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Abstract: The fractional Bagley-Torvik system (FBTS) is initially created by utilizing fractional
calculus to study the demeanor of real materials. It can be described as the dynamics of an inflexible
plate dipped in a Newtonian fluid. In the present article, we aim for the first time to discuss the existence
and uniqueness (E&U) theories of an unbounded solution for the proposed generalized FBTS involving
Riemann-Liouville fractional derivatives in the half-line (0,∞), by using fixed point theorems (FPTs).
Moreover, the Hyers-Ulam stability (HUS), Hyers-Ulam-Rassias stability (HURS), and semi-Hyers-
Ulam-Rassias stability (sHURS) are proved. Finally, two numerical examples are given for checking
the validity of major findings. By investigating unbounded solutions for the FBTS, engineers gain a
deeper understanding of the underlying physics, optimize performance, improve system design, and
ensure the stability of the motion of real materials in a Newtonian fluid.
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1. Introduction

Fractional calculus is the science of differentials and integrations of arbitrary non-integer orders [1].
In recent decades, fractional differential equations (FDEs) have gained a high interest, which enable the
applications of dynamical systems in the field of life sciences. These equations under specific boundary
value conditions have numerous applications in various science fields, including physics, engineering,
finance, and biology. For example, FDEs can be used to model disease spread and understand a
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complex physical dynamic systems. As such, FDEs have become an essential tool for scientists,
mathematicians, and engineers in many different areas of research; for more details, see these [2–8],
and references cited therein. In 1984, Bagley and Torvik are considered the first authors who created
a prototype fractional mathematical model to describe the viscoelasticity of real materials [9]. This
model is given by

M y′′(t) + 2S
√

pq RLD
3
2 y(t) + k y(t) = g(t), (1.1)

where RLD
3
2 is the Riemann-Liouville (RL) fractional derivative, and M is the mass of a plate with

surface area S and displacement y. Moreover, g represents the loading force, and k is the stiffness of
a spring that connected an immersed plate in a fluid of viscosity p and density q. In fact, the FBTS
has attracted the attention of researchers in fields of mathematics and physics. In particular, Syam
et al. [10] studied approximate solutions of the FBTS, with boundary conditions y(0) = A, y(T ) = B,
for t ∈ [0,T ], by using an implicit hybrid method. Saw and Kumar [11] applied the Chebyshev
collocation technique for solving the following FBTS:

k0y′′(t) + k1
CD

3
2 y(t) + k2y(t) = g(t), t ∈ [0, 1],

y(0) = a, y(1) = b, a, b ∈ R,

such that CD
3
2 is a derivative in the Caputo sense. Furthermore, many authors studied the approximate

solution of the FBTS under different fractional operators and a variety of boundary conditions by
various approaches such as the Gegenbauer wavelet expansion [12], Homotopy analysis method [13],
Galerkin approach [14], Legendre-collocation methods [15], Haar wavelet [16], generalized Fibonacci
operational [17], and the matrix of Fermat polynomials operational [18]; for more related works see
references cited therein.

Indeed, the analytic solution of the FBTS gained the interest of mathematicians. Particularly,
Stanek [19] investigated E&U results of negative and positive solutions of the generalized FBTS with
two-point boundary conditions. In 2015, the authors of [20] used the Laplace transform in solving the
general FBTS without constraints in initial and boundary conditions. Fazli and Nieto [21], employed
FPTs to study the existence of a lower and upper solution of the initial FBTS in partially ordered
normed linear spaces. Pang et al. [22], studied generalized FBTSs of the form:

y′′(t) = g
(
t
)
− γ1

CDν0+y(t) − γ2y(t) = F
(
t, y(t), CDν0+y(t)

)
, t ∈ [0,T ],

y(0) = a, y′(0) = b, a, b ∈ R,

where CDν0+ is a derivative in the Caputo sense with order ν ∈ (0, 2). Additionally, [23] discussed the
E&U of the FBTS by a different technique to that used in [21]. Moreover, Zafar et al. [24] used the
integral transform technique to investigate solutions of the following general form of FBTS:

γ0
CDθ0+y(t) + γ1

CDϑ+1
0+ y(t) + γ2y(t) = g

(
t
)
, t > 0,

y(0) = a, y′(0) = b, a, b ∈ R,

where θ ∈ (1, 2) and ϑ ∈ (0, 1).

On the other hand, unbounded solutions of dynamic systems often arise where a system exhibits
extreme behavior, such as exponential growth or decay. By studying these unbounded solutions for a
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dynamic system, engineers gain a deeper understanding of how the system behaves beyond the scope of
bounded solutions under extreme conditions with its long-term dynamics. Also, unbounded solutions
allow us to identify critical points, bifurcation points, and regions of stability or instability in the
system; we refer the readers to some related papers [25–28].

Inspired by the above articles, the present work focuses on investigating the E&U theories and
some stability kinds such as the HUS, HURS, and sHURS of unbounded solutions for a new class of
the generalized FBTS on the half-line (0,∞) as follows:

RLDµ0+y(t) + γ RLDν0+y(t) = H
(
t, y(t)

)
, t ∈ ζ = (0,∞),

lim
t→0+

t2−µy(t) = %0, lim
t→∞

t1−µy(t) = %∞,
(1.2)

such that RLDθ0+ is the RL−fractional derivative of order θ, where θ ∈ {µ, ν} with µ, ν ∈ (1, 2], µ > ν,

and a given function t2−µH(t, y) ∈ C(ζ × Γ, Γ), γ, %0, %∞ ∈ Γ, γ , 0, where Γ denotes the real Banach
space.

