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Abstract: We used a class of stochastic differential equations (SDE) to model the evolution of cattle
weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-
Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization
issues for this class of models. However, to incorporate individual characteristics of the animals, the
average transformed size at maturity parameter α and/or the growth parameter β may vary randomly
from animal to animal, which results in SDE mixed models. Obtaining a closed-form expression for
the likelihood function to apply the maximum likelihood estimation method is a difficult, sometimes
impossible, task. We compared the known Laplace approximation method with the delta method
to approximate the integrals involved in the likelihood function. These approaches were adapted to
allow the estimation of the parameters even when the requirement of most existing methods, namely
having the same age vector of observations for all trajectories, fails, as it did in our real data example.
Simulation studies were also performed to assess the performance of these approximation methods.
The results show that the approximation methods under study are a very good alternative for the
estimation of SDE mixed models.
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1. Introduction

The growth of individual organisms must take into account random environmental fluctuations that
affect the growth rate and so we use stochastic differential equation (SDE) models. To describe the
growth of an individual in a randomly fluctuating environment, a class of SDE models has been studied,
for instance in [1–3]. The models of this class can be written, by using an appropriate transformation
of the size, in the form of a mean-reverting Ornstein-Uhlenbeck model, also called the Vasicek model
in financial mathematics [4], as

dYi(t) = β (α − Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (1.1)

where Yi(t) = h(Xi(t)) is a modified size by the transformation h, a monotonous C1 function (which
we assume to be known) of the real size Xi(t) at age t of the ith individual (i = 1, . . . ,M). We have
Yi(ti,0) = yi,0 = h(xi,0), where xi,0 is the size observed at age ti,0 (known initial observation) for individual
i, and α = h(A), where A is the asymptotic size or size at maturity. The growth parameter β is the
rate of approach to maturity, σ measures the strength of environmental fluctuations on growth, and
Wi(t) (i = 1, . . . ,M) are independent standard Wiener processes. Specific choices of the function h
lead to stochastic versions of some models commonly used to describe growth (e.g., monomolecular,
Bertalanffy-Richards, Gompertz, and logistic). The estimation, prediction, and optimization issues for
this class of models with applications to cattle weight data can be found in [1, 5–8]. For this type
of data, one of the most adequate choices of the transformation function h was the logarithm of the
weight, which corresponds to the stochastic Gompertz model. For this reason, when illustrating the
results obtained in this paper, this particular model was used in the application.

Since model parameters may differ among animals, we extend the study to mixed SDE models
where the parameters α and/or β vary randomly among animals. The maximum likelihood estimation
method was applied and we studied the delta approximation method, inspired by the classical delta
method, to approximate the integral involved in the likelihood function, and compared it with the
available R package for SDE mixed models mixedsde. Another already-known approximation method
is the Laplace approximation method. Despite some papers having already proposed the Laplace
approximation method ([9, 10]), none of them use this approximation method in the cases where
the number of observations and/or the ages of such observations vary from animal to animal. The
motivation of the paper is to study approximation methods that can be applied to the more realistic
SDE mixed models in the context of real cattle growth data, where different animals have different
age vectors and different numbers of weighings. In particular, we further develop and assess the
performance of an approximation method (the delta method) that is easy to implement and a reliable
and fast alternative to other existing approximation methods. In [3] the delta approximation method
was proposed for the particular case where both parameters α and β are independent Gaussian
distributed random variables.

Our main objective is to compare the delta and Laplace approximation methods. In addition to
this methodological comparison, we have two other objectives. The first is to assess the robustness
of these approximation methods for estimating model parameters when there is no exact method
available as an alternative. These methods can be particularly useful when the integral appearing in the
likelihood function cannot be explicitly computed, and no closed-form expression of this function can
be obtained, as is the case in the random β scenario and when both parameters α and β are considered
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random. The second objective is to use the approximation methods in the particular case where the
likelihood function can be explicitly obtained, and therefore an exact method is available (α random),
as a benchmark to assess the robustness of the estimates obtained by the approximation methods.

To illustrate the results, we have used the weight in kilograms of the 10843 Mertolengo cattle
males with recorded genetic information on the database of the Associação de Criadores de Bovinos
Mertolengos (ACBM), which registers the growing and finishing phases of the young Mertolengo
males, and its associated breeders in the Alentejo region in Portugal. Each animal has multiple weight
records, ranging from 3 to 33, at various ages from birth to a maximum age between 0.2 and 8.1 years,
totaling 69782 observations.

A survey of several parametric and nonparametric methods for asymptotic inference in SDE mixed
models can be found in [11] with the discussion of asymptotic properties of estimators and presentation
of several applications. For instance, in [12, 13] the authors apply SDE mixed effects models to tumor
growth dynamics using fully Bayesian inference through the pseudo-marginal methods. In [14] an
application to electroencephalography data is used by discretizing the continuous time likelihood.
The Laplace approximation approach and other approximation methodologies have been addressed,
for instance, in [9, 15, 16]. Some methodologies were already implemented in R packages (see,
for example, [17–19]) and here we will compare the results obtained by the delta and the Laplace
approximation methods with those obtained using the R package mixedsde. The mixedsde R package
allows inference on the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross SDE mixed models for random
effects on the trend of additive, multiplicative, or jointly additive-multiplicative types. It allows
one to obtain the maximum likelihood estimates of the model parameters through approximation
methods using a parametric approach, a parametric Bayesian approach, and a non-parametric Bayesian
approach. In its parametric approach, it uses the continuous-time likelihood function obtained via the
Girsanov formula and approximates the likelihood with a discretized version [18, 20].

The available packages require that the time vector of observations is the same for all trajectories.
This is not the case in our application, since in our real data the animals are not weighted at the same
ages and, for this reason, the existing packages could not be used. To be able to compare the results
of both delta and Laplace approximation methods considered here with the results obtained by the
mixedsde R package, we have used a dataset of simulated weights at the same equidistant ages. A
bias analysis of the parameter estimates and an evaluation of the adequacy of the confidence intervals
based on the empirical Fisher information matrix was also applied to both the delta and the Laplace
approximation methods.

In summary, in this paper, we present useful contributions not available elsewhere.

• Closed-form expressions for the delta approximation method: This paper offers all closed-form
expressions of the delta approximation method, particularly when the parameters α or β are
considered random.
• Detailed formulas for the Laplace approximation method: This paper introduces intricate

formulas for the Laplace approximation method, accommodating data with varying numbers
of observations per subject and non-equidistant observations. These formulas enable a
straightforward implementation.
• Comprehensive comparison among methods: A thorough comparison is conducted between the

two approximation methods (delta and Laplace) and the mixedsde R package. This comprehensive
analysis provides a clear understanding of their performance under different scenarios involving

AIMS Mathematics Volume 9, Issue 4, 7866–7894.



7869

random parameter considerations.

This paper is organized as follows: In Section 2, we present the SDE models, their main properties,
and the use of the maximum likelihood estimation method to estimate the model’s parameters. In
Section 3, we present the SDE mixed model. In Sections 4 and 5, the particular SDE mixed models for
the random α case and for the random β case are presented, and the methodological developments and
expressions for the delta approximation method and the Laplace approximation method are obtained.
In Section 6, the same approach is presented for the case where both α and β are random. In
Section 7, we present the application to our real cattle weight data and to simulated data, comparing
the performance of the different methods. We end with Section 8, where the main conclusions are
presented.

2. Stochastic differential equations for non-mixed models

We consider data from M individuals. Let Xi(t) be the size at time t of the ith individual
(i = 1, . . . ,M). The corresponding modified size is Yi(t) = h(Xi(t)), where the transformation h is
a monotonous C1 function. If the individual is growing in a randomly fluctuating environment, we can
model growth through (1.1).

It can be seen, for instance in [21], that the solution of (1.1) is given, for t ≥ ti,0, by

Yi(t) = α − (α − yi,0)e−β(t−ti,0) + σe−βt
∫ t

ti,0
eβsdWi(s), i = 1, . . . ,M, (2.1)

and follows a Gaussian distribution with mean α − (α − yi,0)e−β(t−ti,0) and variance σ
2

2β (1 − e−2β(t−ti,0)).
Note that Yi(t) is a homogeneous diffusion process with drift coefficient a(y) = β (α − y) and diffusion
coefficient b(y) = σ2.
Let ti, j (i = 1, ...,M, j = 1, ..., ni) be the age of the jth observation of individual number i and let
Yi, j = Yi(ti, j) = h(Xi(ti, j)) be the corresponding modified weight according to model (1.1). For each
individual i (i = 1, . . . ,M), denote by ti =

(
ti,0, ti,1, . . . , ti,ni

)
its time vector of observations (which may

differ from individual to individual), by Yi =
(
Yi,0,Yi,1, ...,Yi,ni

)
its random vector of observables, and

by yi =
(
yi,0, yi,1, ..., yi,ni

)
the observed value of Yi. We assume ti, j−1 < ti, j and make Ei, j = e−(ti, j−ti, j−1).

