 90.72 84.62 83.81 78.81 

0.35 91.57 91.11 89.09 84.61 80.57 74.90 

0.40 90.06 89.62 86.12 82.85 78.65 70.69 

0.45 88.29 87.85 84.21 81.80 78.95 68.12 

0.50 87.62 87.18 83.27 81.49 75.01 65.94 

The 𝑎𝑐𝑐𝑢𝑦 curves for training (TR) and validation (VL) exhibited in Figure 8 for the FGADL-

DEVCA technique offer valuable insights into its effectiveness for numerous epochs. Primarily, it can 

be a reliable improvement in both TR and TS 𝑎𝑐𝑐𝑢𝑦 to rising epochs, demonstrating the proficiencies 

of the model in learning and recognizing patterns in both TR and TS data. The increasing trend in TS 

𝑎𝑐𝑐𝑢𝑦 underscores the adaptability of the model to the TR dataset and the ability to generate correct 

predictions on unseen data, underscoring capabilities of robust generalization. 

Figure 9 offers a wide-ranging overview of the TR and TS loss values for the FGADL-DEVCA 

method through numerous epochs. The TR loss consistently decreases as the model refines weights to 
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minimize classification errors under both datasets. The loss curves demonstrate the model's alignment 

with the TR data, underscoring its ability to capture patterns successfully. The constant improvement 

of parameters in the FGADL-DEVCA system is significant, targeted to diminish discrepancies 

between predictions and actual TR labels. 

 

Figure 8. 𝐴𝑐𝑐𝑢𝑦 curve of the FGADL-DEVCA technique. 

 

Figure 9. Loss curve of the FGADL-DEVCA technique. 

These results confirmed that the FGADL-DEVCA technique gained better performance over 

other recent approaches. 
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5. Conclusions 

In this study, an FGADL-DEVCA method for a BC-assisted IoT-cloud platform is introduced. 

The major drive of the FGADL-DEVCA approach is to incorporate BC technology to enable security 

in the IoT cloud environment, and the DL model can be applied for fault detection efficiently. In the 

FGADL-DEVCA technique, the IoT devices encompass considerable decentralized decision-making 

abilities for reaching an agreement based on the performance of the intrablock transactions. Besides, 

the FGADL-DEVCA technique exploits DAE for the recognition and classification of faults in the 

IoT-cloud platform. To enhance the fault detection solution of the DAE approach, the FGADL-DEVCA 

technique applies FGA-based hyperparameter tuning. The experimental results analysis of the 

FGADL-DEVCA technique is performed concerning distinct metrics. The experimental values 

demonstrated the betterment of the FGADL-DEVCA algorithm with other existing methods 

concerning various aspects. Future efforts for FGADL-DEVCA could focus on adaptations to various 

IoT-cloud scenarios and improving fault detection through ongoing algorithm refinement. However, a 

potential limitation is the sensitivity of FGA-based hyperparameter tuning to network variations, 

necessitating robustness considerations for real-world deployments.  
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