Here, we declare that, to the best of our knowledge, this is the first research work concerning the
E&U and some types of HUS of unbounded solutions for FBTS on the half-line (0,∞), in an applicable
space Σ which is defined in Section 3. Further, the FBTS (1.2) covers many existing works in the
literature, for instance, it will turn to the original model (1.1), by taking µ = 2, ν = 3

2 , γ =
2S
√

pq
M

, and
H

(
t, y(t)

)
= 1
M

(g(t) − ky(t)).

The remainder of this articles is organized as follows: In Section 2, background materials are
provided. In Sections 3 and 4, the qualitative properties of an unbounded solution for the proposed
FBTS (1.2) are proved.

2. Background materials

This section presents several important background materials, which are related to this study.

Definition 2.1. [1] The µth RL-fractional integral of the integrable function y, with µ > 0, is as
follows:

(Iµ0+y)(t) =

∫ t

0

(t − z)µ−1

Γ(µ)
y(z)dz, t > 0.

Definition 2.2. [1] The µth RL-fractional derivative of the integrable function y, with µ ∈ (n − 1, n],
is as follows:

(RLDµ0+y)(t) = (Dn In−µ0+ y)(t) =
dn

dtn

∫ t

0

(t − z)n−µ−1

Γ(n − µ)
y(z)dz, t > 0,D :=

d
dt
.

Lemma 2.3. [1] Let n − 1 < µ, ν ≤ n, and y ∈ L1([0, b]), then

(i) Iµ0+
RLDµ0+y(t) = y(t) −

∑n
i=1 citµ−i, ∀ t ∈ [0, b], ci ∈ R;

(ii) RLDµ0+I
µ
0+y(t) = y(t);

(iii) Iµ0+Iν0+y(t) = Iµ+ν
0+ y(t);

(vi) RLDµ0+Iν0+y(t) = Iµ−ν0+ y(t).
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Lemma 2.4. [1] For η > 0 and µ > 0, we have
(
Iµ0+uη−1

)
(t) =

Γ(η)
Γ(η + µ)

tη+µ−1, and
(
RLDµ0+uη−1

)
(t) =

Γ(η)
Γ(η − µ)

tη−µ−1.

Definition 2.5. [29] We say that d : Y × Y → [0,∞) is a generalized metric on the nonempty set Y, if
the following three properties satisfied: (i) d(t, z) = 0, iff t = z,∀ t, z ∈ Y; (ii) d(t, z) = d(z, t),∀ t, z ∈ Y;
(iii) d(t, z) ≤ d(t, c) + d(c, z),∀ t, z, c ∈ Y.

Theorem 2.6. [29] Suppose that a mapping Ψ : Y → Y is contractive with Lipschitz’s constant K < 1,
such that (Y, d) admits a generalized complete metric space. Moreover, if d(Ψ j+1t,Ψ jt) < ∞, for some
j ∈ N and t ∈ Y, then the following statements are satisfied:
(i) A sequence {Ψ j} tends to a fixed point t0 ∈ Ψ;
(ii) t0 admits unique fixed point of Ψ in Y∗ = {z ∈ Y | d(Ψ jt, z) < ∞};

(iii) If z ∈ Y∗, then d(z, t0) ≤
1

1 − K
d(Ψz, z).

Theorem 2.7. (Schauder’s FPT, [30]). Let a mapping Ψ : G → G be continuous and compact, such
that G is a nonempty, convex, closed, and bounded subset of a Banach space Y. Then, a mapping Ψ

admits at least one fixed point in G.

3. E&U of an unbounded solution

In this part, we start our study by producing the corresponding Volterra integral formula of the
FBTS (1.2).

Lemma 3.1. The FBTS (1.2) admits a solution equivalent to the Volterra integral equation

y(t) =

∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz − γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz

−
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz + %∞tµ−1 + %0tµ−2. (3.1)

Proof. By taking Iµ0+ on both sides of the FBTS (1.2), and by applying Lemma 2.3, one finds

y(t) = Iµ0+H
(
t, y(t)

)
− γ Iµ−ν0+ y(t) + c1tµ−1 + c2tµ−2.

Now, applying the boundary condition lim
t→0+

t2−µy(t) = %0, we find c2 = %0, then

y(t) = Iµ0+H
(
t, y(t)

)
− γ Iµ−ν0+ y(t) + c1tµ−1 + %0tµ−2, (3.2)

and by using the condition lim
t→∞

t1−µy(t) = %∞, we obtain

c1 +
1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz = %∞,

which yields that

c1 = %∞ −
1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz.
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Hence, by putting c1 into Eq (3.2), one deduces that

y(t) = Iµ0+H
(
t, y(t)

)
− γ Iµ−ν0+ y(t) −

tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz + %∞tµ−1 + %0tµ−2

=

∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz − γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz

−
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz + %∞tµ−1 + %0tµ−2.