We see that Yi, j = α + Eβi, j(Yi, j−1 − α) + σe−βti, j
∫ ti, j

ti, j−1
eβsdWs, and so, conditioned on Yi, j−1 = yi, j−1, the

transition distribution for animal i is Gaussian:

Yi, j|Yi, j−1 = yi, j−1 ∼ N
(
α +

(
yi, j−1 − α

)
Eβi, j ,

σ2

2β
(1 − E2β

i, j)
)
. (2.2)

To estimate the parameter vector p = (α, β, σ), the maximum likelihood estimation method is usually
applied, see, for instance, [5]. From (2.2), using the fact that Yi(t) is a Markov process, we know that,
given Yi,0 = yi,0 (assumed known), the joint probability density function (p.d.f.) for animal i is

pYi(yi|α, β, σ) =
ni∏
j=1

exp
(
−1

2

(
yi, j−α−(yi, j−1−α)Eβi, j

)2

σ2
2β (1−E2β

i, j )

)
√

2πσ2

2β (1 − E2β
i, j)

(2.3)
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=

exp

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eβi, j

)2

σ2

2β (1 − E2β
i, j)


ni∏
j=1

√
2π
σ2

2β
(1 − E2β

i, j)

, i = 1, . . . ,M,

and, by independence among individuals, we obtain the likelihood function for the M animals

L(α, β, σ) =
M∏

i=1

pYi(yi|α, β, σ). (2.4)

The maximum likelihood estimate p̂ of the parameter vector p is obtained by maximization of
(2.4). The maximum likelihood estimators are asymptotically Gaussian with mean p = (α, β, σ) and
variance-covariance matrix V. We can estimate V by the inverse of the empirical Fisher information
matrix.
We have described a quite general SDE animal growth model and the maximum likelihood estimation
method to estimate the model’s parameters α, β, and σ, that are assumed to be the same for all
individuals. However, in cattle weight data, it is natural to think that different animals may differ
in some parameter value. So, we will consider this situation using mixed SDE models.

3. Stochastic differential equation mixed models

SDE mixed models are used to model growth, with applications in various fields, such as animal
growth and pharmacokinetics, among others [3,14,15,22,23]. For the type of models we present here,
in [3,9,16,24], it can be seen that, when one or both drift parameters α and βmay vary randomly among
animals, the likelihood function can be obtained from the transition density function conditioned on
the respective random parameter(s). Assume that b is a d-dimensional vector of parameters that vary
randomly among animals and let bi be its random effect on animal i. Let ϵ be the vector of the remaining
model parameters, assumed to be common to all animals. The distribution of b among animals has
p.d.f. p(b|Ψ), where Ψ is the parameter vector that characterizes that distribution and needs to be
estimated. Assuming independence among the animals, the M parameter vectors bi of the different
animals i (i = 1, . . . ,M) are independent identically distributed random variables with common p.d.f.
p. Assume also that the bi (i = 1, . . . ,M) are independent of the Wiener processes that characterize
the environmental conditions under which the animals are growing. The likelihood function for M
trajectories (animals) is given by

L(ϵ,Ψ) =
M∏
i=1

pYi(yi|ϵ,Ψ) =
M∏
i=1

+∞∫
−∞

pYi(yi|bi, ϵ)p(bi|Ψ) dbi, (3.1)

where pYi(yi|bi, ϵ) is the joint p.d.f. for animal i conditional on bi. The case of a single parameter
bi = (αi) has already been studied for αi ∼ N(µ, θ2) and allows a closed-form computation of the
integral in the likelihood function, resulting in a final closed-form (heavy) expression for this function.
One can see it, for example, in [25] for the particular situation of µ = 0 and a time vector of observations
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ti ≡ t = (t0, t1, . . . , tn), i = 1, . . . ,M, common to all animals and having uniform time spacing (t j−t j−1 ≡

δ , j = 1, . . . , n), which considerably simplifies the expressions, and in [3] and [15] for the general
situation.

However, the integral in (3.1) does not always have a closed-form solution, like when the random
parameter is β, corresponding to bi = (βi), and when both parameters are considered random,
corresponding to bi = (αi, βi). For the case when both parameters are considered random, [3] proposed
the delta approximation method (DA method) to approximate the integral in (3.1). This approximation
method allows us to obtain simpler expressions for the likelihood function, usually in closed-form.
Although inspired by the classical statistical delta method, it differs from it in purpose and in the
methodology used. In the following subsections, we are going to detail the same DA method for the
cases not shown in [3], namely for the cases where just one parameter, α or β, is random. This method
can be useful if we are interested in considering just the case of a single random parameter, for instance,
when it is the most reasonable assumption for a certain real application. So, in this paper, we will also
compare the DA method with other methods for the specific cases where only one of the parameters,
α or β, is considered random.
This method is also suitable to use in the situation of a general age vector of observations, allowing us
to estimate the parameters of the models even when the different animals have their weights observed
at different ages and those ages may be non-equidistant.
We are also going to develop the numerical implementation of the Laplace approximation method (LA
method) since, despite having already been proposed in [10], we could not find available packages
enabling us to test the performance of the Laplace approximation method and compare it with the
performance of the DA method. On the numerical implementation of the LA method, we have
generalized the known existing references and applications, so that the method can be used to estimate
the parameters when the number and ages of observation fail to be equidistant and/or common to all
observed animals. Finally, the DA method and the LA method will be compared with the existing
implemented methodologies that require an age vector common to all animals.

4. Mixed models with random asymptotic average size

If we assume, for each animal, a random asymptotic size αi, following a Gaussian distribution with
mean µ and variance θ2, the joint p.d.f. for animal i is given by

pYi(yi|µ, θ, β, σ) =

+∞∫
−∞

pYi(yi|αi, β, σ)p(αi|µ, θ) dαi, (4.1)

with pYi(yi|αi, β, σ) obtained by replacing α with αi in (2.3) and

p(αi|µ, θ) =
1
√

2πθ2
e−

(αi−µ)
2

2θ2 . (4.2)

Thus, from (3.1) and using (4.1) and (4.2), we get, after some simplifications, the likelihood function

L(µ, θ, β, σ) =
M∏

i=1

 1
√

2πθ2

ni∏
j=1

 1√
πσ2

β
(1 − E2β

i, j)

 (4.3)
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+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

−
(αi − µ)2

2θ2

 dαi

 .
It is shown in [3] that it is possible to explicitly compute the integral in (4.3) and to obtain the log-
likelihood function for all animals LL(µ, θ, β, σ) = ln L(µ, θ, β, σ) as the closed-form expression:

LL(µ, θ, β, σ) =
M∑

i=1

(
−

ni

2
ln (2π) −

ni

2
ln

(
σ2

2β

)
−

1
2

ni∑
j=1

ln
(
1 − E2β

i, j

)
−

1
2

ln (Di)

−
β

Diσ2

ni∑
j=1

(
yi, j − µ −

(
yi, j−1 − µ

)
Eβi, j

)2

1 − E2β
i, j

+
2β2θ2

Diσ4

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)
1 + Eβi, j


2

−
β(Di−1)

Diσ2

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)2

1 − E2β
i, j


 ,

(4.4)

with Di =
2βθ2

σ2

ni∑
j=1

1 − Eβi, j
1 + Eβi, j

+ 1.

This is not always possible for other situations and approximation methodologies are very useful to
overcome this problem.

In the following subsections we are going to approximate the integral in (4.3) using the Laplace
and delta approximation methods, allowing to obtain closed-form approximate expressions for
the likelihood function. This might seem unnecessary since, in this case, we have an exact
explicit expression, but it allows us to use this case as a benchmark to evaluate the quality of the
approximations.

4.1. Likelihood function through the Laplace approximation method

Notice that the integrand function of the integral in (4.3) is the exponential of

fi(αi) = −
1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

−
(αi − µ)2

2θ2
. (4.5)

To use the Laplace approximation method, we first need to obtain the value α̂i of αi that maximizes
(4.5). The function fi(αi) is a real twice continuously differentiable function with first and second order
derivatives, respectively

f ′i (αi) = −
ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

) (
Eβi, j − 1

)
σ2

2β

(
1 − E2β

i, j

) −
αi − µ

θ2
(4.6)

and

f ′′i (αi) = −
ni∑
j=1

(
Eβi, j − 1

)2

σ2

2β

(
1 − E2β

i, j

) − 1
θ2
. (4.7)
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In this case, due to the quadratic form of the function to be maximized, an exact expression for α̂i can
be easily obtained and is given by

α̂i =

 ni∑
j=1

(
Eβi, j − 1

)2

σ2

2β

(
1 − E2β

i, j

) + 1
θ2


−1  ni∑

j=1

(
yi, j − yi, j−1Eβi, j

) (
1 − Eβi, j

)
σ2

2β

(
1 − E2β

i, j

) +
µ

θ2

. (4.8)

In other cases, where it is not possible to obtain an explicit expression, a numerical method must be
used. By taking the second order Taylor series expansion of fi(αi) at α̂i, and since α̂i is a maximum of
fi and therefore f ′(α̂i) = 0, we can write∫ +∞

−∞

exp ( fi(αi)) dαi ≈

∫ +∞

−∞

exp
(

fi(α̂i) +
1
2

f ′′i (α̂i)(αi − α̂i)2
)

dαi

= exp ( fi(α̂i))
∫ +∞

−∞

exp

−1
2

(αi − α̂i)2

−
(

f ′′i (α̂i)
)−1

 dαi

= exp ( fi(α̂i))

√
2π∣∣∣ f ′′i (α̂i)

∣∣∣ . (4.9)

The usual procedure in applying the Laplace approximation method would consist in replacing
expressions (4.7) and (4.8) in (4.9) and then in (4.3) in order to obtain an approximate expression
for LL(µ, θ, β, α). Maximizing such expression w.r.t. the parameters, we would obtain approximately
their maximum likelihood estimates.

However, in the random α case, due to the quadratic nature of the function fi(αi), it turns out that
the approximate expression (4.9) is in fact exact. Indeed, it is a trivial exercise to show that, for any
quadratic function, the second order Taylor expansion is exactly equal to the function and, therefore,
in the random α case, the second-order Taylor expansion fi(α̂i) + 1

2 f ′′i (α̂i)(αi − α̂i)2 of fi(αi), on which
(4.9) is based, is an exact expression for fi(αi). So, we can in this case write the equal sign instead of
the approximation sign in expression (4.9) and, therefore, replacing (4.9) in (4.3) provides, not just an
approximation of the log-likelihood function but rather the exact log-likelihood function, for which we
have already provided expression (4.4). In summary, in the random α case, the Laplace approximation
method provides exactly the same results as the exact method (i.e., the method of direct maximization
of expression (4.4) w.r.t. the parameters).

