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Abstract: Let C, be an n-dimensional cross-polytope and I',(C,)) be the smallest positive number y
such that C, can be covered by p translates of yC,. We obtain better estimates of [',:(C,,) for small n
and a universal upper bound of I',:(C,) for all positive integers n.
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1. Introduction

Let K be a convex body in R", i.e., a compact convex set having interior points. The set of convex
bodies in R” is denoted by K™, and the set of convex bodies that are centrally symmetric is denoted by
C". For each x € R" and each A > 0, the set

x+AK :={x+dy|y€e K}

is called a homothetic copy of K; when A € (0, 1), it is called a smaller homothetic copy of K. For each
K € K", we denote by c(K) the least number of translates of int K needed to cover K. Concerning the
least upper bound of ¢(K) in K™, there is a long-standing conjecture (see [1-6] for the origin, history,
and classical known results concerning this conjecture):

Conjecture 1. (Hadwiger’s covering conjecture [4]) For each K € K", we have
c(K) < 2",

and the equality holds if and only if K is a parallelotope.

Although many people have conducted in-depth research, this conjecture is confirmed completely
only for the planar case [7]. In [8], Chuanming Zong proposed a four-step program to attack this
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conjecture. In this program, it is important to estimate

T,.(K) := inf{y >0] e liem) R st K< | e +yK)},

i€[m]

i.e., [,(K) is the smallest positive number y such that K can be covered by m translates of yK. The
map [,,(-): K" — [0,1], K — TI,(K) is called the covering functional with respect to m, where
[m] :={ieZ" |1 <i<m} Clearly, c(K) < mif and only if I',,(K) < 1. For each m € Z*, I',,(-) is an
affine invariant. More precisely,

LK) = Tn(T(K)), YT € A",

where A" is the set of non-degenerate affine transformations from R” to R".
A compact convex set K is said to be an d-dimensional cross-polytope if there exist d linearly
independent vectors vy, - - - , v, such that

K = conv{#v, -+, +v,}.

Clearly, any d-dimensional cross-polytope is the image of

cd:{m],m ca) €RY| Y ol < 1}

ie[d]

under a non-degenerate affine transformation. Therefore, I',,(K) = I,,(C;) holds for each pair of
positive integers m and d. In a recent work [9], Xia Li et al. obtained some estimations of I',,(C,) for
large d. Moreover, they showed that, if P € C”" is a convex polytope with 2d vertices, then

Ln(P) < Tn(Ca)s (1.1)

which shows the importance of estimating I',,(C,).

It is well known that I',»([-1,1]") = 1/2, Vrn > 2. It is interesting to ask whether there exists a
universal upper bound for [':(C,). In this paper, by using elementary yet interesting observations and
refining techniques used in the recent works [9, 10], we get better estimates of I',:(C,). Based on this,
we present the first nontrivial universal upper bound of I,:(C,) for all positive n. By (1.1), results
mentioned above yield also estimates of covering functionals of convex polytopes with few vertices.

Throughout this paper, the dimension n of the underlying space is at least 3.

2. Covering functionals of cross-polytopes

For each n, k € Z*, we put

M(n,k) = {(a/l,--- L) €Z"| ) o sk}.

i€[n]

It is known that (cf. [11] or [12])

#M k)= Y 2"-"(’;)(nli i).

i=n—k
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Lemma 1. Letn,k € Z*. If k < 3, then
(n+k)C, CnC, + Sy,

where

Sk:{ml,--- @) ez ) ol = }u{o

i€[n]

izl( Jizi)r

Proof. Let (a4, ,@,) be an arbitrary point in (n + k)C,,. Then

Moreover,

If e lail < n, then (ay, - -+, @,) € nC, € nC, + §;. Otherwise, there exists m € [k] such that

n+m—1<Z|ai|Sn+m.

i€[n]

On the one hand, since e, (lil — Llail)) < n, we have X, Llail] > m. Then there exist integers
Bi,-++ B, = 0 such that

Bi < lail, Vi € [n] and Z,B,—m

i€[n]

o= sgnay 8] = 3 lad =B < n.

i€[n] i€[n]

Clearly, we have

Therefore,

(0’1,"‘ ’an) :(a'l - Sgn(al) 'ﬁlv’ L,y — Sgn(an) ﬁn)
+ (sgn(ay) - B, -+, sgn(@y) - Bn)
enC, + S ,,.