Hence, the proof is finished. �

Now, we assume that J is a compact interval, and the Banach space of continuous functions is
denoted by C(J , Γ), with supremum norm ‖y‖Γ = supt∈J ‖y(t)‖. Towards our aims, we define an
applicable Banach space

Σ =

{
y
∣∣∣∣ y(t) ∈ C(ζ, Γ), sup

t∈ζ

‖y(t)‖
1 + tµ

< ∞

}
,

which is gifted with the supremum norm

‖y‖Σ = sup
t∈ζ

‖y(t)‖
1 + tµ

,

where (Σ, ‖ · ‖Σ) represents a Banach space, as in the works [31, 32]. Additionally, according to
Lemma 3.1, we introduce the operator Ψ : Σ→ Σ, as follows:

(Ψy)(t) =

∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz − γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz

−
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz + %∞tµ−1 + %0tµ−2, t ∈ (0,∞). (3.3)

For investigating a work analysis, we present the following assumptions:

(AS 1) Let h1(·), h2(·) > 0, and y, h1, h2, t2−µH(t, y) : ζ × Σ→ Σ are continuous functions, such that∥∥∥t2−µH
(
t, (1 + tµ)y(t)

)∥∥∥ ≤ h1(t) + h2(t)
∥∥∥y(t)

∥∥∥.
(AS 2) Let α1 ∈ (0, 1), and α2 > 0 be real constants, such that

sup
t∈ζ

(
1

Γ(µ)

∫ t

0

h2(z)
z2−µ dz +

1
Γ(µ)

∫ ∞

0

h2(z)
z2−µ dz +

‖γ‖

Γ(µ − ν + 1)

)
≤ α1 < 1,

sup
t∈ζ

(
1

Γ(µ)

∫ t

0

h1(z)
z2−µ dz +

1
Γ(µ)

∫ ∞

0

h1(z)
z2−µ dz + ‖%∞‖ + ‖%0‖

)
≤ α2 < ∞.

(AS 3) Let f(·) > 0, and y, f, t2−µH(t, y) : ζ × Σ→ Σ be continuous functions, such that∥∥∥t2−µ
[
H

(
t, (1 + tµ)y(t)

)
−H

(
t, (1 + tµ)ȳ(t)

)] ∥∥∥ ≤ f(t)∥∥∥y(t) − ȳ(t)
∥∥∥.
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(AS 4) Let ∆1 ∈ (0, 1), and ∆2 > 0 be real constants, such that

sup
t∈ζ

(∫ t

0

f(z)
z2−µΓ(µ)

dz +

∫ ∞

0

f(z)
z2−µΓ(µ)

dz +
‖γ‖

Γ(µ − ν + 1)

)
≤ ∆1 < 1,

sup
t∈ζ

(∫ t

0

1
Γ(µ)

∥∥∥H(
z, 0

)∥∥∥ dz +

∫ ∞

0

1
Γ(µ)

∥∥∥H(
z, 0

)∥∥∥ dz + ‖%∞‖ + ‖%0‖

)
≤ ∆2 < ∞.

Now, we present the following essential lemma which is needed for our analysis.

Lemma 3.2. A bounded subset D of Σ is relatively compact in Σ, if
(i) A set { h(t)

1+tµ , for any h ∈ D, t ∈ J}, is equicontinuous on J , such that J is closed, bounded, and a
sub-interval of (0,∞);
(ii) For any ε > 0, ∃ δ > 0, such that ‖h(t1)

1+tµ1
−

h(t2)
1+tµ2
‖ < ε, for any t1, t2 ≥ δ, and h ∈ D.

Proof. The proof can be introduced by the same manner as in [32]. �

Theorem 3.3. Let (AS 1) and (AS 2) are hold. Then, the FBTS (1.2) possesses at least one solution on
the half-line ζ.

Proof. In order to achieve our goal, let us take the mapping Ψ : Σ → Σ, as defined in Eq (3.3). Also,
we define a bounded closed ball Bρ = {y ∈ Σ : ‖y‖Σ ≤ ρ}, such that ρ ≥

α2

1 − α1
.

In fact, our analysis will be done according to Schauder’s technique. Thus, first we show that
Ψ : Bρ → Bρ. For y ∈ Bρ, and t ∈ ζ, we have∥∥∥∥∥ (Ψy)(t)

1 + tµ

∥∥∥∥∥ ≤ 1
Γ(µ)

∫ t

0

(t − z)µ−1

z2−µ(1 + tµ)

∥∥∥z2−µH
(
z, y(z)

)∥∥∥ dz +
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
‖y(z)‖ dz

+
tµ−1

Γ(µ)

∫ ∞

0

∥∥∥z2−µH
(
z, y(z)

)∥∥∥
z2−µ(1 + tµ)

dz +
‖%∞‖ tµ−1

(1 + tµ)
+
‖%0‖ tµ−2

(1 + tµ)

≤
1

Γ(µ)

∫ t

0

(t − z)µ−1

z2−µ(1 + tµ)

h1(z) + h2(z)

∥∥∥y(z)
∥∥∥

1 + zµ

 dz

+
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
‖y(z)‖ dz

+
tµ−1

Γ(µ)(1 + tµ)

∫ ∞

0

1
z2−µ

h1(z) + h2(z)

∥∥∥y(z)
∥∥∥

1 + zµ

 dz +
‖%∞‖ tµ−1

(1 + tµ)
+
‖%0‖ tµ−2

(1 + tµ)

≤
1

Γ(µ)(1 + tµ)

∫ t

0

(t − z)µ−1

z2−µ h1(z)dz +
tµ−1

Γ(µ)(1 + tµ)

∫ ∞

0

1
z2−µh1(z)dz

+

∥∥∥y
∥∥∥

Σ

Γ(µ)(1 + tµ)

∫ t

0

(t − z)µ−1

z2−µ h2(z)dz +
tµ−1

∥∥∥y
∥∥∥

Σ

Γ(µ)(1 + tµ)

∫ ∞

0

1
z2−µh2(z)dz

+
‖γ‖ ‖y‖Σ
Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
dz +

‖%∞‖ tµ−1

(1 + tµ)
+
‖%0‖ tµ−2

(1 + tµ)

≤
1

Γ(µ)

∫ t

0

h1(z)
z2−µ dz +

1
Γ(µ)

∫ ∞

0

h1(z)
z2−µ dz

AIMS Mathematics Volume 9, Issue 2, 5071–5087.