4.2. Likelihood function through the delta approximation method

A second approximation of the integral in (4.3) is obtained using the delta approximation method.
For this approximation we need to rearrange the expression of the likelihood function as

L(µ, θ, β, σ) =
M∏

i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)


+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

 exp
(
−

(αi−µ)2

2θ2

)
θ
√

2π
dαi

 .
(4.10)
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Isolating, in the integrand function, the p.d.f. of the Gaussian distribution of the αi and denoting by E
the expectation with respect to that distribution, we get

L(µ, θ, β, σ) =
M∏

i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)


+∞∫
−∞

ui(αi)
1

θ
√

2π
exp

(
−

(αi − µ)2

2θ2

)
dαi


=

M∏
i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)

 E[ui(αi)]

 ,
(4.11)

where
ui(αi) = exp (gi(αi)) (4.12)

with

gi(αi) = −
1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

. (4.13)

Using the same idea of the delta method to approximate E[ui(αi)], as in [3], where αi = µ + θδi with
δi (i = 1, . . . ,M) i.i.d. standard Gaussian random variables, and noting that ui(αi) is a real twice
continuously differentiable function, we obtain

ui(αi) = ui(µ + θδi) ≈ ui(µ) + θδiu′i(µ) +
1
2

(θδi)2u′′i (µ) (4.14)

and

E[ui(αi)] ≈ui(µ) +
1
2
θ2u′′i (µ), (4.15)

with
u′′i (µ) = ui(µ)

[(
g′i(µ)

)2
+ g′′i (µ)

]
, (4.16)

where the first and second order derivatives are already presented in [3] and so we omit them here.
Replacing (4.15) in (4.11), we obtain

L(µ, θ, β, σ) ≈
M∏

i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)


(
ui(µ) +

1
2
θ2u′′i (µ)

) . (4.17)

Now, replacing (4.12) and (4.16) in (4.17), we get the expression for the log-likelihood function

LL(µ, θ, β, σ) ≈
M∑

i=1

−1
2

ni∑
j=1

ln
(
2π
σ2

2β
(1 − E2β

i, j)
)
−

1
2

ni∑
j=1

(
yi, j − µ − (yi, j−1 − µ)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

+ ln

1 + 1
2
θ2

− ni∑
j=1

(1 − Eβi, j)
2

σ2

2β (1 − E2β
i, j)

+

 ni∑
j=1

(1 − Eβi, j)(yi, j − µ − (yi, j−1 − µ)E
β
i, j)

σ2

2β (1 − E2β
i, j)


2


 .

(4.18)
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As we can observe, the approximation of the log-likelihood function through the delta method provides
a very simple closed-form expression.

5. Mixed models with random growth parameter

A similar procedure as the one presented in the previous section can be used in the case where the
growth parameter βi is considered a random variable following a Gaussian distribution with mean λ
and variance ω2. The joint p.d.f. for animal i is now given by

pYi(yi|α, λ, ω, σ) =
∫ +∞

−∞

pYi(yi|α, βi, σ)p(βi|λ, ω) dβi, (5.1)

where pYi(yi|αi, β, σ) is obtained by replacing β with βi in (2.3) and the p.d.f. of βi is

p(βi|λ, ω) =
1

√
2πω2

e−
(βi−λ)

2

2ω2 . (5.2)

Thus, from (3.1) and using (5.1), after some simplifications we obtain the likelihood function

L(α, λ,ω, σ) =
M∏

i=1

 1
√

2πω2

ni∏
j=1

(
1
√

2π

)

+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2

σ2

2βi
(1 − E2βi

i, j )


exp

1
2

ni∑
j=1

ln
(
σ2

2βi
(1 − E2βi

i, j )
)

exp
(
−

(βi − λ)2

2ω2

)
dβi

)
.

(5.3)

The use of the delta and the Laplace approximation methods allows us to obtain approximate
expressions for the likelihood function.

5.1. Likelihood function through the Laplace approximation method

The integrand function in expression (5.3) can written as the exponential of the function

fi(βi) = −
1
2

ni∑
j=1


(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2

σ2

2βi
(1 − E2βi

i, j )
+

1
ni

(βi − λ)2

ω2 + ln
(
σ2

2βi
(1 − E2βi

i, j )
) . (5.4)

The function fi(βi) is a real twice continuously differentiable function. First, we need to obtain the
value β̂i that maximizes (5.4) and then, in order to obtain a Laplace approximation, we need to apply
to fi(βi) a second order Taylor expansion about β̂i.
Since in this case we cannot obtain a closed-form expression for the maximum β̂i, we can apply a
numerical method. Having the numerical maximum, β̂i, and resorting to the same approach used in
(4.9), the Laplace approximation of the integral in (5.3) will be given by

exp
(

fi(β̂i)
) √

2π
| f ′′i (β̂i)|

, (5.5)
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with

f ′i (βi) =
ni∑
j=1

−E2βi
i, j (ti, j − ti, j−1)(

1 − E2βi
i, j

) −

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)
σ2

−
βi − λ

niω2 +
2βiE

2βi
i, j (ti, j − ti, j−1)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)2
σ2

+
1

2βi
−

2βiE
βi
i, j(ti, j − ti, j−1)(yi, j−1 − α)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)(
1 − E2βi

i, j

)
σ2


(5.6)

and

f ′′i (βi) =
ni∑
j=1

2E4βi
i, j (ti, j − ti, j−1)2(

1 − E2βi
i, j

)2 −
2βiE

2βi
i, j (ti, j − ti, j−1)2(yi, j−1 − α)2(

1 − E2βi
i, j

)
σ2

+
2E2βi

i, j (ti, j − ti, j−1)2(
1 − E2βi

i, j

) +
4E2βi

i, j (ti, j − ti, j−1)
(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)2
σ2

−
1

2β2
i

−
8βiE

4βi
i, j (ti, j − ti, j−1)2

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)3
σ2

−
1

niω2 −
4βiE

2βi
i, j (ti, j − ti, j−1)2

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)2
σ2

−
4Eβi

i, j(ti, j − ti, j−1)(yi, j−1 − α)
(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)(
1 − E2βi

i, j

)
σ2

+
2βiE

βi
i, j(ti, j − ti, j−1)2(yi, j−1 − α)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)(
1 − E2βi

i, j

)
σ2

+
8βiE

3βi
i, j (ti, j − ti, j−1)2(yi, j−1 − α)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)
(
1 − E2βi

i, j

)2
σ2

 .

(5.7)

Replacing (5.5) in (5.3), we obtain, after some algebraic manipulations,

LL(α, λ, ω, σ) ≈
M∑

i=1

(
− lnω −

ni

2
ln(2π) −

1
2

ln
(∣∣∣ f ′′i (β̂i)

∣∣∣) + fi(β̂i)
)
. (5.8)

For the Laplace approximation we can observe that it is possible to obtain a closed-form
approximation formula of the log-likelihood, but for that we need to obtain the maximum value of
βi by numerical methods. This slows down the maximization of the log-likelihood function, which
uses an iterative procedure, since, at each step of that procedure, the numerical determination of the
maximum values of the βi needs to be repeated. These repeated numerical determinations are not
required in the delta approximation method.
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5.2. Likelihood function through the delta approximation method

Considering now the likelihood function (5.3) and, proceeding as in subsection 4.2 with

ui(βi) = exp

−1
2

ni∑
j=1


(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2

σ2

2βi
(1 − E2βi

i, j )
+ ln

(
2π
σ2

2βi
(1−E2βi

i, j )
)
 , (5.9)

we see that the likelihood function can be approximated, using the delta method, by

L(α, λ, ω, σ) =
M∏

i=1

E[ui(βi)] ≈
M∏

i=1

(
ui(λ) +

1
2
ω2u′′i (λ)

)
, (5.10)

where we have used the approximation

ui(βi) = ui(λ + ωδi) ≈ ui(λ) + ωδiu′i(λ) +
1
2

(ωδi)2u′′i (λ) (5.11)

and

E[ui(βi)] ≈ui(λ) +
1
2
ω2u′′i (λ), (5.12)

with
u′′i (λ) = ui(λ)

[(
g′i(λ)

)2
+ g′′i (λ)

]
, (5.13)

So, we obtain for the log-likelihood function

LL(α, λ, ω, σ) ≈
M∑

i=1

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eλi, j

)2

σ2

2λ (1 − E2λ
i, j )

−
1
2

ni∑
j=1

ln
(
2π
σ2

2λ
(1 − E2λ

i, j )
)

+ ln
(
1 +

1
2
ω2

[
(g′i(λ))

2 + g′′i (λ)
]))
,

(5.14)

where

gi(λ) = −
1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eλi, j

)2

σ2

2λ (1 − E2λ
i, j )

−
1
2

ni∑
j=1

ln
(
2π
σ2

2λ
(1 − E2λ

i, j )
)

(5.15)

and its first and second order derivatives are presented in [3] and omitted here.

6. Mixed models with random asymptotic average size and random growth parameter

In this section, we consider the mixed model where αi (i = 1, . . . ,M) are i.i.d. random variables
following a Gaussian distribution with mean µ and variance θ2 and βi (i = 1, . . . ,M) are i.i.d. random
variables following a Gaussian distribution with mean λ and variance ω2 and are independent of the
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αi variables. The random parameter vector is the 2-dimensional vector bi = (αi, βi), the fixed effects
parameter vector becomes the 1 × 1 vector ϵ = (σ), the random effects parameter vector is Ψ =
(µ, λ, θ, ω), and the p.d.f. of the random effects p is a bivariate Gaussian distribution

p(αi, βi|µ, λ, θ, ω) = p(αi|µ, θ)p(βi|λ, ω) (6.1)

=
1
√

2πθ2
exp

(
−

(αi − µ)2

2θ2

)
1

√
2πω2

exp
(
−

(βi − λ)2

2ω2

)
.