On the other hand, set

Ul if el = Lall < .
m; = i Yie[n]. 2.1
{ ol + 1, if layl = Ll = 1, [l @)
We have

(@i, ,an) :(CZ] - Sgn(al) My, @y — Sgn(an) - My,
+ (sgn (@) -my, - -+, sgn(ay,) - my).
By the Triangle Inequality, we have

n= mi< )l = ) mi< Y fai—sgn(a) - ml = ) llail —mil <

i€[n] i€[n] i€[n] i€[n] i€[n]

NS

AIMS Mathematics Volume 9, Issue 2, 4014-4020.



4017

Thus, .
mp+---+m, > EZk'
Without loss of generality, assume that ay,--- , @, > 0, and
L@y 2 1 @, @ € [%, 1), Qpy+1s-" " »Qpy € [O,%).
By (2.1), we have
Bi < lai] <m; < Jajl, Vi€ [ngl,
Bi=0<1=m Vi€ nl\ [ng],
Bi=m; =0, Vi€ [n]\[n]
Then there exist integers m/, - - - , mj, such that
Bi <m. <my, Yie[n] and Zm: = k.

i€[n]

Set, for each i € [n], fi(1) = |a; — A|. Then f; is decreasing on [B;, |@;]]. We claim that
fiB) = fim)), Vi € [n]. (2.2)

The case when m] € [B;, |a;]] is clear. If m] > |a;], thenm] = m; = |a;] + 1 and 1/2 < @; — o] < 1.

Thus 1
fiB) = fillai) =i — lail > = > 1 = (o — L)) = fillai] + 1) = fi(m).

Hence (2.2) holds as claimed. It follows that
Z m)) < > fiB) <n.

Dl =m

i€[n] i€[n] i€[n]

[\

Therefore,
(@, ,ay) = (@) —my, - ,a, —m,) + (m}, - ,m,) € nC, +Sy.
Moreover,
#S . =#M>(n, k) — #Mr(n,k— 1) + 1

-2 () 2 ()
zzk(n ’ k)(z) ' 2H(n ks 1)(/<]—c 1) e (Z)(g)
T e P
(n k)+, 21( - '
" )+:2’( Jisi)

:izi(nri z)(]:: 11) +1= Zklz’(’:)(lj: 11) +1. m

1

=2k
_2k
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For each n € Z", let k;(n) be the nonnegative integer satisfying
ki (n) ki (n)+1
ki(n) -1 (n\[k
Z 21( )( 1(1’1) ) +1< on Z 21(”)( l(n)) +1
P p iN\i—1
It is easy to prove that k;(n) < 3.

Corollary 2. For each n € Z*, we have

[2:(Cp) < m

Remark 3. It can be verified that

()= 202 200

o 1 R N |
_2k(n+k ) 2k(n+k)

n

For x € (0, +00), we define
25(1 + x)I+
gx) = ——
X
Clearly, g is strictly increasing on (0, +00), and lim,_,y+ g(x) = 1. For each r € (1, +0), let b(t) be the
solution to the equation g(x) = ¢. Numerical calculation shows that 5(2) ~ 0.205597. We can easily
prove that, if k,(n) is the integer satisfying

2k2(n)(n + k2(”)) <o < zkz(n)+1(n + ka(n) + 1)
n N n ’

then we have lim,,_,, kz(") = b(2) [9,10]. It can be verified that

I ky(n)
im

n—o N

> b(2).

Therefore, the estimate in Corollary 2 is slightly better than that given by [9, Proposition 5] in the
asymptotical sense, and it is much better for particular choices of small n. For example, we have
ki1(7) = 2 and k,(7) = 1. It follows that

n 7
T(Cy) < = ~0.78,
128(C7) < n+k(n) T+2

which is better than I'j55(C7) < < 0.875 [9]. See Table 1 for more examples.

n+k2(n) 7+1
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Table 1. Comparison of estimates of I5:(C),).

n k() o) k(1) )
7 1 0.875 2 0.778
11 2 0.846 3 0.786
16 3 0.842 4 0.8
20 4 0.833 5 0.8
25 5 0.833 6 0.806
Theorem 4. For each n > 3, we have ¢
['0(Cy) < 7

Proof. By numerical calculations, for each 3 < n < 49, we have I'.(C,) < S. Set ¢ = b(2)—0.02. Then
for each n > 50, we have cn < b(2)n — 1, which shows that (1 + ¢)n < n + | b(2)n]. Therefore,

~ (0.8435.

n
)= T @m < Trom

Thus, for each n > 3, we have ¢ 6
Tan(C,) < max{§,0.8435} = 5. O

3. Conclusions

By refining techniques used in the recent works [9, 10], we get better estimates of I',:(C,) and the
first nontrivial universal upper bound of I';:(C,). It is natural to find universal bounds of I':«(B) for
fixed p € (1, 00), where B} is the closed unit ball of (R", ||| ).
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