5077

+

∥∥∥y
∥∥∥

Σ

Γ(µ)

∫ t

0

h2(z)
z2−µ dz +

∥∥∥y
∥∥∥

Σ

Γ(µ)

∫ ∞

0

h2(z)
z2−µ dz

+
‖γ‖ ‖y‖Σ

Γ(µ − ν + 1)
+ ‖%∞‖ + ‖%0‖

≤ α2 + α1ρ ≤ ρ.

Thus, ‖Ψy‖Σ ≤ ρ, which means Ψ : Bρ → Bρ.

Now, it is easy to show that Ψ is continuous mapping due to the continuity of the functions y and
H , along with the Lebesgue dominated convergence approach, as follows:

Let {yn}n∈N be a convergence sequence in Bρ that converges to y as n tends to∞. Then,

t2−µH
(
t, yn(t)

)
→ t2−µH

(
t, y(t)

)
, as n→ ∞,

and so

lim
n→∞

(Ψyn)(t)
1 + tµ

=
1

Γ(µ)

∫ t

0

(t − z)µ−1

z2−µ(1 + tµ)
lim
n→∞

z2−µH
(
z, yn(z)

)
dz

−
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
lim
n→∞

yn(z)dz

−
1

Γ(µ)

∫ ∞

0

tµ−1

z2−µ(1 + tµ)
lim
n→∞

z2−µH
(
z, yn(z)

)
dz +

‖%∞‖ tµ−1

(1 + tµ)
+
‖%0‖ tµ−2

(1 + tµ)

=
(Ψy)(t)
1 + tµ

.

Next, we prove that Ψ is an equicontinuous mapping on any compact interval J ⊂ ζ.
Consider B to be a bounded subset of Bρ, and J ⊂ ζ a compact interval. Thus, for any y ∈ B, and

t1, t2 ∈ J with t1 ≤ t2, one finds∥∥∥∥∥∥ (Ψy)(t2)
1 + tµ2

−
(Ψy)(t1)
1 + tµ1

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1
Γ(µ)

∫ t2

0

(t2 − z)µ−1

(1 + tµ2)
H

(
z, y(z)

)
dz −

1
Γ(µ)

∫ t1

0

(t1 − z)µ−1

(1 + tµ1)
H

(
z, y(z)

)
dz

∥∥∥∥∥∥
+

∥∥∥∥∥∥ γ

Γ(µ − ν)

∫ t2

0

(t2 − z)µ−ν−1

(1 + tµ2)
y(z)dz −

γ

Γ(µ − ν)

∫ t1

0

(t1 − z)µ−ν−1

(1 + tµ1)
y(z)dz

∥∥∥∥∥∥
+

∣∣∣tµ−1
2 − tµ−1

1

∣∣∣
(1 + tµ2)(1 + tµ1)

∫ ∞

0

∥∥∥H(
z, y(z)

)∥∥∥
Γ(µ)

dz

+
‖%∞‖

∣∣∣(tµ−1
2 (1 + tµ1) − tµ−1

1 (1 + tµ2))
∣∣∣

(1 + tµ2)(1 + tµ1)
+
‖%0‖

∣∣∣tµ−2
2 (1 + tµ1) − tµ−2

1 (1 + tµ2)
∣∣∣

(1 + tµ2)(1 + tµ1)

≤
1

Γ(µ)

∫ t1

0

∣∣∣∣∣∣ (t2 − z)µ−1

(1 + tµ2)
−

(t1 − z)µ−1

(1 + tµ1)

∣∣∣∣∣∣ ∥∥∥H(
z, y(z)

)∥∥∥ dz

+
‖γ‖

Γ(µ − ν)

∫ t1

0

∣∣∣∣∣∣ (t2 − z)µ−ν−1

(1 + tµ2)
−

(t1 − z)µ−ν−1

(1 + tµ1)

∣∣∣∣∣∣ ‖y(z)‖ dz

+

∥∥∥∥∥∥ 1
Γ(µ)

∫ t2

t1

(t2 − z)µ−1

(1 + tµ2)
H

(
z, y(z)

)
dz

∥∥∥∥∥∥ +

∥∥∥∥∥∥ γ

Γ(µ − ν)

∫ t2

t1

(t2 − z)µ−ν−1

(1 + tµ2)
y(z)dz

∥∥∥∥∥∥
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+

∣∣∣tµ−1
2 − tµ−1

1

∣∣∣
(1 + tµ2)(1 + tµ1)

∫ ∞

0

∥∥∥H(
z, y(z)

)∥∥∥
Γ(µ)

dz

+
‖%∞‖

∣∣∣(tµ−1
2 (1 + tµ1) − tµ−1

1 (1 + tµ2))
∣∣∣

(1 + tµ2)(1 + tµ1)
+
‖%0‖

∣∣∣tµ−2
2 (1 + tµ1) − tµ−2

1 (1 + tµ2)
∣∣∣

(1 + tµ2)(1 + tµ1)
,

which yields that
∣∣∣∣ (Ψy)(t2)

1+tµ2
−

(Ψy)(t1)
1+tµ1

∣∣∣∣ → 0, when t1 tends to t2, which means Ψ is an equicontinuous
mapping on J .