To obtain the likelihood function in (3.1), the joint p.d.f. for animal i is given by

pYi(yi|ϵ,Ψ) =
∫

R2

pYi(yi|bi, ϵ)pB(bi|Ψ) dbi

=
+∞∫
−∞

+∞∫
−∞

pYi(yi|αi, βi, ϵ)p(αi|µ, θ)p(βi|λ, ω) dαi dβi,
(6.2)

To obtain pYi(yi|αi, βi, ϵ) in (6.2), notice that, due to the Markov property of each individual trajectory
i when conditioned on αi and βi, we have

pYi(yi|αi, βi, ϵ) =
ni∏
j=1

pYi(yi, j, ti, ti−1|yi, j−1, αi, βi, ϵ), (6.3)

with the transition densities between consecutive observation ages of the animal i trajectory given by

pYi(yi, j, ti, ti−1|yi, j−1, αi, βi, ϵ) =

exp

−1
2

(
yi, j−αi−(yi, j−1−αi)E

βi
i, j

)2

σ2
2βi

(1−E2βi
i, j )

√
2π σ2

2βi
(1 − E2βi

i, j )
. (6.4)

Thus, replacing (6.1) and (6.4) on (3.1), the likelihood function, after some simplifications, is given by

L(µ, θ, λ, ω, σ) =
M∏

i=1

1
2πθω

(
1
√

2π

)ni
+∞∫
−∞

+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)2

σ2

2βi
(1 − E2βi

i, j )

 (6.5)

exp

−1
2

ni∑
j=1

ln
(
σ2

2βi
(1 − E2βi

i, j )
) exp

(
−

1
2

(αi − µ)2

θ2

)
exp

(
−

1
2

(βi − λ)2

ω2

)
dαi dβi.

In the next sections, we will use the Laplace and the delta approximation methods to obtain
approximate expressions to the likelihood function.

6.1. Likelihood function through the Laplace approximation method

Following the same approach taken in subsections 4.1 and 5.1, the integrand function in the
likelihood function (6.5) can be written as the exponential of the function

fi(αi, βi) =
ni∑
j=1

−1
2

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)2

σ2

2βi
(1 − E2βi

i, j )
(6.6)
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−
1
2

ln
(
σ2

2βi
(1 − E2βi

i, j )
)
−

(αi − µ)2

2niθ2
−

(βi − λ)2

2niω2

)
.

Rewriting expression (6.5) we obtain

L(µ, θ, λ, ω, σ) =
M∏

i=1

 1
2πθω

(
1
√

2π

)ni
+∞∫
−∞

+∞∫
−∞

exp ( fi(αi, βi)) dαi dβi

 . (6.7)

As shown in subsection 4.1, when it is not possible to obtain an explicit expression for the vector
(α̂i, β̂i) that maximizes the function (6.7), a numerical method must be used. By taking the second
order Taylor series expansion of (αi, βi) at (α̂i, β̂i), and since (α̂i, β̂i) is a maximum of fi(α̂i, β̂i) and
therefore ▽ fi(α̂i, β̂i) = 0, we can write

+∞∫
−∞

+∞∫
−∞

exp ( fi(αi, βi)) dαi dβi

≈

+∞∫
−∞

+∞∫
−∞

exp
(

fi(α̂i, β̂i) +
1
2

[
αi − α̂i βi − β̂i

]
H
[
fi(α̂i, β̂i)

] [αi − α̂i

βi − β̂i

])
dαi dβi

= 2π
∣∣∣detΣ(α̂i,β̂i)

∣∣∣1/2 exp( fi(α̂i, β̂i)), (6.8)

where H[ fi(α̂i, β̂i)] is the Hessian matrix of fi(αi, βi) computed at (α̂i, β̂i), assumed to be negative
definite, and Σ(α̂i,β̂i) = −H−1[ fi(α̂i, β̂i)].
The first and second partial derivatives with respect to αi are given in (4.6) and (4.7) with β replaced by
βi. Therefore, an exact expression for α̂i is given by (4.8) with β replaced by β̂i. The first and second
partial derivatives with respect to βi were also already given in subsection 5.1, in expressions (5.6) and
(5.7), but we must replace in these expressions α with α̂i. The expression for ∂

2 fi(αi,βi)
∂αi∂βi

=
∂2 fi(αi,βi)
∂βi∂αi

is
given by

∂2 fi(αi, βi)
∂αi∂βi

=
4βi

σ2

ni∑
j=1

(t j − t j−1)E2βi
i, j

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

) (
Eβi

i, j − 1
)

(1 − E2βi
i, j )2

−
2βi

σ2

ni∑
j=1

(t j − t j−1)(yi, j−1 − αi)E
βi
i, j

(
Eβi

i, j − 1
)

(1 − E2βi
i, j )

(6.9)

+
2βi

σ2

ni∑
j=1

(t j − t j−1)Eβi
i, j

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)
(1 − E2βi

i, j )

−
2
σ2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

) (
Eβi

i, j − 1
)

(1 − E2βi
i, j )

,

Replacing (6.8) in (6.7), we obtain, after some algebraic manipulation

LL(µ, θ, λ, ω, σ) ≈
M∑

i=1

{
− ln(θω) −

ni

2
ln(2π) −

1
2

ln(| det H[ fi(α̂i, β̂i)]|) + fi(α̂i, β̂i)
}
. (6.10)
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For the Laplace approximation it is possible to obtain a closed-form approximation formula of the log-
likelihood, but, like in the random β case, that formula involves now the maximum value of (αi, βi),
which has to be determined numerically and repeatedly at each step of the iterative procedure of the
log-likelihood maximization. In the next section we present the delta approximation method and we
can see that, for such approximation method, it is possible to obtain a closed-form approximation
formula without having to resort to such repeated numerical determinations.

6.2. Likelihood function through the delta approximation method

In [3] the delta approximation method was proposed to approximate the integral in (3.1), which, in
this case, is given by (6.2) and does not have an explicit solution. This approximation method allows
us to obtain simpler and closed-form expressions for the likelihood function. As shown in [3], denoting
expression (6.5) by ui(αi, βi) = exp (gi(αi, βi)), where

gi(αi, βi) =
ni∑
j=1

− 1
2

(
yi, j−αi−(yi, j−1−αi)E

−βi
i, j

)2

σ2
2βi

(1−E2βi
i, j )

− 1
2 ln

(
2π σ

2

2βi
(1 − E2βi

i, j )
) , (6.11)

the likelihood function (6.5) can be written as

L(µ, θ, λ, ω, σ) =
M∏

i=1

(
+∞∫
−∞

+∞∫
−∞

ui(αi, βi)pB(αi, βi|µ, λ, θ, ω) dαi dβi

)
=

M∏
i=1

E[ui(αi, βi)].
(6.12)

The mathematical expectation of ui(αi, βi) can be approximately obtained by applying the delta
approximation, consisting in a second-order Taylor series expansion and resulting in

E[ui(αi, βi)] ≈ ui(µ, λ) +
θ2

2
∂2ui

∂α2
i

(µ, λ) +
ω2

2
∂2ui

∂β2
i

(µ, λ). (6.13)

The log-likelihood function, LLY(µ, θ, λ, ω, σ) = ln L(µ, θ, λ, ω, σ), will be then given by

LLY(µ, θ, λ, ω, σ) ≈
M∑

i=1

ln
{

ui(µ, λ) +
θ2

2
∂2ui

∂α2
i

(µ, λ) +
ω2

2
∂2ui

∂β2
i

(µ, λ)
}
. (6.14)

The closed-form expressions for the first and second order derivatives of ui(αi, βi) with respect to αi

and βi are presented in [3].

7. Performance comparison of the methods

In this section, for the SDE mixed cattle growth models, our focus is on the parameters estimation
and the approximation methods to achieve it when no exact method is available. Initially, we will
evaluate the performance of the DA method and compare it with the LA method. Additionally, to
benchmark these two approximation methods against numerically implemented alternatives, we will
compare the estimates of DA and LA methods with those obtained using the mixedsde R package.
However, it is important to note that, unlike the DA and LA approximation methods, the mixedsde
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package requires uniformity in the time vector of observations across all trajectories. This constraint
prevents us from using the real cattle dataset for a comprehensive comparison of the three methods.
For this purpose, we generated simulated datasets containing monthly weights for 500 animals,
covering the period from birth to four years of age and resulting in a total of 24,500 observations. The
trajectories were simulated using the stochastic Gompertz model (using the logarithm transformation
of the weights). We used the following methodology:

• The 500 random parameter values of the M = 500 animals were simulated based on a Gaussian
distribution.

– For the case of random α, we have used a mean µ = 6.45 (corresponding to the asymptotic
weight h−1(µ) = 632.7 kg) and a standard deviation θ = 0.15, thus obtaining, for each animal
i (i = 1, . . . , 500), the corresponding αi value, to be incorporated in the transition density
(2.2) as the true value of α for that animal.

– For the random β case, we have used a mean λ = 1.43 year−1 and a standard deviation
ω = 0.30 year−1, thus obtaining, for each animal i (i = 1, . . . , 500), the corresponding βi

value, to be incorporated in the transition density (2.2) as the true value of β for that animal.
– For the case where both α and β are considered random, we have used the same values for

the parameters as used in the separated α and β cases.
– As for the remaining non-random parameters, we use σ = 0.33 year−1/2.
– We have used β = 1.43 year−1 and α = 6.45, respectively for the random α case and the

random β case.

• Having the parameters defined, we have simulated the trajectory of each animal based on the
Markov property and the use of the transition densities between consecutive observation times.
• We have obtained one simulated dataset for the case where the parameter α is considered random,

one for the case where the parameter β is considered random, and another for the case where both
parameters are considered random.

In Section 7.1, we will analyze the simulated dataset where the parameter α is considered
random, evaluating the performance of the estimation methods with a random average asymptotic
size. Following this, in Section 7.2, we will examine the simulated dataset with the parameter β
considered as random, assessing the performance of the estimation methods with a random growth
parameter. Subsequently, in Section 7.2, we will explore the simulated dataset when both parameters
are considered random, evaluating the performance of the estimation methods with two random effects.
In this scenario, we will also assess the performance when only the parameter α is random or when
only the parameter β is random. Finally, in Section 7.4, we will consider the real cattle weight dataset,
comprising 10843 animals. For this real data, we will compare the DA and LA estimation methods
when only the parameter α is random, when only the parameter β is random, and when both parameters
are considered random. The comparative performance study cannot in this case use the results of the
mixedsde package.

To assess the performance of the estimates, within each subsection, we conduct a bias analysis
and evaluate the precision of the standard deviation estimates obtained from the empirical Fisher
information matrix. The ultimate goal is to assess the performance of the DA method. First,
for benchmarking purposes, when an exact method is available (the case when the parameter α is
considered random) and, at last, in the absence of an exact method, to investigate whether the DA
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method can be used for parameter estimation of the model (cases when the parameter β is considered
random or both parameters are considered random).

7.1. Model with a random average asymptotic size

In this subsection, using the simulated dataset with α a Gaussian random variable with mean µ and
standard deviation ω, we obtain the estimates of the parameters, µ, θ, β, and σ, by maximization of the
exact log-likelihood function (4.4) (“Exact method”). We will also estimate the parameters by the DA
method, i.e., by maximization of the approximate log-likelihood function (4.18) using the DA method.
The maximum likelihood estimates based on the exact log-likelihood function (4.4) (“Exact method”)
will be the same estimates obtained by the LA method because, in this case and as shown on subsection
4.1, the approximation of the log-likelihood function obtained by the LA method is in fact exact and
coincides with the exact log-likelihood function. These “Exact method” estimates allow us to evaluate
the performance of the DA method for the case where the parameter α is random. In this case, the
“Exact method” estimates are available and can be used to assess, by comparison, the quality of the
DA method estimates.

We also compare with the estimates obtained by the R package mixedsde. Table 1 presents the
estimation results for the stochastic Gompertz model. The maximum likelihood estimates and the 95%
approximate confidence bands based on the inverse of the empirical Fisher information matrix are
presented for the DA method and also, using the exact log-likelihood function (4.4), for the “Exact
method”. Note that the mixedsde package does not provide confidence intervals for the estimates.

Table 1. Results for the simulated dataset assuming a random α. The table shows
the true parameter values used in the simulations, the maximum likelihood estimates and
corresponding 95% asymptotic confidence bands using the “Exact method”/LA method and
the DA method. Estimates obtained by the mixedsde R package are shown. Instead of
showing the results for the modified weight µ, we present them for the real weight A = h−1(µ).

True DA method Exact/LA method mixedsde

A 632.70 635.47 ± 9.56 625.71 ± 11.56 633.79
θ 0.15 0.1197 ± 0.0085 0.1555 ± 0.0150 0.0787
β 1.43 1.4037 ± 0.0188 1.4221 ± 0.0191 1.3117
σ 0.33 0.3312 ± 0.0030 0.3289 ± 0.0030 0.4671

The DA method and the mixedsde method present an estimate of A closer to the true value than the
“Exact method”. The estimate of the standard deviation θ of the random parameter α presents a greater
bias in the mixedsde method and in the DA method than in the “Exact method”. We must refer that for
the DA method, the asymptotic confidence interval does not include the true value for θ. For the fixed
parameters β and σ, the estimates obtained from the DA method are quite close to the true value and
similar to those obtained by the “Exact method”. The mixedsde underestimates or overestimates these
two parameters.

Since for this simulated dataset, we know the true value of the parameters, we can compare them
with the estimates obtained by the different methods and confirm if they are included in the asymptotic
confidence intervals for the DA method and the “Exact method”. We can observe that only for the
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DA method the asymptotic confidence interval does not include the true value for θ. Since these
asymptotic confidence intervals based on the Fisher information matrix may be quite unreliable for
small sample sizes, we proceed with a bias analysis and an evaluation of the quality of the standard
deviation estimates obtained from the Fisher information matrix. With this purpose:

• We have obtained K = 1000 replications of the simulated dataset assuming random α with the
same parameter vector p = (µ = 6.45, θ = 0.15, β = 1.43, σ = 0.33) (using the same procedure
detailed at the beginning of Section 7);
• For each simulated dataset, we obtain the estimates through the DA method for random α and the

LA method for random α (which in this case coincides with the “Exact method”), denoting them
by p̂k, k = 1, . . . ,K;
• The estimated standard deviations of the parameters are obtained by taking the square roots of the

diagonal elements of the inverted empirical Fisher information matrix;
• The sample means and the sample standard deviations of the 1000 estimates p̂k were obtained;
• The sample means of the K = 1000 estimates of the parameter variances (obtained approximately

for each replication by the inverse of the empirical Fisher information matrix) are also computed
and their square roots will serve as estimates of the approximated standard deviations based on
the empirical Fisher information matrix.

Following the procedure described above, in Table 2 we present, for the case of random α and
this sample of 1000 parameter estimates, their sample mean values and standard deviations (which
are very precise approximations of the true expected values and standard deviations of the parameter
estimators), as well as the approximated standard deviations based on the empirical Fisher information
matrix.

Table 2. Mean values and standard deviations (SD) of the estimates obtained through the DA
method and the “Exact method”/LA method for random α case, based on the 1000 simulated
datasets, as well as the standard deviation estimate based on the empirical Fisher information
matrix (“SD. Fisher”). Instead of showing the results for the modified weight µ, we show
them for the weight A = h−1(µ).

DA method Exact/LA method

True Mean estim. SD SD. Fisher Mean estim. SD SD. Fisher

A 632.70 637.17 6.4986 4.8735 632.69 5.9932 5.9059
θ 0.15 0.1179 0.0044 0.0043 0.1525 0.0075 0.0076
β 1.43 1.4118 0.0098 0.0097 1.4301 0.0096 0.0098
σ 0.33 0.3322 0.0015 0.0015 0.3300 0.0015 0.0015

Observing the results of Table 2, we can conclude that, on average, the parameter standard deviation
estimates (SD. Fisher) obtained approximately by the empirical information matrix do not differ
much (and with the exception of the parameter A = h−1(µ), practically coincide) with the more
precise standard deviations (SD) obtained from this extremely computer intensive and time-consuming
procedure. This shows that the empirical Fisher information matrix is a relatively reliable method
to estimate the standard deviation of the parameters and therefore to obtain approximate confidence
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intervals for them. Comparing the mean estimates of the DA method with the true values, we can
conclude that the DA method estimates very well all the parameters, except for the parameter θ, which
is slightly underestimated. For the LA method, we can conclude that the standard deviations obtained
from the empirical Fisher information matrix are very reliable for all parameters. Looking at the mean
estimates, we can see that the LA method, which in this random α case coincides with the ”Exact
method”, behaves, as expected, very well for all parameters.

7.2. Model with random growth parameter

Here we repeat the approach taken in the previous subsection, but now for the model where the
growth parameter varies from animal to animal, considering β to be a Gaussian random variable with
mean λ and standard deviation ω. For the simulated data assuming β is a random parameter, obtained
as described at the beginning of Section 7, we present in Table 3 the results based on the DA and LA
methods for the random parameter β, as well as the estimates obtained through the mixedsde package.
Here, we do not have an exact closed-form expression for the log-likelihood function, so we can
not present a comparison with an “Exact method”. The maximum likelihood estimates and the 95%
approximate confidence bands based on the inverse of the empirical Fisher information matrix were
computed for the DA method and the LA method.

Table 3. Results for the simulated dataset assuming a random β. The table shows the
true parameter values used in the simulations, the maximum likelihood estimates, and
corresponding 95% asymptotic confidence bands using the DA and the LA methods for a
random β. Estimates obtained for the mixedsde R package are shown. Instead of showing the
results for the modified weight α, we present for the weight A = h−1(α).

True DA method LA method mixedsde

A 632.70 640.70 ± 8.45 640.87 ± 7.88 639.32
λ 1.43 1.3451 ± 0.0216 1.4181 ± 0.0327 1.2765
ω 0.30 0.1925 ± 0.0105 0.3051 ± 0.0250 < 0.0001
σ 0.33 0.3360 ± 0.0030 0.3290 ± 0.0030 0.4661

From Table 3 we can conclude that the estimates obtained through the DA method and the LA
method for the mean of the random growth parameter λ are closer to the true value than the estimate
obtained from the mixedsde. For the standard deviation of the random growth parameter ω, the
estimates given by the LA method (the best one) and the DA method are much better than those
obtained with the mixedsde package. This last method was unable to detect the random effect of the
parameter β. For the estimate of the measure of the random fluctuations of the environment, σ, the
estimates obtained through the DA and LA methods are the closest to the true value.