Next, we investigate that Ψ is equiconvergent at∞. For achieving this goal, we know that lim
t→∞

tµ−1

1+tµ =

0, and then for any ε > 0,∃ δ1 > 0,∀ t > δ1, which implies that
∣∣∣∣ tµ−1

1+tµ

∣∣∣∣ < ε

2
. So, for each t1, t2 > δ1, one

has ∣∣∣∣∣∣∣ tµ−1
2

1 + tµ2
−

tµ−1
1

1 + tµ1

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ tµ−1

2

1 + tµ2

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ tµ−1
1

1 + tµ1

∣∣∣∣∣∣∣ < ε

2
+
ε

2
= ε.

Similarly, lim
t→∞

(t−z)µ−1

1+tµ = 0, that is, for any ε > 0,∃ δ2 > 0,∀ t > δ2, we have
∣∣∣∣ (t−z)µ−1

1+tµ

∣∣∣∣ < ε

2
. Thus, for each

t1, t2 > δ2, we get
∣∣∣∣ (t2−z)µ−1

1+tµ2
−

(t1−z)µ−1

1+tµ1

∣∣∣∣ < ε. Moreover, lim
t→∞

tµ−2

1+tµ = 0, and then, for any ε > 0,∃ δ3 > 0,∀ t >

δ3, yields that
∣∣∣∣ tµ−2

1+tµ

∣∣∣∣ < ε

2
. Hence, for each t1, t2 > δ3, one obtains

∣∣∣∣∣ tµ−2
2

1+tµ2
−

tµ−2
1

1+tµ1

∣∣∣∣∣ < ε. In the same manner,

since lim
t→∞

(t−z)µ−ν−1

1+tµ = 0, for any ε > 0,∃ δ4 > 0,∀ t > δ4, we have
∣∣∣∣ (t−z)µ−ν−1

1+tµ

∣∣∣∣ < ε

2
. Thus, for each t1, t2 > δ4,

we find
∣∣∣∣ (t2−z)µ−ν−1

1+tµ2
−

(t1−z)µ−ν−1

1+tµ1

∣∣∣∣ < ε.
Therefore, for any ε > 0, by choosing δ ≥ max{δ1, δ2, δ3, δ4}, for all t1, t2 > δ and for any y ∈ B, one

finds ∥∥∥∥∥∥ (Ψy)(t2)
1 + tµ2

−
(Ψy)(t1)
1 + tµ1

∥∥∥∥∥∥ ≤ 1
Γ(µ)

∫ t1

0

1
z2−µ

∣∣∣∣∣∣ (t2 − z)µ−1

(1 + tµ2)
−

(t1 − z)µ−1

(1 + tµ1)

∣∣∣∣∣∣ ∥∥∥z2−µH
(
z, y(z)

)∥∥∥ dz

+
‖γ‖

Γ(µ − ν)

∫ t1

0

∣∣∣∣∣∣ (t2 − z)µ−ν−1

(1 + tµ2)
−

(t1 − z)µ−ν−1

(1 + tµ1)

∣∣∣∣∣∣ ‖y(z)‖ dz

+
1

Γ(µ)

∫ t2

t1

1
z2−µ

∣∣∣∣∣∣ (t2 − z)µ−1

(1 + tµ2)

∣∣∣∣∣∣ ∥∥∥z2−µH
(
z, y(z)

)∥∥∥ dz

+
‖γ‖

Γ(µ − ν)

∫ t2

t1

∣∣∣∣∣∣ (t2 − z)µ−ν−1

(1 + tµ2)

∣∣∣∣∣∣ ‖y(z)‖ dz

+

∣∣∣∣∣∣∣ tµ−1
2

(1 + tµ2)
−

tµ−1
1

(1 + tµ1)

∣∣∣∣∣∣∣
∫ ∞

0

∥∥∥z2−µH
(
z, y(z)

)∥∥∥
z2−µΓ(µ)

dz

+ ‖%∞‖

∣∣∣∣∣∣∣ tµ−1
2

(1 + tµ2)
−

tµ−1
1

(1 + tµ1)

∣∣∣∣∣∣∣ + ‖%0‖

∣∣∣∣∣∣∣ tµ−2
2

(1 + tµ2)
−

tµ−2
1

(1 + tµ1)

∣∣∣∣∣∣∣
≤

ε

Γ(µ)

∫ t1

0

1
z2−µ

h1(t) + h2(t)

∥∥∥y(t)
∥∥∥

1 + zµ

 dz +
ε‖γ‖

Γ(µ − ν)

∫ t1

0
‖y(z)‖ dz

+

ε
2

Γ(µ)

∫ t2

t1

1
z2−µ

h1(t) + h2(t)

∥∥∥y(t)
∥∥∥

1 + zµ

 dz +

ε
2‖γ‖

Γ(µ − ν)

∫ t2

t1
‖y(z)‖ dz
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+
ε

Γ(µ)

∫ ∞

0

1
z2−µ

h1(t) + h2(t)

∥∥∥y(t)
∥∥∥

1 + zµ

 dz + (‖%∞‖ + ‖%0‖) ε.