We must refer that also in this case, for the DA method, the asymptotic confidence intervals failed to
include the true values for parameters λ and ω. Proceeding similarly as in subsection 7.1, but now for
the case where the parameter β is considered random, we performed a bias analysis and an evaluation of
the quality of the standard deviation estimates obtained from the empirical Fisher information matrix.
We have simulated K = 1000 datasets assuming that the parameter β follows a Gaussian distribution
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with mean λ = 1.43 year−1 and a standard deviation ω = 0.30 year−1. For the fixed parameters we
have considered α = 6.45 and σ = 0.33 year−1/2 (using the same procedure detailed in Section 7). In
Table 4 we present, for the DA method and the LA method with random β, the means and standard
deviations of the parameter estimates of the 1000 simulated datasets.

Table 4. Mean values and standard deviations (SD) of the estimates obtained through the DA
and the LA methods for random β, based on the 1000 simulated datasets and the standard
deviation estimate based on the empirical Fisher information matrix (“SD. Fisher”). Instead
of showing the results for the modified weight α, we show them for the weight A = h−1(α).

DA method LA method

True Mean estim. SD SD. Fisher Mean estim. SD SD. Fisher

A 632.70 632.77 4.1616 4.1913 632.71 3.9484 3.9504
λ 1.43 1.3608 0.0218 0.0109 1.4301 0.0164 0.0165
ω 0.3 0.1979 0.0054 0.0053 0.2990 0.0123 0.0127
σ 0.33 0.3360 0.0017 0.0015 0.3301 0.0015 0.0015

Observing the results of Table 4, both for the DA method and for the LA method, we can conclude
that the estimates of the standard deviations obtained from the empirical Fisher information matrix
are practically the same as the more reliable (but extremely computer-intensive and time consuming)
standard deviation estimates obtained from the 1000 simulated datasets showing that the empirical
Fisher information matrix is a reliable method to estimate the variance of the parameters for the DA
method and for the LA method with random β. Only for the DA method and the parameter λ the
empirical Fisher information matrix seems to underestimate its standard deviation. Comparing the
mean estimates of both methods with the true values, we can see that the DA method presents estimates
that are very close to the true values of the fixed parameters α (A) and σ and underestimates the mean
λ and the standard deviation ω of the random parameter, while for the LA method all the parameter
estimates are very close to the true values.

7.3. Model with two random effects

We repeat the approach used in previous sections but now for the model where both the average
asymptotic weight and the growth parameter are varying from animal to animal, with α being a
Gaussian random variable with parameters vector (µ, θ) and β being a Gaussian random variable with
parameters vector (λ, ω). A simulated dataset was obtained as described at the beginning of Section
7, but assuming that both α and β are random and independent. In Table 5, the results based on the
DA and LA methods are shown, as well as the estimates obtained through the mixedsde package when
both α and β are random. The goal is to evaluate if the estimates obtained using the different methods
are aligned. Here, we do not have an exact closed-form expression for the log-likelihood function, so
we cannot present a comparison with an “Exact method”. The maximum likelihood estimates and the
95% approximate confidence bands based on the inverse of the empirical Fisher information matrix
were computed for the DA and the LA methods.

To check for the consequences of ignoring that both parameters are random, Table 5 also presents
the parameter estimates under the DA and LA methods when we assume that only the parameter α is
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random or when we assume that only the parameter β is random.

Table 5. Results for the simulated dataset assuming both α and β are random. The table
shows the true parameter values used in the simulations, the maximum likelihood estimates,
and corresponding 95% asymptotic confidence bands using the DA and the LA methods.
Estimates obtained for the mixedsde R packages are shown. Instead of showing the results
for the modified weight α (or, when α is random, for its mean µ), we present for the weight
A = h−1(α) (or A = h−1(µ)).

True DA method LA method mixedsde

random (α, β)

A 632.70 651.52 ± 10.06 661.02 ± 12.97 643.82
θ 0.15 0.0944 ± 0.0130 0.0316 ± 0.1026 0.1556
λ 1.43 1.3216 ± 0.0209 1.3515 ± 0.0272 1.2745
ω 0.30 0.1809 ± 0.0124 0.3100 ± 0.0366 < 0.0001
σ 0.33 0.3407 ± 0.0030 0.3344 ± 0.0030 0.4690

random α

A 632.70 643.91 ± 10.86 634.71 ± 14.27 643.82
θ 0.15 0.1330 ± 0.0083 0.2068 ± 0.0173 0.1557
λ 1.43 1.3361 ± 0.0190 1.3816 ± 0.0195 1.2745
ω 1.43 − − −

σ 0.33 0.3425 ± 0.0031 0.3374 ± 0.0031 0.4690

random β

A 632.70 659.58 ± 9.26 665.06 ± 8.80 645.38
θ 0.15 − − −

λ 1.43 1.3034 ± 0.0211 1.3693 ± 0.0336 1.2644
ω 0.30 0.1969 ± 0.0098 0.3187 ± 0.0258 0.0276
σ 0.33 0.3416 ± 0.0030 0.3341 ± 0.0030 0.4690

From Table 5 we can conclude that, for the case of random (α, β), the mixedsde method was
unable to identify that the parameter β is a random parameter since the estimate of the parameter ω is
practically null (the same happens in last section for the case of the random β). The LA and the DA
methods estimate more accurately the parameters related to βwith a slight underestimation of the mean
value λ. The standard deviation of the β distribution, ω, was best estimated through the LA method.
Regarding the estimation of the parameters related to α (A), the DA and the LA methods underestimate
the parameter θ and slightly overestimate the weight at maturity A. The LA method even allows the
value θ = 0 inside the 95% confidence interval for θ, but one should keep in mind that this is an
approximate confidence interval based on the inverse of the empirical Fisher information matrix. The
mixedsde was the best method to estimate the parameter θ. All methods were able to correctly estimate
the environmental random fluctuations σ. Observing the estimates of the DA method when using the
random (α, β), the random α, and the random β, we can see that the estimates are very close. When
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in the presence of a dataset with both parameters random and independent, the use of the DA method
with only one parameter considered random can correctly identify as random that same parameter,
and when using the DA method with both parameters considered random can correctly identify both
parameters as random. For the LA method only the parameter θ was not correctly estimated when both
parameters were random.

Proceeding similarly to subsections 7.1 and 7.2, but now for the case where both parameters α
and β are considered random, we performed a bias analysis and an evaluation of the quality of the
standard deviation estimates obtained from the empirical Fisher information matrix. We have simulated
K = 1000 datasets assuming that the parameter α follows a Gaussian distribution with mean µ = 6.45
and a standard deviation θ = 0.15 and the parameter β follows an independent Gaussian distribution
with mean λ = 1.43 year−1 and a standard deviation ω = 0.30 year−1. For the fixed parameter we have
considered σ = 0.33 year−1/2. In Table 6 we present, for the DA method and the LA method with both
α and β random, the means and standard deviations of the parameter estimates of the 1000 simulated
datasets.

Table 6. Mean values and standard deviations (SD) of the estimates obtained through the DA
and the LA methods for both random α and β, based on the 1000 simulated datasets and the
standard deviation estimate based on the empirical Fisher information matrix (“SD. Fisher”).
Instead of showing the results for the modified weight α (or, when α is random, for its mean
µ), we present for the weight A = h−1(α) (or A = h−1(µ)).

DA method LA method

True Mean estim. SD SD. Fisher Mean estim. SD SD. Fisher

A 632.70 638.56 6.6072 5.0429 653.23 6.9991 4.3928
θ 0.15 0.0967 0.0067 0.0067 0.0059 0.0332 0.0075
λ 1.43 1.3387 0.0213 0.0110 1.3855 0.0171 0.0169
ω 0.30 0.1785 0.0073 0.0068 0.3085 0.0238 0.0129
σ 0.33 0.3394 0.0018 0.0015 0.3333 0.0015 0.0015

Observing the results of Table 6, we can conclude that the mean estimates under both methods are,
in general, aligned with the true values. The DA method underestimates the parameters related to β, λ
and ω, and the parameter θ. The LA method slightly overestimates the parameter A and the observation
made above that the LA method allows the value θ = 0 inside the 95% confidence interval for θ is now
confirmed, and even reinforced when using a more reliable estimate (SD) of the standard deviation of
the θ estimator. Both methods estimate very well the fixed parameter σ.

The estimates of the standard deviations obtained from the empirical Fisher information matrix are
practically the same as the more reliable standard deviation estimates obtained from the 1000 simulated
datasets for the DA method. However, for the LA method, the standard deviations obtained from the
empirical Fisher information matrix for the parameters A, θ, and ω, are not close to the ones obtained
from the standard deviation estimates of 1000 simulated datasets. This shows that, in the scenario
of random and independent α and β, the empirical Fisher information matrix is a reliable method to
estimate the variance of the parameters for the DA method, but not so robust when considering the LA
method.

AIMS Mathematics Volume 9, Issue 4, 7866–7894.



7888

7.4. Real data application

In this section we are going to use the DA method and the LA method to estimate the parameters
for the stochastic Gompertz model using real cattle weight data, where each animal has its weight
measurements taken at different age instants, varying from animal to animal. For that reason, other
available R packages (for example [17–19]) cannot be used since they require the same age vector for
all the animals. Our real data was provided by the Associação de Criadores de Bovinos Mertolengos
(ACBM), which performs the growing and finishing phases of young Mertolengo males, and by
associated breeders, whose agricultural holdings are located in the Alentejo region in Portugal. As
mentioned in Section 1, the database contains information on the weight of 10843 Mertolengo cattle
males taken at heterogeneous ages and totalling 69782 weight observations. We apply to this dataset
the DA and the LA methods presented in Sections 4, 5, and 6 to the cases of random α, random β, and
random both α and β, respectively.

Table 7 presents, for the real dataset, the estimates obtained through the LA and the DA methods for
the case where both parameters are random. The true parameter values are not known for this dataset.

Table 7. Results for the real dataset. Maximum likelihood estimates and corresponding 95%
asymptotic confidence bands for the DA and LA methods for the case where both parameters
α and β are assumed random. Instead of showing the results for the modified weight µ, we
show them for the weight A = h−1(µ).

random (α, β)

DA method LA method

A 709.76 ± 9.70 688.70 ± 9.23
θ < 0.0001 ± 0.0108 < 0.0001 ± 0.0045
λ 1.3141 ± 0.0142 1.3741 ± 0.0163
ω 0.1769 ± 0.0055 0.2264 ± 0.0082
σ 0.2977 ± 0.0017 0.2910 ± 0.0018

Observing the results of Table 7, both methods present similar estimates of the parameters θ and σ,
allowing us to conclude that when both parameters are considered random the methods were unable
to identify a random effect on the weight at maturity of the animal’s, identifying only a random effect
on the animals growth rate. The LA method shows a higher estimate of the animals growth rate mean
value (λ) and standard deviation (ω). The estimate of the weight at maturity of the animal is higher for
the DA method. The 95% asymptotic confidence bands are wider in the LA method for the parameters
related to animal growth rate and to σ, and are wider in the DA method for the parameters related to
the weight at maturity of the animal.

Table 8 presents, for the real dataset, the estimates obtained for the random α case through the LA
method and the DA method, and the estimates obtained for the random β case through the LA and the
DA methods. Observing Table 8 for the random α case, we can conclude that, despite having a large
dataset with very heterogeneous data, the estimates of all parameters through the “Exact method”/LA
method and the DA method are similar, except for a slight difference observed in θ, the standard
deviation of the random parameter α. The approximate confidence intervals based on the empirical
Fisher’s information matrix are also very similar.
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Table 8. Results for the real dataset. Maximum likelihood estimates and corresponding 95%
asymptotic confidence bands using the “Exact method”/LA method and the DA method for
the case where only α is assumed random, and the LA and DA methods for the case where
only β is assumed random. For the cases of random α, instead of showing the results for
the modified weight µ, we show them for the weight A = h−1(µ). For the case of random
β, instead of showing the results for the modified weight α, we show them for the weight
A = h−1(α).

random α random β

DA method Exact/LA method DA method LA method

A 724.97 ± 10.54 726.99 ± 10.74 709.76 ±9.70 687.24 ± 9.16
θ 0.1091 ± 0.0089 0.1428 ± 0.0092 − −

λ 1.2959 ± 0.0141 1.3002 ± 0.0143 1.3141 ± 0.0142 1.3764 ± 0.0162
ω − − 0.1769 ± 0.0055 0.2259 ± 0.0082
σ 0.3039 ± 0.0018 0.3010 ± 0.0019 0.2977 ± 0.0017 0.2911 ± 0.0018

Since the DA and LA methods with α and β both random indicate that α should not be considered
random because the estimate of θ is almost zero, the appropriate action to improve the estimates of the
other parameters is to apply the DA and LA methods with only β considered to vary randomly. This is
done on the right side of Table 8 and the results are consistent with those of Table 7 since the parameter
estimates and their approximate confidence intervals are indistinguishable from the ones obtained in
Table 7.

However, for the case where only α is assumed random (left side of Table 8), the estimates of
common parameters for the DA method are practically the same as the ones obtained in Table 7, except
for the mean and standard deviation of the random parameter α. Surprisingly, when both parameters are
assumed random, the θ estimate is close to zero, while, when just the parameter α is assumed random,
the estimate is quite different from zero. However, for the LA method the difference in estimates is
presented in all parameters. This effect may be due to parameters α and β being correlated in the real
life dataset, which would impact the correctness of the estimation of their standard deviations θ and
ω when one forces α and β to be independent as assumed on Table 7. The effect may also be due to
the fact that on the left side of Table 8 we may be wrongly forcing α to be random and β to be fixed,
thus forcing the methods to compensate the variability of β with a false variability on α. Whatever the
reason, further research is needed to extend the DA method to the case where the random parameters
are correlated.

The possible correlation explanation for this effect is worth considering since, in the case of the
simulated dataset with α and β both really random and really independent, the same exercise (not
shown) of using the DA and LA methods with the wrong assumption of α being only random parameter,
shows no such effect, i.e., the estimates of the common parameters are in line with those obtained in
Table 5 (which is based on the now correct assumption that α and β are both random and independent).
The same is true if we use the DA and LA methods with the wrong assumption that β is the only
random parameter. However, this is not the case if we use the available R package for the same
simulated dataset (we cannot use it for the real dataset) since, when using the package with the wrong
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assumption of only one parameter being random, parameter estimates differ noticeably.
For the real dataset we also present visual diagnostics. To obtain information on the distribution

of model predictions, we have simulated 1000 trajectories (1000 simulated animals), with monthly
observations from birth to 2.5 years of age, using the Gompertz SDE mixed model with random α.
We have used as “true” parameter values the ones obtained in Table 8 through the DA method with
random α. For each monthly age, we therefore have a sample of 1000 values for which we have
obtained the empirical 2.5%, 50% (median), and 97.5% quantiles. The left side of Figure 1 shows the
corresponding quantile curves as a function of age. For a visual check, we would like to superimpose on
the same Figure the real observed trajectories of the real 10843 animals, but that produces a confusing
cloud where individual trajectories are indistinguishable. So, we display instead just 100 real animal
trajectories chosen at random from the 10843 available trajectories. A similar procedure, now for
the Gompertz SDE mixed model with random β, was also performed and shown on the right side of
Figure 1. We can observe that for both cases (random α and random β) the real observed weights are
almost all contained in the empirical 95% interval. The plot for the case of both α and β random is not
shown since for our application to real cattle weight data the random effect on α was not identified as
significant and so the case where both parameters are considered random is reduced to the β random
case.
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Figure 1. Real observed weight trajectories (in grey) of 100 animals (randomly chosen
among the 10843 available real trajectories) and estimated 2.5%, 50% (median), and 97.5%
quantile curves for the predictions of the Gompertz SDE mixed model with random α (on the
left) or with random β (on the right).

The findings presented in Section 7 concerning both simulated and real datasets highlight the good
performance of the DA method. Notably, the DA method exhibits versatility by effortlessly handling
large datasets with heterogeneous ages of observation. Furthermore, its efficiency surpasses (except
obviously for the random α case) that of the LA method. This is due to the fact that, at each step
of the numerical maximization of the likelihood, we use in the DA method a closed-form expression
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for the approximate likelihood, while in the LA method the approximate likelihood depends on an
intermediate numerical maximization procedure of one or two variables.

In scenarios where the estimation of the parameter α is considered a random variable, the
computational times of the LA method were comparable to those of the DA method. However, when
focusing on estimating only the parameter β as a random variable, the LA method required 50% more
time than the DA method. Notably, when both α and β were treated as random variables, the LA
method needed ten times more computational time than the DA method.

8. Conclusions

We have studied a general class of SDE mixed models to describe individual growth in a randomly
varying environment with a real application to the weight of male Mertolengo cattle. A general model
can be written as a variant of the Ornstein-Uhlenbeck model, where the parameter α (asymptotic
modified weight) and/or the growth parameter β are assumed to be random. For illustration purposes,
we have worked with the logarithm of the weight, the transformation that is revealed to be the most
appropriate for the cattle weight data, leading to the stochastic Gompertz model. Our interest in using
SDE mixed models comes from the reasonable idea that model parameters may vary from animal to
animal, which, for instance, occurs due to different individual characteristics of the animals such as
genetic differences.

We apply the maximum likelihood estimation method to obtain the parameter estimates of the SDE
mixed models. For this type of model, in most cases it is not possible to obtain a closed-form expression
for the likelihood function and approximation methods are used to overcome this problem. In this
paper, we compare approximation methods used to obtain simpler approximate expressions for the
integral involved in the likelihood function. We study the DA method and compare it with the LA
method and with the mixedsde R package. The DA method is a new approximation method we have
developed, while the LA method is an already known approach that we have implemented numerically,
including for the case of previously unconsidered datasets. where animals have different age vectors
of observations. To illustrate and compare the performances of the DA and LA methods and of the
existing mixedsde R package, which is based on different numerical approximation methods for the
likelihood function, we have to use data compatible with the mixedsde package requirement of having
observation times equidistant and common to all animals. So, for that comparative study, we have used
simulated datasets satisfying that requirement. The DA and LA methods are presented for the case
where only α is considered random, for the case where only β is considered random, and for the case
where both parameters α and β are considered random and independent. The Gaussian distribution
was assumed for the three situations. For the specific case where only the asymptotic modified size α
is assumed random, it is possible to obtain an exact expression for the likelihood function and we have
used the exact maximum likelihood estimates as a benchmark to evaluate the results obtained by the
DA method with random α and by the mixedsde R package. We have also proven that, for this case,
the LA method leads to the exact expression of the likelihood function.

The results for the simulated datasets show a very good performance of the proposed approximate
methods, having similar estimates for some parameters and often outperforming the existing methods
for the remaining parameters.

Since the DA method, a faster method than the LA method, is a new approximation method, we have
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conducted a bias analysis and an evaluation of the quality of the standard deviation estimates obtained
from the empirical Fisher information matrix (which is not provided by the mixedsde R package). We
show that for all three cases, not only the estimates have a low bias, but also the estimated standard
deviations obtained by the empirical Fisher information matrix are quite reliable.

In the literature, for this type of models, it is typical to see the methods developed under the
assumption of having a unique (sometimes evenly spaced) age vector of observations common to all
individuals and this is also a restriction in the R package available for the estimation of the parameters
of SDE mixed models. The DA method and the LA method expressions presented in this paper have
the advantage of not requiring such restrictions and so they can be used in real situations where each
animals size (weight, volume, height, or length) is measured at unique age instants that need not to
be evenly spaced. We illustrate the results also with real data, the weight of Mertolengo cattle males
from a large and heterogeneous sample, and concluded that either the DA method or the LA method are
very good alternatives that have the advantage to always result in simpler and closed-form approximate
expressions for the likelihood function.