Hence, for any ε > 0, there exists δ > 0 such that, for all t1, t2 > δ, we deduce that Ψ : B → B
is equiconvergent at ∞. According to Lemma 3.2, we conclude that Ψ : Bρ → Bρ is completely
continuous. Hence, in view of Schauder’s technique 2.7, we infer that Ψ possesses at least one fixed
point, which means the FBTS (1.2) possesses at least one solution on the half-line ζ. �

Theorem 3.4. Let (AS 3) and (AS 4) are hold. Then, the FBTS (1.2) admits an exactly one solution on
the half-line ζ.

Proof. To prove this theorem, we define the mapping Ψ : Σ→ Σ, as given in Eq (3.3). Hence, Ψ maps
Σ into itself, due to using (AS 3) and (AS 4), as follows:∥∥∥∥∥ (Ψy)(t)

1 + tµ

∥∥∥∥∥ ≤ 1
Γ(µ)

∫ t

0

(t − z)µ−1

z2−µ(1 + tµ)

∥∥∥z2−µH
(
z, y(z)

)∥∥∥ dz +
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
‖y(z)‖ dz

+
tµ−1

Γ(µ)

∫ ∞

0

∥∥∥z2−µH
(
z, y(z)

)∥∥∥
z2−µ(1 + tµ)

dz +
‖%∞‖ tµ−1

(1 + tµ)
+
‖%0‖ tµ−2

(1 + tµ)

≤
1

Γ(µ)

∫ t

0

(t − z)µ−1

z2−µ(1 + tµ)

f(z)

∥∥∥y(z)
∥∥∥

(1 + zµ)
+

∥∥∥z2−µH
(
z, 0

)∥∥∥ dz

+
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
‖y(z)‖ dz

+
tµ−1

Γ(µ)

∫ ∞

0

1
z2−µ(1 + tµ)

f(z)

∥∥∥y(z)
∥∥∥

(1 + zµ)
+

∥∥∥z2−µH
(
z, 0

)∥∥∥ dz

+
‖%∞‖ tµ−1

(1 + tµ)
+
‖%0‖ tµ−2

(1 + tµ)

≤

(∫ t

0

f(z)
z2−µΓ(µ)

dz +

∫ ∞

0

f(z)
z2−µΓ(µ)

dz +
‖γ‖

Γ(µ − ν + 1)

)
‖y‖Σ

+

∫ t

0

1
Γ(µ)

∥∥∥H(
z, 0

)∥∥∥ dz +

∫ ∞

0

1
Γ(µ)

∥∥∥H(
z, 0

)∥∥∥ dz + ‖%∞‖ + ‖%0‖

≤ ∆1 ‖y‖Σ + ∆2 < ∞.

Next, we prove that Ψ is a contractive operator on Σ. Then, for any y, ȳ ∈ Σ, and by applying (AS 3)
and (AS 4), one has

‖(Ψy)(t) − (Ψȳ)(t)‖
1 + tµ

≤

∫ t

0

(t − z)µ−1

z2−µΓ(µ)(1 + tµ)

∥∥∥z2−µH
(
z, y(z)

)
− z2−µH

(
z, ȳ(z)

)∥∥∥ dz

+
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
‖y(z) − ȳ(z)‖dz

+

∫ ∞

0

tµ−1

z2−µΓ(µ)(1 + tµ)

∥∥∥z2−µH
(
z, y(z)

)
− z2−µH

(
z, ȳ(z)

)∥∥∥ dz

≤

∫ t

0

(t − z)µ−1f(z)
z2−µΓ(µ)(1 + tµ)

‖y(z) − ȳ(z)‖
(1 + zµ)

dz +
‖γ‖

Γ(µ − ν)

∫ t

0

(t − z)µ−ν−1

(1 + tµ)
‖y(z) − ȳ(z)‖dz
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+

∫ ∞

0

tµ−1f(z)
z2−µΓ(µ)(1 + tµ)

‖y(z) − ȳ(z)‖
(1 + zµ)

dz

≤

(∫ t

0

f(z)
z2−µΓ(µ)

dz +

∫ ∞

0

f(z)
z2−µΓ(µ)

dz +
‖γ‖

Γ(µ − ν + 1)

)
‖y − ȳ‖Σ .

Hence, we infer that ‖Ψy−Ψȳ‖Σ ≤ ∆1‖y− ȳ‖Σ, due to ∆1 ∈ (0, 1). This implies that Ψ is a contractive
mapping, and based on the Banach contraction technique, we deduce that Ψ admits exactly one fixed
point y0 in Σ. Therefore, the FBTS (1.2) possesses one solution on the half-line (0,∞). �

4. Stability of an unbounded solution

In this section, we are concerned with HURS, HUS, and sHURS. To this end, we define suitable
metrics d1(·) and d2(·) on the space Σ, as follows:

d1(y, ȳ) = inf
t∈ζ

{
Λ ∈ ζ

∣∣∣∣ ‖y(t) − ȳ(t)‖
1 + tµ

≤ Λχ(t)
}
,

such that χ(t) > 0, is a continuous and non-decreasing function on the half-line ζ, and

d2(y, ȳ) = sup
t∈ζ

{
Λ ∈ ζ

∣∣∣∣ ‖y(t) − ȳ(t)‖
χ(t)(1 + tµ)

≤ Λ

}
,

such that χ(t) > 0, is a continuous and non-increasing function on the half-line ζ. Similar to the
work [33], and references therein, we can show that d1(·) and d2(·) represent metrics on the Banach
space Σ.