However, further research is needed to allow for consideration of the existence of correlation in
the case of both parameters being random, since the correlation effect can impact the estimates of the
standard deviation of the distribution of the animal’s weight at maturity. Besides this issue, as future
work, we also intend to consider distributions other than the Gaussian distribution for the random
effects α and β.
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grateful to ACBM and José Pais (ACBM head engineer) for providing the data and for continuous
support. We thank to RuralBit for the help in extracting the data from Genpro database.

Data and code availability

The real dataset of Mertolengo cattle weight data was extracted from the proprietary database
GENPRO and was gently provided under confidentiality by ACBM, a Mertolengo cattle producers
association. Simulated datasets, as well as the R code for the recently proposed delta approximation
method are available at https://github.com/patfilipe/DAmethodSDEM

AIMS Mathematics Volume 9, Issue 4, 7866–7894.

https://doi.org/10.54499/UIDB/04674/2020
https://github.com/patfilipe/DAmethodSDEM


7893

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. P. A. Filipe, C. A. Braumann, N. M. Brites, C. J. Roquete, Prediction for individual growth in
a random environment, in Recent Developments in Modeling and Applications in Statistics (eds.
P. Oliveira, M. da Graça Temido, C. Henriques, M. Vichi), Springer, Berlin, Heidelberg, (2013),
193–201. https://doi.org/10.1007/978-3-642-32419-2 20

2. O. Garcia, A stochastic differential equation model for the height growth of forest stands,
Biometrics, 39 (1983), 1059–1072. https://doi.org/10.2307/2531339

3. N. T. Jamba, G. Jacinto, P. A. Filipe, C. A. Braumann, Likelihood function
through the delta approximation in mixed sde models, Mathematics, 10 (2022).
https://doi.org/10.3390/math10030385

4. O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 5 (1977), 177–
188. https://doi.org/10.1016/0304-405X(77)90016-2

5. P. A. Filipe, C. A. Braumann, N. M. Brites, C. J. Roquete, Modelling animal growth in random
environments: an application using nonparametric estimation, Biometrical J., 52 (2010), 653–666.
https://doi.org/10.1002/bimj.200900273

6. P. A. Filipe, C. A. Braumann, C. J. Roquete, Multiphasic individual growth models in random
environments, Methodol. Comput. Appl., 14 (2012), 49–56. https://doi.org/10.1007/s11009-010-
9172-0

7. G. Jacinto, P. A. Filipe, C. A. Braumann, Profit optimization of cattle growth with variable prices,
Methodol. Comput. Appl., 24 (2022a), 1917–1952. https://doi.org/10.1007/s11009-021-09889-z

8. G. Jacinto, P. A. Filipe, C. A. Braumann, Weighted maximum likelihood
estimation for individual growth models, Optimization, 71 (2022b), 3295–3311.
https://doi.org/10.1080/02331934.2022.2075745

9. U. Picchini, S. Ditlevsen, Practical estimation of high dimensional stochastic
differential mixed-effects models, Comput. Stat. Data An., 55 (2011), 1426–1444.
https://doi.org/10.1016/j.csda.2010.10.003

10. R. Wolfinger, Laplace’s approximation for nonlinear mixed models, Biometrika, 80 (1993), 791–
795. https://doi.org/10.2307/2336870

11. M. Delattre, A review on asymptotic inference in stochastic differential equations with mixed
effects, Jan. J. Stat. Data Sci., 4 (2021), 543–575. https://doi.org/10.1007/s42081-021-00105-3

12. I. Botha, R. Kohn, C. Drovandi, Particle methods for stochastic differential equation mixed effects
models, Bayesian Anal., 16 (2021), 575–609. https://doi.org/10.1214/20-BA1216

13. S. Wiqvist, A. Golightly, A. T. McLean, U. Picchini, Efficient inference for stochastic differential
equation mixed-effects models using correlated particle pseudo-marginal algorithms, Comput. Stat.
Data Anal., 157 (2021), 107151. https://doi.org/10.1016/j.csda.2020.107151

AIMS Mathematics Volume 9, Issue 4, 7866–7894.

http://dx.doi.org/https://doi.org/10.1007/978-3-642-32419-2_20
http://dx.doi.org/https://doi.org/10.2307/2531339
http://dx.doi.org/https://doi.org/10.3390/math10030385
http://dx.doi.org/https://doi.org/10.1016/0304-405X(77)90016-2
http://dx.doi.org/https://doi.org/10.1002/bimj.200900273
http://dx.doi.org/https://doi.org/10.1007/s11009-010-9172-0
http://dx.doi.org/https://doi.org/10.1007/s11009-010-9172-0
http://dx.doi.org/https://doi.org/10.1007/s11009-021-09889-z
http://dx.doi.org/https://doi.org/10.1080/02331934.2022.2075745
http://dx.doi.org/https://doi.org/10.1016/j.csda.2010.10.003
http://dx.doi.org/https://doi.org/10.2307/2336870
http://dx.doi.org/https://doi.org/10.1007/s42081-021-00105-3
http://dx.doi.org/https://doi.org/10.1214/20-BA1216
http://dx.doi.org/https://doi.org/10.1016/j.csda.2020.107151


7894

14. M. G. Ruse, A. Samson, S. Ditlevsen, Inference for biomedical data by using diffusion
models with covariates and mixed effects, J. Royal Stat. Soc. C-Appl., 69 (2020), 167–193.
https://doi.org/10.1111/rssc.12386

15. R. V. Overgaard, N. Jonsson, C. W. Tornøe, H. Madsen, Non-linear mixed-effects models with
stochastic differential equations: Implementation of an estimation algorithm, J. Pharmacokinet.
Phar., 32 (2005), 85–107. https://doi.org/10.1007/s10928-005-2104-x

16. U. Picchini, A. D. Gaetano, S. Ditlevsen, Stochastic differential mixed-effects models, Scand. J.
Stat., 37 (2010), 67–90. http://www.jstor.org/stable/41000916

17. M. Delattre, C. Dion, Msdeparest: Parametric estimation in mixed-effects stochastic
differential equations, R package version 1.7, (2017). https://CRAN.R-project.org/
package=MsdeParEst

18. C. Dion, A. Samson, S. Hermann, mixedsde: Estimation methods for stochastic differential mixed
effects models, R package version 5.0, (2018). https://CRAN.R-project.org/package=
mixedsde

19. S. Klim, S. B. Mortensen, N. R. Kristensen, R. V. Overgaard, H. Madsen, Population stochastic
modelling (psm)-an r package for mixed-effects models based on stochastic differential equations.
Comput. Meth. Prog. Bio., 94 (2009), 279–289. https://doi.org/10.1016/j.cmpb.2009.02.001

20. M. Delattre, V. Genon-Catalot, A. Samson, Maximum likelihood estimation for
stochastic differential equations with random effects, Scand. J. Stat., 40 (2013), 322–343.
https://doi.org/10.1111/j.1467-9469.2012.00813.x

21. C. A. Braumann, Introduction to Stochastic Differential Equations with Applications to Modelling
in Biology and Finance, John Wiley & Sons, (2019). https://doi.org/10.1002/9781119166092

22. J. Leander, M. Jirstrand, U. G. Eriksson, R. Palmér, A stochastic mixed effects model
to assess treatment effects and fluctuations in home-measured peak expiratory flow and the
association with exacerbation risk in asthma, CPT: Pharmacomet. Syst., 11 (2022), 212–224.
https://doi.org/10.1002/PSP4.12748

23. K. Wang, L. Marciani, G. L. Amidon, D. E. Smith, D. Sun, Stochastic differential equation-based
mixed effects model of the fluid volume in the fasted stomach in healthy adult human, AAPS J., 25
(2023), 76. https://doi.org/10.1208/s12248-023-00840-3

24. U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-
inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol., 25 (2008),
141–155. https://doi.org/10.1093/imammb/dqn011

25. U. Picchini, Stochastic Differential Models with Applications to Physiology, PhD thesis, University
of Rome, Rome, Italy, 2006.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 4, 7866–7894.

http://dx.doi.org/https://doi.org/10.1111/rssc.12386
http://dx.doi.org/https://doi.org/10.1007/s10928-005-2104-x
http://www.jstor.org/stable/41000916
https://CRAN.R-project.org/package=MsdeParEst
https://CRAN.R-project.org/package=MsdeParEst
https://CRAN.R-project.org/package=mixedsde
https://CRAN.R-project.org/package=mixedsde
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2009.02.001
http://dx.doi.org/https://doi.org/10.1111/j.1467-9469.2012.00813.x
http://dx.doi.org/https://doi.org/10.1002/9781119166092
http://dx.doi.org/https://doi.org/10.1002/PSP4.12748
http://dx.doi.org/https://doi.org/10.1208/s12248-023-00840-3
http://dx.doi.org/https://doi.org/10.1093/imammb/dqn011
http://creativecommons.org/licenses/by/4.0

	Introduction
	Stochastic differential equations for non-mixed models
	Stochastic differential equation mixed models
	Mixed models with random asymptotic average size
	Likelihood function through the Laplace approximation method
	Likelihood function through the delta approximation method

	Mixed models with random growth parameter
	Likelihood function through the Laplace approximation method
	Likelihood function through the delta approximation method

	Mixed models with random asymptotic average size and random growth parameter
	Likelihood function through the Laplace approximation method
	Likelihood function through the delta approximation method

	Performance comparison of the methods
	Model with a random average asymptotic size 
	Model with random growth parameter 
	Model with two random effects
	Real data application

	Conclusions