Definition 4.1. [34] The solution of the FBTS (1.2) is HURS, if for each continuous function y : ζ =

(0,∞)→ Σ, satisfying∥∥∥∥y(t) −
∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz + γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz

+
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz − %∞tµ−1 − %0tµ−2

∥∥∥∥ ≤ Iµ0+χ(t), t ∈ ζ,

where χ(t) > 0, is a continuous and increasing function on the half-line ζ, then there is exactly one
solution y0 for the FBTS (1.2), with

‖y(t) − y0(t)‖
1 + tµ

≤ Λχ(t), ∀ t ∈ ζ,

where Λ > 0 is a constant independent of y, y0. Additionally, by taking ξ ≥ 0 instead of χ(t), then the
solution of the FBTS (1.2) is HUS.

Theorem 4.2. Let assumptions (AS 3) and (AS 4) be fulfilled, and χ(t) > 0 be a continuous increasing
function on the half-line ζ, and a function y : ζ = (0,∞)→ Σ is continuous satisfying∥∥∥∥y(t) −

∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz + γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz
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+
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz − %∞tµ−1 − %0tµ−2

∥∥∥∥ ≤ Iµ0+χ(t), t ∈ ζ. (4.1)

Then, there is exactly one solution y0 ∈ Σ, such that

‖y(t) − y0(t)‖
1 + tµ

≤
Π

1 − ∆1
χ(t), ∀ t ∈ ζ, 0 < ∆1 < 1, (4.2)

where sup
t∈ζ

tµ

Γ(µ + 1)(1 + tµ)
≤ Π < ∞, which implies that the solution of the FBTS (1.2), is HURS, and

it follows that it HUS.

Proof. Let us recall the contractive operator Ψ : Σ→ Σ as defined in Eq (3.3). By the metric d1(·), and
(AS 3), (AS 4), for y, ȳ ∈ Σ, we find

‖(Ψy)(t) − (Ψȳ)(t)‖
1 + tµ

≤ Λχ(t)
(∫ t

0

f(z)
z2−µΓ(µ)

dz +

∫ ∞

0

f(z)
z2−µΓ(µ)

dz +
‖γ‖

Γ(µ − ν + 1)

)
≤ ∆1 Λχ(t), ∀ t ∈ ζ, 0 < ∆1 < 1.

Thus, one has
d1(Ψy,Ψȳ) ≤ ∆1 Λ = ∆1 d1(y, ȳ), 0 < ∆1 < 1.

Due to inequality (4.1), we obtain

‖(y)(t) − (Ψy)(t)‖
1 + tµ

≤ sup
t∈ζ

tµ

Γ(µ + 1)(1 + tµ)
χ(t) = Π χ(t), t ∈ ζ. (4.3)

According to inequality (4.3), we have

d1(y,Ψy) ≤ Π < ∞.

Hence, in view of Theorem 2.6, there is exactly one fixed point y0, and

d1(y, y0) ≤
1

1 − ∆1
d1(Ψy, y) ≤

Π

1 − ∆1
, 0 < Π < 1.

Consequently, the solution of the FBTS (1.2) is HURS, and, for χ(t) = 1, it follows that the solution of
the FBTS (1.2) is HUS. �

Definition 4.3. [34] The solution of problem (1.2) is sHURS, if for each continuous function y : ζ =

(0,∞)→ Γ, satisfying∥∥∥∥y(t) −
∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz + γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz

+
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz − %∞tµ−1 − %0tµ−2

∥∥∥∥ ≤ Iµ0+ξ, t ∈ ζ,

where ξ ≥ 0, there is exactly one solution y0 of the FBTS (1.2), and a constant Λ > 0 independent of
y, y0 for some continuous decreasing function χ(t) > 0 on the half-line ζ, where

‖y(t) − y0(t)‖
1 + tµ

≤ Λχ(t), ∀ t ∈ ζ.
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Theorem 4.4. Let (AS 3) and (AS 4) hold, and χ(t) > 0 be a continuous decreasing function on the
half-line ζ, and a function y : (0,∞)→ Σ be continuous, satisfying∥∥∥∥y(t) −

∫ t

0

(t − z)µ−1

Γ(µ)
H

(
z, y(z)

)
dz + γ

∫ t

0

(t − z)µ−ν−1

Γ(µ − ν)
y(z)dz

+
tµ−1

Γ(µ)

∫ ∞

0
H

(
z, y(z)

)
dz − %∞tµ−1 − %0tµ−2

∥∥∥∥ ≤ Iµ0+ξ, t ∈ ζ, (4.4)

where ξ > 0. Then, there is exactly one solution y0 ∈ Σ, and a constant Ξ > 0, where

‖y(t) − y0(t)‖
1 + tµ

≤
ξΠ Ξ

1 − ∆1
χ(t), ∀ t ∈ ζ, 0 < ∆1 < 1, (4.5)

where sup
t∈ζ

tµ

Γ(µ + 1)(1 + tµ)
≤ Π < ∞, which implies that the FBTS (1.2) has a solution of sHURS .

Proof. In the same way as Theorem 4.2, let Ψ : Σ → Σ is a contractive mapping, as defined in (3.3).
By metric d2(·) and (AS 3), (AS 4), one gets

‖(Ψy)(t) − (Ψȳ)(t)‖
χ(t)(1 + tµ)

≤ ∆1Λ, ∀ t ∈ ζ, 0 < ∆1 < 1.

So,
d2(Ψy,Ψȳ) ≤ ∆1Λ = ∆1d2(y, ȳ), 0 < ∆1 < 1.

According to continuity, positiveness, and the decreasing of the function χ(t),∀ t ∈ ζ, there is Ξ > 0,
such that 1

χ(t) ≤ Ξ. Thus, in view of inequality (4.4), we have

‖(y)(t) − (Ψy)(t)‖
χ(t)(1 + tµ)

≤ sup
t∈ζ

ξtµ

χ(t)Γ(µ + 1)(1 + tµ)
= Π Ξ ξ, t ∈ ζ. (4.6)

Further, by the inequality (4.6), we find

d2(y,Ψy) ≤ Π Ξ ξ < ∞.

Hence, in view of the Theorem 2.6, there is an exactly one fixed point y0, and

d2(y, y0) ≤
1

1 − ∆1
d2(Ψy, y) ≤

Π Ξ ξ

1 − ∆1
, 0 < ∆1 < 1.

Therefore, the FBTS (1.2) has a solution with sHURS, and the desired proof is completed. �

5. Examples

In this part, we illustrate the obtained findings with the following examples.

Example 5.1. Consider the FBTS given by

RLD2
0+y(t) +

1
5
RLD

3
2
0+y(t) =

1
9 et

+
y(t)

9(1 + t2)2 , t ∈ ζ = (0,∞), (5.1)
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subjected to the boundary conditions

lim
t→0+

y(t) = 2, lim
t→∞

t−1y(t) = 5. (5.2)

Here, µ = 2, ν = 3
2 , %0 = 2, %∞ = 5, γ = 1

5 , and

H
(
t, y(t)

)
=

1
9 et

+
y(t)

9(1 + t2)2 .

Thus,
∣∣∣H(

t, (1 + t2)y(t)
)∣∣∣ ≤ 1

9 et
+

1
9(1 + t2)

|y(t)|, which implies h1(t) =
1

9 et
, and h2(t) =

1
9(1 + t2)

.

Moreover, we have

sup
t∈ζ

(
1

Γ(2)

∫ t

0

1
9 (1 + z2)

dz +
1

Γ(2)

∫ ∞

0

1
9 (1 + z2)

dz +
1

5 Γ(1.5)

)
≤ α1 ≈ 0.574742 < 1,

sup
t∈ζ

(
1

Γ(2)

∫ t

0

1
9 ez dz +

1
Γ(2)

∫ ∞

0

1
9 ez dz + 5 + 2

)
≤ α2 ≈ 7.22222 < ∞.

Hence, the hypotheses (AS 1) and (AS 2) are satisfied, and then in view of Theorem 3.3, the FBTS (5.1
and 5.2) possesses at least one solution on the half-line ζ.

Example 5.2. Assume that the generalized FBTS given by

RLD
3
2
0+y(t) −

1
12
RLD

5
4
0+y(t) =

sin(t)y(t)
15 et(1 + t2)

, t ∈ ζ = (0,∞), (5.3)

subjected to the boundary conditions

lim
t→0+

y(t) =
1
2
, lim

t→∞
t−1y(t) =

1
3
. (5.4)

Here, µ = 3
2 , ν = 5

4 , %0 = 1
2 , %∞ = 1

3 , γ = −1
12 , and

H
(
t, y(t)

)
=

sin(t)y(t)
15 et(1 + t2)

H
(
t, 0

)
= 0.

Thus,

t
1
2
∥∥∥H(

t, (1 + t2)y(t)
)
−H

(
t, (1 + t2)ȳ(t)

)∥∥∥ ≤ t
1
2

15 et

∥∥∥y(t) − ȳ(t)
∥∥∥,

which yields that f(t) =
t

1
2

15 et
, and hence we get ∆1 ≈ 0.242389 < 1, and ∆2 ≈ 0.83333 < ∞.

Therefore, hypotheses (AS 3) and (AS 4) are satisfied, and based on Theorem 3.4, the FBTS (5.3
and 5.4) admits exactly one solution on the half-line ζ.
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6. Conclusions

This paper was concerned with the study of the generalized FBTS (1.2), which is considered one of
the most important dynamic systems in the mechanics field. It describes the motion of real materials in
a Newtonian fluid. The qualitative properties such as the E&U, UHS, HURS, and sHURS of unbounded
solutions for the proposed dynamic system (1.2) were discussed by utilizing Banach and Schauder
FPTs, along with nonlinear analysis subjects on the half-line (0,∞). Finally, we support our work
with two numerical examples for checking the validity of outcomes. This study is constrained by
RL fractional derivative properties, details of the proposed system given in (1.2), and the space of
analysis Σ. Unbounded solutions results in this study give us a deeper understanding of the FBTS under
extreme conditions for improving system design, optimizing performance, and testing the stability of
real materials in a Newtonian fluid. In the future, our focus will be on studying sufficient conditions
of positive solutions for the FBTS involving the Hilfer fractional derivative, which is connected to the
RL and Caputo fractional derivatives.
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